
Proceedings of the 6th Rodin User and
Developer Workshop, 2016

Linz, Austria
May 23rd, 2016

Editors:

Michael Butler University of Southampton, UK.
Thai Son Hoang University of Southampton, UK.

Part I

Summary

Executive Summary
Event-B is a formal method for system-level modelling and analysis. The
Rodin Platform is an Eclipse-based toolset for Event-B that provides effective
support for modelling and automated proof. The platform is open source and
is further extendable with plug-ins. A range of plug-ins have already been
developed including ones that support animation, model checking and UML-
B. While much of the development and use of Rodin takes place within EU
FP7 Projects (RODIN, DEPLOY, ADVANCE), there is a growing group of
users and plug-in developers outside these projects.

The purpose of the 6th Rodin User and Developer Workshop was to bring
together existing and potential users and developers of the Rodin toolset and
to foster a broader community of Rodin users and developers. For Rodin
users the workshop provided an opportunity to share tool experiences and to
gain an understanding of on’going tool developments. For plug’in developers
the workshop provided an opportunity to showcase their tools and to achieve
better coordination of tool development effort.

The one-day programme consisted presentations on tool development and
tool usage. The presentations are delivered by participants from academia
and industry. This volume contains the abstracts of the presentations at the
Rodin workshop on May 23rd, 2016. The presentations are also available
online at http://wiki.event-b.org/index.php/Rodin_Workshop_2016.

The workshop was co-located with the ABZ 2016 conference and held
in Linz, Austria. The Rodin Workshop was supported by the University of
Southampton.

Finally, we would like to thank the contributors and participants, the
most important part of our successful workshop.

Organisers

Michael Butler, University of Southampton
Stefan Hallerstede, Aarhus University
Thai Son Hoang, University of Southampton
Michael Leuschel, University of Düsseldorf
Laurent Voisin, Systerel

v

Contents

I Summary iii
Executive Summary . v
Table of Contents . vii
Workshop Programme . ix

II Contributions 1
Meta-Predicates for Rodin . 3
A Rodin plug-in for constructing reusable schematic lemmas 5
Event-B Specification Templates for Defining Domain Specific Lan-

guages . 7
Towards Modular Development in Event-B 9
Crossed-Project Reference for Managing Model Variations 11
SliceAndMerge: A Rodin Plug-in for Refactoring Refinement Struc-

ture of Event-B Machines . 13
Rodin in the field of railway system engineering 15
Building Event-B Interlocking Theories: Lessons Learned using the

Theory Plug-in . 17
Theory plug-in for Rodin 3.x . 19
Extending Code Generation to Support Platform-Independent Event-

B Models . 21
Using Rodin and BMotionStudio for Public Engagement 23
Translating SCXML Statecharts to iUML-B State-machines 25

vii

Programme of the Rodin Workshop 2016
09:00–10:30

• Meta-Predicates for Rodin - Sebastian Krings

• A Rodin plug-in for constructing reusable schematic lemmas - Alexei
Iliasov, Paulius Stankaitis, David Adjepon-Yamoah, and Alexander
Romanovsky

• Event-B Specification Templates for Defining Domain Specific Lan-
guages - Ulyana Tikhonova

10:30–11:00 Break

11:00–12:30

• Towards Modular Development in Event-B - Thai Son Hoang, Hi-
ronobu Kuruma, and Michael Butler

• Crossed-Project Reference for Managing Model Variations - Hironobu
Kuruma and Thai Son Hoang

• SliceAndMerge: A Rodin Plug-in for Refactoring Refinement Structure
of Event-B Machines - Tsutomu Kobayashi, Aivar Kripsaar, Fuyuki
Ishikawa and Shinichi Honiden

12:30–14:00 Lunch

14:00–15:30

• Rodin in the field of railway system engineering - Tomas Fischer

• Building Event-B Interlocking Theories: Lessons Learned using the
Theory Plug-in -Yoann Guyot, Renaud De Landtsheer, and Christophe
Ponsard

• Theory plug-in for Rodin 3.x -Thai Son Hoang, Asieh Salehi, Michael
Butler, and Laurent Voisin

15:30–16:00 Break

16:00–17:30

• Extending Code Generation to Support Platform-Independent Event-B
Models - Asieh Salehi, Michael Butler, and Colin Snook

ix

• Using Rodin and BMotionStudio for Public Engagement -Dana Dghaym,
Asieh Salehi and Colin Snook

• Translating SCXML Statecharts to iUML-B State-machines - Karla
Morris and Colin Snook

x

Part II

Contributions

Meta-Predicates for Rodin

Sebastian Krings

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

krings@cs.uni-duesseldorf.de

1 Introduction and Motivation

Event-B [1] provides a concise mathematical language for specifying invariants
and guards. While both Event-B and Rodin [2] matured, certain patterns for
specifying properties like deadlock freedom emerged and are in use. These pat-
terns are often realized by copy and paste of guards into other guards or in-
variants, leading to duplicated code and incomprehensible specifications. Fur-
thermore, it may lead to errors if predicates are not kept in sync. We observed
errors like these during the case studies of ABZ 2014 [3] and started developing
an extension to Event-B that allows accessing guards by corresponding event
names. Since, it has been implemented as a plugin for the Rodin platform.

2 Meta-Predicates for Event-B

We added the following meta-predicates based on the syntax accepted by the
LTL model checker of ProB [5,4]. To avoid loops, generated predicates are not
copied again. With guards(e) containing the guards of e that have been given
directly by the user, the added predicates are

– deadlock enforces that all given elements are disabled, i.e.,
deadlock(Events) =

∧
e∈Events

∨
g∈guards(e) ¬g.

– enabled enforces that all given events are enabled, i.e.,
enabled(Events) =

∧
e∈Events

∧
g∈guards(e) g.

– controller enforces that exactly one event is enabled, i.e.,
controller(Events) =

∨
e∈Events(enabled({e}) ∧ deadlock(Events \ {e})).

– deterministic enforces that the order of execution is deterministic, i.e.,
deterministic(Events) = controller(Events) ∨ deadlock(Events).

Embedding the predicates into Event-B involves more work than macro re-
placement as the following example will show: Let’s take events evt1, featuring
parameter x1, and evt2 with parameter x2. Obviously, we can not just copy
guards of evt1 to evt2, as referencing x1 inside evt2 will result in an unde-
clared variable. For free variables the plugin thus has to decide between

– Adding a parameter to the surrounding event,
– Introducing them using existential quantification, or

3

– Skipping, removing or renaming them as far as possible.

We did not want to change existing Event-B code in order to keep semantics
as simple as possible. Only new invariants and guards should be added. Thus,
we decided to introduce free variables by existential quantification. A preference
allows to decide if all variables are quantified or only those not yet defined.

3 Integration into Rodin

Our extended language has been integrated into Rodin as a plugin. Sources are
available from https://github.com/wysiib/RodinMetaPredicatesPlugin,
https://www3.hhu.de/stups/rodin/meta_predicates/nightly/ contains an
update site.

The plugin works as an additional static checker. It runs after the machine
itself has been checked, relying only on information Rodin has not discarded.

4 Comparison to Related Plugins

In [6], the authors present DFT-generator, a tool for the automatic generation
of proof obligations for deadlock freedom. Using DFT-generator is comparable
to adding deadlock({. . .}) to the invariants. However, rather than extending the
predicate syntax, information is stored externally. Our approach is more flexible,
e.g., one can use predicates like state = ERROR ⇒ deadlock({. . .}).

5 Discussion and Conclusion

Our plugin adds a lightweight language extension to Event-B. Together with
tool support, common errors leading to erroneous specifications can be avoided.
Furthermore, expressiveness is increased as the intention of a predicate becomes
more obvious. In future, we would like to implement a direct export to ProB’s
LTL model checker to be able to use different model checking algorithms.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: An open toolset for modelling and reasoning in Event-B. Int. J. Softw.
Tools Technol. Transf., 12(6):447–466, 2010.

3. F. Boniol, V. Wiels, Y. Ameur, and K. Schewe, editors. ABZ 2014: The Landing
Gear Case Study, CCIS 433. Springer, 2014.

4. M. Leuschel and M. Butler. ProB: A model checker for B. In Proceedings FME’03,
LNCS 2805, pages 855–874. Springer, 2003.

5. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf., 10(2):185–203, 2008.

6. F. Yang and J.-P. Jacquot. An Event-B plug-in for creating deadlock-freeness the-
orems. In Proceedings SBMF’11. Brazilian Computer Society, 2011.

4

A Rodin plug-in for constructing reusable
schematic lemmas

Alexei Iliasov, Paulius Stankaitis,
David Adjepon-Yamoah, Alexander Romanovsky

Newcastle University, UK

Abstract. In the paper we present an approach and tool for making
proofs more generic and thus less fragile and more reusable. The crux of
the technique is offering an engineer an opportunity to complete a proof
by positing and proving a generic lemma that may be reused in the same
or even another project.

1 Introduction

There was a concerted effort, funded by a succession of EU research projects, to
make Event-B [1] and its toolkit, Rodin Platform [2], appealing and competitive
in an industrial setting. One of the lessons of this mainly positive exercise is the
general aversion of industrial users to interactive proof. It is possible, in principle,
to learn, through experience and determination, the ways of underlying verifi-
cation tools and master refinement and decomposition to minimise proof effort.
The methodological implications are far more serious: building a good model
is necessarily a trial and error process; one often has to start from a scratch
or do considerable refactoring to produce an adequate model. This, obviously,
necessitates redoing proofs and makes time spent proving dead-end efforts seem
pointlessly wasted. Hence, proof-shy engineers too often do not make a good
use of formal specification stage as they tend to hold on to the very first, often
incoherent design. We want to change the way proofs are done, at least in an
industrial setting. In place of an interactive proof - something that is inherently
a one-off effort in Event-B - we want to invite modellers to write and prove a
non-model specific condition called a schematic lemma that would, once added
to hypothesis set, discharge an open proof obligation. Such a lemma may not
refer to any model variables or types and is, in essence, a property supporting
the definition of the Event-B mathematical language. If such a lemma cannot
be found or seems to be to difficult to prove, the model must be changed. Since
every modelling project is likely to have a fairly distinctive usage of data types
and mathematical constructs, we might also expect a distinctive set of traits in
supporting lemmas. We hypothesise that such distinctness is pronounced and
dictated by the modellers experience and background as well as the model sub-
ject domain. We have also observed that the style of informal requirements -
structured text, hierarchical diagram, structural diagram - has an impact on a
modelling style. A schematic lemma is a tangible and persistent outcome of any

5

modelling effort, even an abortive one. Being generic, a schematic lemma is likely
to be useful in a next iteration and, as we might hope, there is a point when all
relevant lemmas are collected and modelling, in a given domain and for a given
engineer, is nearly completely free of interactive proofs.

2 Generic lemmas plug-in

We have built a prototype implementation of the schematic lemma mechanism
as a plug-in to the Rodin Platform. It integrates into the prover perspective and
offers an alternative way to conduct an interactive proof either at a root node
level or indeed for any open sub-branch of a proof obligation. At the moment,
the notation employed is the native notation of Why3 but the first release will
support entering schematic lemma in the Event-B mathematical notation.

The plug-in automatically constructs the first attempt at a schematic lemma
through a simple syntactic transformation of a context proof obligation. All
the identifiers occurring in either hypotheses or goal of the proof obligation
are mapped into schematic lemma identifiers and then this mapping is used to
translate hypotheses and the goal.

From this starting point it is up to the modeller to construct a sensible lemma
by changing identifier, hypotheses and goal definitions. A prepared lemma is com-
mitted where the Why3 plug-in is used to prove that the lemma holds,and also
that adding to the proof obligation in context discharges the proof obligation.
If either fails, a user gets an indication of what has happened and it is not until
both generic and concrete proofs are carried out that the schematic lemma may
be used in the local library and assigned a binding level (machine, project or
global). In the case of a success, the current open goal is closed.

To aid in the construction of a schematic lemma, the plug-in provides some
simple productivity mechanisms. A hypotheses can be deselected without remov-
ing it to check whether both the lemma goal and the context proof obligation
are still provable. An identifier may also be deselected and this automatically
deselects all the hypotheses mentioning the identifier.

In this work we have tried to weave the process of constructing generalised
proofs into the very process of model construction and address two long standing
challenges of model-based design: turning proofs into tangible artefacts that can
survive deep model refactoring, and making interactive proof on organic part of
model construction rather than an unfortunate side activity.

References

1. J.-R. Abrial. Modelling in Event-B. Cambridge University Press, 2010.
2. The RODIN platform. Online at http://rodin-b-sharp.sourceforge.net/.

6

Event-B Specification Templates
for Defining Domain Specific Languages

Ulyana Tikhonova

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

u.tikhonova@tue.nl

Domain-Specific Languages (DSLs) are a central concept of Model Driven
Engineering (MDE). They are considered to be very effective in software de-
velopment and are being widely adopted by industry nowadays. A DSL is a
programming language specialized to a specific application domain. It captures
domain knowledge and supports reuse of such knowledge via common domain
notions and notation. In this way, the DSL raises the abstraction level of solving
problems in the domain. A DSL is usually implemented as a translation from
the domain concepts to the programming language of an execution platform,
such as C/C++ or Java. In our work we investigate how translation of a DSL to
the Event-B formalism can facilitate design and development of the DSL, and
support understanding and debugging of DSL programs.

The Rodin platform offers various supporting tools for Event-B that can be
applied to a DSL specification in order to implement a set of dedicated use
cases. For example, the DSL semantics can be prototyped and then analyzed
using automatic provers and model checkers (provided by AtelierB and ProB
plug-ins); DSL programs can be simulated and debugged using animators and
visualization tools (ProB and BMotion Studio). Although providing an exten-
sive tool support, Event-B is not designed for specifying the DSL semantics.
Therefore, in order to realize practical benefits of applying Event-B to a DSL,
we adopt the specification formalism to the MDE context through the following
model-to-model transformations.

– The DSL-to-Event-B transformation automatically generates an Event-B
specification of an arbitrary DSL program from a set of Event-B specifica-
tions that define the DSL semantics on the meta-level [3]. Such a transfor-
mation composes the resulting specification out of the DSL semantic speci-
fications using the technique of shared event composition [2].

– The DSL-to-BMotion transformation automatically generates a visualiza-
tion for each concrete DSL program following (mimicing) the DSL graphical
notation. The resulting visualization runs in the BMotion Studio together
with the ProB animator and provides a graphical user interface (GUI) for
the Event-B specification being animated.

As a result, DSL end-users do not need to know formal notation of Event-B
to create and run specifications of their programs. We validated this approach
by means of a user study performed in the industrial context with the real-life
mature DSL. The interviewed users confirmed that the DSL-based development

7

2 U. Tikhonova

process will benefit from having such harnessed specification of the DSL. How-
ever, the users indicated that to realize these benefits one needs to keep the
Event-B specification of the DSL consistent with the actual implementation of
the DSL, following all its changes and updates. The latter requirement might
cause a high overhead of applying the DSL-to-Event-B transformations, as they
realize rather complex translation of the high-level DSL concepts to the low-level
Event-B concepts. In other words, the semantic gap between a DSL and Event-B
is quite wide.

To manage the wide semantic gap between the DSL and Event-B and to gen-
eralize the proposed approach so that it is applicable to other DSLs, we introduce
Constelle – an intermediate language of reusable specification templates. An arbi-
trary DSL can be defined in Constelle using specification templates, which have
been identified as reusable (successful) design solutions and stored in a library.
On one hand, specification templates can be (re)used to define different DSLs.
On the other hand, such a definition captures intentions of the DSL developer
in a more clear way.

Constelle builds on top of the Event-B formalism. This means that all spec-
ification templates are implemented in Event-B. And the Constelle-to-Event-B
transformation automatically generates Event-B specifications of a DSL from
its Constelle definition. For this, the Constelle-to-Event-B transformation spe-
cializes the invoked templates using generic instantiation [1] and weaves them
together using shared event composition [2]. In this way we ensure that specifi-
cation templates are reused together with the proof obligations discharged for
them.

The Constelle language is not restricted to the scope of DSLs. Our vision
is that a library of Event-B specification templates can be shared and filled by
Event-B practitioners working in various domains. Moreover, in future specifi-
cation templates can be used as a source for automatic generation and/or for
semi-automatic configuration of other artifacts. For example if each specification
template is coupled with a visualization template for the BMotion Studio, then
a specialized visualization for a DSL can be generated from the Constelle defi-
nition. If each specification template is coupled with a source code in C/C++,
then we might be able to generate the corresponding DSL implementation in
source code.

References

1. R. Silva and M. Butler. Supporting Reuse of Event-B Developments through Generic
Instantiation. In K. Breitman and A. Cavalcanti, editors, 11th International Con-
ference on Formal Engineering Methods, ICFEM, volume 5885 of Lecture Notes in
Computer Science, pages 466–484. Springer, 2009.

2. R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B. In
B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, editors, Formal Methods for
Components and Objects (FMCO), pages 122–141. Springer, 2010.

3. U. Tikhonova, M. Manders, M. van den Brand, S. Andova, and T. Verhoeff. Ap-
plying Model Transformation and Event-B for Specifying an Industrial DSL. In
MoDeVVa@MoDELS, pages 41–50, 2013.

8

Towards Modular Development in Event-B

Thai Son Hoang1, Hironobu Kuruma2, and Michael Butler1

1 ECS, University of Southamtpon, U.K.
2 Research and Development Group, Hitachi Ltd., Japan

Background. Event-B [2] developments are mostly structured around refinement
and decomposition relationships [3]. This top-down development architecture
enables system details to be gradually introduced into the formal model. More
often, this result in large model with monolithic structures.

Motivation. Various composition approaches have been proposed [6, 4, 7, 5]. This
proposal is inspired by these approaches and development methods such as
classical-B [1], working towards modular development in Event-B.

Machine inclusion. Our first concept is machine inclusions. Machine A that in-
cludes machine B inherits B’s variables and invariants. Variables of B cannot
be modified directly, but only through event’s synchronisation [7]. Multiple in-
stance of the included machine can be achieved via prefixing, similar to [5]. The
syntactical “flatten” of A can be seen in Fig. 1.

machine B
variables y
invariants J (y)
events
event f
any u where
GB (y , u)
then
BAPB (y , u, y ′)
end

machine A
includes p B
variables x
invariants I (x , p y)
events
event e
synchronises p f
any t where
GA(x , t)
HAB (x , p y , t , p u)
then
BAPA(x , t , x ′)
end

machine (flatten)A
variables x , p y
invariants
I (x , p y)
J (y)
events
event e
any t , p u where
GA(x , t)
HAB (x , p y , t , p u)
GB (y , u)
then
BAPA(x , t , x ′)
BAPB (p y , p u, p y ′)
end

Fig. 1: Machine inclusion

Refinement-chain inclusion. While machine-inclusion mechanism gives us a di-
rect reuse of machine, it is often the case that we want to reuse a refinement-
chain. Approaches such as [4, 8] allow to incorporate refinement chains in to

9

the development. However, these approaches involve generating of model which
is often cumbersome to accomodate changes. We propose to to include the
refinement-chain inside the machine itself. Fig. 2 illustrates a situation where
A includes a refinement chain from B1 to Bm. Semantically, A has double “in-

machine A
includes B1 −→ Bm

. . .
event e
synchronises f

. . .

Fig. 2: Refinement-chain inclusion

terfaces”. To its abstract machine, it acts as a machine with an inclusion of B1.
To its concrete machine, it acts as a machine with an inclusion of Bm. Since the
refinement of B1 by Bm has been proved separately, the refinement of (A + B1)
by (A + Bm) is almost correct-by-construction. The extra manual work required
is the refinement of the extra guard, e.g., HAB in Fig. 1.

Some evaluation. We have applied the idea (manually) to several examples. The
result is quite encouraging with reduction of the modelling and proving efforts.
In particular, this approach can be used several times, e.g., to have a hierarchy of
inclusions. The resulting models also easier to comprehend and in particular, it
should incorporate with changes to the imported model without any additional
effort.

Conclusion. The concept here is not new and incorporate many existing work.
We consider this as an effective way to have modular development in Event-B
which will reduce the modelling and proving efforts. We are investigating how
to extend Rodin to support the approach in the most efficient way.

References

1. J-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

4. Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B patterns
and their tool support. Software and Systems Modelling, 12(2):229–244, May 2013.
http://dx.doi.org/10.1007/s10270-010-0183-7.

10

Crossed-Project Reference for Managing Model
Variations

Hironobu Kuruma1 and Thai Son Hoang2

1 Research and Development Group, Hitachi Ltd., Japan
2 ECS, University of Southamtpon, U.K.

Background. A model in Event-B [1] (typically located within a project) is com-
posed of components combined using refines, extends or sees relations. Fig. 1
shows an example of model variations containing some common machines and
contexts, i.e., Machine1, Machine2, Context1 and Context2. Machine3 and Context3

(resp. Machine4 and Context4) are additional component specific to project A
(resp. B).

Machine1

Machine2

Machine4

Context1

Context2

Context3

sees

sees

sees

refines

refines

extends

extends

(a) Project A

Machine1

Machine2

Machine4

Context1

Context2

Context4

sees

sees

sees

refines

refines

extends

extends

(b) Project B

Fig. 1: A family of models

Motivation. To maintain these models, it is desirable to separate the common
components and to share them between the projects. In Fig. 2, project C is for
the shared components, where the original projects A and B contain only the
additional components. This structure is beneficial for composing a family of
models that has common properties by sharing components.

Concept. We experimentally introduced a crossed-project reference mechanism
into the RODIN platform [2] to manage collections of components and enable ref-
erence to components in different projects. The crossed-project reference mecha-
nism uses a manifest to identify components to be imported from other projects
(Fig. 2). The names of imported components are prefixed with their project
name. The components in importing project refer the imported components by
their names declared in the manifest. The imports relation between projects
must be acyclic.

11

Project C Machine1

Machine2

Context1

Context2

sees

sees

refines extends

Project A Machine3 Context3

refines extends

manifest
imports C Machine2,

C Context2

Project B Machine4 Context4

refines

extends

manifest
imports C Machine2,

C Context2

sees

sees

Fig. 2: Crossed-project Reference

Implementation. We implemented the cross project reference by renaming and
copying the statically checked files of imported components into the importing
project. In our example, two files in C, i.e., the statically checked files of Machine2

and Context2, are renamed to by prefexing, and copied into A and B. Since
the imported components are expected to be verified in their source project,
verification is required only for the additional components.

Conclusion and Limitation. The crossed-project reference mechanism reduces
the risk of unintended modification of components since it separates the compo-
nents into hierarchical collections. This property is useful for managing model
variations. However, our implementation is experimental and insufficient for
practical usage. Most RODIN plug-ins refer the unchecked file of components
and are incompatible with our implementation. For example, the components
that refer imported components cannot be easily edited by ordinary editors be-
cause they do not recognize the imported components. Although we expect the
generic instantiation [3] is an effective way to compose variations, the generic
instantiation plug-in also uses the unchecked files and does not work with the
crossed-project reference. Furthermore, since our implementation does not prop-
agate the change of original components, the imported file must be updated man-
ually in the importing project. The propagation of the change of components and
the collaboration with the generic instantiation are our future work.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

12

SliceAndMerge: A Rodin Plug-in for
Refactoring Refinement Structure of Event-B

Machines

Tsutomu Kobayashi1, Aivar Kripsaar2, Fuyuki Ishikawa3 and
Shinichi Honiden1,3

1The University of Tokyo, Japan
2RWTH Aachen University, Germany

3National Institute of Informatics, Japan

Event-B supports flexible and rigorous modeling with a refinement mech-
anism based on proof obligation rules. The flexibility enables developers to
decide a set of concepts and aspects of target systems focused on in each re-
finement step. The decision is important in modeling, because it has effects on
understandability, maintainability, extensibility of Event-B models.

We focus on refactoring of refinement structure of machines, or re-deciding
concepts and aspects of refinement steps in existing proved machines. We aim
to realize it in a flexible way through slicing (decomposition) and merging (com-
position) of refinement steps.

In concrete, when the followings are given:

• Machines MA and MC such that MC refines MA

• VB , which is a subset of MC ’s variables

Slicing of the refinement produces an intermediate machine MB such that:

• MC refines MB
1 and MB refines MA

• MB ’s set of variables is a superset of VB

Merging is the reverse operation of slicing.
Refinement slicing decomposes introduction of new variables and invariants

through a refinement step into several steps. Moreover, it often reveals im-
plicit properties of a concrete machine as explicit expressions of an intermediate
machine. Therefore, it helps users to understand descriptions and proof of re-
finement steps, and thus improves maintainability. A typical problem that can
be solved by refinement slicing is a refinement step with a large number of new
variables and invariants, which tend to be difficult to understand.

Although Rodin platform supports refactoring expressions of machines and
contexts, refactoring of refinement structures has not been tackled.

1refines clauses of events in MC are changed through this process.

113

We implemented a plug-in of Rodin platform named SliceAndMerge to
support slicing and merging.

Our approach to slicing is as follows:

1. Calculate variables in the intermediate machine considering dependencies
of variables and invariants.

2. Find fragments of MA and MC that should also be specified in MB .

3. Add complementary specifications to the fragments, so that MB becomes
consistent.

SliceAndMerge supports users by automating step 1 and step 2 of the
above. Users of SliceAndMerge can select a part of invariants of an inter-
mediate machine MB from a list of invariants of a concrete machine MC (Fig.
1). Then the tool resolves dependencies between invariants and variables, finds
fragments of MA and MC that should be included in the intermediate machine
MB , and generates a part of MB. The tool also supports merging of refinement
steps.

Figure 1: Interface for selection of invariants in intermediate machine

In this tool development presentation, we describe details of SliceAnd-
Merge and give a demonstration of the tool.

2 14

Rodin in the field of railway system engineering

Tomas Fischer

Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria,
tomas.fischer@thalesgroup.com

Abstract. Railway signaling systems are required to provide the high-
est safety level due to the risk of loss of human life. Formal methods
can contribute to the reliability and robustness of specification, design
and implementation of such systems and support their verification and
validation. Moreover, the CENELEC standards [1–3], which define the
certification process of safety critical applications in the railway domain,
qualify the use of formal methods as highly recommended.
However, the application of formal methods is very labor intensive, and
thus expensive. A formal model of the respective system has to be cre-
ated, maintained over the long product lifespan (25+ years) and reasoned
about not only during the development phase, but recurringly at each
modification of the evolving specification. Qualified experts with versatile
skills are inevitable for this job. These experts are required to transform
a semi-formal domain model (as understood by the domain experts) into
the mathematical one and keep both of them aligned. They are also
expected to interpret the verification and validation results and to com-
municate them to experts from other domains. These tasks demand a
good tool support assisting users in all development phases with the aim
to reduce manual efforts and thus decrease overall costs (see also [4]).
In the industrial context formal methods can be used as a one-time shot
(e.g. prove the correctness of one particular algorithm) or continuously,
as an integral part of the development process and therefore integrated
into the development toolchain. Whilst the former usage has already
been studied well and there are some very promising results available,
the latter one encounters several obstacles.
At the workshop we present our experiences with introducing formal
methods (in particular Event-B with the Rodin toolset) for the develop-
ment of a railway interlocking system and discuss our current technical
maturity assessment of the Event-B tools. On a small model we demon-
strate the identified mismatch between the engineering demands and
business needs on one side and current state of the Rodin toolset on the
other side. Finally we propose some measures how to increase Rodin’s
usability (and hence the productivity) without sacrificing its profound
theoretical foundation.

References

1. CENELEC, E.N.: 50126-Railway Applications: The specification and demonstration
of Reliability, Availability, Maintainability and Safety (RAMS). European Commit-
tee for Electrotechnical Standardization (1999)

15

2 Tomas Fischer

2. CENELEC, E.N.: 50129-Railway Applications: Communication, signalling and pro-
cessing systems - Safety related electronic systems for signalling. European Com-
mittee for Electrotechnical Standardization (2003)

3. CENELEC, E.N.: 50128-Railway Applications: Software for Railway Control and
Protection Systems. European Committee for Electrotechnical Standardization
(2011)

4. Romanovsky, A., Thomas, M.: Industrial deployment of system engineering meth-
ods. Springer (2013)

16

Building Event-B Interlocking Theories:
Lessons Learned using the Theory Plug-in

Yoann Guyot, Renaud De Landtsheer, Christophe Ponsard
CETIC Research Center, Charleroi, Belgium

{yoann.guyot, renaud.delandtsheer, christophe.ponsard}@cetic.be

A computer-based interlocking is a railway signalling system that automati-
cally controls the objects of a railway network, such as signals or points, in order
to let trains move on its tracks without colliding with other trains nor derail-
ing. A number of approaches based on the Event-B method [1] have already
been proposed to model and prove interlocking systems [2, 3]. However its use
in the industrial world is still a challenge. First, engineers responsible for speci-
fying these systems are generally not fluent in using formal methods such as the
Event-B method. Representing railway specific concepts such as routes, tracks,
signals or points using primitive Event-B constructs such as sets, relations and
functions quickly leads to models that are both hard to understand and manage.
Second, the loss of the rail structure of the problem makes the proof obligations
difficult to discharge, hence requires a lot of manual proof-work, also restricting
its use to specialists.

A relevant way of making the approach practical for railway engineers is to
raise the level of abstraction from the set theory of Event-B to the interlocking
domain and also to provide efficient, yet generic enough, proof automation at this
level. This can be achieved using the Theory plug-in of the Rodin Platform for
system modelling in Event-B [4].

This talk presents our experience and discusses a number of open questions
on the use of the Theory plug-in in the context of a work-in-progress aiming at
defining a set of interlocking theories ready to be used by signalling engineers.
These theories are made of train-specific constructs with a set of theorems and
proof rules. They form a domain specific language (DSL) for modelling interlock-
ing systems that has a fully formal semantics enabling to carry out verification
activities but also to perform animation and to generate interlocking systems
form the model based on a number of standard Rodin plug-ins [5].

Based on the well-known train example of [1], we progressively factorized
key domain concepts such as blocks, routes, trains, points, and signals into new
theories. Inspired by [6], we have first defined theories for manipulating chains
and subchains, in order to be able to express routes properties and relations in
a dedicated theory for routes. We notably introduced a new route reservation
theory which lets the user manipulate the set of all possible route reservations in
the modelled network by providing operators such as:

• validRouteRes to select the set of all valid route reservations on a network
made of the given blocks and routes

1

17

• compatibleRoutesOnly to guarantee that two incompatible routes will
never be reserved at the same time

• res_blocks to get the set of reserved blocks of a given route

• isReserved to check whether a given route is reserved.

On the proving side, the definition of theorems partly automates the discharg-
ing of proof obligations and also cuts down the effort of manual proving thanks
to the ability to reason at the domain level. However, we are still facing a major
challenge related to the number of proofs because about only forty percent of
the total proof obligations are currently discharged automatically in our model
as well as in our theories. In the last part of the talk, we highlight possible di-
rections to tackle this, such as enriching the theorems and defining proof tactics.
This might also initiate some discussion about future developments of the Theory
plug-in itself.

Acknowledgment
This work was partly funded by the Walloon Region under the INOGRAMS
project (grant nr 7171).

References
[1] Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press,

2010.

[2] Minh-Thang Khuu, Laurent Voisin, and Luis-Fernando Meija. Modeling a
Safe Interlocking Using the Event-B Theory Plug-in. Proceedings of the 5th
Rodin User and Developer Workshop, 2014.

[3] Michael Leuschel, Jens Bendisposto, and Dominik Hansen. Unlocking the
Mysteries of a Formal Model of an Interlocking System. Proceedings of the
5th Rodin User and Developer Workshop, 2014.

[4] Michael Butler and Issam Maamria. Theories of Programming and Formal
Methods: Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday,
chapter Practical Theory Extension in Event-B. Springer Berlin Heidelberg,
2013.

[5] Rodin Community. Rodin Plug-ins. http://wiki.event-
b.org/index.php/Rodin_Plug-ins.

[6] Luis-Fernando Mejia, Minh-Thang Khuu, and Asieh Salehi. Application in
Railway Domain. ADVANCE Project Deliverable, 2014.

2

18

Theory Plug-in for Rodin 3.x

Thai Son Hoang1, Asieh Salehi1, Michael Butler1, and Laurent Voisin2

1 ECS, University of Southamtpon, U.K.
2 Systerel, France

In Rodin 3.0, there are major changes within the Rodin Core. In particular,
the following changes directly effect the Theory plug-in (http://wiki.event-b.
org/index.php/Rodin_Platform_3.0_Release_Notes).

– Stronger AST Library: The API of the AST library has been strengthened
to mitigate risks of unsoundness when mixing several formula factories. Now,
every AST node carries the formula factory with which it was built, and the
AST operations that combine several formulas check that formula factories
are compatible.

– Stronger sequent prover: In order to improve the reliability of the proof
status when working with mathematical extensions, the reasoners can be
declared as context-dependent. The proofs that use a context dependent
reasoner will not be trusted merely based on their dependencies, but instead
they will be replayed in order to update their status. This applies in particu-
lar to Theory Plug-in reasoners, that depend on the mathematical language
and proof rules defined in theories, which change over time.

Several problems have been reported for the Theory plug-in (with Rodin 3.0)

– Exceptions when openning proof obligation.
– Exceptions when applying rule-based prover reasoners, e.g., XD (expand

definition).
– Changing the model, e.g., proof rules, theory path has no effects on existing

proofs.
– Losing proofs when saving (the problem is in fact in loading previously saved

proofs) .

The theory plug-in and its associate rule-based provers need to be upgraded to
accommodate the changes in the Rodin Platform core.

We have been working in the last few months on ensuring compatibility of
the Theory plug-in with the Rodin Platform core.

– The matching facility has been upgraded to use the ISpecialization API
(insteads of IInstantiation) which allows to specialize types consistently. This
fixes several exeptions when applying reasoners.

– Improving the matching facitlity for associative operators.
– Implement equality between datatype/operator extensions to ensure that the

formula factory will assign the same “ID” for datatype/operator with the
same definition. This ensures that formula factories coming from different
origins can be correctly compared. In particular, this ensures that proofs can
be loaded with the correct formula factory.

19

The upgrades are required some fixed in the Rodin Core hence will be available
after the next release of the Rodin Platform (Rodin 3.3?)

We have identified the following future research/improvement for the Theory
plug-in.

– Support for infix predicate operators.
– Support for predicate variables in theory.
– Improve matching facility for associative commutative operators (currently

does not take into account commutativity).
– Tactics for theory
– Theory instantiation
– Improving usability of the theory plug-in, e.g., performance in interactive

proofs.

Some of the improvements are straightforward while the others, e.g. tactics,
instantiation, requires further investigation.

20

Extending	
 Code	
 Generation	
 to	
 	

Support	
 Platform-­‐Independent	
 Event-­‐B	
 Models	

	

Asieh	
 Salehi,	
 Michael	
 Butler	
 and	
 Colin	
 Snook	

University	
 of	
 Southampton	

	

6th	
 Rodin	
 User	
 and	
 Developer	
 Workshop	

May	
 23th,	
 2016,	
 Linz,	
 Austria	

	

Summary:	

Code	
 generation	
 was	
 introduced	
 in	
 the	
 Event-­‐B	
 formalism	
 to	
 address	
 the	
 gap	
 between	
 the	

lowest	
 level	
 Event-­‐B	
 refinement	
 and	
 an	
 implementation.	
 However,	
 the	
 code	
 generation	

supports	
 generating	
 a	
 single	
 implementation	
 for	
 a	
 refined	
 Event-­‐B	
 model.	
 This	
 results	
 in	

dependency	
 between	
 the	
 Event-­‐B	
 model	
 and	
 target	
 platform	
 architecture.	
 	

To	
 address	
 this	
 limitation,	
 we	
 present	
 an	
 extension	
 of	
 the	
 Event-­‐B	
 code	
 generation	
 technique	

supporting	
 generation	
 of	
 different	
 platform-­‐specific	
 implementations	
 from	
 the	
 same	
 Event-­‐B	

model.	
 A	
 refined	
 Event-­‐B	
 model	
 is	
 treated	
 as	
 platform-­‐independent	
 through	

parameterisation.	
 The	
 platform	
 parameters	
 are	
 instantiated	
 in	
 order	
 to	
 generate	
 a	
 platform-­‐
specific	
 implementation	
 and	
 these	
 are	
 used	
 by	
 the	
 code	
 generator	
 to	
 produce	
 an	

implementation	
 that	
 is	
 tailored	
 to	
 the	
 platform.	
 	

We	
 applied	
 our	
 approach	
 to	
 model	
 an	
 embedded	
 Run-­‐Time	
 Management	
 (RTM)	
 system;	
 and	

generated	
 three	
 different	
 RTM	
 implementations	
 for	
 three	
 hardware	
 platforms	
 with	
 different	

specifications.	

Motivation:	

The	
 figure	
 presents	
 generation	
 of	
 part	
 of	
 the	
 RTM	
 implementation	
 for	
 two	
 ARM	
 hardware	

platforms:	
 Cortext_A8	
 and	
 Cortex_A7,	
 from	
 a	
 platform-­‐independent	
 Event-­‐B	
 action.	
 The	

update_qTable	
 event	
 updates	
 the	
 look-­‐up	
 table	
 used	
 in	
 the	
 machine	
 learning	
 algorithm	

during	
 run-­‐time.	
 The	
 number	
 of	
 qTable	
 columns	
 depends	
 on	
 the	
 number	
 of	
 frequencies	
 each	

platform	
 supports.	
 The	
 platforms	
 support	
 different	
 number	
 of	
 frequencies	
 (N);	
 The	

Cortext_A8	
 supports	
 4	
 frequencies,	
 whereas	
 Cortex_A7	
 supports	
 13	
 (frequency	
 values	

specified	
 as	
 constants	
 FREQi).	
 	
 There	
 is	
 a	
 guard	
 of	
 the	
 update_qTable	
 event	
 indicated	
 as	
 an	

expanding	
 guard.	
 Variable	
 N,	
 used	
 in	
 the	
 expanding	
 guard,	
 is	
 instantiated	
 during	
 code	

generation	
 and	
 results	
 in	
 generating	
 a	
 collection	
 of	
 N	
 conditional	
 branches	
 in	
 C	
 to	
 modify	
 the	

qTable	
 with	
 N	
 columns.	

	

References:	
 	

[1] PRiME:	
 Power-­‐efficient,	
 Reliable,	
 Many-­‐core	
 Embedded	
 systems.	
 http://www.prime-­‐
project.org.	

[2]	
 Abrial,	
 Jean-­‐Raymond.	
 Modelling	
 in	
 Event	
 B:	
 System	
 and	
 Software	
 Engineering.	

Cambridge	
 University	
 Press,	
 2010.	

[3]	
 Edmunds,	
 A.,	
 Butler,	
 M.:	
 Tasking	
 Event-­‐B:	
 An	
 Extension	
 to	
 Event-­‐B	
 for	
 Generating	

Concurrent	
 Code.	
 In:	
 PLACES,	
 2011	

21

[4]	
 The	
 Rodin	
 platform	
 available	
 from	
 http://www.event-­‐b.org	

	

	

	

Cortex'A8
Context

N = 4

FREQ1)=)300)…)FREQ4)=)1000

F)=){1�FREQ1,)…)4�FREQ4}

Cortex'A7
Context

N = 13

FREQ1)=)200)…)FREQ13)=)1400

F)=){1�FREQ1,)…)13�FREQ13}

Cortex'A8,
Generated C,Code

Controller.c
if)((0)<)freq))&&)(freq <=)FREQ1))

{

qTable[row][0])=)reward;

}

else)if)((FREQ1)<)freq))&&)(freq <=)FREQ2))

{

qTable[row][1])=)reward;

}

else)if)((FREQ2)<)freq))&&)(freq <=)FREQ3))

{

qTable[row][2])=)reward;

}

else

{

qTable[row][3])=)reward;

}

Common.c
#define)N))4

#define)FREQ1))300

.

#define)FREQ4))1000

Cortex'A7,
Generated C,Code

Controller.c
if)((0)<)freq))&&)(freq <=)FREQ1))

{

qTable[row][0])=)reward;

}

else)if)((FREQ1)<)freq))&&)(freq <=)FREQ2))

{

qTable[row][1])=)reward;

}

.

.

.

else)if)((FREQ11)<)freq))&&)(freq <=)FREQ12))

{

qTable[row][11])=)reward;

}

else

{

qTable[row][12])=)reward;

}

Common.c
#define N 13

#define FREQ1))200

.

#define FREQ13))1400

Instantiation

Code,Generation Code,Generation

RTM,Event'B action

update_qTable �
ANY i
WHERE
i� 1� N) expanding
F(iH1) < freq ≤ F(i)

THEN
qTable � updateArray(qTable,)row, i,)reward)

22

Using Rodin and BMotionStudio for Public Engagement

Dana Dghaym, Asieh Salehi and Colin Snook
University of Southampton, Southampton, United Kingdom

	
As	 part	 of	 its	 public	 engagement	 activities	 the	 University	 of	 Southampton’s	
Faculty	of	Physical	Science	and	Engineering	holds	an	annual	‘Science	Day’	when	
the	campus	is	open	to	the	public	and	researchers	demonstrate	aspects	of	science	
related	 to	 their	 research.	 Many	 aspects	 of	 science	 are	 demonstrated	 and	 the	
event	 is	 very	popular	and	well	 attended.	For	Science	Day	2016	we	used	Rodin	
and	 Event-B	 to	 demonstrate	 how	 mathematics	 can	 help	 to	 analyse	 problems.		
The	Science	Day	is	primarily	targeted	at	children	up	to	year	11	but	many	older	
siblings	 also	 attend	 and	 we	 also	 wish	 to	 engage	 with	 parents.	 The	 day	 is	
advertised	within	 local	 schools	 and	naturally	 appeals	 to	 teachers.	 The	 event	 is	
therefore	a	good	opportunity	to	 initiate	on-going	engagement	with	children	via	
their	schools.		Therefore,	the	demonstration	must	be	designed	to	appeal	to,	and	
be	 accessible	 to,	 people	 of	 many	 ages	 and	 mathematical	 abilities	 from	 young	
children	 through	 to	 professional	 scientists	 and	 mathematicians.	 We	 used	
BMotion	 Studio	 to	 provide	 two	 simultaneous	 visualisations.	 The	 first	
visualisation	 was	 a	 cartoon	 style	 representation	 of	 the	 real-world	 problem	
designed	 to	 appeal	 to	 young	 children	 and	 not	 requiring	 any	 mathematical	
abstraction	 skills.	 The	 other	 visualisation	 was	 a	 simple	 Venn	 diagram	
representation	 of	 the	 sets	 and	 counters	 involved	 in	 the	 mathematical	 model	
which	older	children	and	adults	could	easily	follow.	For	the	younger	children	we	
would	point	out	the	mathematical	representation	to	make	them	aware	of	 it	but	
not	attempt	to	explain	it	unless	they	were	interested.	For	those	that	appeared	to	
be	particularly	adept	and	interested	in	the	underlying	mathematical	system	we	
gave	a	brief	overview	of	the	Event-B	model	and	verification	by	proof.	

We	designed	a	simple	safety	related	problem	based	on	parking	two	cars	
in	two	parking	bays	with	an	unprotected	crossing	and	bays	protected	by	signal.	
The	children	were	given	a	scenario	for	a	particular	car	to	park	in	a	bay	and	asked	
to	select	from	a	list	of	conditions	that	needed	to	be	satisfied	for	that	scenario	to	
be	 safe.	 They	were	 then	 asked	 to	 configure	 an	 Event-B	 context	 to	 reflect	 their	
selected	conditions	using	a	purpose	built	editor.	The	configuration	used	boolean	
constants	 to	enable	guards	 in	 the	corresponding	machine.	 If	 the	correct	guards	
were	 selected	 the	 scenario	 could	be	performed	 safely.	 	 That	 is,	 any	 attempt	 to	
crash	the	two	cars	by	moving	them	to	the	same	location	would	be	prevented	by	
the	model.	If	important	conditions	were	not	selected	cars	could	be	crashed	and	if	
superfluous	 guards	 were	 enabled	 the	 scenario	 could,	 in	 some	 cases,	 not	 be	
completed.	We	gave	a	toy	car	to	any	child	that	completed	the	exercise.	

The	exercise	was	very	popular	throughout	the	day	and	at	times	children	
queued	 to	 try	 their	 selections.	 In	 all,	 two	 hundred	 children	 performed	 the	
exercise.	Several	 teachers	commented	on	how	useful	 they	 thought	 the	exercise	
was	 for	 the	 children.	 Parents	 enthusiastically	 encouraged	 their	 children	 and	
chatted	to	us	about	the	underlying	research.	

It	was	 interesting	to	note	that	children	often	 interpreted	the	problem	in	
different	ways	to	us.	For	example	selecting	that	the	unused	parking	bay	should	
have	 a	 red	 light.	 Their	 reasoning	 was	 that	 the	 car	 might	 otherwise	 enter	 the	
wrong	 bay.	 While	 recognising	 that	 we	 had	 not	 completely	 specified	 the	

23

requirements	(in	terms	of	behaviour	of	cars),	we	pointed	out	that,	according	to	
our	 intended	 requirements,	 they	 had	 designed	 a	 safe	 system	 but	 not	 a	 very	
useful	one.	Another	interesting	interpretation	was	that,	in	the	case	where	several	
scenarios	 were	 attempted,	 the	 previous	 scenario	 may	 result	 in	 a	 bay	 being	
already	occupied,	so	some	children	automatically	changed	 the	scenario	and	set	
the	 lights	 to	 send	 the	 car	 to	 the	 other	 parking	 bay.	We	 had	 not	 intended	 the	
scenarios	to	be	interpreted	sequentially.			

The	children	seemed	to	take	the	exercise	too	seriously,	perhaps	seeing	it	
as	a	test	and	believing	that	they	would	not	get	a	prize	car	if	they	allowed	the	cars	
to	crash.	For	example	in	some	cases	they	were	reluctant	to	test	their	selection	by	
trying	 to	 crash	 the	 cars.	Possibly	we	 should	avoid	associating	 success	with	 the	
system	being	safe	and	emphasize	exploration	and	understanding	of	the	problem.	

In	 conclusion	 the	 demonstration	was	 a	 huge	 success	 at	 engaging	 public	
interaction	with	 Event-B	modelling	 and	we	 hope	 to	 build	 on	 this	 in	 future	 by	
developing	other	model-based	problems	and	interacting	with	local	schools.	

	

	
Figure	1	-	Purpose	built	context	editor	for	entering	selections	

	
Figure	2	-	BMotion	Studio	visualisations		

(cars	are	moved	by	clicking	the	blue	arrows)	

	
	 24

1

Translating SCXML Statecharts to iUML-B
State-machines

Karla Morris1 and Colin Snook2

1 Sandia National Laboratories, Livermore, California, U.S.A.
knmorri@sandia.gov

2 University of Southampton, Southampton, United Kingdom
cfs@ecs.soton.ac.uk

To facilitate automatic proof, the Event-B notation is restricted to a simple
guarded action behaviour. While iUML-B goes some way to provide an intuitive
state-transition representation of Event-B models, its notation follows the seman-
tics of Event-B. Engineers that are used to the richer semantics of Harel style
statecharts may find these restrictions difficult to accept. Conversely, Event-B
has features such as refinement and invariant properties that are not considered
in most statechart notations. It may be cumbersome for engineers to re-model
existing systems into iUML-B for verification.

In order to explore the feasibility of this model transformation, we have de-
veloped a translation from a statechart representation, State Chart XML: State
Machine Notation for Control Abstraction (SCXML) [3], into iUML-B. For this
initial work we do not support features of SCXML associated with more prob-
lematic areas of the semantic mismatch, such as ‘run to completion’ transition
sequencing. Nevertheless, the translation provides an interesting first step to-
wards interchange between the two notations.

SCXML is an XML notation for Harel (hence UML) style statecharts ex-
tended with a general purpose action language. The concrete syntax for SCXML
is based on XML and includes a data modelling facility and an action language.
An example of SCXML syntax is shown in figure 1.

To facilitate Event-B formal verification, extensions to the SCXML modelling
notation are necessary so that additional modelling features required by Event-B
can be integrated with the SCXML model. The SCXML schema allows exten-
sion elements and attributes belonging to a different namespace to be added.
The SCXML tooling provides fallback mechanisms so that these extensions are
supported without the need for syntactic definition. We define a new namespace,
iumlb and add two new elements, iumlb:invariant and iumlb:guard as well as a
number of new attributes. Invariants are not supported in SCXML and SCXML
transitions only have a single cond attribute whereas we may need to introduce
conjuncts of a transition condition at various refinement steps. The concept of re-
finement does not exist in SCXML. We introduce a new integer valued attribute,
iumlb:refinement, which may be attached to any element of either namespace in
order to specify the refinement level of that element.

The iUML-B tools are based on the Eclipse Modelling Framework (EMF) [2].
It is beneficial to load the SCXML model into EMF so that our existing model
transformation technology can be used to implement the SCXML to iUML-B

25

1 <iumlb:invariant iumlb:refinement="1" predicate="TRUE = TRUE" name="inv_top_level"/>

2 <datamodel iumlb:refinement="2">

3 <data expr="false" id="Gate_In.Block" iumlb:type="BOOL"/>

4 </datamodel>

5 <!-- Other model details -->

6 <state id="BLOCKED">

7 <transition cond="[On_In.CardAccept==true]" target="UNBLOCKED">

8 <iumlb:guard name="gd1" predicate="On_In.CardAccept==true" refinement="2"/>

9 <assign expr="true" location="Gate_In.Block" iumlb:refinement="3"/>

10 </transition>

11 <onentry>

12 <assign expr="true" location="Gate_In.Block"/>

13 <assign expr="false" location="On_In.Reset"/>

14 </onentry>

15 <onexit>

16 <assign expr="false" location="Gate_In.Block"/>

17 </onexit>

18 <iumlb:invariant predicate="Gate_In.Block == TRUE" name="GateCondition"/>

19 </state>

Fig. 1. Part of SCXML model including iumlb extension ele-
ments

Fig. 2. State-machine diagram in iUML-B at refinement level 3
(partially annotated with guards and actions)

translation. An EMF meta-model for SCXML is available from the Sirius [1]
project. It supports generic model loading capabilities for new namespace ex-
tensions. Hierarchical nested state charts are translated to similar corresponding
state-machine structures in iUML-B in a series of refinement levels as directed
in the SCXML iumlb extensions.

References

1. Eclipse Foundation. Sirius project website. https://eclipse.org/sirius/overview.html,
2016.

2. D. Steinberg, F. Budinsky, and E. Merks. EMF: Eclipse Modeling Framework.
Eclipse (Addison-Wesley). Addison-Wesley, 2009.

3. W3C. SCXML specification website. http://www.w3.org/TR/scxml/, 2015.

26

