Proceedings of the 6th Rodin User and
Developer Workshop, 2016

Linz, Austria
May 23rd, 2016

Editors:

Michael Butler University of Southampton, UK.
Thai Son Hoang University of Southampton, UK.

HJNIVERS[TY OF

Southampton

Part 1

Summary

Executive Summary

Event-B is a formal method for system-level modelling and analysis. The
Rodin Platform is an Eclipse-based toolset for Event-B that provides effective
support for modelling and automated proof. The platform is open source and
is further extendable with plug-ins. A range of plug-ins have already been
developed including ones that support animation, model checking and UML-
B. While much of the development and use of Rodin takes place within EU
FP7 Projects (RODIN, DEPLOY, ADVANCE), there is a growing group of
users and plug-in developers outside these projects.

The purpose of the 6th Rodin User and Developer Workshop was to bring
together existing and potential users and developers of the Rodin toolset and
to foster a broader community of Rodin users and developers. For Rodin
users the workshop provided an opportunity to share tool experiences and to
gain an understanding of on’going tool developments. For plug’in developers
the workshop provided an opportunity to showcase their tools and to achieve
better coordination of tool development effort.

The one-day programme consisted presentations on tool development and
tool usage. The presentations are delivered by participants from academia
and industry. This volume contains the abstracts of the presentations at the
Rodin workshop on May 23rd, 2016. The presentations are also available
online at http://wiki.event-b.org/index.php/Rodin_Workshop_2016.

The workshop was co-located with the ABZ 2016 conference and held
in Linz, Austria. The Rodin Workshop was supported by the University of
Southampton.

Finally, we would like to thank the contributors and participants, the
most important part of our successful workshop.

Organisers

Michael Butler, University of Southampton
Stefan Hallerstede, Aarhus University

Thai Son Hoang, University of Southampton
Michael Leuschel, University of Diisseldorf
Laurent Voisin, Systerel

Contents

I Summary iii
Executive Summary v
Table of Contents vii
Workshop Programme o000 ix

IT Contributions 1
Meta-Predicates for Rodin 3
A Rodin plug-in for constructing reusable schematic lemmas 5
Event-B Specification Templates for Defining Domain Specific Lan-

GUAZES © v v e e e e e e e e e e 7
Towards Modular Development in Event-B 9
Crossed-Project Reference for Managing Model Variations 11
SliceAndMerge: A Rodin Plug-in for Refactoring Refinement Struc-

ture of Event-B Machines 13
Rodin in the field of railway system engineering 15
Building Event-B Interlocking Theories: Lessons Learned using the

Theory Plug-in 17
Theory plug-in for Rodin 3.x. 19
Extending Code Generation to Support Platform-Independent Event-

BModels 21
Using Rodin and BMotionStudio for Public Engagement 23
Translating SCXML Statecharts to iUML-B State-machines 25

vil

Programme of the Rodin Workshop 2016

09:00-10:30
e Meta-Predicates for Rodin - Sebastian Krings

e A Rodin plug-in for constructing reusable schematic lemmas - Alexei
lliasov, Paulius Stankaitis, David Adjepon-Yamoah, and Alexander
Romanouvsky

e Event-B Specification Templates for Defining Domain Specific Lan-
guages - Ulyana Tikhonova
10:30—-11:00 Break
11:00-12:30

e Towards Modular Development in Event-B - That Son Hoang, Hi-
ronobu Kuruma, and Michael Butler

e Crossed-Project Reference for Managing Model Variations - Hironobu
Kuruma and That Son Hoang

e SliceAndMerge: A Rodin Plug-in for Refactoring Refinement Structure
of Event-B Machines - Tsutomu Kobayashi, Awar Kripsaar, Fuyuki
Ishikawa and Shinichi Honiden

12:30-14:00 Lunch
14:00-15:30

e Rodin in the field of railway system engineering - Tomas Fischer

e Building Event-B Interlocking Theories: Lessons Learned using the
Theory Plug-in - Yoann Guyot, Renaud De Landtsheer, and Christophe
Ponsard

e Theory plug-in for Rodin 3.x - That Son Hoang, Asieh Salehi, Michael
Butler, and Laurent Voisin

15:30-16:00 Break
16:00-17:30

e Extending Code Generation to Support Platform-Independent Event-B
Models - Asteh Saleht, Michael Butler, and Colin Snook

X

e Using Rodin and BMotionStudio for Public Engagement - Dana Dghaym,
Asieh Salehi and Colin Snook

e Translating SCXML Statecharts to iUML-B State-machines - Karla
Morris and Colin Snook

Part 11

Contributions

Meta-Predicates for Rodin

Sebastian Krings

Institut fiir Informatik, Universitdt Diisseldorf
Universitatsstr. 1, D-40225 Diisseldorf

krings@cs.uni-duesseldorf.de

1 Introduction and Motivation

Event-B [1] provides a concise mathematical language for specifying invariants
and guards. While both Event-B and Rodin [2] matured, certain patterns for
specifying properties like deadlock freedom emerged and are in use. These pat-
terns are often realized by copy and paste of guards into other guards or in-
variants, leading to duplicated code and incomprehensible specifications. Fur-
thermore, it may lead to errors if predicates are not kept in sync. We observed
errors like these during the case studies of ABZ 2014 [3] and started developing
an extension to Event-B that allows accessing guards by corresponding event
names. Since, it has been implemented as a plugin for the Rodin platform.

2 Meta-Predicates for Event-B

We added the following meta-predicates based on the syntax accepted by the
LTL model checker of PROB [5,4]. To avoid loops, generated predicates are not
copied again. With guards(e) containing the guards of e that have been given
directly by the user, the added predicates are

— deadlock enforces that all given elements are disabled, i.e.,

deadlock(Events) = A c puents \/gegumds(e) —g.
— enabled enforces that all given events are enabled, i.e.,

enabled(Events) = /\eeEvents /\geguards(e) g
— controller enforces that exactly one event is enabled, i.e.,
controller(Events) = \/ .c pyenss(enabled({e}) A deadlock(Events \ {e})).
— deterministic enforces that the order of execution is deterministic, i.e.,
deterministic(Events) = controller(Events) V deadlock(Events).

Embedding the predicates into Event-B involves more work than macro re-
placement as the following example will show: Let’s take events evt1, featuring
parameter x1, and evt2 with parameter x2. Obviously, we can not just copy
guards of evtl to evt2, as referencing x1 inside evt2 will result in an unde-
clared variable. For free variables the plugin thus has to decide between

— Adding a parameter to the surrounding event,
— Introducing them using existential quantification, or

— Skipping, removing or renaming them as far as possible.

We did not want to change existing Event-B code in order to keep semantics
as simple as possible. Only new invariants and guards should be added. Thus,
we decided to introduce free variables by existential quantification. A preference
allows to decide if all variables are quantified or only those not yet defined.

3 Integration into Rodin

Our extended language has been integrated into Rodin as a plugin. Sources are
available from https://github.com/wysiib/RodinMetaPredicatesPlugin,
https://www3.hhu.de/stups/rodin/meta_predicates/nightly/ contains an
update site.

The plugin works as an additional static checker. It runs after the machine
itself has been checked, relying only on information Rodin has not discarded.

4 Comparison to Related Plugins

In [6], the authors present DFT-generator, a tool for the automatic generation
of proof obligations for deadlock freedom. Using DFT-generator is comparable
to adding deadlock({...}) to the invariants. However, rather than extending the
predicate syntax, information is stored externally. Our approach is more flexible,
e.g., one can use predicates like state = ERROR = deadlock({...}).

5 Discussion and Conclusion

Our plugin adds a lightweight language extension to Event-B. Together with
tool support, common errors leading to erroneous specifications can be avoided.
Furthermore, expressiveness is increased as the intention of a predicate becomes
more obvious. In future, we would like to implement a direct export to PROB’s
LTL model checker to be able to use different model checking algorithms.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: An open toolset for modelling and reasoning in Event-B. Int. J. Softw.
Tools Technol. Transf., 12(6):447-466, 2010.

3. F. Boniol, V. Wiels, Y. Ameur, and K. Schewe, editors. ABZ 2014: The Landing
Gear Case Study, CCIS 433. Springer, 2014.

4. M. Leuschel and M. Butler. ProB: A model checker for B. In Proceedings FME’03,
LNCS 2805, pages 855-874. Springer, 2003.

5. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf., 10(2):185-203, 2008.

6. F. Yang and J.-P. Jacquot. An Event-B plug-in for creating deadlock-freeness the-
orems. In Proceedings SBMF’11. Brazilian Computer Society, 2011.

A Rodin plug-in for constructing reusable
schematic lemmas

Alexei Iliasov, Paulius Stankaitis,
David Adjepon-Yamoah, Alexander Romanovsky

Newcastle University, UK

Abstract. In the paper we present an approach and tool for making
proofs more generic and thus less fragile and more reusable. The crux of
the technique is offering an engineer an opportunity to complete a proof
by positing and proving a generic lemma that may be reused in the same
or even another project.

1 Introduction

There was a concerted effort, funded by a succession of EU research projects, to
make Event-B [1] and its toolkit, Rodin Platform [2], appealing and competitive
in an industrial setting. One of the lessons of this mainly positive exercise is the
general aversion of industrial users to interactive proof. It is possible, in principle,
to learn, through experience and determination, the ways of underlying verifi-
cation tools and master refinement and decomposition to minimise proof effort.
The methodological implications are far more serious: building a good model
is necessarily a trial and error process; one often has to start from a scratch
or do considerable refactoring to produce an adequate model. This, obviously,
necessitates redoing proofs and makes time spent proving dead-end efforts seem
pointlessly wasted. Hence, proof-shy engineers too often do not make a good
use of formal specification stage as they tend to hold on to the very first, often
incoherent design. We want to change the way proofs are done, at least in an
industrial setting. In place of an interactive proof - something that is inherently
a one-off effort in Event-B - we want to invite modellers to write and prove a
non-model specific condition called a schematic lemma that would, once added
to hypothesis set, discharge an open proof obligation. Such a lemma may not
refer to any model variables or types and is, in essence, a property supporting
the definition of the Event-B mathematical language. If such a lemma cannot
be found or seems to be to difficult to prove, the model must be changed. Since
every modelling project is likely to have a fairly distinctive usage of data types
and mathematical constructs, we might also expect a distinctive set of traits in
supporting lemmas. We hypothesise that such distinctness is pronounced and
dictated by the modellers experience and background as well as the model sub-
ject domain. We have also observed that the style of informal requirements -
structured text, hierarchical diagram, structural diagram - has an impact on a
modelling style. A schematic lemma is a tangible and persistent outcome of any

modelling effort, even an abortive one. Being generic, a schematic lemma is likely
to be useful in a next iteration and, as we might hope, there is a point when all
relevant lemmas are collected and modelling, in a given domain and for a given
engineer, is nearly completely free of interactive proofs.

2 Generic lemmas plug-in

We have built a prototype implementation of the schematic lemma mechanism
as a plug-in to the Rodin Platform. It integrates into the prover perspective and
offers an alternative way to conduct an interactive proof either at a root node
level or indeed for any open sub-branch of a proof obligation. At the moment,
the notation employed is the native notation of Why3 but the first release will
support entering schematic lemma in the Event-B mathematical notation.

The plug-in automatically constructs the first attempt at a schematic lemma
through a simple syntactic transformation of a context proof obligation. All
the identifiers occurring in either hypotheses or goal of the proof obligation
are mapped into schematic lemma identifiers and then this mapping is used to
translate hypotheses and the goal.

From this starting point it is up to the modeller to construct a sensible lemma
by changing identifier, hypotheses and goal definitions. A prepared lemma is com-
mitted where the Why3 plug-in is used to prove that the lemma holds,and also
that adding to the proof obligation in context discharges the proof obligation.
If either fails, a user gets an indication of what has happened and it is not until
both generic and concrete proofs are carried out that the schematic lemma may
be used in the local library and assigned a binding level (machine, project or
global). In the case of a success, the current open goal is closed.

To aid in the construction of a schematic lemma, the plug-in provides some
simple productivity mechanisms. A hypotheses can be deselected without remov-
ing it to check whether both the lemma goal and the context proof obligation
are still provable. An identifier may also be deselected and this automatically
deselects all the hypotheses mentioning the identifier.

In this work we have tried to weave the process of constructing generalised
proofs into the very process of model construction and address two long standing
challenges of model-based design: turning proofs into tangible artefacts that can
survive deep model refactoring, and making interactive proof on organic part of
model construction rather than an unfortunate side activity.

References

1. J.-R. Abrial. Modelling in Event-B. Cambridge University Press, 2010.
2. The RODIN platform. Online at http://rodin-b-sharp.sourceforge.net/.

Event-B Specification Templates
for Defining Domain Specific Languages

Ulyana Tikhonova

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
u.tikhonova@tue.nl

Domain-Specific Languages (DSLs) are a central concept of Model Driven
Engineering (MDE). They are considered to be very effective in software de-
velopment and are being widely adopted by industry nowadays. A DSL is a
programming language specialized to a specific application domain. It captures
domain knowledge and supports reuse of such knowledge via common domain
notions and notation. In this way, the DSL raises the abstraction level of solving
problems in the domain. A DSL is usually implemented as a translation from
the domain concepts to the programming language of an execution platform,
such as C/C++ or Java. In our work we investigate how translation of a DSL to
the Event-B formalism can facilitate design and development of the DSL, and
support understanding and debugging of DSL programs.

The Rodin platform offers various supporting tools for Event-B that can be
applied to a DSL specification in order to implement a set of dedicated use
cases. For example, the DSL semantics can be prototyped and then analyzed
using automatic provers and model checkers (provided by AtelierB and ProB
plug-ins); DSL programs can be simulated and debugged using animators and
visualization tools (ProB and BMotion Studio). Although providing an exten-
sive tool support, Event-B is not designed for specifying the DSL semantics.
Therefore, in order to realize practical benefits of applying Event-B to a DSL,
we adopt the specification formalism to the MDE context through the following
model-to-model transformations.

— The DSL-to-Event-B transformation automatically generates an Event-B
specification of an arbitrary DSL program from a set of Event-B specifica-
tions that define the DSL semantics on the meta-level [3]. Such a transfor-
mation composes the resulting specification out of the DSL semantic speci-
fications using the technique of shared event composition [2].

— The DSL-to-BMotion transformation automatically generates a visualiza-
tion for each concrete DSL program following (mimicing) the DSL graphical
notation. The resulting visualization runs in the BMotion Studio together
with the ProB animator and provides a graphical user interface (GUI) for
the Event-B specification being animated.

As a result, DSL end-users do not need to know formal notation of Event-B
to create and run specifications of their programs. We validated this approach
by means of a user study performed in the industrial context with the real-life
mature DSL. The interviewed users confirmed that the DSL-based development

2 U. Tikhonova

process will benefit from having such harnessed specification of the DSL. How-
ever, the users indicated that to realize these benefits one needs to keep the
Event-B specification of the DSL consistent with the actual implementation of
the DSL, following all its changes and updates. The latter requirement might
cause a high overhead of applying the DSL-to-Event-B transformations, as they
realize rather complex translation of the high-level DSL concepts to the low-level
Event-B concepts. In other words, the semantic gap between a DSL and Event-B
is quite wide.

To manage the wide semantic gap between the DSL and Event-B and to gen-
eralize the proposed approach so that it is applicable to other DSLs, we introduce
Constelle — an intermediate language of reusable specification templates. An arbi-
trary DSL can be defined in Constelle using specification templates, which have
been identified as reusable (successful) design solutions and stored in a library.
On one hand, specification templates can be (re)used to define different DSLs.
On the other hand, such a definition captures intentions of the DSL developer
in a more clear way.

Constelle builds on top of the Event-B formalism. This means that all spec-
ification templates are implemented in Event-B. And the Constelle-to-Event-B
transformation automatically generates Event-B specifications of a DSL from
its Constelle definition. For this, the Constelle-to-Event-B transformation spe-
cializes the invoked templates using generic instantiation [1] and weaves them
together using shared event composition [2]. In this way we ensure that specifi-
cation templates are reused together with the proof obligations discharged for
them.

The Constelle language is not restricted to the scope of DSLs. Our vision
is that a library of Event-B specification templates can be shared and filled by
Event-B practitioners working in various domains. Moreover, in future specifi-
cation templates can be used as a source for automatic generation and/or for
semi-automatic configuration of other artifacts. For example if each specification
template is coupled with a visualization template for the BMotion Studio, then
a specialized visualization for a DSL can be generated from the Constelle defi-
nition. If each specification template is coupled with a source code in C/C++,
then we might be able to generate the corresponding DSL implementation in
source code.

References

1. R. Silva and M. Butler. Supporting Reuse of Event-B Developments through Generic
Instantiation. In K. Breitman and A. Cavalcanti, editors, 11th International Con-
ference on Formal Engineering Methods, ICFEM, volume 5885 of Lecture Notes in
Computer Science, pages 466-484. Springer, 2009.

2. R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B. In
B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, editors, Formal Methods for
Components and Objects (FMCO), pages 122-141. Springer, 2010.

3. U. Tikhonova, M. Manders, M. van den Brand, S. Andova, and T. Verhoeff. Ap-
plying Model Transformation and Event-B for Specifying an Industrial DSL. In
MoDeVVa@MoDELS, pages 41-50, 2013.

Towards Modular Development in Event-B

Thai Son Hoang', Hironobu Kuruma?, and Michael Butler!

1 ECS, University of Southamtpon, U.K.
2 Research and Development Group, Hitachi Ltd., Japan

Background. Event-B [2] developments are mostly structured around refinement
and decomposition relationships [3]. This top-down development architecture
enables system details to be gradually introduced into the formal model. More
often, this result in large model with monolithic structures.

Motivation. Various composition approaches have been proposed [6,4, 7, 5]. This
proposal is inspired by these approaches and development methods such as
classical-B [1], working towards modular development in Event-B.

Machine inclusion. Our first concept is machine inclusions. Machine A that in-
cludes machine B inherits B’s variables and invariants. Variables of B cannot
be modified directly, but only through event’s synchronisation [7]. Multiple in-
stance of the included machine can be achieved via prefixing, similar to [5]. The
syntactical “flatten” of A can be seen in Fig. 1.

machine B machine A machine (flatten_)A
variables y includes p_B variables z, p_y
invariants J(y) variables invariants
events invariants I(z,p-y) I(z,p-y)
event f events J(y)
any u where event e events
Gs(y,u) synchronises p_f event e
then any ¢ where any t, p-u where
BAPgp(y,u,y") Ga(z,t) Ga(z,t)
end Hap(z,p-y, t,p-u) Hap(z,p-y, t,p-u)
then Ga(y,u)
BAPu(z,t,z") then
end BAPA(z,t, 1)
BAPg(py,p-u,p-y’)
end

Fig. 1: Machine inclusion

Refinement-chain inclusion. While machine-inclusion mechanism gives us a di-
rect reuse of machine, it is often the case that we want to reuse a refinement-
chain. Approaches such as [4,8] allow to incorporate refinement chains in to

the development. However, these approaches involve generating of model which
is often cumbersome to accomodate changes. We propose to to include the
refinement-chain inside the machine itself. Fig. 2 illustrates a situation where
A includes a refinement chain from B; to B,,. Semantically, A has double “in-

machine A

includes B; — B,
event e
synchronises f

Fig. 2: Refinement-chain inclusion

terfaces”. To its abstract machine, it acts as a machine with an inclusion of Bj.
To its concrete machine, it acts as a machine with an inclusion of B,,. Since the
refinement of By by B,, has been proved separately, the refinement of (A + B;)
by (A + B,,) is almost correct-by-construction. The extra manual work required
is the refinement of the extra guard, e.g., Hap in Fig. 1.

Some evaluation. We have applied the idea (manually) to several examples. The
result is quite encouraging with reduction of the modelling and proving efforts.
In particular, this approach can be used several times, e.g., to have a hierarchy of
inclusions. The resulting models also easier to comprehend and in particular, it
should incorporate with changes to the imported model without any additional
effort.

Conclusion. The concept here is not new and incorporate many existing work.
We consider this as an effective way to have modular development in Event-B
which will reduce the modelling and proving efforts. We are investigating how
to extend Rodin to support the approach in the most efficient way.

References

1. J-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundam. Inform., 77(1-2):1-28, 2007.

4. Thai Son Hoang, Andreas Fiirst, and Jean-Raymond Abrial. Event-B patterns
and their tool support. Software and Systems Modelling, 12(2):229-244, May 2013.
http://dx.doi.org/10.1007/s10270-010-0183-7.

10

Crossed-Project Reference for Managing Model
Variations

Hironobu Kuruma! and Thai Son Hoang?

! Research and Development Group, Hitachi Ltd., Japan
2 ECS, University of Southamtpon, U.K.

Background. A model in Event-B [1] (typically located within a project) is com-
posed of components combined using refines, extends or sees relations. Fig. 1
shows an example of model variations containing some common machines and
contexts, i.e., Machine;, Machine,, Context; and Context,. Machines and Contexts
(resp. Machine, and Context,) are additional component specific to project A
(resp. B).

refines extends refines extends
o —{e) m—{)
refines extends refines extends
() m—{e)
(a) Project A (b) Project B

Fig.1: A family of models

Motivation. To maintain these models, it is desirable to separate the common
components and to share them between the projects. In Fig. 2, project C is for
the shared components, where the original projects A and B contain only the
additional components. This structure is beneficial for composing a family of
models that has common properties by sharing components.

Concept. We experimentally introduced a crossed-project reference mechanism
into the RODIN platform [2] to manage collections of components and enable ref-
erence to components in different projects. The crossed-project reference mecha-
nism uses a manifest to identify components to be imported from other projects
(Fig. 2). The names of imported components are prefixed with their project
name. The components in importing project refer the imported components by
their names declared in the manifest. The imports relation between projects
must be acyclic.

11

Project © e

refines extends
e C contextz :J
********** refines - - - T ----- extends — - - q4------------—---—-—-—-—-
refines
manifest
Project A sees extends imports C_Machine;,
C_Context;
manifest
Project B sees —— Contexty imports C_Machine;,
C_Context;

Fig. 2: Crossed-project Reference

Implementation. We implemented the cross project reference by renaming and
copying the statically checked files of imported components into the importing
project. In our example, two files in C, i.e., the statically checked files of Machine,
and Context,, are renamed to by prefexing, and copied into A and B. Since
the imported components are expected to be verified in their source project,
verification is required only for the additional components.

Conclusion and Limitation. The crossed-project reference mechanism reduces
the risk of unintended modification of components since it separates the compo-
nents into hierarchical collections. This property is useful for managing model
variations. However, our implementation is experimental and insufficient for
practical usage. Most RODIN plug-ins refer the unchecked file of components
and are incompatible with our implementation. For example, the components
that refer imported components cannot be easily edited by ordinary editors be-
cause they do not recognize the imported components. Although we expect the
generic instantiation [3] is an effective way to compose variations, the generic
instantiation plug-in also uses the unchecked files and does not work with the
crossed-project reference. Furthermore, since our implementation does not prop-
agate the change of original components, the imported file must be updated man-
ually in the importing project. The propagation of the change of components and
the collaboration with the generic instantiation are our future work.

References

1. J-R. Abrial. Modeling in FEvent-B: System and Software Engineering. Cambridge
University Press, 2010.

12

SLICEANDMERGE: A Rodin Plug-in for
Refactoring Refinement Structure of Event-B
Machines

Tsutomu Kobayashi!, Aivar Kripsaar?, Fuyuki Ishikawa® and
Shinichi Honiden!?

!The University of Tokyo, Japan
2RWTH Aachen University, Germany
3National Institute of Informatics, Japan

Event-B supports flexible and rigorous modeling with a refinement mech-
anism based on proof obligation rules. The flexibility enables developers to
decide a set of concepts and aspects of target systems focused on in each re-
finement step. The decision is important in modeling, because it has effects on
understandability, maintainability, extensibility of Event-B models.

We focus on refactoring of refinement structure of machines, or re-deciding
concepts and aspects of refinement steps in existing proved machines. We aim
to realize it in a flexible way through slicing (decomposition) and merging (com-
position) of refinement steps.

In concrete, when the followings are given:

e Machines M4 and M¢ such that Mg refines M4
e Vg, which is a subset of M¢’s variables
Slicing of the refinement produces an intermediate machine Mp such that:
o M refines Mg ! and Mp refines M4
e Mp’s set of variables is a superset of Vg

Merging is the reverse operation of slicing.

Refinement slicing decomposes introduction of new variables and invariants
through a refinement step into several steps. Moreover, it often reveals im-
plicit properties of a concrete machine as explicit expressions of an intermediate
machine. Therefore, it helps users to understand descriptions and proof of re-
finement steps, and thus improves maintainability. A typical problem that can
be solved by refinement slicing is a refinement step with a large number of new
variables and invariants, which tend to be difficult to understand.

Although Rodin platform supports refactoring expressions of machines and
contexts, refactoring of refinement structures has not been tackled.

Irefines clauses of events in M¢ are changed through this process.

13

We implemented a plug-in of Rodin platform named SLICEANDMERGE to
support slicing and merging.
Our approach to slicing is as follows:

1. Calculate variables in the intermediate machine considering dependencies
of variables and invariants.

2. Find fragments of M4 and M¢ that should also be specified in Mp.

3. Add complementary specifications to the fragments, so that Mp becomes
consistent.

SLICEANDMERGE supports users by automating step 1 and step 2 of the
above. Users of SLICEANDMERGE can select a part of invariants of an inter-
mediate machine Mp from a list of invariants of a concrete machine M (Fig.
1). Then the tool resolves dependencies between invariants and variables, finds
fragments of M 4 and M that should be included in the intermediate machine
Mp, and generates a part of Mp. The tool also supports merging of refinement
steps.

File Edit Navigate Search Project Run Window Help
imvEee ¢ ialdiavigvig e oo Quick Access

s Om% =

; | Create Sub-Refinement | | Merge With Direct Predecessor || Select All || Select All Dependencies

-

Element Content Special Comment =)
2

o

not theorem a

Ll

B

a

oridge going to mainland

not extended, ordinary

) Parameters

) Witnesses

Figure 1: Interface for selection of invariants in intermediate machine

In this tool development presentation, we describe details of SLICEAND-
MERGE and give a demonstration of the tool.

s 14

Rodin in the field of railway system engineering

Tomas Fischer

Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria,
tomas.fischer@thalesgroup.com

Abstract. Railway signaling systems are required to provide the high-
est safety level due to the risk of loss of human life. Formal methods
can contribute to the reliability and robustness of specification, design
and implementation of such systems and support their verification and
validation. Moreover, the CENELEC standards [1-3], which define the
certification process of safety critical applications in the railway domain,
qualify the use of formal methods as highly recommended.

However, the application of formal methods is very labor intensive, and
thus expensive. A formal model of the respective system has to be cre-
ated, maintained over the long product lifespan (25+ years) and reasoned
about not only during the development phase, but recurringly at each
modification of the evolving specification. Qualified experts with versatile
skills are inevitable for this job. These experts are required to transform
a semi-formal domain model (as understood by the domain experts) into
the mathematical one and keep both of them aligned. They are also
expected to interpret the verification and validation results and to com-
municate them to experts from other domains. These tasks demand a
good tool support assisting users in all development phases with the aim
to reduce manual efforts and thus decrease overall costs (see also [4]).
In the industrial context formal methods can be used as a one-time shot
(e.g. prove the correctness of one particular algorithm) or continuously,
as an integral part of the development process and therefore integrated
into the development toolchain. Whilst the former usage has already
been studied well and there are some very promising results available,
the latter one encounters several obstacles.

At the workshop we present our experiences with introducing formal
methods (in particular Event-B with the Rodin toolset) for the develop-
ment of a railway interlocking system and discuss our current technical
maturity assessment of the Event-B tools. On a small model we demon-
strate the identified mismatch between the engineering demands and
business needs on one side and current state of the Rodin toolset on the
other side. Finally we propose some measures how to increase Rodin’s
usability (and hence the productivity) without sacrificing its profound
theoretical foundation.

References
1. CENELEC, E.N.: 50126-Railway Applications: The specification and demonstration

of Reliability, Availability, Maintainability and Safety (RAMS). European Commit-
tee for Electrotechnical Standardization (1999)

15

Tomas Fischer

. CENELEC, E.N.: 50129-Railway Applications: Communication, signalling and pro-
cessing systems - Safety related electronic systems for signalling. European Com-
mittee for Electrotechnical Standardization (2003)

. CENELEC, E.N.: 50128-Railway Applications: Software for Railway Control and
Protection Systems. European Committee for Electrotechnical Standardization
(2011)

. Romanovsky, A., Thomas, M.: Industrial deployment of system engineering meth-
ods. Springer (2013)

16

Building Event-B Interlocking Theories:
Lessons Learned using the Theory Plug-in

Yoann Guyot, Renaud De Landtsheer, Christophe Ponsard
CETIC Research Center, Charleroi, Belgium
{yoann.guyot, renaud.delandtsheer, christophe.ponsard}@cetic.be

A computer-based interlocking is a railway signalling system that automati-
cally controls the objects of a railway network, such as signals or points, in order
to let trains move on its tracks without colliding with other trains nor derail-
ing. A number of approaches based on the Event-B method [1| have already
been proposed to model and prove interlocking systems [2, 3]. However its use
in the industrial world is still a challenge. First, engineers responsible for speci-
fying these systems are generally not fluent in using formal methods such as the
Event-B method. Representing railway specific concepts such as routes, tracks,
signals or points using primitive Event-B constructs such as sets, relations and
functions quickly leads to models that are both hard to understand and manage.
Second, the loss of the rail structure of the problem makes the proof obligations
difficult to discharge, hence requires a lot of manual proof-work, also restricting
its use to specialists.

A relevant way of making the approach practical for railway engineers is to
raise the level of abstraction from the set theory of Event-B to the interlocking
domain and also to provide efficient, yet generic enough, proof automation at this
level. This can be achieved using the Theory plug-in of the Rodin Platform for
system modelling in Event-B [4].

This talk presents our experience and discusses a number of open questions
on the use of the Theory plug-in in the context of a work-in-progress aiming at
defining a set of interlocking theories ready to be used by signalling engineers.
These theories are made of train-specific constructs with a set of theorems and
proof rules. They form a domain specific language (DSL) for modelling interlock-
ing systems that has a fully formal semantics enabling to carry out verification
activities but also to perform animation and to generate interlocking systems
form the model based on a number of standard Rodin plug-ins [5].

Based on the well-known train example of [1], we progressively factorized
key domain concepts such as blocks, routes, trains, points, and signals into new
theories. Inspired by [6], we have first defined theories for manipulating chains
and subchains, in order to be able to express routes properties and relations in
a dedicated theory for routes. We notably introduced a new route reservation
theory which lets the user manipulate the set of all possible route reservations in
the modelled network by providing operators such as:

e validRouteRes to select the pet of all valid route reservations on a network
made of the given blocks and routes

e compatibleRoutesOnly to guarantee that two incompatible routes will
never be reserved at the same time

e res blocks to get the set of reserved blocks of a given route
e isReserved to check whether a given route is reserved.

On the proving side, the definition of theorems partly automates the discharg-
ing of proof obligations and also cuts down the effort of manual proving thanks
to the ability to reason at the domain level. However, we are still facing a major
challenge related to the number of proofs because about only forty percent of
the total proof obligations are currently discharged automatically in our model
as well as in our theories. In the last part of the talk, we highlight possible di-
rections to tackle this, such as enriching the theorems and defining proof tactics.
This might also initiate some discussion about future developments of the Theory
plug-in itself.

Acknowledgment

This work was partly funded by the Walloon Region under the INOGRAMS
project (grant nr 7171).

References

[1] Jean-Raymond Abrial. Modeling in FEvent-B. Cambridge University Press,
2010.

[2] Minh-Thang Khuu, Laurent Voisin, and Luis-Fernando Meija. Modeling a
Safe Interlocking Using the Event-B Theory Plug-in. Proceedings of the 5th
Rodin User and Developer Workshop, 2014.

[3] Michael Leuschel, Jens Bendisposto, and Dominik Hansen. Unlocking the
Mysteries of a Formal Model of an Interlocking System. Proceedings of the
dth Rodin User and Developer Workshop, 2014.

[4] Michael Butler and Issam Maamria. Theories of Programming and Formal
Methods: Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday,
chapter Practical Theory Extension in Event-B. Springer Berlin Heidelberg,
2013.

[5] Rodin Community. Rodin Plug-ins. http://wiki.event-
b.org/index.php/Rodin_Plug-ins.

[6] Luis-Fernando Mejia, Minh-Thang Khuu, and Asieh Salehi. Application in
Railway Domain. ADVANCE Project Deliverable, 2014.

18

Theory Plug-in for Rodin 3.x

Thai Son Hoang!, Asieh Salehi', Michael Butler!, and Laurent Voisin?

1 ECS, University of Southamtpon, U.K.
2 Systerel, France

In Rodin 3.0, there are major changes within the Rodin Core. In particular,
the following changes directly effect the Theory plug-in (http://wiki.event-b.
org/index.php/Rodin_Platform_3.0_Release_Notes).

— Stronger AST Library: The API of the AST library has been strengthened
to mitigate risks of unsoundness when mixing several formula factories. Now,
every AST node carries the formula factory with which it was built, and the
AST operations that combine several formulas check that formula factories
are compatible.

— Stronger sequent prover: In order to improve the reliability of the proof
status when working with mathematical extensions, the reasoners can be
declared as context-dependent. The proofs that use a context dependent
reasoner will not be trusted merely based on their dependencies, but instead
they will be replayed in order to update their status. This applies in particu-
lar to Theory Plug-in reasoners, that depend on the mathematical language
and proof rules defined in theories, which change over time.

Several problems have been reported for the Theory plug-in (with Rodin 3.0)

— Exceptions when openning proof obligation.

— Exceptions when applying rule-based prover reasoners, e.g., XD (expand
definition).

— Changing the model, e.g., proof rules, theory path has no effects on existing
proofs.

— Losing proofs when saving (the problem is in fact in loading previously saved
proofs) .

The theory plug-in and its associate rule-based provers need to be upgraded to
accommodate the changes in the Rodin Platform core.

We have been working in the last few months on ensuring compatibility of
the Theory plug-in with the Rodin Platform core.

— The matching facility has been upgraded to use the ISpecialization API
(insteads of IInstantiation) which allows to specialize types consistently. This
fixes several exeptions when applying reasoners.

— Improving the matching facitlity for associative operators.

— Implement equality between datatype/operator extensions to ensure that the
formula factory will assign the same “ID” for datatype/operator with the
same definition. This ensures that formula factories coming from different
origins can be correctly compared. In particular, this ensures that proofs can
be loaded with the correct formula factory.

19

The upgrades are required some fixed in the Rodin Core hence will be available
after the next release of the Rodin Platform (Rodin 3.37)

We have identified the following future research /improvement for the Theory
plug-in.

— Support for infix predicate operators.

— Support for predicate variables in theory.

— Improve matching facility for associative commutative operators (currently

does not take into account commutativity).

Tactics for theory

Theory instantiation

— Improving usability of the theory plug-in, e.g., performance in interactive
proofs.

Some of the improvements are straightforward while the others, e.g. tactics,
instantiation, requires further investigation.

20

Extending Code Generation to
Support Platform-Independent Event-B Models

Asieh Salehi, Michael Butler and Colin Snook
University of Southampton

6" Rodin User and Developer Workshop
May 23th, 2016, Linz, Austria

Summary:

Code generation was introduced in the Event-B formalism to address the gap between the
lowest level Event-B refinement and an implementation. However, the code generation
supports generating a single implementation for a refined Event-B model. This results in
dependency between the Event-B model and target platform architecture.

To address this limitation, we present an extension of the Event-B code generation technique
supporting generation of different platform-specific implementations from the same Event-B
model. A refined Event-B model is treated as platform-independent through
parameterisation. The platform parameters are instantiated in order to generate a platform-
specific implementation and these are used by the code generator to produce an
implementation that is tailored to the platform.

We applied our approach to model an embedded Run-Time Management (RTM) system; and
generated three different RTM implementations for three hardware platforms with different
specifications.

Motivation:

The figure presents generation of part of the RTM implementation for two ARM hardware
platforms: Cortext_A8 and Cortex_A7, from a platform-independent Event-B action. The
update_qTable event updates the look-up table used in the machine learning algorithm
during run-time. The number of gTable columns depends on the number of frequencies each
platform supports. The platforms support different number of frequencies (N); The
Cortext_A8 supports 4 frequencies, whereas Cortex_ A7 supports 13 (frequency values
specified as constants FREQi). There is a guard of the update_qTable event indicated as an
expanding guard. Variable N, used in the expanding guard, is instantiated during code
generation and results in generating a collection of N conditional branches in C to modify the
gTable with N columns.

References:
[1] PRIME: Power-efficient, Reliable, Many-core Embedded systems. http://www.prime-

project.org.

[2] Abrial, Jean-Raymond. Modelling in Event B: System and Software Engineering.
Cambridge University Press, 2010.

[3] Edmunds, A., Butler, M.: Tasking Ever%—lB: An Extension to Event-B for Generating
Concurrent Code. In: PLACES, 2011

[4] The Rodin platform available from http://www.event-b.org

RTM Event-B action

update_qTable
ANY i
WHERE

THEN

ie1:-N expanding
F(i-1) < freq < F(i)

gTable = updateArray(gTable, row, i, reward)

Instantiation

Cortex-A8
Context

N=4
FREQ1 = 300 ... FREQ4 = 1000
F = {1»FREQY, ... 4>FREQ4}

Cortex-A7
Context

Code Generation

N =13
FREQ1 = 200 ... FREQ13 = 1400
F = {1»FREQ], ... 13»FREQ13}

Code Generation

Cortex-A8
Generated C Code

Cortex-A7
Generated C Code

Common.c

#tdefine N 4
#tdefine FREQ1 300

#tdefine FREQ4 1000

Controller.c

if (0 < freq) && (freq <= FREQ1))
{
gTable[row][0] = reward;

t
else if ((FREQ1 < freq) && (freq <= FREQ2))

{

gTable[row][1] = reward;

}
else if ((FREQ2 < freq) && (freq <= FREQ3))

{

gTable[row][2] = reward;

gTable[row][3] = reward;

Common.c

ftdefine N 13
#tdefine FREQ1 200

#define FREQ13 1400

Controller.c
if (0 < freq) && (freq <= FREQ1))
{
gTable[row][0] = reward;
}

else if ((FREQ1 < freq) && (freq <= FREQ2))
{

gTable[row][1] = reward;

}

else if (FREQ11 < freq) && (freq <= FREQ12))

{
gTable[row][11] = reward;

gTable[row][12] = reward;

Using Rodin and BMotionStudio for Public Engagement

Dana Dghaym, Asieh Salehi and Colin Snook
University of Southampton, Southampton, United Kingdom

As part of its public engagement activities the University of Southampton'’s
Faculty of Physical Science and Engineering holds an annual ‘Science Day’ when
the campus is open to the public and researchers demonstrate aspects of science
related to their research. Many aspects of science are demonstrated and the
event is very popular and well attended. For Science Day 2016 we used Rodin
and Event-B to demonstrate how mathematics can help to analyse problems.
The Science Day is primarily targeted at children up to year 11 but many older
siblings also attend and we also wish to engage with parents. The day is
advertised within local schools and naturally appeals to teachers. The event is
therefore a good opportunity to initiate on-going engagement with children via
their schools. Therefore, the demonstration must be designed to appeal to, and
be accessible to, people of many ages and mathematical abilities from young
children through to professional scientists and mathematicians. We used
BMotion Studio to provide two simultaneous visualisations. The first
visualisation was a cartoon style representation of the real-world problem
designed to appeal to young children and not requiring any mathematical
abstraction skills. The other visualisation was a simple Venn diagram
representation of the sets and counters involved in the mathematical model
which older children and adults could easily follow. For the younger children we
would point out the mathematical representation to make them aware of it but
not attempt to explain it unless they were interested. For those that appeared to
be particularly adept and interested in the underlying mathematical system we
gave a brief overview of the Event-B model and verification by proof.

We designed a simple safety related problem based on parking two cars
in two parking bays with an unprotected crossing and bays protected by signal.
The children were given a scenario for a particular car to park in a bay and asked
to select from a list of conditions that needed to be satisfied for that scenario to
be safe. They were then asked to configure an Event-B context to reflect their
selected conditions using a purpose built editor. The configuration used boolean
constants to enable guards in the corresponding machine. If the correct guards
were selected the scenario could be performed safely. That is, any attempt to
crash the two cars by moving them to the same location would be prevented by
the model. If important conditions were not selected cars could be crashed and if
superfluous guards were enabled the scenario could, in some cases, not be
completed. We gave a toy car to any child that completed the exercise.

The exercise was very popular throughout the day and at times children
queued to try their selections. In all, two hundred children performed the
exercise. Several teachers commented on how useful they thought the exercise
was for the children. Parents enthusiastically encouraged their children and
chatted to us about the underlying research.

[t was interesting to note that children often interpreted the problem in
different ways to us. For example selecting that the unused parking bay should
have a red light. Their reasoning Was that the car might otherwise enter the
wrong bay. While recognising that we had not completely specified the

requirements (in terms of behaviour of cars), we pointed out that, according to
our intended requirements, they had designed a safe system but not a very
useful one. Another interesting interpretation was that, in the case where several
scenarios were attempted, the previous scenario may result in a bay being
already occupied, so some children automatically changed the scenario and set
the lights to send the car to the other parking bay. We had not intended the
scenarios to be interpreted sequentially.

The children seemed to take the exercise too seriously, perhaps seeing it
as a test and believing that they would not get a prize car if they allowed the cars
to crash. For example in some cases they were reluctant to test their selection by
trying to crash the cars. Possibly we should avoid associating success with the
system being safe and emphasize exploration and understanding of the problem.

In conclusion the demonstration was a huge success at engaging public
interaction with Event-B modelling and we hope to build on this in future by
developing other model-based problems and interacting with local schools.

@ Parking Context Safety Configuration Editor 83

Scenario 1 - Lewis wants to move to space 1

Holley must not be in the crossing
Lewis must not be in the crossing
Light 1 must be green
Light 2 must be green
Light 1 must be red
Light 2 must be red

CLEAR THIS PAGE

TRY IT!

Lewis to space 1| Holley to space 1 | Lewis to space 2 Holley to space 2 All scenarios

Figure 1 - Purpose built context editor for entering selections

¥ Parking (Parking.bum - EventB) &

Crossing

count s 1
1

count = 1
[

For space 1 and space 2

Bl = count=0
B = countz0

Figure 2 - BMotion Studio visualisations
(cars are moved by clicking the blue arrows)

24

Translating SCXML Statecharts to iUML-B
State-machines

Karla Morris! and Colin Snook?

! Sandia National Laboratories, Livermore, California, U.S.A.
knmorri@sandia.gov

2 University of Southampton, Southampton, United Kingdom
cfs@ecs.soton.ac.uk

To facilitate automatic proof, the Event-B notation is restricted to a simple
guarded action behaviour. While iUML-B goes some way to provide an intuitive
state-transition representation of Event-B models, its notation follows the seman-
tics of Event-B. Engineers that are used to the richer semantics of Harel style
statecharts may find these restrictions difficult to accept. Conversely, Event-B
has features such as refinement and invariant properties that are not considered
in most statechart notations. It may be cumbersome for engineers to re-model
existing systems into iUML-B for verification.

In order to explore the feasibility of this model transformation, we have de-
veloped a translation from a statechart representation, State Chart XML: State
Machine Notation for Control Abstraction (SCXML) [3], into iUML-B. For this
initial work we do not support features of SCXML associated with more prob-
lematic areas of the semantic mismatch, such as ‘run to completion’ transition
sequencing. Nevertheless, the translation provides an interesting first step to-
wards interchange between the two notations.

SCXML is an XML notation for Harel (hence UML) style statecharts ex-
tended with a general purpose action language. The concrete syntax for SCXML
is based on XML and includes a data modelling facility and an action language.
An example of SCXML syntax is shown in figure 1.

To facilitate Event-B formal verification, extensions to the SCXML modelling
notation are necessary so that additional modelling features required by Event-B
can be integrated with the SCXML model. The SCXML schema allows exten-
sion elements and attributes belonging to a different namespace to be added.
The SCXML tooling provides fallback mechanisms so that these extensions are
supported without the need for syntactic definition. We define a new namespace,
iumlb and add two new elements, umlb:invariant and iumlb:guard as well as a
number of new attributes. Invariants are not supported in SCXML and SCXML
transitions only have a single cond attribute whereas we may need to introduce
conjuncts of a transition condition at various refinement steps. The concept of re-
finement does not exist in SCXML. We introduce a new integer valued attribute,
tumlb:refinement, which may be attached to any element of either namespace in
order to specify the refinement level of that element.

The iUML-B tools are based on the Eclipse Modelling Framework (EMF) [2].
It is beneficial to load the SCXML model into EMF so that our existing model
transformation technology can be used to implement the SCXML to iUML-B

25

<iumlb:invariant iumlb:refinement="1" predicate="TRUE = TRUE" name="inv_top_level"/>
<datamodel iumlb:refinement="2">
<data expr="false" id="Gate_In.Block" iumlb:type="BOOL"/>
</datamodel>
<!-- Other model details -->
<state id="BLOCKED">
<transition cond="[On_In.CardAccept==true]" target="UNBLOCKED">
<iumlb:guard name="gd1" predicate="On_In.CardAccept==true" refinement="2"/>
<assign expr="true" location="Gate_In.Block" iumlb:refinement="3"/>

©WNO U AW

10 </transition>

11 <onentry>

12 <assign expr="true" location="Gate_In.Block"/>

13 <assign expr="false" location="On_In.Reset"/>

14 </onentry>

15 <onexit>

16 <assign expr="false" location="Gate_In.Block"/>

17 </onexit>

18 <iumlb:invariant predicate="Gate_In.Block == TRUE" name="GateCondition"/>

19| </state>

Fig.1. Part of SCXML model including iumlb extension ele-

ON
. BLOCKED UNBLOCKED
() .M, Entry: Gate_in_Block - TRUE BLOCKED. UNBLOCKED
Entry: On_in_Reset = FALSE Guard: On_in_CardAccept=TRUE
INITALISATION Exit: Gate_In_Block ~ FALSE Action: Gate_In_Block = TRUE
(OFF_) OnOff whileOFF - Gate_In_Block ;mus UNBLOCKED_BLOCKED
E——|
[READING)
® e
—
OnOff whileOFF d
CardError Cardin v
READY
OnOff whileON
OnOff whileOFF, CardError, Ready COMPLETE_SET_UP_READY_FINAL
® :‘mwm Cardin (.)
—J) J
CLEAR_COMPLETE_SET_UP

Fig. 2. State-machine diagram in iUML-B at refinement level 3
(partially annotated with guards and actions)

translation. An EMF meta-model for SCXML is available from the Sirius [1]
project. It supports generic model loading capabilities for new namespace ex-
tensions. Hierarchical nested state charts are translated to similar corresponding
state-machine structures in iUML-B in a series of refinement levels as directed
in the SCXML iumlb extensions.

References

1. Eclipse Foundation. Sirius project website. https://eclipse.org/sirius/overview.html,
2016.

2. D. Steinberg, F. Budinsky, and E. Merks. FEMF': Eclipse Modeling Framework.
Eclipse (Addison-Wesley). Addison-Wesley, 2009.

3. W3C. SCXML specification website. http://www.w3.org/TR/scxml/, 2015.

26

