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Abstract. We describe an approach to design static analysis and verification
tools for concurrent programs that separates intra-thread computation from inter-
thread communication by means of a shared memory abstraction (SMA). We
formally characterize the concept of thread-asynchronous transition systems that
underpins our approach and that allows us to design tools as two independent
components, the intra-thread analysis, which can be optimized separately, and
the implementation of the SMA itself, which can be exchanged easily (e.g., from
the SC to the TSO memory model). We describe the SMA’s API and show that
several concurrent verification techniques from the literature can easily be recast
in our setting and thus be extended to weak memory models. We give SMA im-
plementations for the SC, TSO, and PSO memory models that are based on the
idea of individual memory unwindings. We instantiate our approach by develop-
ing a new, efficient BMC-based bug finding tool for multi-threaded C programs
under SC, TSO, or PSO based on these SMAs, and show experimentally that it is
competitive to existing tools.

1 Introduction

Developing correct concurrent programs is a complex and difficult task, due to the large
number of possible concurrent executions that must be considered. The advent of mod-
ern multi-core hardware architectures that implement weak memory models (WMMs)
has made this task even harder, because they introduce additional executions that can
lead to seemingly counter-intuitive results that confound the developers’ reasoning.

Testing remains the most widely used approach to ensuring correctness, or at least
to finding bugs. It can be effective if the fraction of buggy executions is high, but it re-
mains highly ineffective for bugs that manifest themselves only rarely and are difficult
to reproduce [30]; however, such “Heisenbugs” are unfortunately more prevalent with
WMNMs. Since other verification approaches that explore executions explicitly face the
same problems as testing, even with optimizations such as partial order reduction that
eliminate redundant executions, we need approaches that can handle multiple concur-
rent executions symbolically.

However, it is difficult to build efficient symbolic verification tools for realistic pro-
gramming languages like C, and harder yet to extend them to handle concurrency. Tools
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thus often compromise generality to achieve efficiency, by focusing on a specific mem-
ory model, typically sequential consistency (SC), and by folding the concurrency han-
dling deep into their general verification approaches (see [1,3,5,8,33,34]). This in turn
introduces a strong coupling between the two, which makes it hard to reuse existing
tools and to generalize solutions to other memory models. Our goal here is to break
this coupling and to separate the computation (i.e., individual threads) and the commu-
nication (i.e., shared memory) concerns of concurrent programs, without loosing the
efficiency of existing approaches.

More specifically, we develop an approach that allows us to combine different con-
current verification techniques with different memory models in the style of a plug-
and-play architecture. For this, we define and describe in Section 3 an interface that we
call shared memory abstraction (SMA). The SMA captures the standard concurrency
operations in multi-threaded programs such as shared memory reads, writes, and allo-
cations, thread creation and termination, and synchronization operations such as thread
join and mutex locking and unlocking. We then assume that all operations involving
concurrency are performed by invoking the corresponding SMA operations (which can
easily be achieved by rewriting non-conforming programs). In this way, we achieve the
desired separation of concens—in fact, we can even view a multi-threaded program as
the composition of two independent sub-systems, one comprising all threads and one
capturing the concurrency (including the memory model), which synchronize using the
API provided by the SMA.

We formalize this view in Section 4.1 and introduce, as a first contribution, the con-
cepts of thread-wise equivalence and thread-asynchronous closure of transition sys-
tems. We show that reachability is preserved if we exchange the transition system of a
program for a thread-wise equivalent one (assuming the SMA is thread-asynchronous)
or an SMA for its thread-asynchronous closure. This has two important consequences.
First, it allows us to generalize existing concurrent verification approaches to different
memory models simply by implementing the corresponding different SMAs. Second,
it gives us a degree of freedom in designing concurrent verification algorithms, since it
allows us to rearrange the order in which the verifier explores the execution of the state-
ments among different threads. This is implicitly exploited by some algorithms from
the literature, such as the sequenzialization by Lal and Reps [23] and the fixed-point al-
gorithm from [21] where bounded-round computations are explored by executing each
individual thread to completion, or by the sequentialization from [31] where each thread
is executed in isolation with respect to a sequence of writes that is guessed in the begin-
ning. We further show in Section 4.2 how these algorithms can be recast in our setting,
yielding correctness proofs for free.

However, the way the computation and communication concerns are combined af-
fects the scalability of the resulting verification tool. In Sections 5 and 6, we therefore
instantiate, as second contribution, our general approach to achieve an efficient BMC-
based bug-finding tool. We describe efficient SMA-implementations for SC, total store
ordering (TSO), and partial store ordering (PSO) that are based on the idea of individual
memory-location unwindings, and we show through experiments in Section 7 that our
tool compares well with existing tools.



2  Weak Memory Models

A shared memory is a sequence of memory locations of fixed size. The content of each
location can be read or written using an explicit memory operation. The semantics of
read and write operations depend upon the adopted memory model. Besides SC, we
also consider TSO and PSO, which are implemented in modern computer architectures.
These models use buffering to speed up execution time of multi-threaded programs.

Sequential consistency (SC). SC is the “standard model”, where a write into the shared
memory is performed directly on the memory location. This has the effect that the newly
written value is instantaneously visible to all the other threads [24].

Total store ordering (TSO). The behaviour of the
TSO memory model can be described using the
simplified architecture shown in Fig. 1 (cf. [27]).
Each thread ¢ is equipped with a local store buffer
that is used to cache the write operations performed
by t according to a FIFO policy. Updates to the
shared memory occur nondeterministically along
the computation, by selecting a thread, removing
the oldest write operation from its store buffer, and
then updating the shared memory valuation accord-
ingly. Before updating, the effect of a cached write is visible only to the thread that has
performed it. A read by ¢ of a variable y retrieves the value from the shared memory
unless there is a cached write to y pending in its store buffer; in that case, the value
of the most recent write in t’s store buffer is returned. A thread can also execute a
fence-operation to block its execution until its store buffer has been emptied.

— Write
- - = Read

SHARED MEMORY

Fig. 1. TSO architecture.

Partial store ordering (PSO). The semantics of PSO is the same as for TSO except that
each thread is endowed with a store buffer for each shared memory location.

We represent memory models as state transition systems whose configurations keep
track of the valuation of the shared locations, the state of the store buffers (if any), the
status of each created thread (i.e., active, ready, suspended or terminated) and the status
of each mutex (i.e., locked or unlocked).

3 Multi-Threaded Programms over Shared Memory Abstractions

In this paper, we consider multi-threaded programs with a C-like syntax including
pointer arithmetics and dynamic memory allocation. We further consider POSIX-like
threads with dynamic thread creation, thread join, and mutex locking and unlocking
operations for thread synchronization, but no thread communication primitives: threads
communicate only via the shared memory. We also assume a fence-statement that
flushes all store buffers of a thread. The exact program syntax is defined in the Ap-
pendix by the grammar shown in Fig. 4.

3.1 Shared memory abstractions

The semantics of multi-threaded programs ultimately depends on the underlying mem-
ory model. In order to combine existing concurrent verification techniques with differ-



ent memory models we define a “concurrency interface” or shared memory abstrac-
tion (SMA) that abstracts away the shared memory operations in the syntax of multi-
threaded programs. The intended meaning of the SMA’s functions is standard; note that
most functions carry the calling thread t as an extra argument to allow the SMA to
update its internal state. In detail, the SMA API is formed of the following functions:

— init () initializes the SMA and the shared variables; this must be the first state-
ment in the program;

— address (v, t) returns the memory address of the shared variable v;

— malloc(n,t) allocates a continuous block of n memory locations and returns
the base address of the block;

— read (v, t) (resp. ind_read (a, t) ) returns the valuation of the shared variable
v (resp. memory location with address a) as seen by t;

- write(v,val,t) (resp. indwrite (a,val,t)) sets the valuation of the
shared variable v (resp. memory location with address a) to the value val;

— fence (t) flushes all store buffers of t and updates the shared memory;

— lock (m,t) and unlock (m, t) are the standard thread synchronization primi-
tives that acquire and release a mutex m for t; if m is currently acquired, the Lock
operation is blocking for t, i.e., t is suspended until m is released and then acquired;

— create (f, t) spawns a new thread that starts from function f, and returns a
fresh thread identifier for this thread;

- terminate (t) terminates the execution of t; each thread must explicitly call it
at the end;

— Jjoin(t’,t) pauses the execution of t until t’ has terminated its execution.

3.2 Multi-threaded programs as composition of transition systems

The formal semantics of multi-threaded programs is often given by a transition system
(see Appendix for the formal definitions) that captures the program computations by
interleaving the computations of each thread. For our class of programs we exploit the
separation between the control flow and the shared memory aspects introduced with the
notion of SMA. Thus, the semantics of a multi-threaded program is given as the com-
position C| M of the control-flow transition system C that captures the control flow of
the program and the shared memory abstraction transition system M that implements
the behaviours of the SMA. This allows us to keep the semantics of the sequential part
and re-interpret it in different ways with different WMMs; it also aligns nicely with
different SMA implementations.

These two transition systems are synchronized over the SMA API that defines the
alphabet that labels the transitions of C and M. More precisely, the alphabet consists of
the calls to the SMA API functions that do not return values, and the calls augmented
with a parameter denoting the returned value for the others. For example, read(3,v,t)
is the letter corresponding to a call read (v, t) that returns value 3. We denote this
alphabet with Ygp/4.

Control-flow transition system. The states of the control flow transition system C are
the set of tuples of thread configurations. A thread configuration consists of a program
counter, an evaluation of the thread-global variables and a call stack, as usual. C has



a unique initial state that corresponds to the empty configuration (i.e., no threads are
active in the beginning) and all states are final.

The transitions correspond to the execution of any of the statements. Transitions cor-
responding to invocations of API functions of SMA are labeled with the corresponding
letter from Ygp4. In particular, transition from the initial state are labeled with init() and
enter a state with the starting configuration of the main thread. No other transitions are
labeled with init(). Transitions corresponding to SMA functions that return a value are
handled as assignments of the corresponding variables with the returned values. Addi-
tionally, on a thread creation the tuple of thread configurations is augmented with the
starting configuration of the newly created thread. Similarly, the effect of a transition on
terminate(t) is to delete the configuration of the terminated thread. The remaining tran-
sitions over Xspz4 letters just update the program counter. Transitions corresponding to
all other (i.e., sequential) statements are labeled with the empty word € and update the
configuration of the issuing thread as usual.

Shared memory abstraction transition system. In general, an SMA transition system
M has an initial state and a state for each possible configuration of the corresponding
memory model. The transitions update memory configurations to capture the memory
model’s intended meaning. Note that from the initial state there are only outgoing tran-
sitions, which are all labeled with init(), and no other transition have this label.

For SC, the system M, can enter from the initial state any state that has only one
thread (which must be active), has any number of shared locations (which must all have
the value of zero), and has any number of mutexes (which must all be unlocked). All
other transitions update the state of M. according to the meaning given in Section
2. Since there are no store buffers in SC, there are no fence-transitions. Further, in a
transition on terminate(t), M. enters a state where the status of 7 is terminated. From
any such state only states where the ¢ status remains terminated can be reached, and no
other transitions corresponding to invocations of API functions from ¢ are allowed. The
final states are all the states where all the threads are terminated.

For the WMMs we denote the corresponding SMA transition system with M, and
M0, respectively. The states of both systems also account for the content of the thread
store buffers, the transitions on reads and writes reflect the corresponding semantics as
described in Section 2, and there are fence(t)-transitions on calls to fence by ¢ and
e-transitions for store buffer updates.

4 Verification with thread-asynchronous SMAs

In this section, we discuss our design approach for the verification of multi-threaded
programs. Its basis is the separation between the intra-thread control-flows and the SMA
already discussed in Section 3. In this view, a verification tool is composed of an SMA
implementation and a search algorithm that explores the program executions. This by
itself allows for a convenient way to extend verification methods to other memory mod-
els by simply replacing the SMA implementation. However, this might not result in
scalable verification tools, for the following reasons.

First, to preserve the correct semantics of the memory operations, these must be
invoked in the same order as they appear along the run, which may be a bottleneck



when we explore the state space of the program, both in case of the analysis based
on summaries (e.g., BDD-based model checking) or bounded model checking. In the
former, we must keep a cross-product of the states of all threads in the configurations;
this is a well-known problem that leads to state-space explosion. In the latter, since
context-switches can happen at any point, we must encode into the SAT/SMT formula
the code of all threads for each of the context-switch points in the underlying bounded
multi-threaded program, which leads to large formulas.

Some approaches from the literature instead explore the program executions by rear-
ranging the order in which the memory operations of the different threads are executed,
e.g., by simulating each thread to completion [21,23]. Another example is the sequen-
tialization presented in [31] where each thread is executed in isolation with respect to
a memory unwinding (i.e., a sequence of writes that is guessed at the beginning). More
generally, the approach of verifying each thread in isolation is also the essence of the
compositional approaches based on assume-guarantee reasoning [25,18].

We generalize the ad-hoc approaches above, and present a general framework in
which to design concurrent program verification approaches. This requires that the used
SMA implementation is thread-asynchronous, that is that its behaviours are insensitive
to how the threads are interleaved. This allows us to freely transform the threads as
long as we stay within the class of thread-wise equivalent programs, that is programs
where the intra-thread ordering of the statements remains the same. This, along with
the correctness of the derived design approach, will be formalized below.

We conclude the section by discussing how previous successful approaches from
the literature fit into our setting. In following sections, we will then give an efficient
implementation of a thread-asynchronous SMA and show that this can be combined
with existing search algorithms to achieve a competitive verification tool.

4.1 Thread-asynchronous SMAs

For a thread ¢, we denote with X%, ,, the maximal subset of X4 containing only
letters that are issued by t. Clearly, for threads ¢ and ¢’ with ¢ # t/, X, ,, and Egzlm
are disjoint. For a thread ¢ and a word « over Ysp4, let ¢ be the projection of a onto
Xlya, ie., the word obtained from « by deleting all the letters that do not belong to
Xlya-Ift1, ... ty, are all the threads that issue at least a letter in «, we define 7(«) as
the map 7(a)(t;) = oy, fori € [1,A].

A language L of words over Ygy4 is thread-asynchronous if for each o € L and
for each o starting with init() s.t. 7(«) = w(’), also o’ € L. The thread-asynchronous
closure of a language L, denoted by L, is the smallest thread-asynchronous language
such that L C L#,

Let A; and A be two transition systems over the alphabet Xspz4. We say that A;
and Aj are thread-wise equivalent if for each word « accepted by one of them there is
a word o accepted by the other one such that 7(a)) = 7(a/).

A standard analysis for multi-threaded programs is to search for the reachability of
an error program counter of a given thread (local error state), often denoted by an error
label or a false-assertion. In the following, we give two theorems stating sufficient
conditions under which the reachability of local error states is preserved.



The first theorem states that if the SMA is thread-asynchronous we can transform
a program P; into a thread-wise equivalent program P such that a local error state
is reachable in the resulting program P if and only if it is reachable in P;. Intuitively,
this theorem holds since the fact that the SMA transition system is thread-asynchronous
ensures that the interaction of each thread with the SMA is independent of how threads
are interleaved; in particular, by fixing a run p, the values returned by the read operations
performed by a thread are ensured to be the same in all the possible interleavings of the
the projections of p onto each thread. Since we assume that the sequences of SMA
operations issued along the runs of P; and P, may differ only as caused by different
interleavings of the threads, we get that reachability is preserved.

Theorem 1. Let C; be a control-flow transition system for i = 1,2 and M be an
SMA transition system. If C1 and Cy are thread-wise equivalent, and M is thread-
asynchronous, then a local error state is reachable in C1| M iff it is reachable in Co| M.

Theorem 1 states a crucial property for our approach: we can implement a thread-
asynchronous SMA, and combine it with any transformation of the program that rear-
ranges the interleaving among threads and still get a correct verification approach. In
the next subsection, we discuss how to implement thread-asynchronous SMAs that are
suitable to recast known verification approaches for SC and extend them to WMMs.

The second theorem shows that we can replace an SMA M with another SMA
M that captures its thread-asynchronous closure, and still preserve reachability of
local error states. The interesting case of the proof is when a sequence « is accepted by
M but not by M. In this case, since the returned values are visible in Ysp4 letters
and there must be a sequence «’ that is accepted by M such that 7(«) = 7(a’), we
get that the sequence of local states that are visited by any thread of any program P are
the same for both sequences o and . Therefore, the following theorem holds.

Theorem 2. Let C be a control-flow transition system and M; be an SMA transition
system for i = 1,2. If L(Mz) = (L(M))#, then a local error state is reachable in
C| My iff it is reachable in C| M.

By combining both theorems, we can easily show the correctness of WMM exten-
sions of correct verification methods that transform programs by keeping the ordering
of the sequence of the operations within each thread. In fact, we just need to provide an
SMA that captures the thread-asynchronous closure of the memory model.

4.2 Thread-asynchronous SMAs for thread interfaces and memory unwinding

We briefly recall the notions of thread interface [21] and memory unwinding [31], and
discuss how to recast some approaches from the literature in our setting by means of
the SMAs derived from these notions.

Thread interface. A thread interface for a thread t summarizes computations of ¢ across
a bounded number of context-switches. Formally, it is a sequence of pairs (r1, s1), .. .,
(rk, s,) where r;, s; for i € [1, k] are valuations of the shared locations. The intended
meaning is that there is a computation of ¢ such that ¢ starts with 7; as valuation of the



shared locations and reaches s1, is suspended and then reactivated with shared valuation
r9, and reaches so, and so on.

In a bounded context switch analysis we can assume that computations of programs
are arranged in k£ rounds where threads are always scheduled according to the same
fixed round-robin schedule %1, ...,¢,. Thus, exploring the computations of a multi-
threaded program up to k rounds corresponds to computing thread interfaces and com-
posing them [21]. We start with thread ¢; and guess the in-valuations at rounds 2, ..., k
(i.e., the valuations rs, ..., 7; note that r; is the initial valuation of the program and
thus known); we then compute the out-valuations (i.e., s, ..., sg) for thread ¢; and
take them as the in-valuations of the next thread ¢-, and so on. In the end, in order to
establish that the computed thread interfaces form a computation of the program we
just need to check that the out-valuation of thread ¢,, at round ¢ € [1, k — 1] equals the
(guessed) in-valuation of thread ¢; at round ¢ + 1.

This is the essence of the well-known sequentialization algorithm by Lal and Reps
[23] and the fixed-point algorithm given in [21]. We can recast these two algorithms
in our setting by means of an SMA that extends the standard SMA for SC by thread
interfaces. The resulting transition system M is as follows. On the init()-transition,
M’i guesses a round schedule ¢4, . . ., t,,, a bound k, and for each thread ¢; an interface
I' = (r{, 1) ... (s}, ) such that 7% = s for j € [1,k]. ML keeps for each thread
the current round in the corresponding thread interface. If the current round of a thread
is less than the round bound k, it can be increased by one by an e-transition (i.e., it is
nonderministically either increased or left unmodified). Further, for any input sequence
a, M ensures that:

— on write(v,val,t) (resp. ind_write(a,val,t)), the out-valuation of the current round of
thread ¢ is updated according to the write;

— on read(val,v,t) (resp. ind_read(val,a,t)), the out-valuation of the current round of
thread ¢ must evaluate v (resp. a) as val.

In order to accept a, create(t,f,t’) must occur in « for each thread ¢ with a guessed
interface, and the computed interfaces form a computation in the sense described above.

The transition system M ffc is thread-wise equivalent to M., and, moreover, it can
execute all the computations of M. by advancing each involved thread in any order.
The proof of the following lemma is a consequence of the results from [21].

Lemma 1. L(M%Y) = (L(M,.))#

We can then recast the verification technique from [23] in our setting by taking the
above SMA along with the transformation of the control-flow from [23]. Lemma 1, and
Theorems 1 and 2 show the correctness of the resulting verification method. Similarly,
we can combine M with a control-flow part that at each transition nondeterministi-
cally selects the next thread to execute. The resulting system captures the verification
technique from [21], and correctness is again ensured by Lemma 1, and Theorems 1
and 2. We remark that actual implementations of both these techniques require param-

eterization over the number of threads and rounds, as in the original implementations.

Memory unwinding. A memory unwinding (MU) [31] is a sequence of writes; each write
w s atriple (¢, v, val) where ¢ is the identifier of the thread that has performed the write



operation, v is the identifier of the memory location that is modified in the write and
val is the value of v after the write. A corresponding transition system guesses an MU
on the init()-transition and then executes the operations consistently with this guess. For
SC, the corresponding transition system M7.* will keep for each thread the current
position in the MU and for any input sequence «, it ensures that:

— on write(v,val,t) (resp. ind_write(a,val,t)), the next write in the MU for thread t
matches the value val and variable identifier v (resp. address a);

— on read(val,v,t) (resp. ind_read(val,a,t)), there must be in the MU a write at a po-
sition ¢ from the current position of t through the next write of t, that assigns value
val to the location identified by v (resp. a); the current position of t is updated to ¢
in the next state;

— for each thread, the writes are matched exactly in the same order as in the MU.

In order to accept a, create(t,f,t’) must occur in « for each thread t with writes guessed
in the MU and the writes in the MU should be mapped 1-to-1 to the writes in «.

The transition system M72" is thread-wise equivalent to M., and additionally, it
can execute all the computations of M. by advancing each involved thread in any
order. Moreover, due to the fact that all writes are guessed in advance, the ordering in
which we interleave the threads is irrelevant. Thus, the following lemma holds.

Lemma 2. L(M™%) = (L(M,.))*.

We can recast the verification approach from [31] in our setting by taking the above
SMA along with the transformation of the control-flow from [31]. Lemma 2, and The-
orems 1 and 2 show the correctness of the resulting verification method. Again, actual
implementations would require parameterization on the number of writes and threads.

Extension to weak memory models. The discussed verification algorithms can be ex-
tended to handle programs under weak memory model semantics by giving the corre-
sponding shared memory abstractions. This can be done for TSO and PSO by explic-
itly adding the store buffers to M% and M™*, or for TSO by augmenting M with
guesses on the round when a write will be visible to all threads, as done in [5]. In the
next section, we introduce a new implementation that refines the notion of MU and
that works especially well for bounded model checking (BMC), and thus gives efficient
BMC-implementations for verification under TSO and PSO program semantics.

5 Individual Memory-Location Unwindings

In this section, we discuss an efficient implementation of thread-asynchronous shared
memory abstractions for SC, TSO and PSO memory models. It builds on the idea of
memory unwinding recalled in the previous section. The two main innovations are:

— the splitting of the memory unwinding into different sequences, one for each indi-
vidual shared memory location (location unwinding, LU for short), and

— the introduction for each write of a timestamp, i.e., a natural number that denotes
the time of occurrence of a write according to a discrete-time global clock.



An individual memory-location unwinding (IMU) is then a set containing exactly one
LU for each memory location and such that the timestamps determine a total order
among all the writes of all the LUs.

Splitting the memory unwinding into smaller sequences works well when used in
combination with BMC verification tools: the read and write operations result in much
smaller verification conditions; for each memory access, only the corresponding indi-
vidual sequence needs to be duplicated and not the whole sequence of writes. Further,
the shared memory abstraction capturing SC based on IMU can be easily extended to
accommodate TSO and PSO. In fact, this can be done at the cost of adding for each
write a second timestamp denoting the time at which the write is moved to the shared
memory (and thus becomes visible to all threads). Moreover, the split of the writes
among the shared memory locations makes the transition from TSO to PSO trivial.

IMU-based SMA for SC. An LU for a memory location v, denoted by v-LU, is a se-
quence of triples (¢, val, d) where ¢ and val denote the thread identifier and the value
of the write and d is a positive integer denoting the time at which val is written into v
according to a discrete global clock (timestamp). If Var is the set of location names and
y @ v-LU for each v € Var, an IMU is a set {y1,, | v € Var} such that a) the tuples in
each LU are ordered by increasing timestamps, and b) for each pair of different location
names vy, vy € Var and for each (¢;, val;, d;) in p,, with ¢ = 1,2, then also d; # ds.
Note that timestamps define a total order among all the writes in the IMU.

The IMU-based shared memory abstraction for SC can be constructed similarly
to M7, We only remark here the main differences: on the init()-transition an IMU
is guessed instead of an MU; the current timestamp (i.e., the timestamp of the last
executed SMA operation) is maintained for each thread; in a read by a thread ¢ the
position of the matching write is guessed such that the corresponding timestamp d is
between the current timestamp of ¢ and the timestamp of the next write by ¢ (the current
timestamp of ¢ is updated to d after the transition); the current timestamp of a thread ¢
is also updated to the timestamp of a write when this is executed.

The total ordering of timestamps across all the IMU ensures the equivalence with
a corresponding MU where the writes are written by increasing timestamps, and vice-
versa (in an MU the timestamps are given implicitly by the order of the writes in the

sequence). We thus get the following lemma for the resulting transition system M.
Lemma 3. L(MU") = L(MT¥).

IMU-based SMA for TSO and PSO. To capture the TSO and PSO semantics, we in-
troduce into the IMU a second timestamp for each write. In particular, we now make
a distinction between the time a write occurs (occurrence timestamp) and the time the
shared memory is updated with an occurred write (update timestamp). For correctness,
we impose on the IMU that for each write the occurrence timestamp should not be
greater than the update timestamp.

For TSO, in order to ensure the FIFO policy for the store buffers along any program
execution, we also require that for each thread the writes must be following the same
order, if ordered by non-decreasing timestamps according to either one of the sequences
of timestamps (i.e., either the occurrence or the update timestamps). For PSO, instead
this requirement is replaced with a weaker one that ensures a FIFO policy only for the
writes of a same location performed by the same thread.



We will denote with M™% and M ™% the IMU-based SMA transition systems cor-

tso pso

responding to the TSO and PSO memory models, respectively. Mi™% can be obtained
from M with a few changes: on the init()-transition we now guess the IMU with oc-
currence and update timestamps as observed above; in a read of location v by a thread
t the position of the matching write is the last occurred write still in the store buffer of ¢
(i.e., current timestamp of ¢ is between the occurrence timestamp and the update times-
tamp of the last write of v by t), if any, and the last updated write of v, otherwise (this
case works as the read in MY™%); the current timestamp of a thread ¢ is also updated to
the occurrence timestamp of a write when this is executed; a fence(t)-transition updates
the current timestamp to the largest update timestamp of the already occurred writes
performed by ¢. Obtaining M;TO“ from M™ is very simple and the only difference is
hidden in the properties that are required on the guessed IMU as observed above.

By the above observations we can derive that the described transition systems cap-
ture the semantics of the corresponding memory models. Moreover, as for the MU
case, since all the writes are guessed in advance, the ordering in which we interleave

the threads is again irrelevant. Thus, we get the following lemma:
Lemma 4. For m € {tso,pso}, L(MI™*) = (L(M,,))*.

Verification by IMU. By composing the transformation of the control-flow from [31]
along with the SMA implementations M%7, M7 and M7 we get new methods
for the verification of multi-threaded programs under SC, TSO and PSO semantics,
respectively. The correctness of such methods is a consequence of the lemmas given
above in this section, and Theorems 1 and 2. We will give concrete implementations of

these methods and evaluate them in the next two sections.

6 IMU-based SMA implementations

In this section, we discuss concrete C-implementations of SMAs whose semantics is
captured by MZ7, M7 and M7, respectively. Each of them implements the SMA
API defined in Section 3. In the remainder of this section we will give some details of
the implemented code; a full version is in the Appendix. Our code is optimized for an

efficient analysis using BMC tools but implementations for other backends are possible.

6.1 IMU implementation for SC
The implementation is parameterized over several constants; note that V=N+U holds.

— T denotes the maximal number of threads that can be spawned during any execution
of the input program,

— V denotes the number of tracked memory locations,

— N denotes the number of shared scalar variables (locations with names),

— U denotes the maximum number of locations that can be accessed only through
their memory addresses (locations without names),

— M denotes the maximum number of dynamic memory allocations, and

— W denotes the maximum number of write operations for each location.



Data structures and invariants. We use several scalar variables and arrays to maintain
the LUs and support the implementation of the SMA operations. We sketch below the
main ones that are relevant to the read and write operations; others are used to model
thread creation, join, and termination, and the dynamic memory allocation (see Ap-
pendix). All are declared global such that they are visible and can be modified in all the
functions. For simplicity, we assume that all data is represented by unsigned integers.

The triples (¢, val, d) of the LUs are maintained by three different arrays thread,
value and t stamp. For every location v € [0, V-1] and i € [0, W-1], the triple at po-
sition 1 in the v-LU is stored in thread[v][i], value[v][i] and t stamp[v][i]. We
link the writes of a same thread in each LU by an additional array th_next _write. All
these arrays are nondeterministically assigned in the function init and never changed
in the program execution. init also ensures that:

— timestamps are assigned in increasing order for each LU;

— no two writes in the IMU are assigned the same timestamp;

— for every location v € [0,V-1], position 1 € [0,W-1] and thread identifier t €
[0, T-1], th.next_write[v][i][t] is the first position in the v-LU after i that
corresponds to a write by t, if any; otherwise, it is set to W, denoting that no further
writes of v by t are expected;

To keep track of the execution of each thread in the IMU, we use the arrays th_pos,
last_write and cur_tstamp, and maintain the following invariants for every lo-
cation v € [0,V—1] and thread identifier t € [0, T-1]:

— th_pos[v][t] stores the current position of thread t in the v-LU;

- last_write[v] stores the position i € [0, W-1] of the last executed write opera-
tion of location v in the v-LU;

- cur_tstamplt] stores the current timestamp of thread t during its simulation.

Verification stubs. We only discuss here the implementation of the functions read and
write, which is given in Fig. 2. Both functions first check whether the execution of
the simulated thread has been stopped, and return immediately if this is the case.

For a read operation of thread t from location v, we first jump forward into v-LU by
invoking the auxiliary function Jump and then return the value of v at this new position
of v-LU. Jump (cf. Fig. 2) works as follows. If the timestamp of the selected write is
past the current thread timestamp, the latter is updated to this value, acknowledging the
fact that the corresponding write into the shared memory has occurred. The value of
jump is selected nondeterministically within a range of proper values. Namely, jump
should not pass the last legal write position for v and must be strictly less than the
position of the next write of v by the same thread t (that has not occurred yet). Further,
we require that the timestamp at position jump+-1 is greater than the current timestamp
of t, as we must point to a write of v that is not superseded by already occurred writes.

With the stated invariants we get that Jump identifies a position ¢ in the v-LU that
is correct w.r.t. the v-LU (in the sense that it is not jumping over the next write of v by
t). However, note that the corresponding timestamp could be still larger then the next
write by t (for a different location) but we will catch this while executing the next write
of t, when the current timestamp of t will be larger than the one of that write.



int read(uint v,uint t){ uint Jump (uint t, uint v){
if (is_terminated(t)) return 0; uint Jjump=x*;
uint jump = Jump (t,v); uint j=th_pos[v];
return (value[v][jumpl);
} ts_jump = tstamp([v] [jump];

assume ( (jump <= last_write[v])
void write(uint v, int val,uint t) { && (jump < th_next_writel[v][t][]])

if (is_terminated(t)) return; && (tstamp[v] [Jump+l]>cur_tstamp(t])
uint i, Jjump; )

i = th_pos([v]I[t];
jump=th_next_write[v] [1] [t]; cur_tstamp[t] =

assume ( (jump<=last_writel[v]) (ts_jump > cur_tstamp[t]) ?

&& (value([v] [jump] == val) ts_jump : cur_tstamp[t];
&& (tstamp[v] [Jjump] > cur_tstamp[t]) return jump;

)i }
th_pos[v] [t]=Jump;
cur_tstamp[t]=tstamp[v] [jump];

Fig. 2. Read, write, and jump functions.

In a write operation, we first move forward to the position of the next write by t in
the v-LU and block the execution if the value to be written differs from that stored in the
v-LU at the position. We also check that the timestamp associated with the new v-LU
position for t is greater than the current timestamp of t; if this is not the case, we are
then in the error case generated by a wrong update of the thread timestamp in a read as
described above, and thus the execution is aborted. If all checks are passed, we update
the current position of thread t in the v-LU and the current timestamp accordingly, thus
maintaining the stated invariants.

6.2 IMU implementation for TSO

We give this implementation incrementally on that given for SC; the code of the func-
tions fence, read and write is illustrated in Fig. 3. We use t stamp[v][i] to store
the update timestamp concerning the write at position i in the v-LU, and cur_t stamp
[t] to keep track of the current timestamp in the execution of thread t (i.e., the occur-
rence timestamp of the read or write that occurred last). Additionally, we use two new
arrays bt st amp (buffer timestamps) and t s_1astW such that:

— btstamp[v][i] is the occurrence timestamp of the write at position i in the v-
LU (that is also the time at which it is stored in the local buffer of the thread that
performs the write operation);

- ts_lastW[t] is the update timestamp of the write by thread t that occurred last.

For init, we nondeterministically guess the initial values for bt st amp[v][i] and
then impose that bt stamp[v][i] < tstamp[v][i] must hold (i.e., the update of the
shared memory according to an occurred write may be delayed w.r.t. its occurrence
time). Note that here we slightly diverge from the transition system M:"" described
in Section 5. In fact, since we do not require any other condition on the guessed update
timestamps, we can carry over an IMU with timestamps that may violate the FIFO
policy on the store buffers. This is fixed by checking the proper ordering on matching

the writes (see below).



void fence (uint t) {
if (ts_lastW[t]>cur_tstamp[t])

int read(uint v,uint t){ ]
cur_tstamp([t] = ts_lastW[t];

if (is_terminated(t)) return O;

uint ts_jump, 1i;
i = th_pos[v][t];
uint nxt_write=th_next_write[v] [i][t];
uint fst_write=th_next_write[v][0][t];
assume (
(ts_jump >= cur_tstamp[t]) &&
(ts_jump < btstamp[v] [nxt_write])
)i
cur_tstamp[t]=ts_jump;

void write (uint v, int val,uint t) {
if (is_terminated(t)) return;
i = th_pos[v][t];
Jjump=th_next_write[v] [1][t];
th_pos[v] [t]=Jump;
assume (

: i = i btstamp [v] [jump] > cur_tstamp[t]
if( Esiiwrlte f— i && . . oo valne vl umny St
stamp [v] [1] cur_tstamp(t] 55 tstamplv]lsomp] > ta. lastW[t]

) return valuel[v][i];

return Read_SC(v,t); )7

ts_lastW[t] = tstamp[v] [Jjump];
cur_tstamp[t] = btstamp([v] [jump];

Fig. 3. Functions read, fence and write for TSO.

The fence-operation flushes the store buffer of the executing thread. We thus
need to synchronize the current thread timestamp with its last update timestamp, i.e.,
if ts_lastwW[t] is larger than the timestamp of the last occurred write by t, we set
ts_lastW[t]to cur_tstamplt]. Note that if this is not the case then the local store
buffer of t is certainly empty, since bt stamp[v][i] < tstamp[v][i].

The read-function first increases nondeterministically the current timestamp of
thread t such that it remains smaller than the occurrence timestamp of the next write of
v by t. Now, if at least a write of location v by t has occurred and the last write of v
by t is still in the thread buffer, then we return the value of this write. Otherwise, a read
from the shared memory is performed by invoking the auxiliary function Read_SC that
is exactly the function read from Fig. 2.

Note that the update of the current thread timestamp by read can cause this value
to be larger than the update timestamp of the last write, which is correct. To avoid that
we wrongly move the time back, in fence we make the assignment only when this is
not the case.

The write-function first updates the current position in the v-LU of thread t to
the next write provided that the time of occurrence of this write is larger than the current
thread timestamp, the value of the write matches the guessed value for it and the update
timestamp of the next write is larger than that of the last occurred write (the last one
ensures that the thread store buffers are emptied according to a FIFO policy). Note that,
in the case of a wrong guess of the update timestamps in init, this condition would
not hold and thus the execution would abort. Before returning, the update timestamp of
the last write and the current timestamp of thread t are modified consistently.

6.3 IMU implementation for PSO

We can get a PSO-SMA by slightly modifying the TSO-version as follows. We use
a new array max_tsW instead of ts_lastW to keep for each thread t the maxi-
mum update timestamp among all the occurred writes of t. We achieve this by re-



Table 1. Performance comparison among different tools for SC semantics on unsafe instances
from the SV-COMP16 Concurrency category.

CBMC svcl6 CIVL svcl6  [Lazy-CSeq svel6 | MU-CSeq svel5 || IMU-CSeq
sub-category  files l.o.c.||pass fail time|pass fail time|pass fail  time|pass fail time||pass fail time
pthread 15 2301(] 14 1 8423| 15 03331 15 0 4858 15 0 542{] 15 0 4.88
pthread-atomic 2 156 2 0 059 2 0 175 2 0 139 2 O 1.4 2 0315
pthread-ext 8 616 7 1 154 8 01312 8 0 1123 8 0 545 8 0 4.88
pthread-lit 2 73 2 0 03l 2 01033 2 0 056 2 0 255 2 0088
Idv-races 8 616 3 56696 3 0 145 8 0 1.73 - - - 8 0 1.61

placing in write the update of t s_lastW with the assignment of max_t sW[t] with
(tstamp [v] [Jump] >max_tsW([t]) ? tstamp [v] [jump] : max_tsWI[t].

We further modify function write by removing from the assume-statement the
conjunct tstamp [v][Jjump] >ts_lastW[t] (see Fig. 3). We recall that this con-
junct was required in the TSO implementation to ensure that for each thread t, the
guessed occurrence and update timestamps for the sequence of writes by t (that may
be contained in different LU’s) are indeed consistent with the store-buffer FIFO pol-
icy; in PSO, we only need to require this within each LU, which is thus ensured by the
remaining constraints of write and init.

7 Experimental Evaluation

We have implemented our approach in a prototype tool IMU-CSeq, where we first use
MU-CSeq [31] to transform the original multi-threaded program into a sequential one
(sequentialization), then link this against an IMU-based SMA implementation, and fi-
nally verify the resulting program with a BMC tool for sequential programs, in partic-
ular CBMC (v5.3). Depending on the chosen SMA implementations we thus obtain a
tool for verifying multi-threaded programs under SC, TSO, and PSO, respectively.

SC benchmarks. We have evaluated this prototype on benchmarks from the Concurrency-
category of the TACAS Software Verification Competition (SV-COMP16) [7]. These
are widespread benchmarks, and many state-of-the-art analysis tools have been trained
on them; in addition, they offer a good coverage of the core features of the C program-
ming language as well as of the basic concurrency mechanisms.

The whole benchmark set consists of 1015 files, of which 791 have a reachable
error location. Since we use a BMC tool as a backend, we cannot prove correctness,
but can only show that an error is not reachable within the given bounds. We therefore
only evaluate our prototype on such unsafe files. In particular, we used the files from
the sub-categories shown in Table 1.

The experiments were run on a dedicated machine with a Xeon E5-2650 v2 with
2.60 GHz and 132 of RAM, running a Linux 4.2.0-22-generic operating system. The
verifiers were given a a 15GB memory limit and a 900s timeout. The files are ana-
lyzed under SC semantics. The experiments are summarized in Table 1. Each row cor-
responds to a sub-category of the SV-COMP16 benchmarks, where we report the num-
ber of files and the total number of lines of code. Note that the different pthread-wmm-*
sub-categories are missing. Our current prototype cannot currently handle these bench-
marks, which have a large number of shared variables and write operations. However,



the original MU-approach had similar problems which we could overcome by expos-
ing only a subset of the write operations (coarse-grained unwinding, see [32]), and we
are currently exploring similar ideas for the IMU-approach. The table shows the results
for CBMC [4], CIVL [35], Lazy-CSeq [16,17], MU-CSeq [31],! and IMU-CSeq on
these benchmarks. Furthermore, we indicate with pass the number of correctly found
bugs, with fail the number of unsuccessful analyses including tool crashes, memory
limit hits, and timeouts, and with time the average time in seconds to find the bug. The
results clearly show that our approach is competitive with existing tools; in particular,
the IMU-based SMA-implementation improves over the MU-based MU-CSeq.

WMM benchmarks. We also compared our prototype against two tools with built-in
support for analysis under weak memory models, CBMC [15], and Nidhugg [1], a
bug-finding tool that combines stateless model checking with dynamic partial order
reduction on relaxed memory executions. These experiments were run on a dedicated
machine with a Xeon W3520 2.6GHz processor and 12GB of physical memory running
64-bit linux 3.0.6. We set a 10GB memory limit and a 600s timeout for the analysis of
each of the simple benchmarks and timeout of 14,400s for safestack. For each tool and
benchmark, we set the parameters to the minimum value needed to expose the error.

Simple benchmarks. We first used a set of (relatively simple) benchmarks collected
from the CBMC, Poet, and Nidhugg tools, and the SV-COMP benchmark suite. The
results are summarized in Table 2. The unwind parameter was used by all the three
tools considered in the comparison. The parameters W, U, and M are used by IMU-CSeq,
with the meaning as given in Section 6.1. The parameter bitwidth gives the size of
integers (in bits) used in the sequential analysis.

The first block contains results for some classical mutual exclusions algorithms
(dekker, lamport, peterson, szymanski). The implementations are correct
under SC but not under TSO and PSO. All tools find the errors, but because of their
small size, Nidhugg outperforms both our prototype and CBMC on these programs.

The second block contains the safe and unsafe versions of one of the fibonacci-
benchmarks, in which two worker threads concurrently increase two shared counters,
and a main thread checks whether any of the two counters can reach a defined value. A
full exploration of the thread interleavings is required to identify the error (or show its
absence) in this program. Techniques such as partial-order reduction do not apply, and
several tools struggle to analyze it. Here, our tool has the slight edge over CBMC while
Nidhugg is slower than both CBMC and our tool.

The next two blocks contain a benchmark that is correct under SC and TSO but not
under PSO, and two benchmarks that originate from industrial code: parker models a
semaphore-like synchronization class that breaks under TSO [1], and st ack which was
taken from SV-COMP [7]. Here, all tools report the expected results; the performance
differences between Nidhugg and CBMC are small, while the performance of our tool
could be improved with a better implementation, as it currently transforms each file
nearly 20 times, each time requiring parsing and unparsing.

! Note that this refers to the SV-COMP15 version and results, which did not include the Idv-
races sub-category. For SV-COMP16 we submitted (under the label MU-CSeq) a hybrid tool
that uses IMU for the shown sub-categories, and the unchanged MU-CSeq for the pthread-
wmm-* sub-categories.



Table 2. Analysis runtime under TSO/PSO

parameters TSO runtime (s) PSO runtime (s)
g 3 g 8
3 £ 8 ¢ =2 g ¢ =&
J | g Elw 512 Z2 B|w g2 z B
S8 wvuw B2 & & O Z|z2 2 0§ Z
dekker 52 I 2 0 0 5| e 11076 026 0.04( e 1{0.76 0.24 0.04
lamport 78 1 2 0 0 5| e 11097 033 0.05( e 11097 0.26 0.04
peterson 40 1 3 0 0 5| e 110.67 028 0.06( e 1{0.68 0.23 0.04
szymanski 57 1 3 0 0 5| e 110.84 037 0.11| e 110.84 0.28 0.08
fib_longer_unsafe | 30 6 7 0 0 10|| e 1{2.10 1.89 8.89| e 1{2.50 9.79 11.93
fib_longer_safe 30 6 7 0 010 114.75 13.10 41.85 1/3.90 20.96 60.94
pgsql 47 1 2 0 0 5 1{1.92 0.03 0.07|] e 1/0.69 0.22 0.04
parker 1moj 1 2 0 0 5[ e 1/1.22 035 0.06( e 1{1.21 0.26 0.05
stack_unsafe 1oy 2 2 1 2 5( e 1{146 045 0.05|| e 1{1.44 0.38 0.05
litmus_safe (avg) [297K| 1 6 1 0 10 5526(1.20 0.17 2.35 4835[1.06 0.15 6.65
litmus_unsafe (avg) 1 6 1 0 10|| e 277|1.67 0.16 3.86( e| 968/1.28 0.12 1.58

The last two lines show the average values over 5803 litmus tests for WMMs. For
TSO, both our tool and CBMC successfully identified the 277 test cases containing a
reachable error, while Nidhugg failed to find one of them. For PSO, CBMC claims that
there are 971 unsafe instances while Nidhugg and IMU-CSeq both find only 968 unsafe
ones. Since both tools agree, we suspect an error in CBMC. Here, symbolic methods
are faster, and Nidhugg has two timeouts.

Safestack. We have conducted further experiments on a real world benchmark,
Safestack [12], which is a lock-free stack implementation designed for weak-memory
models. Safestack is written in C++ but we manually translated it into C, providing
simulation functions for the C11 atomic functions used in the test, and have conducted
the experiments with this version. It contains a rare bug that is hard to find with au-
tomatic bug-finding techniques already under SC (including random testing, Nidhugg,
CIVL [35], and other approaches based on BMC) [30]. The only tool we are aware of
that can automatically find a genuine counter-example is Lazy-CSeq [16]. It requires
a minimum of 3 loop unwindings and 4 rounds of computation to expose a bug. This
actually shows that the error is quite deep which explains why other approaches based
on explicit handling of interleaving fail. Both Nidhugg and CBMC failed to find the
error with the given timeout but IMU-CSeq was able to find it also for a TSO- and
PSO-semantics, respectively. IMU-CSeq required approx. 3.5 minutes and 1.5GB of
memory to find the error under TSO, and approx. 17 minutes and 1.8GB of memory to
find the error under PSO.

8 Related Work

The need for a general and reusable framework to accommodate different weak mem-
ory models in the analysis of programs has been identified in earlier papers. In [2],
the verification algorithm works on a generic relaxed memory model that can be re-
fined into actual memory models by adding constraints. The BMC approach from [4]
allows to handle different memory models by adding a conjunct to the formula. Our
work differs from these both in the scope and the techniques. In particular, we give a
general approach that allows to combine different verification algorithms with different



implementations of memory models, not just a specific algorithm. The development of
the two parts can be done independently as long as Theorems 1 and 2 hold. All the
interaction between the two parts is through the API of the shared memory abstraction.

Another important aspect of our approach is to identify a class of implementations
of memory models that allows for a full rearrangement of the thread interleavings in
the analysis. As already observed, this is a feature that has been already exploited in
verifying concurrent programs [23,31] also with weak memory model semantics [5].

In addition to the already cited work, other marginally related recent papers that
have dealt with the verification of concurrent programs under weak memory model
semantics are [8,9,33].

We have implemented our IMU-based approach to target BMC backends and used
the modules from MU-CSeq [16] to sequentialize the input programs for our exper-
iments. MU-CSeq implements an efficient eager sequentialization of concurrent pro-
grams that works well with BMC backends. A hybrid prototype tool combining IMU-
CSeq and MU-CSeq has won the gold medal at SV-COMP16 in the Concurrency-
category [7].

The reachability analysis used in our algorithm is bounded on the number of writes
per shared memory location. This is an orthogonal bounding parameter with respect to
the well-known bounded context-switching [28]. The idea of sequentialization was orig-
inally proposed by Qadeer and Wu [29] but became popular with the first scheme for an
arbitrary but bounded number of context switches given by Lal and Reps [23]. Several
implementations and algorithms have been developed since then (see [14,22,10,20,19]).

9 Conclusions

In this paper we have described and evaluated a new verification approach for concur-
rent programs over different memory models. Our main design goal was to break the
coupling between computation (i.e., individual threads) and the communication (i.e.,
shared memory) concerns of multi-threaded programs, without loosing the efficiency
of existing approaches. To achieve this goal, we have introduced shared memory ab-
stractions, which capture the standard concurrency operations in multi-threaded pro-
grams. We have then shown that reachability is preserved if we exchange a program by
a thread-wise equivalent one (assuming the SMA is thread-asynchronous) or an SMA
for its thread-asynchronous closure. This allows us to generalize existing concurrent
verification approaches to different memory models simply by implementing the cor-
responding different SMAs, and we have described efficient implementations SMAs
for SC, TSO, and PSO that are based on the idea of individual memory-location un-
windings. These implementations have allowed us to instantiate our approach into an
efficient BMC-based bug-finding tool, and we have show experimentally that it com-
pares well with existing tools.

We plan to enhance IMU-CSeq with the coarse-grained unwinding scheme [32] to
handle programs with larger number of writes. We are also investigating other concur-
rency models like message passing, which should fit into our framework as well; here,
the message buffers play the same role as the storage buffers in TSO.
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init(); (type f ({dec,)”) {(dec;)"stm})*
dec = type z | typex p

type ::= bool | int | void

seq | conc | {{stm;)"}

stm

seq = assume(b) | assert(d) |z =e| f({e,)*) | returne
| i£(b) then stm else stm | while(b)do stm
conc = p = address(y,t) | p = malloc(e,t)
| x = read(y,t) | x = ind_read(p,t) | write(y,z,t) | ind_write(p, z,t)
| t = create(f,t) | join(¢,t) | terminate(t)
| fence(t) | lock(m,t) | unlock(m,t)

Fig. 4. Syntax of multi-threaded programs.

A Syntax of multi-threaded programs

The syntax of multi-threaded programs is defined by the grammar shown in Fig. 4.
Terminal symbols are set in typewriter font. {n t)* represents a possibly empty list
of non-terminals 7 that are separated by terminals t; x denotes a local variable, y an
identifier of a shared variable, p an identifies of a pointer variable, m a mutex identifier, ¢
a thread identifier and f a function name. We assume expressions e to be local variables,
pointer value (returned by a read of a pointer variable), and integer constants that can be
combined using mathematical operators. Boolean expressions b comprise the constants
true, false, and Boolean variables, and can be combined using standard Boolean
operations.

A multi-threaded program consists of an init () invocation followed by a list of
functions. init () instantiates a shared memory abstraction that captures a number
of shared locations. Each function has a list of zero or more typed parameters, and its
body has a declaration of local variables followed by a statement.

A statement is either a sequential or a concurrent statement, or a sequence of state-
ments enclosed in braces (compound statement).

A sequential statement can be an assume- Or assert-statement, an assignment,
a call to a function that takes multiple parameters (with an implicit call-by-reference
parameter passing semantics), a return-statement, a conditional statement, or a loop.
All variables involved in a sequential statement are local.

A concurrent statement involves an interaction with the shared memory abstraction
and thus we have a different concurrent statement for each of the functions of the SMA
API (other than init that is invoked only in the beginning).

We assume that a valid program P satisfies the usual well-formedness and type-
correctness conditions. We also assume that P contains a function main, which is the
starting function of the only thread that exists in the beginning. We call this the main
thread. We further assume that there are no calls to main in P and that no other thread
can be created that uses main as starting function.



B Transition systems

An alphabet is a set of symbols. For an alphabet 3, a word over X' is a sequence of zero
or more symbols from Y. The empty word, denoted by ¢, is the word formed of zero
symbols. Recall that we = ew = w for any word w.

A transition system A is a tuple (Q, X, A, Qo, F) where Q) is a set of states, X is
an alphabet, A C @ x (¥ U{e}) x @ is a transition relation, Qo C Q is a set of initial
states, and F' C () is a set of final states.

A run w of A is a sequence ¢o = ¢1 3 ¢a... =% g4 where g9 € Qo and
(gi—1,04,q;) € Aforeachi € [1,d]. Moreover, 7 is accepting if ¢4 € F and 01 ...04
is the corresponding word. We denote by L(.A) the set of all words that correspond to
accepting runs of A.

Let A; = (Qi, X, A;, Qo,i, F;) be a transition system for ¢ € {1,2}. The compo-
sition of Ay and A, denoted A;|As, is the standard cross product, i.e., Aj|As is the
transition system (Q1 X Q2, X, A, Qo1 X Qo,1, F1 x Fy) where A is the minimal set
containing all tuples ((q1,g2), o, (¢}, ¢5)) such that either one of the following cases
hold: 1.0 =&, (q1,¢6,¢}) € A1, o = gh;01,2.0 =€, q1 = ¢}, (g2, ¢,¢5) € Ag;or, 3.
o #e,and (¢;,0,q;) € A; fori € {1,2}.

C Proof of Lemma 2

Lemma 5. L(M™%) = (L(Ms.))¥.

Proof. We start showing that L(M™*) D (L(M,.))*. For a € L(Mj.), denote with
1 the MU that corresponds to the sequence of writes in « and with p an accepting run
of Mg.. We recall that M7 on the init transition can guess any MU and is built
on the top of Mg.. Thus, M** on the initial transition can enter a state storing the
initial configuration ~ as in p and u. Now, since u and the initial configuration ~ fully
capture the configurations of the shared memory along p (memory locations that are not
assigned can be neglected), M7>* can simulate the execution p by arbitrarily advancing
the execution of each involved thread in any order. Thus, M7:* accepts all words in
{a}?# and therefore, L(MT") D (L(My,.))*.

For the other direction, i.e., L(M™%) C (L(M,.))#,leta € L(M™*) and denote
with p the MU that is guessed on an accepting run over «. Note that for each word
in {a}# there is an accepting run of M™* such that y is the guessed MU. Now, let
o' € {a}* be a word where the write operations are ordered as in  and the read
operations are ordered such that for each pair of matching read and write: 1) the read
follows the write, and 2) there are no other writes involving the same location between

them. Clearly, o/ € L(M,,) and therefore o € (L(M.))7. O

D IMU-based SMA encodings

Here we give full details of the SMA implementations for SC, TSO, and PSO.



D.1 IMU implementation for SC

Data structures. We use several data structures to maintain the LUs and serve the im-
plementation of the SMA operations. They are parameterized over the constants given
in Section 6.1. For simplicity, we assume that all the data is maintained as an unsigned
integer (uint).

The triples (¢, val, d) of the LUs are maintained by three different arrays thread,
value and tstamp. Namely, for every location v € [0,V-1] and i€[0,W-1], the
(1+Dt triple in the v-LU is stored in thread[v][i], value[v][i] and t stamp[v][i].

To keep track of the execution on the LUs we use several auxiliary variables and
arrays. Namely, for every location v € [0,V-1], position i € [0,W-1] and thread
identifier t € [0, T-1]:

— th_pos[v][t]is the current position of thread t in the v-LU;

- last_write[v] stores the position i € [0, W-1] of the last executed write opera-
tion of location v in the v-LU. A different value for each v-LU is guessed for each
simulated execution;

— th_next_write[v][i][t]is the first position after i in the v-LU that corresponds
to a write by t, if any; otherwise, it is set to W (denoting that no further writes of v
by t are expected).

Concerning to the management of threads, we keep some additional information.
Variables max_th and th_count contain respectively the total number of threads that
we assume should be created in the current program execution (a different value is
guessed for each simulated execution) and the counting of the threads that have been
actually created (this should match the guessed total number of threads in the end of
computation). Also, for each thread t€[0,T-1]:

- cur_tstamplt] keeps track of the current timestamp of thread t during its simu-
lation;

last_tstamp[t] is the timestamp corresponding to the last write in the entire
IMU by thread t; (this value is guessed nondeterministically in the initialization
and is never changed; it should match cur_tstamp[t] in the end of a computa-
tion;)

ret[t]is setto 1 to mean that t has been interrupted before reaching the end of its
execution;

terminated[t]is set to 1 to mean that we expect that thread t will be stopped
before the execution of its last statement (this value is guessed nondeterministically
in the initialization and is never changed.

To handle dynamic memory allocation and pointer arithmetics, for each location
v€E[0,v-1] and for each 1 €[0,M—-1] we use:

- address][v] to store the physical memory address of v;

- mallocP[i] to store the base address for each memory block that can be allocated
dynamically;

- mallocPallocated[i] to track the dynamically allocated memory blocks.



4 imit while (t<T) {
void init () { terminated([t] = x;
bool ts_used[V«W] = [0]; last_tstamp[t] = x;
: £ s v _ i
int v=0,w=0,t=0; assume (last_tstamp([t] < V*W);
t=t+1;
th_count = 0; }
th = *; oo
max_ = *; while (v<V) {
assume ( max_th <= T ); t=0;
—VYr
it aaa . while (t<T) {
init_a ress (V) ; th_next_write([v] [W-1][t] = W;
init_malloc (M) ; t=t+1;
= i
while (v<V) { \}7:v+1‘
last_write[v] = *; } '
assume ( last_write[v] < W );
w=0; v=0;
: i
while (w<W) { while (v<V) {
tstamp[v] [w] = x; w=W-2;
assume ( (tstamp[v] [w] < VW) && while' (w>=0) {
('ts_used[tstamp([v] [w]]) ); t=1;
ts_used[tstamp([v] [w]]=1; whi'le (t<T) {
if (w>0) if (thread[v] [w+l] == t)
assume (tstamp[v] [w]>tstamp[v] [w=-1]); th_next_write[v] [w] [t]=w+1;
thread[v] [w] = x; else - ,
assume (thread[v] [w] < max_th); th_next_write([v] [w] [t]=
} w=w+1; th_next_write[v] [w+1][t];
t=t+1;
v=v+1l; }
} w=w-1;
}
v=v+1l;
}
}

Fig. 5. IMU initialization.

IMU initialization. All the variables and arrays introduced above are declared global.
On initializing the IMU we impose several constraints on them (see function init()
in Fig. 5).

Function init_address ensures that array address is nondeterministically ini-
tialized with increasing values (i.e., address[i] < address[i+1]fori € [0,V —2]).
Function init_malloc ensures the same for array mallocP and additionally im-
poses that the address guessed for the last named location is less than the one assigned to
the base location of the first memory allocation (i.e., address [N-1]<mallocP [0]).
Functions init malloc() and init_address() are illustrated in Fig. 6.

In the first while-block of Fig. 5, arrays last _write, tstamp and thread are
nondeterministically assigned to legal values. Additionally, for each LU, timestamps
are nondeterministically assigned in increasing order. The local array t s_used is used
to ensure that different timestamps are assigned to each write in the IMU.

Legal values of terminatedand last_t stamp are nondeterministically guessed
in the second while-block. The rest of init initializes th_next_write such that for
each thread t and each location v, all the writes from ¢ in the v-LU are linked in the
proper order (value W is used as a sentinel to denote the end of each LU).

Auxiliary functions. We make use of two auxiliary functions illustrated in Fig. 7.



void init_malloc () {
int i1=0;
while (i<M) {
mallocPallocated[i]=0;

void init_address () {
int 1=0;

while (i<V){

]

address[i] = *;

- K ! mallocP[i] = x;
if (i>0) . .
ddress[i] > address[i-1]); +£(3>0)
. gssume( a ’ assume ( mallocP[i] > mallocP[i-11);
i=1+1; i=i41;
- I

}

) }

assume ( mallocP[0] > address[N-1]);

}
Fig. 6. init_address and init_malloc functions for IMU implementation.

bool is_terminated (uint t) {
if (ret[tid] | Inondet ()) {ret[tid]=1; return 1;}
return 0;

}

uint Jump (uint t, uint wv){
uint Jjump=x*;

ts_jump = tstamp[v] [Jjump];
assume ( (jump <= last_write[v])
&& (jump < th_next_write([v][t][th_pos[v]])
&& (tstamp[v] [Jump+l] > cur_tstamp[t]));
cur_tstamp([t] = (ts_jump > cur_tstamp[t]) ? ts_jump : cur_tstamp([t];
return jump;

Fig. 7. Auxiliary functions for IMU implementation.

Function is_terminatedreturns 1, if ret [t] is already set to 1, and nondeter-
ministically chooses either to set ret [t] to 1 and then return 1, or to return 0. The
purpose of function Jump is to determine the position jump in the v-LU of the write
that determines the current value contained in v. If the timestamp of the selected write
is past the current thread timestamp, the last is updated to this value by acknowledging
the fact that the corresponding write into the shared memory has occurred. The value of
jump is selected nondeterministically within a range of proper values. Namely, jump
should not pass the last legal write position for v and must be strictly less than the posi-
tion of the next write of v by the same thread ¢ (that has not occurred yet). Further, we
require that the timestamp at position jump+-1 is greater than the current timestamp of
t (we wish to point to a write of v that is not superseded by an already occurred write).

Thread creation, termination, and join. The implementations of functions create,
terminate and join are shown in Fig. 8.

In function create, if the maximal number of allowed threads is reached, the
procedure immediately returns —1 meaning that this thread will never be scheduled.
Otherwise, the count of the created threads is incremented and the current timestamp
and LU positions of the new created thread are initialized such that: they coincide with
those of the parent thread.

The assume statement ensures that no write operations are entitled to the new cre-
ated thread before its creation. Since we update the positions of each thread in the LUs



int create(void xf, uint pt) {
if (th_count >= max_th) then return -1;fi
th_count++;
uint v=0;
if(pt == 0){
while (v < V) {
th_pos[v] [th_count]=0;
v=v+1l;
}
cur_tstamp[th_count]=0;
telse(
cur_tstamp[th_count]=cur_tstamp[pt];
while (v < V){
th_pos|[v] [th_count]=th_pos[v] [pt];
assume (th_next_write[v] [0] [th_count]
>=th_pos([v] [th_count]);
v=v+1l;
}
}

void terminate (uint t) {
uint i, wv=0;
while (v < V) {
i=th_pos|[v][t];
assume ( th_next_write[v] [i] [t]
> last_writel[v] );
v=v+1l;
}
assume ( ret[t]==terminated[t] &&
last_tstamp[t]==cur_tstamp[t] );
}

void join(uint tl, uint t2){
if (is_terminated(tl)) then return;
uint v;
assume ( v < V );
Jump (t1,v);
assume ( (terminated[t2] 0) &&

1]1>=1 2 ;
return th_count; (cur_tstamp[tl] ast_tstamp[t2]));

Fig. 8. Functions create, terminate and join.

forward only, this will ensure also that each thread will not use any LU position corre-
sponding to a write operation that is supposed to occur before its creation.

Function terminate checks that all write operations guessed for thread t have
been done (while-loop). Furthermore, the concluding assume checks that the values
guessed by function init for terminated[t] and last_tstamp [t] are consis-
tent with the explored computation. We recall that ret [t] is initialized to 0 and can
be nondeterministically set to 1 by the auxiliary function is_terminated (this has
the effect of stopping the execution of the current thread).

Function join returns immediately if the execution of thread t 1 is stopped. Other-
wise, the timestamp of t 1 is updated invoking Jump on a nondeterministically guessed
variable (this ensures a choice of the new timestamp among all the LUs of t1). The
computation is aborted whenever the other thread (t 2) either will not terminate (i.e.,
terminated[t2]==1) or has not terminated yet at the current timestamp of t 1 (but
it is supposed to terminate).

Read and write operations. The implementation of functions read and write is
illustrated in Fig. 9. For a read operation, the thread under simulation ¢ first jumps
forward into the v-LU corresponding to the variable given as parameter by invoking the
auxiliary procedure Jump described above and then returns the valuation of the variable
at the new position from matrix value.

In a write operation, the thread first jumps to its next write operation for that variable
and blocks the simulation if the value disagrees with that in the memory sequence at
the new position. Furthermore, we also check that the timestamp associated to the new
position is greater than the actual timestamp of ¢; this to prevent to simulate already
simulated write operations. Then we update the current position of thread t in the v-
LU and the current timestamp.

Address and malloc operations. Method address is used to recover the address of
a given location v € [V — 1]. The implementation for this method is given in Fig. 10.



int read(uint v,uint t){ int ind_read(uint addr,uint t) {

if (is_terminated(t)) return 0; if (is_th_terminated(t)) return 0;
uint jump = Jump (t,v); uint pos;
return (value[v] [jumpl); assume (pos<V) ;
} assume (address (pos, t)==addr) ;
return read(pos,t);
void write (uint v, int val,uint t){ }
if (is_terminated(t)) return;
uint i, Jjump;
i = th_pos(v][t]; void ind_write (uint addr,int val,uint t) {
jump=th_next_write[v] [1] [t]; if(is_th_terminated(t)) return;
assume ( (jump<=last_writel[v]) uint pos;
&& (value[v] [Jjump] == val) assume (pos<V) ;
&& (tstamp[v] [jump] > cur_tstamp[t]) assume (address (pos, t)==addr) ;

)i write (pos, val,t);
th_pos[v] [t]=jump; }
cur_tstamp[t]=tstamp[v] [jump];

Fig. 9. Read and write functions.

If v corresponds to a scalar variable the method returns the value from address|[v];
otherwise it simulates the read operation at that location.
During its execution a thread can require a block of n consecutive unallocated locations

int malloc (uint n, uint t) {

int address (uint v, uint t) {
uint pos;

if(is_th_terminated(t)) return 0;
if (v<N) return address|[Vv];
return read(v, t);

if (is_th_terminated(t)) return 0;

assume (pos<M) ;

assume (!mallocPallocated[pos]);

assume (mallocP [pos]+n < mallocP[pos+1l]);
mallocPallocated[pos]=1;

return mallocP [pos];

Fig. 10. Functions address and malloc.

by invoking malloc(n). When malloc is invoked, say with argument n, a block is
chosen non deterministically, and it is allocated if its size is at least n by returning its
base address. The malloc procedure is implemented as shown in Fig. 10. We first find
a position pos that corresponds to a not sill allocated block, by checking the value of
mallocPallocated at that position. We recall that addresses stored in mallocP
are ordered in ascending order; then in order to know if there is enough space we simply
check that mallocP[pos]+n < mallocP[pos+1]. Then we setmallocP[pos] to
true to indicate that the address at position pos has been allocated. Finally, we return
the base address corresponding to the position pos.

Ind_read and ind_write operations. When a read or write operation is performed us-
ing a memory address, i.e. xp = 3 for a pointer variable p, we invoke ind_read
and ind_write methods. The implementation of the these procedures are straightfor-
ward (see Fig. 9). We first search for the location corresponding to that whose address
corresponds to the given parameter and then simulate the read/write operation at that



location.

Lock and unlock mutex variables. A thread can take or release a lock on a shared mutex
variable by calling the procedure 1 oc and unlock, respectively; their implementations
are provided by Fig. 11. For a mutex variable, we assign value 0 when the lock is not
acquired by any thread, and we assign value t if the mutex is held by thread t.

void lock (uint mut, uint t) void unlock (uint mut, uint t)
write (mut, t, t); write (mut, 0, t);
assume (ret [t] || assume (ret [t] ||
value[mut] [th_pos[mut] [t]-1]==0); value[mut] [th_pos[mut] [t]-1]==t);

Fig. 11. Mutex 1ock and unlock operations.

For efficient implementation, we modify the value of variable mut using a write
operation. For a 1ock operation we first write the value of t in mut; however, it may
be the case that the mutex was already held by some thread. Thus, we check that the
previous value of mut was 0. The implementation of the method unlock procedure is
similar, the only difference is that we write 0 in to the mut variable. Note that, two
consecutive write operations of mut are performed by the same thread (lock and
unlock). Furthermore, the value written at the even positions of the mut-LU are al-
ways 0. These constrains can be added in the init function to reduce the number of
runs to consider.

D.2 IMU implementation for TSO

We give this implementation incrementally on that given for SC.

To be consistent with the notation used in the implementation for SC, we use
tstamp[v][i] to store the update timestamp concerning the (i+1)*" write of loca-
tion v, and cur_t stamp [t] to keep track of the current timestamp in the execution of
thread t (i.e., the occurrence timestamp of the last occurred read or write). Additionally,
we use two new arrays bt stamp (buffer timestamps) and t s_lastW such that:

— btstamp[v][i] is the occurrence timestamp of the (i+1)*" write of v (that is also
the time at which it is stored in the local buffer of the thread that performs the write
operation);

- ts_lastW[t] is the update timestamp of the last occurred write by thread t.

To implement the SMA API, we only need to give an implementation of fence
and modify those given for SC of init, read, write, lock and unlock. The rest
of the implementation is the same as for SC.

For init, we add to the implementation given for SC the following. We nondeter-
ministically guess initial values for bt st amp[v][1] and then impose that bt st amp[v][1]
< tstamp[v][i] must hold (i.e., the update of the shared memory according to an oc-
curred write may be delayed w.r.t. its occurrence time).



int read(uint v,uint t){ void fence (uint t) {
if(is_terminated(t)) return 0; if (ts_lastW[t]>cur_tstamp[t])

cur_tstamp([t] = ts_lastW[t];

uint ts_jump, 1i; }

i = th_pos[v][t];

uint nxt_write=th_next_write[v] [i][t];

uint fst_write=th_next_write[v][0][t]; |void write(uint v,int val,uint t) {

assume ( if (is_terminated(t)) return;
(ts_jump >= cur_tstamp([t]) && i = th_pos([v]I[t];
(ts_jump < btstamp[v] [nxt_write]) Jjump=th_next_write[v] [1][t];
)i th_pos([v] [t]=Jump;
cur_tstamp[t]=ts_jump; assume (
if( (fst_write <= 1) && (btstamp[v] [jump] > cur_tstamp[t])
(tstamp[v] [1] > cur_tstamp[t]) && (value[v] [jump] == val) &&

) (tstamp [v] [Jump] > ts_lastW([t])
return valuel[v] [i]; )
return Read_SC(v,t); ts_lastW[t] = tstamp[v] [Jjump];
} cur_tstamp[t] = btstamp([v] [jump];

Fig. 12. Functions read, fence and write for TSO.

Note that here we slightly diverge from the transition system M™% described in
Section 5. In fact, since we do not require any other condition on the guessed update
timestamps, we can carry over an IMU with timestamps that may violate the FIFO
policy on the store buffers. This is fixed by checking the proper ordering on matching
the writes (we return on this when discussing the write implementation).

Function lock from Fig. 11 is modified such that the write is done by a routine
Write_SC that is exactly the write given for SC instead of the write for TSO. This
ensures that lock acquisition is immediately visible to all the other threads. For function
unlock, we do the same and further before returning we call fence. This way, we
make immediately visible to all the other threads all the writes that occurred in the
critical section.

The code of functions fence, read and write are illustrated in Fig. 12.

A memory fence flushes the store buffer of the thread executing it and thus we need
to synchronize the current thread timestamp with its last update timestamp. Namely, if
ts_lastW[t] is larger than the timestamp of the last occurred write by t, we assign
ts_lastW[t]to cur_tstamplt]. Note that if this is not the case then the local store
buffer of t is certainly empty (recall bt stamp[v][i] < tstamp[v][i]).

Function read first updates nondeterministically the current timestamp of thread
t such that it is not smaller than the current timestamp of t and is smaller than the
update timestamp of the next write of t. Now, if at least a write of location v by t has
occurred and the last write of v by t is still in the thread buffer, then we return the value
of this write. Otherwise, a read from the shared memory is performed by invoking the
auxiliary function Read_SC that is exactly the function read from Fig. 9.

Observe that the update of the current thread timestamp by read can cause this
value to be larger than the update timestamp of the last write and this may be correct.
To avoid that we wrongly move the time back, in fence we make the assignment only
when this is not the case.

Function write first updates the current position in the v-LU of thread t to the
next write provided that the time of occurrence of this write is larger than the current



thread timestamp, the value of the write matches the guessed value for it and the update
timestamp of the next write is larger than that of the last occurred write (the last one
ensures that the thread store buffers are emptied according to a FIFO policy). Note that,
in the case of a wrong guess of the update timestamps in init, this condition would
not hold and thus the execution would abort. Before returning, the update timestamp of
the last write and the current timestamp of thread t are modified consistently.

D.3 IMU implementation for PSO

We can give an implementation of SMA [void write (uint v,int val,uint t){
. P . if (is_terminated(t)) return;
for PSO by slightly modifying the implemen- i = thopos(v](t];
tation given for TSO as follows. jump=th-next.write[v] [1][t];
. . thpos[v] [t]=jump;
We use a new array max_t sW in substi- asspume( e
tution of t s_1astW and change a few lines (btstamp [v] [jump] > curtstamp[t])
. . . . . && (valuel[v] [jump] == val)
in the implementation of function write. ) e
Array max_t sW maintains for each thread t max-tswit] =
. . (tstamp [v] [Jump] > max_tsW[t]) ?
the maximum update timestamp among all tstarfp[v] [jjufp] . maxtsW[t];
the occurred writes of t. cur-tstamp[t] = btstamp[v] [jump];

In function write (Fig. 13), we do not
require any more that the update timestamp
of the current write is larger than the update timestamp of the previous write by t.
Recall that this was required in the TSO implementation in order to ensure that for each
thread t, the guessed occurrence and update timestamps for the sequence of writes by t
(that may be contained in different LU’s) are indeed consistent with the FIFO policy of
a store buffer; in PSO we only need to ensure that the FIFO policy holds for each of the
maximal subsequences containing all the writes of a same location which is ensured by
the remaining constraints and function init. Moreover, the update of ts_lastW[t]
is replaced with the update of max_t sW[t] as follows:

max_tsWit] =
(tstamp [v] [jJump] >max_tsW([t]) ? tstamp [v][Jjump] : max_tsWI[t];

Fig. 13. Function write for PSO.
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