Embedding Weak Memory Models within Eager
Sequentialization

Ermenegildo Tomasco', Truc L. Nguyen', Bernd Fischer?, Salvatore La Torre?, and
Gennaro Parlato!

! Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa
3 Dipartimento di Informatica, Universita di Salerno, Italy
{etlmll, tnl2gl0, gennaro}@ecs.soton.ac.uk,bfischer@cs.sun.ac.za,
slatorre@unisa.it

Abstract. Sequentialization is one of the most promising approaches for the
symbolic analysis of concurrent programs. However, existing sequentializations
assume sequential consistency, which modern hardware architectures no longer
guarantee. In this paper we describe an approach to embed weak memory models
within eager sequentializations (a la Lal/Reps). Our approach is based on the sep-
aration of intra-thread computations from inter-thread communications by means
of a shared memory abstraction (SMA). We give details of SMA implementations
for the SC, TSO, and PSO memory models that are based on the idea of individ-
ual memory unwindings, and sketch an extension to the Power memory model.
We use our approach to implement a new, efficient BMC-based bug finding tool
for multi-threaded C programs under SC, TSO, or PSO based on these SMAs,
and show experimentally that it is competitive to existing tools.

1 Introduction

Developing correct concurrent programs is a complex and difficult task, due to the large
number of possible concurrent executions that must be considered. Modern multi-core
hardware architectures with weak memory models (WMMs) have made this task even
harder, because they introduce additional executions that can lead to seemingly counter-
intuitive results that confound the developers’ reasoning.

Testing remains the most widely used approach to finding bugs; however, it is inef-
fective for bugs that manifest themselves only rarely and are difficult to reproduce [26].
Such “Heisenbugs” are unfortunately more prevalent with WMMs. Static verification
approaches that handle individual executions explicitly face the same state space explo-
sion as testing, even with optimizations that eliminate redundant executions. We thus
need approaches that can handle multiple concurrent executions symbolically.

However, building efficient symbolic verification tools for realistic programming
languages like C is hard and extending them for concurrency is harder yet. Tools thus
often fold the concurrency handling deep into their general verification approaches (see
[1,3,6,8,30,31]), focussing on a specific memory model, typically sequential consis-
tency (SC). This introduces a strong coupling between the two aspects, which makes
it hard to reuse existing tools and to generalize solutions to other memory models.

{et1m11, tnl2g10, gennaro}@ecs.soton.ac.uk, bfischer@cs.sun.ac.za, slatorre@unisa.it
{et1m11, tnl2g10, gennaro}@ecs.soton.ac.uk, bfischer@cs.sun.ac.za, slatorre@unisa.it

Our goal here is to break this coupling and to separate the computation (i.e., indi-
vidual threads) and the communication (i.e., shared memory) concerns of concurrent
programs, without loosing the efficiency of existing approaches.

More specifically, we develop an approach to combine eager sequentializations
with different memory models in the style of a plug-and-play architecture. For this,
we define and describe an interface that we call shared memory abstraction (SMA).
The SMA captures the standard concurrency operations in multi-threaded programs
such as shared memory reads, writes, and allocations, thread creation and termination,
and synchronization operations such as thread join and mutex locking and unlocking.
We then assume that all operations involving concurrency are performed by invoking
the corresponding SMA operations (which can easily be achieved by rewriting non-
conforming programs). In this way, we achieve the desired separation of concens—in
fact, we can even view a multi-threaded program as the composition of two independent
sub-systems, one comprising all threads and one capturing the concurrency (including
the memory model), which synchronize using the SMA.

As a first contribution we introduce the concepts of thread-wise equivalence and
thread-asynchronous closure of transition systems. We show that reachability is pre-
served if we exchange the transition system of a program for a thread-wise equivalent
one (assuming the SMA is thread-asynchronous) or an SMA for its thread-asynchronous
closure. This has two important consequences. First, it allows us to extend existing con-
current verification algorithms to different memory models simply by implementing the
corresponding different SMAs. Second, it gives us a degree of freedom in designing
concurrent verification algorithms, since it allows us to rearrange the order in which
the verifier explores the execution of the statements among different threads. This is
implicitly exploited by some algorithms from the literature (e.g., [20,16,27]). All these
algorithms can be recast in our setting and thus be extended to WMMs.

However, the way the computation and communication concerns are combined af-
fects the scalability of the resulting verification tool. As second contribution, we thus
instantiate our general approach to achieve an efficient BMC-based bug-finding tool.
We give efficient SMA-implementations for SC, total store ordering (TSO), and partial
store ordering (PSO) that are based on the idea of individual memory-location unwind-
ings, and we show through experiments that our tool compares well with existing tools.
We finally discuss how to extend this to other relaxed memory models such as POWER.

2 Weak Memory Models

A shared memory is a sequence of memory locations of fixed size. The content of each
location can be read or written using an explicit memory operation. The semantics of
read and write operations depend upon the adopted memory model. Besides SC, we
also consider TSO and PSO, which are implemented in modern computer architectures.

Sequential consistency (SC). SC is the “standard model”, where a write into the shared
memory is performed directly on the memory location. This has the effect that the newly
written value is instantaneously visible to all the other threads [21].

Total store ordering (TSO). The behaviour of the TSO memory model can be described
using a simplified architecture with explicit store buffers [22]. Each thread ¢ is equipped

with a local store buffer that is used to cache the write operations performed by ¢ ac-
cording to a FIFO policy. Updates to the shared memory occur nondeterministically
along the computation, by selecting a thread, removing the oldest write operation from
its store buffer, and then updating the shared memory valuation accordingly. Before up-
dating, the effect of a cached write is visible only to the thread that has performed it. A
read by ¢ of a variable y retrieves the value from the shared memory unless there is a
cached write to y pending in its store buffer; in that case, the value of the most recent
write in ¢’s store buffer is returned. A thread can also execute a fence-operation to block
its execution until its store buffer has been emptied.

Fartial store ordering (PSO). The semantics of PSO is the same as for TSO except that
each thread is endowed with a store buffer for each shared memory location.

3 Multi-Threaded Programms over Shared Memory Abstractions

In this paper, we consider multi-threaded programs with a C-like syntax (see Fig. 3 in
the Appendix) including pointer arithmetics and dynamic memory allocation. We fur-
ther consider POSIX-like threads with dynamic thread creation, thread join, and mutex
locking and unlocking operations for thread synchronization, but no thread communi-
cation primitives: threads communicate only via the shared memory. We also assume a
fence-statement that commits all pending write operations of a thread into the shared
memory; for TSO and PSO this means it flushes all store buffers of a thread.

3.1 Shared memory abstractions

The semantics of multi-threaded programs ultimately depends on the underlying mem-
ory model. In order to combine existing concurrent verification techniques with differ-
ent memory models we define a “concurrency interface” or shared memory abstrac-
tion (SMA) that abstracts away the shared memory operations in the syntax of multi-
threaded programs. The intended meaning of the SMA’s functions is standard; note that
most functions carry the calling thread t as an extra argument to allow the SMA to
update its internal state. In detail, the SMA API is formed of the following functions:

— init () initializes the SMA and the shared variables; this must be the first state-
ment in the program;

— terminate (t) ends the execution of t; each thread must explicitly call it;

— address (v, t) returns the memory address of the shared variable v;

— malloc(n,t) allocates a continuous block of n memory locations and returns
the base address of the block;

— read (v, t) (resp. ind_read (a, t)) returns the valuation of the shared variable
v (resp. memory location with address a) as seen by t;

- write(v,val,t) (resp. indwrite (a,val,t)) sets the valuation of the
shared variable v (resp. memory location with address a) to the value val;

— fence (t) commits all pending write operations of t into the shared memory;

— lock (m, t) and unlock (m, t) are the standard thread synchronization primi-
tives that acquire and release a mutex m for t; if m is currently acquired, the 1ock
operation is blocking for t, i.e., t is suspended until m is released and then acquired;

— create (f,t) spawns a new thread that starts from function f, and returns a
fresh thread identifier for this thread;
— Jjoin(t’,t) pauses the execution of t until t’ has terminated its execution.

3.2 Multi-threaded programs as composition of transition systems

The formal semantics of multi-threaded programs is often given by a transition sys-
tem (see Appendix for the formal definitions) that captures the program computations
by interleaving the computations of each thread. Analogously to previous work (e.g.,
[25]), we exploit the separation between the control flow and the shared memory as-
pects introduced with the notion of SMA, and give the semantics of a multi-threaded
program as the composition C| M of the control-flow transition system C that captures
the control flow of the program and the shared memory abstraction transition system
M that implements the behaviours of the SMA. This allows us to keep the semantics
of the sequential part and re-interpret it in different ways with different WMMs; it also
aligns nicely with different SMA implementations.

These two transition systems are synchronized over the SMA API that defines an
alphabet that labels the transitions of C and M. More precisely, this alphabet Xgyz4
consists of the calls to the SMA API functions that do not return values, and the calls
augmented with a parameter denoting the returned value for the others. For example,
read(3,v,t) is the letter corresponding to a call read (v, t) that returns value 3.

Control-flow transition system. The states of the control flow transition system C are
the set of tuples of thread configurations. A thread configuration consists of a program
counter, an evaluation of the thread-global variables and a call stack, as usual. C has
a unique initial state that corresponds to the empty configuration (i.e., no threads are
active in the beginning).

The transitions correspond to the execution of any of the statements. Transitions cor-
responding to invocations of API functions of SMA are labeled with the corresponding
letter from Xsp4. In particular, transition from the initial state are labeled with init() and
enter a state with the starting configuration of the main thread. No other transitions are
labeled with init(). Transitions corresponding to SMA functions that return a value are
handled as assignments of the corresponding variables with the returned values. Addi-
tionally, on a thread creation the tuple of thread configurations is augmented with the
starting configuration of the newly created thread. Similarly, the effect of a transition
on terminate(t) is to delete the configuration of the terminated thread. The remaining
transitions labeled with Xspz4 letters just update the program counter. Transitions cor-
responding to all other (i.e., sequential) statements are labeled with the empty word e
and update the configuration of the issuing thread as usual.

Shared memory abstraction transition system. In general, an SMA transition system
M has an initial state and a state for each possible configuration of the corresponding
memory model. The transitions update memory configurations to capture the memory
model’s intended meaning. Note that from the initial state there are only outgoing tran-
sitions, which are all labeled with init(), and no other transition have this label.

For SC, the system M, can enter from the initial state any state that has only one
thread (which must be active), has any number of shared locations (which must all have

the value of zero), and has any number of mutexes (which must all be unlocked). All
other transitions update the state of M. according to the meaning given in Section 2.
Note that in SC there are no fence-transitions. Further, in a transition on terminate(t),
M. enters a state where the status of ¢ is terminated. From any such state only states
where the ¢ status remains terminated can be reached, and no other transitions corre-
sponding to invocations of API functions from ¢ are allowed. The final states are all
states where all threads are terminated.

For the WMMs we denote the corresponding SMA transition system with M, and
M0, respectively. The states of both systems also account for the content of the thread
store buffers, the transitions on reads and writes reflect the corresponding semantics as
described in Section 2, and there are fence(t)-transitions on calls to fence by ¢ and
e-transitions for store buffer updates.

4 Verification with thread-asynchronous SMAs

The basis of our approach is the separation between the intra-thread control-flows and
the SMA discussed in Section 3. Conceptually, a verification tool is thus composed of an
SMA implementation and a search algorithm that explores the program executions. This
by itself allows for a convenient way to extend verification methods to other memory
models by simply replacing the SMA implementation. However, this might not result in
scalable verification tools: to preserve the correct semantics of the memory operations,
these must be invoked in the same order as they appear along the run, which may be a
bottleneck when we explore the state space of the program, both in case of the analysis
based on summaries (e.g., BDD-based model checking) or bounded model checking.
In the former, we must keep a cross-product of the states of all threads in the con-
figurations, which leads to state-space explosion. In the latter, since context-switches
can happen at any point, we must encode into the SAT/SMT formula the code of all
threads for each of the context-switch points in the underlying bounded multi-threaded
program, which leads to large formulas.

Some approaches from the literature instead explore the program executions by rear-
ranging the order in which the memory operations of the different threads are executed,
e.g., by simulating each thread to completion [16,20]. Another example is the sequen-
tialization presented in [27] where each thread is executed in isolation with respect to a
memory unwinding (i.e., a sequence of writes that is guessed at the beginning).

We generalize the ad-hoc approaches above (see the Appendix for their re-formulation
in our setting), and present a general framework in which to design concurrent program
verification approaches. This requires that the used SMA implementation is thread-
asynchronous, that is that its behaviours are insensitive to how the threads are inter-
leaved. This allows us to freely transform the threads as long as we stay within the class
of thread-wise equivalent programs, that is programs where the intra-thread ordering
of the statements remains the same.

For a thread ¢, we denote with X, ,, the maximal subset of X574 containing only
letters that are issued by ¢. Clearly, for threads ¢ and ¢’ with t # ¢/, X¢, , and ZéjlwA
are disjoint. For a thread ¢ and a word « over Yspa, let ¢ be the projection of a onto
Xlyas 1.e., the word obtained from « by deleting all the letters that do not belong to

Zlya-If t1, ... t), are all the threads that issue at least a letter in «, we define 7(«) as
the map 7(a)(t;) = oy, fori € [1,h].

A language L of words over Xsp4 is thread-asynchronous if for each o € L and
for each o' starting with init() s.t. 7(«) = w(a’), also &’ € L. The thread-asynchronous
closure of a language L, denoted by L#, is the smallest thread-asynchronous language
such that L C L#.

Let A; and A be two transition systems over the alphabet Ygy4. We say that A
and Ay are thread-wise equivalent if for each word «v accepted by one of them there is
aword o' accepted by the other one such that 7(«) = 7 (/).

A standard analysis for multi-threaded programs is to search for the reachability
of an error program counter of a given thread (local error state), often denoted by an
error label or a false-assertion. In the following, we give two theorems stating suffi-
cient conditions under which the reachability (in accepting runs) of local error states is
preserved.

The first theorem states that if the SMA is thread-asynchronous we can transform
a program P; into a thread-wise equivalent program P such that a local error state
is reachable in the resulting program P if and only if it is reachable in P;. Intuitively,
this theorem holds since the fact that the SMA transition system is thread-asynchronous
ensures that the interaction of each thread with the SMA is independent of how threads
are interleaved; in particular, by fixing a run p, the values returned by the read operations
performed by a thread are ensured to be the same in all the possible interleavings of
the projections of p onto each thread. Since we assume that the sequences of SMA
operations issued along the runs of P; and P, may differ only as caused by different
interleavings of the threads, we get that reachability is preserved.

Theorem 1. Let C; be a control-flow transition system for i = 1,2 and M be an
SMA transition system. If C1 and Cs are thread-wise equivalent, and M is thread-
asynchronous, then a local error state is reachable in C1| M iff it is reachable in Co| M.

Theorem 1 states a crucial property for our approach: we can implement a thread-
asynchronous SMA, and combine it with any transformation of the program that rear-
ranges the interleaving among threads and still get a correct verification approach.

The second theorem shows that we can replace an SMA M; with another SMA
M that captures its thread-asynchronous closure, and still preserve reachability of
local error states. The interesting case of the proof is when a sequence « is accepted by
M but not by M. In this case, since the returned values are visible in Ysp4 letters
and there must be a sequence « that is accepted by M; such that 7(a) = 7(’), we
get that the sequence of local states that are visited by any thread of any program P are
the same for both sequences « and o. Therefore, the following theorem holds.

Theorem 2. Let C be a control-flow transition system and M; be an SMA transition
system for i = 1,2. If L(Mz) = (L(Mn))#, then a local error state is reachable in
C| My iff it is reachable in C| M.

By combining both theorems, we can easily show the correctness of WMM ex-
tensions of correct verification methods that transform programs by keeping the or-
dering of the sequence of the operations within each thread, such as the methods from

[20,16,17,27]. In fact, we just need to provide an SMA that captures the thread-asynchronous
closure of the memory model.

S Individual Memory-Location Unwindings

We now discuss an implementation of thread-asynchronous SMAs for SC, TSO and
PSO. The key notion is the individual memory-location unwinding (IMU), a set con-
taining exactly one sequence of writes for each shared memory location (location un-
winding, LU for short) and such that the unique timestamps associated to each write
determine a total order among all the writes of all the LUs (where each timestamp de-
notes the time of occurrence of a write according to a discrete-time global clock).

Precisely, an LU for a memory location v, denoted by v-LU, is a sequence of triples
(t,val, d) where ¢t and val denote the thread identifier and the value of the write and
d > 0 is the associated timestamp. If Var is the set of location names and p,, a v-LU
foreach v € Var, an IMU is a set {41, | v € Var} such that: a) the tuples in each LU
are ordered by increasing timestamps, and b) for each pair of different location names
v1,v2 € Var and for each (¢, val;, d;) in p,, with ¢ = 1,2, then also dy # da (thus
timestamps define a total order among all the writes in the IMU).

IMU-based SMA for SC. A transition system M™" for an IMU-based implementation
of SMA first guesses an IMU on the init()-transition and then executes the operations
consistently with this guess. Namely, it keeps for each thread the current timestamp in
the IMU (i.e., the timestamp of the last executed SMA operation) and for any input
sequence «, it ensures that:

— on write(v,val,t) (resp. ind_write(a,val,t)), the next write in the v-LU (resp. the LU
identified by the address a) for thread t matches the value val; the current timestamp
of t is updated to the timestamp of the matched write in the next state;

— on read(val,v,t) (resp. ind_read(val,a,t)), there must be in the v-LU (resp. the LU
identified by the address a) a write with timestamp d that assigns value val to v
such that either d is the timestamp of the most recent (before t’s current timestamp)
write to v or d is between t’s current timestamp and the timestamp of t’s next write;
in the latter case t’s current timestamp is updated to d in the next state;

— for each thread, the writes are matched according to the global ordering given by
the timestamps.

In order to accept «, create(t,f,t’) must occur in « for each thread t with writes guessed
in the IMU and the writes in the IMU should be mapped 1-to-1 to the writes in a.

The transition system M7 is thread-wise equivalent to M., and additionally, it
can execute all computations of M. by advancing each involved thread in any order.
Moreover, due to the fact that all writes are guessed in advance, the ordering in which
we interleave the threads is irrelevant. We thus get the following lemma.

Lemma 1. L(M™%) = (L(M,.))*.

IMU-based SMA for TSO and PSO. To capture the TSO and PSO semantics, we in-
troduce into the IMU a second timestamp for each write. In particular, we now make

a distinction between the time a write occurs (occurrence timestamp) and the time the
shared memory is updated with an occurred write (update timestamp). For correctness,
we impose on the IMU that for each write the occurrence timestamp should not be
greater than the update timestamp.

For TSO, in order to ensure the FIFO policy for the store buffers along any program
execution, we also require that for each thread the writes must be following the same or-
der as if ordered by non-decreasing timestamps according to either one of the sequences
of timestamps (i.e., either the occurrence or the update timestamps). For PSO, instead
this requirement is replaced with a weaker one that ensures a FIFO policy only for the
writes of a same location performed by the same thread.

We will denote with M:™% and M ™% the IMU-based SMA transition systems cor-

tso pso

responding to the TSO and PSO memory models, respectively. Mi™% can be obtained
from M¥™* with a few changes: on the init()-transition we now guess the IMU with oc-
currence and update timestamps as observed above; in a read of location v by a thread
t the position of the matching write is the last occurred write still in the store buffer of ¢
(i.e., current timestamp of ¢ is between the occurrence timestamp and the update times-
tamp of the last write of v by %), if any, and the last updated write of v, otherwise (this
case works as the read in M¥™%); the current timestamp of a thread ¢ is also updated to
the occurrence timestamp of a write when this is executed; a fence(t)-transition updates
the current timestamp to the largest update timestamp of the already occurred writes
performed by ¢. Obtaining M;Z‘O“ from M™% is very simple and the only difference is
hidden in the properties that are required on the guessed IMU as observed above.

By the above observations we can derive that the described transition systems cap-
ture the semantics of the corresponding memory models. Moreover, since all the writes
are guessed in advance, the ordering in which we interleave the threads is irrelevant.

Thus, we get the following lemma:

Lemma 2. For m € {tso, pso}, L(M™*) = (L(M,))*.

Verification by IMU. By composing the transformation of the control-flow from [27]
along with the SMA implementations MY, Mi™% and M;’;‘O“ we get new methods
for the verification of multi-threaded programs under SC, TSO and PSO semantics,
respectively. The correctness of such methods is a consequence of the lemmas given

above, and Theorems 1 and 2.

6 IMU-based SMA implementations

In this section, we discuss concrete C-implementations of SMAs whose semantics is
captured by MZ7%, Mim and M2, respectively. Each of them implements the SMA
API defined in Section 3. In the remainder of this section we will give some details of
the implemented code; a full version is in the Appendix. Our code is optimized for an

efficient analysis using BMC tools but implementations for other backends are possible.

IMU implementation for SC. The implementation is parameterized over several con-
stants. N and U denote the number of locations with names (i.e., shared scalar variables)

and locations without names (i.e., heap locations accessed only through memory ad-
dresses), respectively. W denotes the maximum number of write operations for each of
these V=N+U tracked memory locations, while M and T denote the maximum number
of dynamic memory allocations and thread creations, respectively, that may be happen
during any execution of the input program.

Data structures and invariants. We use several scalar variables and arrays to maintain
the LUs and support the implementation of the SMA operations. We sketch below the
main ones that are relevant to the read and write operations; others are used to model
thread creation, join, and termination, and the dynamic memory allocation (see Ap-
pendix). All are declared global such that they are visible and can be modified in all the
functions. For simplicity, we assume that all data is represented by unsigned integers.

The triples (¢, val, d) of the LUs are maintained by three different arrays thread,
value and t stamp. For every location v € [0,V-1] and i € [0, W-1], the triple at po-
sition 1 in the v-LU is stored in thread[v][i], value[v][i] and t stamp[v][i]. We
link the writes of a same thread in each LU by an additional array th_next _write. All
these arrays are nondeterministically assigned in the function init and never changed
in the program execution. init also ensures that:

— timestamps are assigned in increasing order for each LU;

— no two writes in the IMU are assigned the same timestamp;

— for every location v € [0,V-1], position 1 € [0,W-1] and thread identifier t €
[0, T-1], thonext _write[v][i][t] is the first position in the v-LU after i that
corresponds to a write by t, if any; otherwise, it is set to W, denoting that no further
writes of v by t are expected;

To keep track of the execution of each thread in the IMU, we use the arrays th_pos,
last_write and cur_tstamp, and maintain the following invariants for every lo-
cation v € [0, V-1] and thread identifier t € [0, T-1]:

— th_pos[v][t] stores the current position of thread t in the v-LU;

- last_write[v] stores the position i € [0, W—1] of the last executed write opera-
tion of location v in the v-LU;

- cur_tstamplt] stores the current timestamp of thread t during its simulation.

Verification stubs. We only discuss here the implementation of the API functions read
and write, which is given in Fig. 1. Both functions first check whether the execution
of the simulated thread has been stopped, and return immediately if this is the case.
For a read operation of thread t from location v, we first jump forward into v-LU by
invoking the auxiliary function Jump and then return the value of v at this new position
of v-LU. Jump (cf. Fig. 1) works as follows. If the timestamp of the selected write is
past the current thread timestamp, the latter is updated to this value, acknowledging the
fact that the corresponding write into the shared memory has occurred. The value of
jump is selected nondeterministically within a range of proper values. Namely, jump
should not pass the last legal write position for v and must be strictly less than the
position of the next write of v by the same thread t (that has not occurred yet). Further,
we require that the timestamp at position jump+1 is greater than the current timestamp
of t, as we must point to a write of v that is not superseded by already occurred writes.

int read(uint v,uint t){ uint Jump (uint t, uint v){
if (is_terminated(t)) return 0; uint Jjump=x*;
uint jump = Jump (t,v); uint j=th_pos[v];
return (value[v][jumpl);
} ts_jump = tstamp([v] [jump];

assume ((jump <= last_write[v])
void write(uint v, int val,uint t) { && (jump < th_next_writel[v][t][]])

if (is_terminated(t)) return; && (tstamp[v] [Jump+l]>cur_tstamp(t])
uint i, Jjump;)

i = th_pos([v]I[t];
jump=th_next_write[v] [1] [t]; cur_tstamp[t] =

assume ((jump<=last_writel[v]) (ts_jump > cur_tstamp[t]) ?

&& (value([v] [jump] == val) ts_jump : cur_tstamp[t];
&& (tstamp[v] [Jjump] > cur_tstamp[t]) return jump;

)i }
th_pos[v] [t]=Jump;
cur_tstamp[t]=tstamp[v] [jump];

Fig. 1. Read, write, and jump functions.

With the stated invariants we get that Jump identifies a position ¢ in the v-LU that
is correct w.r.t. the v-LU (in the sense that it is not jumping over the next write of v by
t). However, note that the corresponding timestamp could be still larger then the next
write by t (for a different location) but we will catch this while executing the next write
of t, when the current timestamp of t will be larger than the one of that write.

In a write operation, we first move forward to the position of the next write by t in
the v-LU and block the execution if the value to be written differs from that stored in the
v-LU at the position. We also check that the timestamp associated with the new v-LU
position for t is greater than the current timestamp of t; if this is not the case, we are
then in the error case generated by a wrong update of the thread timestamp in a read as
described above, and thus the execution is aborted. If all checks are passed, we update
the current position of thread t in the v-LU and the current timestamp accordingly, thus
maintaining the stated invariants.

IMU implementation for TSO. We give this implementation incrementally on that
given for SC; the code of the functions read, fence and write is illustrated in
Fig. 2. We use tstamp[v][i] to store the update timestamp concerning the write at
position i in the v-LU, and cur_tstamp [t] to keep track of the current timestamp
in the execution of thread t (i.e., the occurrence timestamp of the read or write that
occurred last). Additionally, we use two new arrays bt st amp (buffer timestamps) and
ts_lastW such that:

— btstamp[v][i] is the occurrence timestamp of the write at position i in the v-
LU (that is also the time at which it is stored in the local buffer of the thread that
performs the write operation);

- ts_lastW[t] is the update timestamp of the write by thread t that occurred last.

For init, we nondeterministically guess the initial values for bt stamp[v][i] and
then impose that bt stamp[v][i] < tstamp[v][i] must hold (i.e., the update of the
shared memory according to an occurred write may be delayed w.r.t. its occurrence

time). Note that here we slightly diverge from the transition system Mi"“ described

void fence (uint t) {
if (ts_lastW[t]>cur_tstamp[t])

int read(uint v,uint t){]
cur_tstamp([t] = ts_lastW[t];

if (is_terminated(t)) return O;

uint ts_jump, 1i;
i = th_pos[v][t];
uint nxt_write=th_next_write[v] [i][t];
uint fst_write=th_next_write[v][0][t];
assume (
(ts_jump >= cur_tstamp[t]) &&
(ts_jump < btstamp[v] [nxt_write])
)i
cur_tstamp[t]=ts_jump;

void write (uint v, int val,uint t) {
if (is_terminated(t)) return;
i = th_pos[v][t];
Jjump=th_next_write[v] [1][t];
th_pos[v] [t]=Jump;
assume (

: i = i btstamp [v] [jump] > cur_tstamp[t]
if(Esiiwrlte f— i && . . oo valne vl umny St
stamp [v] [1] cur_tstamp(t] 55 tstamplv]lsomp] > ta. lastW[t]

) return valuel[v][i];

return Read_SC(v,t);)7

ts_lastW[t] = tstamp[v] [Jjump];
cur_tstamp[t] = btstamp([v] [jump];

Fig. 2. Functions read, fence and write for TSO.

in Section 5. In fact, since we do not require any other condition on the guessed update
timestamps, we can carry over an IMU with timestamps that may violate the FIFO
policy on the store buffers. We fix this by checking the proper ordering on matching the
writes (see below).

The fence-operation flushes the store buffer of the executing thread. We thus
need to synchronize the current thread timestamp with its last update timestamp, i.e.,
if ts_lastwW[t] is larger than the timestamp of the last occurred write by t, we set
ts_lastW[t]to cur_tstamplt]. Note that if this is not the case then the local store
buffer of t is certainly empty, since bt stamp[v][i] < tstamp[v][i].

The read-function first increases nondeterministically the current timestamp of
thread t such that it remains smaller than the occurrence timestamp of the next write of
v by t. Now, if at least a write of location v by t has occurred and the last write of v
by t is still in the thread buffer, then we return the value of this write. Otherwise, a read
from the shared memory is performed by invoking the auxiliary function Read_SC that
is exactly the function read from Fig. 1.

Note that the update of the current thread timestamp by read can cause this value
to be larger than the update timestamp of the last write, which is correct. To avoid that
we wrongly move the time back, in fence we make the assignment only when this is
not the case.

The write-function first updates the current position in the v-LU of thread t to
the next write provided that the time of occurrence of this write is larger than the current
thread timestamp, the value of the write matches the guessed value for it and the update
timestamp of the next write is larger than that of the last occurred write (the last one
ensures that the thread store buffers are emptied according to a FIFO policy). Note that,
in the case of a wrong guess of the update timestamps in init, this condition would
not hold and thus the execution would abort. Before returning, the update timestamp of
the last write and the current timestamp of thread t are modified consistently.

IMU implementation for PSO. We can get a PSO-SMA by slightly modifying the
TSO-version as follows. We use a new array max_t sW instead of ts_lastW to keep

Table 1. Performance comparison among different tools for SC semantics on unsafe instances
from the SV-COMP16 Concurrency category.

CBMC svcl6 CIVL svcl6 [Lazy-CSeq svel6 | MU-CSeq svel5 || IMU-CSeq

sub-category files l.o.c.||pass fail time|pass fail time|pass fail time|pass fail time||pass fail time
pthread 15 2301(] 14 1 8423| 15 03331 15 0 4858 15 0 542{] 15 0 4.88
pthread-atomic 2 156 2 0 059 2 0 175 2 0 139 2 O 1.4 2 0315
pthread-ext 8 616 7 1 154 8 01312 8 0 1123 8 0 545 8 0 4.88
pthread-lit 2 73 2 0 03l 2 01033 2 0 056 2 0 255 2 0088
Idv-races 8 616 3 56696 3 0 145 8 0 1.73 - - - 8 0 1.61

for each thread t the maximum update timestamp among all the occurred writes of t.

We achieve this by replacing in write the update of t s_lastW with the assignment of

max_tsW[t]with (tstamp [v] [jump] >max_tsW[t]) ? tstamp [v][jump] : max_tsWI[t].
We further modify function write by removing from the assume-statement the

conjunct tstamp [v][Jjump] >ts_lastW[t] (see Fig. 2). We recall that this con-

junct was required in the TSO implementation to ensure that for each thread t, the

guessed occurrence and update timestamps for the sequence of writes by t (that may

be contained in different LU’s) are indeed consistent with the store-buffer FIFO pol-

icy; in PSO, we only need to require this within each LU, which is thus ensured by the

remaining constraints of write and init.

7 Experimental Evaluation

We have implemented our approach in the IMU-CSeq tool that analyzes C programs
over the pthreads API'. It first uses modules from MU-CSeq [13,27] to transform the
original multi-threaded program into a sequential one (sequentialization), then links this
against an IMU-based SMA implementation, and finally verifies the resulting program
with a BMC tool for sequential programs, in particular CBMC (v5.3). Depending on
the chosen SMA implementations we thus obtain an efficient tool for verifying multi-
threaded programs under SC, TSO, and PSO, respectively. A hybrid tool combining
IMU-CSeq and MU-CSeq [29] has won the gold medal in the Concurrency-category of
the TACAS Software Verification Competition (SV-COMP16) [7].

SC benchmarks. We first evaluated IMU-CSeq on the Concurrency-benchmarks SV-
COMP16. These cover the core features of the C programming language and the ba-
sic concurrency mechanisms well, and many state-of-the-art analysis tools have been
trained on them. Since we use a BMC tool as a backend, we can only show whether
an error is reachable within given bounds. We therefore evaluate IMU-CSeq only on
files that have a reachable error location. In particular, we used the files from the sub-
categories shown in Table 1; each row shows the corresponding number of files and
lines of code.

The experiments were run on a dedicated machine with a Xeon E5-2650 v2 with
2.60 GHz and 132GB RAM, running Linux 4.2.0-22-generic. We set a 15GB memory
limit and a 900s time limit. The files are analyzed under SC semantics. Table 1 shows the
results for the SV-COMP16 versions of CBMC [4], CIVL [32], Lazy-CSeq [13,14], the

"http://users.ecs.soton.ac.uk/gp4/cseq/files/IMU-TACAS-2017.zip

http://users.ecs.soton.ac.uk/gp4/cseq/files/IMU-TACAS-2017.zip

Table 2. Analysis runtime under TSO/PSO

parameters TSO runtime (s) PSO runtime (s)
g 3 g 2
E £ ¢ v 2 ¢ g z
9| g Blwl g2 Z 8|l® g =2 Z 28
S|lE&wuwmE|E £ & © Z|2 £ 2 © Z
dekker 5211 2 0 0 5| e 11076 026 0.04(e 1{0.76 0.24 0.04
lamport 7811 2 0 0 5| e 11097 033 0.05(e 11097 0.26 0.04
peterson 40 1 3 0 0 5| e 110.67 028 0.06(e 110.68 0.23 0.04
szymanski 5711 3 0 0 5| e 110.84 037 0.11| e 110.84 0.28 0.08
fib_longer_unsafe | 30 | 6 7 0 0 10| e 112.10 1.89 8.89(e 1{2.50 9.79 11.93
fib_longer_safe 30| 6 7 0 0 10 1]4.75 13.10 41.85 1/3.90 20.96 60.94
pgsql 4711 2 0 0 5 1{1.92 0.03 0.07] e 110.69 0.22 0.04
parker 1o 1 2 0 0 5| e 11122 035 0.06|| e 1{1.21 0.26 0.05
stack_unsafe [110| 2 2 1 2 5| e 11146 045 0.05(e 1{1.44 038 0.05
litmus_safe - 1 6 1 010 5526(1.20 0.17 2.35 4835(1.06 0.15 6.65
litmus_unsafe - 1 6 1 0 10|| e| 277[1.67 0.16 3.86|| e| 968|1.28 0.12 1.58

SV-COMP15 version of MU-CSeq [27],% and of IMU-CSeq on these benchmarks. We
indicate with pass the number of correctly found bugs, with fail the number of unsuc-
cessful analyses including tool crashes, memory limit hits, and timeouts, and with time
the average time in seconds to find the bug. The results clearly show that our approach
is competitive with existing tools; in particular, the IMU-based SMA-implementation
improves over the MU-based MU-CSeq.

WMM benchmarks. We then compared IMU-CSeq against two tools with built-in
support for analysis under weak memory models, CBMC [12], and Nidhugg [1], a
bug-finding tool that combines stateless model checking with dynamic partial order
reduction on relaxed memory executions. These experiments were run on a dedicated
machine with a Xeon W3520 2.6GHz processor and 12GB RAM, running 64-bit Linux
3.0.6. For each tool and benchmark, we set the parameters to the minimum value needed
to expose the error.

Simple benchmarks. Table 2 shows the results over a set of (relatively simple) bench-
marks collected from the CBMC, Poet, and Nidhugg tools, and the SV-COMP bench-
mark suite. The unwind parameter was used by all the three tools considered in the
comparison, while W, U, and M are used only by IMU-CSeq, as detailed in Section 6.
The parameter bitwidth gives the size of integers (in bits) used in the sequential analysis.

The first block contains results for some classical mutual exclusions algorithms.
The implementations are correct under SC but not under TSO and PSO (as indicated by
an entry in the column "bug?’). All tools find the errors, but because of the problems’
small size, Nidhugg outperforms both IMU-CSeq and CBMC on these programs.

The second block contains safe and unsafe versions of one of the fibonacci-bench-
marks, where two worker threads concurrently increase two shared counters, and a main
thread checks whether any of the counters can reach a defined value. A full exploration
of the thread interleavings is required to identify the error (or show its absence) in this
program and techniques such as partial-order reduction do not apply. Here, IMU-CSeq
has the slight edge over CBMC while Nidhugg is substantially slower than both.

% Note that the SV-COMP16 version of MU-CSeq is a hybrid tool that already uses IMU for the
shown sub-categories. We thus use the SV-COMP15 version here.

The next block contains benchmarks derived from industrial code. pgsgl is a well-
known SQL bug [3]; it is correct under SC and TSO but not under PSO. parker mod-
els a semaphore-like synchronization class that that breaks under TSO [1], and stack
which was taken from SV-COMP [7]. Here, all tools report the expected results; the
performance differences between Nidhugg and CBMC are small, while IMU-CSeq’s
performance could be improved with a better implementation, as it currently parses and
unparses each file nearly 20 times.

The last block shows the average results for 5803 WMM litmus tests with 297K
lines of code. For TSO, both our tool and CBMC successfully identified the 277 test
cases containing a reachable error, while Nidhugg failed to find one of them. For PSO,
CBMC claims that there are 971 unsafe instances while Nidhugg and IMU-CSeq both
find only 968 unsafe ones. Since both tools agree, we suspect an error in CBMC. Here,
symbolic methods are faster, and Nidhugg has two timeouts (given a 600s time limit).

Safestack. Safestack [10] is a lock-free stack implementation designed for weak-memory
models. It is written in C++ but we manually translated it into C, providing simulation
functions for the C11 atomic functions, and analyzed this version. It contains a rare bug
that is hard to find with automatic bug-finding techniques already under SC (includ-
ing random testing, Nidhugg, CIVL [32], and other approaches based on BMC) [26].
The only tool we are aware of that can automatically find a genuine counter-example
is Lazy-CSeq [13], which requires a minimum of 3 loop unwindings and 4 rounds of
computation and more than 7 hours to expose a bug. Both Nidhugg and CBMC failed
to find the bug, while IMU-CSeq required approx. 3.5 minutes and 1.5GB of memory
to find it under TSO, and approx. 17 minutes and 1.8GB of memory under PSO.

8 Discussion

IMU-based SMA and Relaxed Memory Models. Alglave et al. [5] introduce an ax-
iomatic framework to capture the semantics of memory models. Our framework instead
aims at a scalable verification approach that encapsulates all differences between the
models within the SMA implementation such that the designs of the verification algo-
rithm and of the memory model simulation can be developed independently. A crucial
notion we use here is that of the IMU, which captures the sequence of writes that occur
in each location (thus also capturing the coherence relation from [5]). To achieve the
reordering of the statements that are observed in the relaxed memory models, we guess
the timestamps and check their consistency with the expected behaviours. This is done
while executing the statements with appropriate assume-statements.

Our framework can easily be extended from TSO and PSO, as described here, to
more relaxed memory models such as POWER. POWER relaxes these models essen-
tially in that: 1) the propagation of a write in the shared memory by a thread does not
need to be simultaneous for all the other threads (i.e., each thread can see the write at a
different time from the others); 2) the order of execution of the statements of a thread
can be liberally rearranged (w.r.t. the program order) provided that the dependency re-
lations such as data-flow, address, control and isync are fulfilled (see [25]).

The asynchronous propagation of the writes can be easily captured in the IMU by
allowing for each write a different timestamp for each thread. The dependency relations

define a partial order over the statements of a thread (see [25]). In our approach we
can simulate the execution of the statements of each thread according to any lineariza-
tion of such partial orders. For this, we proceed with the execution of each statement
according to the program order and then simulate the actual ordering of the compu-
tation by the timestamps. In particular, we keep all the timestamps of the executed
statements that have no executed successors in the partial order, and make sure that
time increases moving to successors. This can be modeled inside the implementation of
the SMA-implementation by exploiting the IMU and thus leave, in contrast with [5,25],
the control-flow part unchanged. This allows us to get rid of the additional control-flow
nondeterminism that often represent a burden for verification and testing tools.

Related Work. The BMC approach from [4] allows to handle different memory mod-
els by adding a conjunct to the formula. The verification algorithm in [2] works on a
generic relaxed memory model that can be refined into actual memory models by adding
constraints. Our work differs from these both in the scope and the techniques. In partic-
ular, we work at the level of source code with code-to-code transformations and give a
general approach that allows to combine different verification algorithms with different
implementations of memory models, not just a specific algorithm. The development of
the two parts can be done independently as long as Theorems 1 and 2 hold.

Another important aspect of our approach is to identify a class of implementations
of memory models that allows for a full rearrangement of the thread interleavings in
the analysis. As already observed, this is a feature that has been already exploited in
verifying concurrent programs [20,27] also with weak memory model semantics [6].

The idea of sequentialization was originally proposed by Qadeer and Wu [24] but
became popular with the first scheme for an arbitrary but bounded number of context
switches given by Lal and Reps [20]. Several implementations and algorithms have
been developed since then (see [11,19,9,15,18,17]). In particular, lazy sequentialization
has been recently extended to handle TSO and PSO in the CSeq framework [28]. The
reachability analysis used in our algorithm is bounded on the number of writes which
is an orthogonal bounding parameter with respect to bounded context-switching [23].

Conclusions. We have described and evaluated a new verification approach for concur-
rent programs over different memory models. Our main design goal was to break the
coupling between computation (i.e., individual threads) and the communication (i.e.,
shared memory) concerns of multi-threaded programs, without loosing the efficiency
of existing approaches. We have introduced shared memory abstractions, which capture
the standard concurrency operations in multi-threaded programs. We have then shown
that reachability is preserved if we exchange a program by a thread-wise equivalent one
(assuming the SMA is thread-asynchronous) or an SMA for its thread-asynchronous
closure. This allows us to generalize existing concurrent verification approaches to dif-
ferent memory models simply by implementing the corresponding different SMAs. We
have described efficient SMA implementations for SC, TSO, and PSO based on the
idea of individual memory-location unwindings, which have allowed us to instantiate
our approach into an efficient BMC-based bug-finding tool. Our experiments show that
the resulting tool compares well with existing ones.

The main future work is the detailed formalization of the POWER and other relaxed
memory models, with their implementation in our framework.

References

10.

11.

12.

13.

15.

16.

17.

18.

20.

21.

22.

23.

24.

. Abdulla, P.A., Aronis, S., Atig, M.E,, Jonsson, B., Leonardsson, C., Sagonas, K.F.: Stateless

model checking for TSO and PSO. In: TACAS. pp. 353-367 (2015)

. Abe, T., Maeda, T.: A general model checking framework for various memory consistency

models. In: IEEE PDP. pp. 332-341 (2014)

. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak memory

via program transformation. In: ESOP. pp. 512-532 (2013)

. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model check-

ing of concurrent software. In: CAV. pp. 141-157 (2013)

. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation, testing, and

data mining for weak memory. ACM Trans. Program. Lang. Syst. 36(2), 7:1-7:74 (2014)

. Atig, ML.E,, Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis. In: CAV.

pp. 99-115 (2011)

. Beyer, D.: Reliable and reproducible competition results with benchexec and witnesses (re-

port on SV-COMP 2016). In: TACAS. pp. 887-904 (2016)

. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In: FASE. pp.

267-282 (2015)

. Chaki, S., Gurfinkel, A., Strichman, O.: Time-bounded Analysis of Real-time Systems. In:

FMCAD. pp. 72-80 (2011)

Chen, G., Jin, H., Zou, D., Zhou, B.B., Liang, Z., Zheng, W., Shi, X.: Safestack: Automat-
ically patching stack-based buffer overflow vulnerabilities. IEEE Trans. Dependable Sec.
Comput. 10(6), 368-379 (2013)

Fischer, B., Inverso, O., Parlato, G.: Cseq: A sequentialization tool for C - (competition
contribution). In: TACAS. pp. 616-618 (2013)

Horn, A., Kroening, D.: On partial order semantics for sat/smt-based symbolic encodings of
weak memory concurrency. In: FORTE. pp. 19-34 (2015)

Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-cseq: A context-
bounded model checking tool for multi-threaded c-programs. In: ASE. pp. 807-812 (2015)

. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model checking of

multi-threaded C programs via lazy sequentialization. In: CAV. pp. 585-602 (2014)

La Torre, S., Madhusudan, P., Parlato, G.: Reducing Context-Bounded Concurrent Reacha-
bility to Sequential Reachability. In: CAV. pp. 477-492 (2009)

La Torre, S., Madhusudan, P., Parlato, G.: Model-Checking Parameterized Concurrent Pro-
grams Using Linear Interfaces. In: CAV. pp. 629-644 (2010)

La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing Parameterized Programs. In: FIT.
pp. 3447 (2012)

La Torre, S., Madhusudan, P., Parlato, G.: Analyzing Recursive Programs Using a Fixed-
point Calculus. In: PLDI. pp. 211-222 (2009)

. Lal, A, Qadeer, S., Lahiri, S.K.: A Solver for Reachability Modulo Theories. In: CAV. pp.

427-443 (2012)

Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential anal-
ysis. Formal Methods in System Design 35(1), 73-97 (2009)

Lamport, L.: On the proof of correctness of a calendar program. Commun. ACM 22(10),
554-556 (1979)

Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-tso. In: TPHOLSs. pp.
391407 (2009)

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: TACAS.
pp- 93-107 (2005)

Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI. pp. 14-24 (2004)

25.

26.

27.

28.

29.

30.

31.

32.

Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER mul-
tiprocessors. In: PLDI. pp. 175-186 (2011)

Thomson, P., Donaldson, A.F., Betts, A.: Concurrency testing using schedule bounding: an
empirical study. In: PPoPP. pp. 15-28 (2014)

Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying concurrent pro-
grams by memory unwinding. In: TACAS. pp. 551-565 (2015)

Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy sequen-
tialization for TSO and PSO via shared memory abstractions. In: FMCAD. pp. 193-200
(2016)

Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Mu-cseq 0.4:
Individual memory location unwindings - (competition contribution). In: TACAS. pp. 938-
941 (2016)

Wehrheim, H., Travkin, O.: TSO to SC via symbolic execution. In: HVC. pp. 104-119 (2015)
Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed memory
models. In: PLDI. pp. 250-259 (2015)

Zheng, M., Rogers, M.S., Luo, Z., Dwyer, M.B., Siegel, S.F.: CIVL: formal verification of
parallel programs. In: ASE. pp. 830-835 (2015)

o
li

init(); (type f ({dec,)”) {(dec;)"stm})*
dec = type z | typex p

type ::= bool | int | void

seq | conc | {{stm;)"}

stm

seq = assume(b) | assert(d) |z =e| f({e,)*) | returne
| i£(b) then stm else stm | while(b)do stm
conc = p = address(y,t) | p = malloc(e,t)
| x = read(y,t) | x = ind_read(p,t) | write(y,z,t) | ind_write(p, z,t)
| t = create(f,t) | join(¢,t) | terminate(t)
| fence(t) | lock(m,t) | unlock(m,t)

Fig. 3. Syntax of multi-threaded programs.

A Syntax of multi-threaded programs

The syntax of multi-threaded programs is defined by the grammar shown in Fig. 3.
Terminal symbols are set in typewriter font. {n t)* represents a possibly empty list
of non-terminals 7 that are separated by terminals t; x denotes a local variable, y an
identifier of a shared variable, p an identifies of a pointer variable, m a mutex identifier, ¢
a thread identifier and f a function name. We assume expressions e to be local variables,
pointer value (returned by a read of a pointer variable), and integer constants that can be
combined using mathematical operators. Boolean expressions b comprise the constants
true, false, and Boolean variables, and can be combined using standard Boolean
operations.

A multi-threaded program consists of an init () invocation followed by a list of
functions. init () instantiates a shared memory abstraction that captures a number
of shared locations. Each function has a list of zero or more typed parameters, and its
body has a declaration of local variables followed by a statement.

A statement is either a sequential or a concurrent statement, or a sequence of state-
ments enclosed in braces (compound statement).

A sequential statement can be an assume- Or assert-statement, an assignment,
a call to a function that takes multiple parameters (with an implicit call-by-reference
parameter passing semantics), a return-statement, a conditional statement, or a loop.
All variables involved in a sequential statement are local.

A concurrent statement involves an interaction with the shared memory abstraction
and thus we have a different concurrent statement for each of the functions of the SMA
API (other than init that is invoked only in the beginning).

We assume that a valid program P satisfies the usual well-formedness and type-
correctness conditions. We also assume that P contains a function main, which is the
starting function of the only thread that exists in the beginning. We call this the main
thread. We further assume that there are no calls to main in P and that no other thread
can be created that uses main as starting function.

B Transition systems

An alphabet is a set of symbols. For an alphabet 3/, a word over X is a sequence of zero
or more symbols from Y. The empty word, denoted by ¢, is the word formed of zero
symbols. Recall that we = ew = w for any word w.

A transition system A is a tuple (Q, X, A, Qo, F') where Q) is a set of states, X is
an alphabet, A C @ x (¥ U{e}) x @ is a transition relation, Qo C Q is a set of initial
states, and F' C () is a set of final states.

A run w of A is a sequence ¢ = q1 3 qo... 2% qq where ¢qg € Qo and
(gi—1,04,q;) € Aforeachi € [1,d]. Moreover, 7 is accepting if ¢4 € F and 0 ...04
is the corresponding word. We denote by L(.A) the set of all words that correspond to
accepting runs of A.

Let A; = (Qi, X, Ay, Qo.i, F;) be a transition system for ¢ € {1,2}. The compo-
sition of 47 and Ao, denoted A;|As, is the standard cross product, i.e., A1|As is the
transition system (Q1 X Q2, X, A, Qo1 X Qo,1, F1 x Fy) where A is the minimal set
containing all tuples ((q1,¢2),0, (q],q%)) such that either one of the following cases
hold: 1.0 =¢, (q1,¢,¢}) € A1, g2 = gh; o1, 2.0 =&, 1 = ¢}, (g2,¢,¢5) € Ag; or, 3.
o #e,and (¢;,0,¢;) € A; fori € {1,2}.

C Thread-asynchronous SMAs for thread interfaces and memory
unwinding

We briefly recall the notions of thread interface [16] and memory unwinding [27], and
discuss how to recast some approaches from the literature in our setting by means of
the SMAs derived from these notions.

Thread interface. A thread interface for a thread ¢ summarizes computations of ¢ across
a bounded number of context-switches. Formally, it is a sequence of pairs (1, s1), .. .,
(rk, s,) where r;, s; for i € [1, k] are valuations of the shared locations. The intended
meaning is that there is a computation of ¢ such that ¢ starts with 7; as valuation of the
shared locations and reaches s1, is suspended and then reactivated with shared valuation
r9, and reaches so, and so on.

In a bounded context switch analysis we can assume that computations of programs
are arranged in k£ rounds where threads are always scheduled according to the same
fixed round-robin schedule ¢1,...,%,. Thus, exploring the computations of a multi-
threaded program up to k rounds corresponds to computing thread interfaces and com-
posing them [16]. We start with thread ¢; and guess the in-valuations at rounds 2, ..., k
(i.e., the valuations rs, ..., 7g; note that ry is the initial valuation of the program and
thus known); we then compute the out-valuations (i.e., sy, ..., s) for thread ¢; and
take them as the in-valuations of the next thread ¢,, and so on. In the end, in order to
establish that the computed thread interfaces form a computation of the program we
just need to check that the out-valuation of thread ¢,, at round ¢ € [1, k£ — 1] equals the
(guessed) in-valuation of thread ¢; at round ¢ + 1.

This is the essence of the well-known sequentialization algorithm by Lal and Reps
[20] and the fixed-point algorithm given in [16]. We can recast these two algorithms
in our setting by means of an SMA that extends the standard SMA for SC by thread

interfaces. The resulting transition system MZ% is as follows. On the init()-transition,
./\/lii guesses a round schedule ¢4, . . ., ¢,,, a bound k, and for each thread ¢; an interface
I' = (], 1) ... (s},) such that 7% = s for j € [1,k]. ML, keeps for each thread
the current round in the corresponding thread interface. If the current round of a thread
is less than the round bound £, it can be increased by one by an e-transition (i.e., it is
nonderministically either increased or left unmodified). Further, for any input sequence

a, MY ensures that:

— on write(v,val,t) (resp. ind_write(a,val,t)), the out-valuation of the current round of
thread ¢ is updated according to the write;

— on read(val,v,t) (resp. ind_read(val,a,t)), the out-valuation of the current round of
thread ¢ must evaluate v (resp. a) as val.

In order to accept a, create(t,f,t’) must occur in « for each thread ¢ with a guessed
interface, and the computed interfaces form a computation in the sense described above.

The transition system M?% is thread-wise equivalent to M .., and, moreover, it can
execute all the computations of M. by advancing each involved thread in any order.
The proof of the following lemma is a consequence of the results from [16].

Lemma 3. L(M'%) = (L(M,.))*.

We can then recast the verification technique from [20] in our setting by taking the
above SMA along with the transformation of the control-flow from [20]. Lemma 3, and
Theorems 1 and 2 show the correctness of the resulting verification method. Similarly,
we can combine M1 with a control-flow part that at each transition nondeterministi-
cally selects the next thread to execute. The resulting system captures the verification
technique from [16], and correctness is again ensured by Lemma 3, and Theorems 1
and 2. We remark that actual implementations of both these techniques require param-

eterization over the number of threads and rounds, as in the original implementations.

Memory unwinding. A memory unwinding (MU) [27] is a sequence of writes; each write
w is atriple (¢, v, val) where ¢ is the identifier of the thread that has performed the write
operation, v is the identifier of the memory location that is modified in the write and
val is the value of v after the write. A corresponding transition system guesses an MU
on the init()-transition and then executes the operations consistently with this guess. For
SC, the corresponding transition system M7.* will keep for each thread the current
position in the MU and for any input sequence «, it ensures that:

— on write(v,val,t) (resp. ind_write(a,val,t)), the next write in the MU for thread t
matches the value val and variable identifier v (resp. address a);

— on read(val,v,t) (resp. ind_read(val,a,t)), there must be in the MU a write at a po-
sition ¢ from the current position of t through the next write of t, that assigns value
val to the location identified by v (resp. a); the current position of t is updated to ¢
in the next state;

— for each thread, the writes are matched exactly in the same order as in the MU.

In order to accept «, create(t,f,t’) must occur in « for each thread t with writes guessed
in the MU and the writes in the MU should be mapped 1-to-1 to the writes in a.

The transition system M72" is thread-wise equivalent to M., and additionally, it
can execute all the computations of M. by advancing each involved thread in any
order. Moreover, due to the fact that all writes are guessed in advance, the ordering in
which we interleave the threads is irrelevant. Thus, the following lemma holds.

Lemmad4. L(M™") = (L(Myg.))*.

Proof. We start showing that L(M™*) D (L(M,.))#. For a € L(M.), denote with
1 the MU that corresponds to the sequence of writes in o and with p an accepting run
of M.. We recall that M72* on the init()-transition can guess any MU and is built
on the top of Mg.. Thus, M** on the initial transition can enter a state storing the
initial configuration ~y as in p and p. Now, since p and the initial configuration v fully
capture the configurations of the shared memory along p (memory locations that are not
assigned can be neglected), M7** can simulate the execution p by arbitrarily advancing
the execution of each involved thread in any order. Thus, M7'* accepts all words in
{a}# and therefore, L(M™*) D (L(M,.))*.

For the other direction, i.e., L(M™%) C (L(My.))#,leta € L(M™*) and denote
with p the MU that is guessed on an accepting run over «. Note that for each word
in {a}# there is an accepting run of M™* such that y is the guessed MU. Now, let
o' € {a}* be a word where the write operations are ordered as in x and the read
operations are ordered such that for each pair of matching read and write: 1) the read
follows the write, and 2) there are no other writes involving the same location between
them. Clearly, o/ € L(M,) and therefore o € (L(M.))7. O

We can recast the verification approach from [27] in our setting by taking the above
SMA along with the transformation of the control-flow from [27]. Lemma 4, and The-
orems 1 and 2 show the correctness of the resulting verification method. Again, actual
implementations would require parameterization on the number of writes and threads.

Extension to weak memory models.. The discussed verification algorithms can be ex-
tended to handle programs under weak memory model semantics by giving the corre-
sponding shared memory abstractions. This can be done for TSO and PSO by explic-
itly adding the store buffers to M". and M7“, or for TSO by augmenting M*, with
guesses on the round when a write will be visible to all threads, as done in [6]. In the
next section, we introduce a new implementation that refines the notion of MU and
that works especially well for bounded model checking (BMC), and thus gives efficient

BMC-implementations for verification under TSO and PSO program semantics.

D IMU-based SMA encodings

Here we give full details of the SMA implementations for SC, TSO, and PSO.

D.1 IMU implementation for SC

Data structures. We use several data structures to maintain the LUs and serve the im-
plementation of the SMA operations. They are parameterized over the constants given

in Section 6. For simplicity, we assume that all the data is maintained as an unsigned
integer (uint).

The triples (¢, val, d) of the LUs are maintained by three different arrays thread,
value and tstamp. Namely, for every location v € [0,V-1] and i€[0,W-1], the
(141t triple in the v-LU is stored in thread[v][i], value[v][i] and t stamp[v][i].

To keep track of the execution on the LUs we use several auxiliary variables and
arrays. Namely, for every location v € [0,V-1], position i € [0,W-1] and thread
identifier t € [0, T-1]:

— th_pos[v][t] is the current position of thread t in the v-LU;

- last_write[v] stores the position i € [0, W-1] of the last executed write opera-
tion of location v in the v-LU. A different value for each v-LU is guessed for each
simulated execution;

— th_next_write[v][i][t]is the first position after i in the v-LU that corresponds
to a write by t, if any; otherwise, it is set to W (denoting that no further writes of v
by t are expected).

Concerning to the management of threads, we keep some additional information.
Variables max_th and th_count contain respectively the total number of threads that
we assume should be created in the current program execution (a different value is
guessed for each simulated execution) and the counting of the threads that have been
actually created (this should match the guessed total number of threads in the end of
computation). Also, for each thread t€[0,T-1]:

cur_tstamp[t] keeps track of the current timestamp of thread t during its simu-
lation;

last_tstamp[t] is the timestamp corresponding to the last write in the entire
IMU by thread t; (this value is guessed nondeterministically in the initialization
and is never changed; it should match cur_tstamp|t] in the end of a computa-
tion;)

ret[t]is setto 1 to mean that t has been interrupted before reaching the end of its
execution;

— terminated[t] is set to 1 to mean that we expect that thread t will be stopped
before the execution of its last statement (this value is guessed nondeterministically
in the initialization and is never changed.

To handle dynamic memory allocation and pointer arithmetics, for each location
veE([0,v-1] and for each 1 €[0,M—-1] we use:

- address][v] to store the physical memory address of v;

- mallocP[i]to store the base address for each memory block that can be allocated
dynamically;

- mallocPallocated[i] to track the dynamically allocated memory blocks.

IMU initialization. All the variables and arrays introduced above are declared global.
On initializing the IMU we impose several constraints on them (see function init()
in Fig. 4).

4 imit while (t<T) {
void init () { terminated([t] = x;
bool ts_used[V«W] = [0]; last_tstamp[t] = x;
: £ s v _ i
int v=0,w=0,t=0; assume (last_tstamp([t] < V*W);
t=t+1;
th_count = 0; }
th = *; oo
max_ = *; while (v<V) {
assume (max_th <= T); t=0;
—VYr
it aaa . while (t<T) {
init_a ress (V) ; th_next_write([v] [W-1][t] = W;
init_malloc (M) ; t=t+1;
= i
while (v<V) { \}7:v+1‘
last_write[v] = *; } '
assume (last_write[v] < W);
w=0; v=0;
: i
while (w<W) { while (v<V) {
tstamp[v] [w] = x; w=W-2;
assume ((tstamp[v] [w] < VW) && while' (w>=0) {
('ts_used[tstamp([v] [w]])); t=1;
ts_used[tstamp([v] [w]]=1; whi'le (t<T) {
if (w>0) if (thread[v] [w+l] == t)
assume (tstamp[v] [w]>tstamp[v] [w=-1]); th_next_write[v] [w] [t]=w+1;
thread[v] [w] = x; else - ,
assume (thread[v] [w] < max_th); th_next_write([v] [w] [t]=
} w=w+1; th_next_write[v] [w+1][t];
t=t+1;
v=v+1l; }
} w=w-1;
}
v=v+1l;
}
}

Fig. 4. IMU initialization.

Function init_address ensures that array address is nondeterministically ini-
tialized with increasing values (i.e., address[i] < address[i+1]fori € [0,V —2]).
Function init_malloc ensures the same for array mallocP and additionally im-
poses that the address guessed for the last named location is less than the one assigned to
the base location of the first memory allocation (i.e., address [N-1]<mallocP [0]).
Functions init malloc() and init_address() are illustrated in Fig. 5.

In the first while-block of Fig. 4, arrays last _write, tstamp and thread are
nondeterministically assigned to legal values. Additionally, for each LU, timestamps
are nondeterministically assigned in increasing order. The local array t s_used is used
to ensure that different timestamps are assigned to each write in the IMU.

Legal values of terminatedand last_t stamp are nondeterministically guessed
in the second while-block. The rest of init initializes th_next_write such that for
each thread t and each location v, all the writes from ¢ in the v-LU are linked in the
proper order (value W is used as a sentinel to denote the end of each LU).

Auxiliary functions. We make use of two auxiliary functions illustrated in Fig. 6.
Function is_terminatedreturns 1, if ret [t] is already set to 1, and nondeter-
ministically chooses either to set ret [t] to 1 and then return 1, or to return 0. The
purpose of function Jump is to determine the position jump in the v-LU of the write
that determines the current value contained in v. If the timestamp of the selected write

void init_malloc () {
int i1=0;
while (i<M) {
mallocPallocated[i]=0;

void init_address () {
int 1=0;

while (i<V){

]

address[i] = *;

- K ! mallocP[i] = x;
if (i>0) . .
ddress[i] > address[i-1]); +£(3>0)
. gssume(a ’ assume (mallocP[i] > mallocP[i-11);
i=1+1; i=i41;
- I

}

) }

assume (mallocP[0] > address[N-1]);

}

Fig. 5. init_address and init_malloc functions for IMU implementation.

bool is_terminated (uint t) {
if(ret[tid] | Inondet ()) {ret[tid]=1; return 1;}
return 0;

}

uint Jump (uint t, uint v){
uint jump=x*;

ts_jump = tstamp[v] [Jjump];
assume ((jump <= last_write([Vv]
&& (Jump < th_next_write[v][t][th_pos[v]])
&& (tstamp([v] [Jjump+l] > cur_tstamp(t]));
cur_tstamp([t] = (ts_jump > cur_tstamp[t]) ? ts_jump : cur_tstamp([t];
return Jjump;

Fig. 6. Auxiliary functions for IMU implementation.

is past the current thread timestamp, the last is updated to this value by acknowledging
the fact that the corresponding write into the shared memory has occurred. The value of
jump is selected nondeterministically within a range of proper values. Namely, jump
should not pass the last legal write position for v and must be strictly less than the posi-
tion of the next write of v by the same thread ¢ (that has not occurred yet). Further, we
require that the timestamp at position jump-1 is greater than the current timestamp of
t (we wish to point to a write of v that is not superseded by an already occurred write).

Thread creation, termination, and join. The implementations of functions create,
terminate and join are shown in Fig. 7.

In function create, if the maximal number of allowed threads is reached, the
procedure immediately returns —1 meaning that this thread will never be scheduled.
Otherwise, the count of the created threads is incremented and the current timestamp
and LU positions of the new created thread are initialized such that: they coincide with
those of the parent thread.

The assume statement ensures that no write operations are entitled to the new cre-
ated thread before its creation. Since we update the positions of each thread in the LUs
forward only, this will ensure also that each thread will not use any LU position corre-
sponding to a write operation that is supposed to occur before its creation.

Function terminate checks that all write operations guessed for thread t have
been done (while-loop). Furthermore, the concluding assume checks that the values
guessed by function init for terminated[t] and last_tstamp [t] are consis-

int create(void xf, uint pt) {
if (th_count >= max_th) then return -1;fi
th_count++;
uint v=0;
if(pt == 0){
while (v < V) {
th_pos[v] [th_count]=0;
v=v+1l;
}
cur_tstamp[th_count]=0;
telse(
cur_tstamp[th_count]=cur_tstamp[pt];
while (v < V){
th_pos|[v] [th_count]=th_pos[v] [pt];

void terminate (uint t) {
uint i, wv=0;
while (v < V) {
i=th_pos|[v][t];
assume (th_next_write[v] [i] [t]
> last_writel[v]);
v=v+1l;
}
assume (ret[t]==terminated[t] &&
last_tstamp[t]==cur_tstamp[t]);
}

void join(uint tl, uint t2){

if (1 i 1 h ;
assume (th_next_write[v] [0] [th_count] 1'(1s_term1nated(t)) then return;
>=th_pos|[v] [th_count]); uint vj
— - ! assume(v < V);
v=v+1l;
) Jump (t1,v);

} assume ((terminated[t2] == 0) &&

1]1>=1 2 ;
return th_count; (cur_tstamp[tl] ast_tstamp[t2]));

Fig. 7. Functions create, terminate and join.

tent with the explored computation. We recall that ret [t] is initialized to 0 and can
be nondeterministically set to 1 by the auxiliary function is_terminated (this has
the effect of stopping the execution of the current thread).

Function join returns immediately if the execution of thread t 1 is stopped. Other-
wise, the timestamp of t 1 is updated invoking Jump on a nondeterministically guessed
variable (this ensures a choice of the new timestamp among all the LUs of t1). The
computation is aborted whenever the other thread (t 2) either will not terminate (i.e.,
terminated[t2]==1) or has not terminated yet at the current timestamp of t 1 (but
it is supposed to terminate).

Read and write operations. The implementation of functions read and write is
illustrated in Fig. 8. For a read operation, the thread under simulation ¢ first jumps
forward into the v-LU corresponding to the variable given as parameter by invoking the
auxiliary procedure Jump described above and then returns the valuation of the variable
at the new position from matrix value.

In a write operation, the thread first jumps to its next write operation for that variable
and blocks the simulation if the value disagrees with that in the memory sequence at
the new position. Furthermore, we also check that the timestamp associated to the new
position is greater than the actual timestamp of ¢; this to prevent to simulate already
simulated write operations. Then we update the current position of thread t in the v-
LU and the current timestamp.

Address and malloc operations. Method address is used to recover the address of
a given location v € [V — 1]. The implementation for this method is given in Fig. 9.
If v corresponds to a scalar variable the method returns the value from address|[v];
otherwise it simulates the read operation at that location.

During its execution a thread can require a block of n consecutive unallocated locations
by invoking malloc(n). When malloc is invoked, say with argument n, a block is
chosen non deterministically, and it is allocated if its size is at least n by returning its

int read(uint v,uint t){ int ind_read(uint addr,uint t) {

if (is_terminated(t)) return 0; if (is_th_terminated(t)) return 0;
uint jump = Jump (t,v); uint pos;
return (value[v] [jumpl); assume (pos<V) ;
} assume (address (pos, t)==addr) ;
return read(pos,t);
void write (uint v, int val,uint t){ }
if (is_terminated(t)) return;
uint i, Jjump;
i = th_pos(v][t]; void ind_write (uint addr,int val,uint t) {
jump=th_next_write[v] [1] [t]; if(is_th_terminated(t)) return;
assume ((jump<=last_writel[v]) uint pos;
&& (value[v] [Jjump] == val) assume (pos<V) ;
&& (tstamp[v] [jump] > cur_tstamp[t]) assume (address (pos, t)==addr) ;

)i write (pos, val,t);
th_pos[v] [t]=jump; }
cur_tstamp[t]=tstamp[v] [jump];

Fig. 8. Read and write functions.

int malloc (uint n, uint t) {

int address (uint v, uint t) {
uint pos;

if(is_th_terminated(t)) return 0;
if (v<N) return address|[Vv];
return read(v, t);

if(is_th_terminated(t)) return O;

assume (pos<M) ;

assume (!mallocPallocated[pos]);

assume (mallocP [pos]+n < mallocP[pos+1]);
mallocPallocated[pos]=1;

return mallocP [pos];

Fig. 9. Functions address and malloc.

base address. The malloc procedure is implemented as shown in Fig. 9. We first find
a position pos that corresponds to a not sill allocated block, by checking the value of
mallocPallocated at that position. We recall that addresses stored in mallocP
are ordered in ascending order; then in order to know if there is enough space we simply
check that mallocP[pos]+n < mallocP[pos+1]. Then we setmallocP[pos]to
true to indicate that the address at position pos has been allocated. Finally, we return
the base address corresponding to the position pos.

Ind_read and ind_write operations. When a read or write operation is performed us-
ing a memory address, i.e. xp = 3 for a pointer variable p, we invoke ind_read
and ind_write methods. The implementation of the these procedures are straightfor-
ward (see Fig. 8). We first search for the location corresponding to that whose address
corresponds to the given parameter and then simulate the read/write operation at that
location.

Lock and unlock mutex variables. A thread can take or release a lock on a shared mutex
variable by calling the procedure 1 oc and unlock, respectively; their implementations
are provided by Fig. 10. For a mutex variable, we assign value 0 when the lock is not
acquired by any thread, and we assign value t if the mutex is held by thread t.

void lock (uint mut, uint t) void unlock (uint mut, uint t)

write (mut, t, t); write (mut, 0, t);
assume (ret [t] || assume (ret [t] ||
value[mut] [th_pos[mut] [t]-1]==0); value[mut] [th_pos[mut] [t]-1]==t);

Fig. 10. Mutex 1ock and unlock operations.

For efficient implementation, we modify the value of variable mut using a write
operation. For a 1ock operation we first write the value of t in mut; however, it may
be the case that the mutex was already held by some thread. Thus, we check that the
previous value of mut was 0. The implementation of the method unlock procedure is
similar, the only difference is that we write 0 in to the mut variable. Note that, two
consecutive write operations of mut are performed by the same thread (lock and
unlock). Furthermore, the value written at the even positions of the mut-LU are al-
ways 0. These constrains can be added in the init function to reduce the number of
runs to consider.

D.2 IMU implementation for TSO

We give this implementation incrementally on that given for SC.

To be consistent with the notation used in the implementation for SC, we use
tstamp[v][i] to store the update timestamp concerning the (i+1)*" write of loca-
tion v, and cur_t stamp [t] to keep track of the current timestamp in the execution of
thread t (i.e., the occurrence timestamp of the last occurred read or write). Additionally,
we use two new arrays bt st amp (buffer timestamps) and t s_lastW such that:

— btstamp[v][i] is the occurrence timestamp of the (i+1)P write of v (that is also
the time at which it is stored in the local buffer of the thread that performs the write
operation);

- ts_lastW[t] is the update timestamp of the last occurred write by thread t.

To implement the SMA API, we only need to give an implementation of fence
and modify those given for SC of init, read, write, lock and unlock. The rest
of the implementation is the same as for SC.

For init, we add to the implementation given for SC the following. We nondeter-
ministically guess initial values for bt st amp[v][1] and then impose that bt st amp[v][1]
< tstamp[v][i] must hold (i.e., the update of the shared memory according to an oc-
curred write may be delayed w.r.t. its occurrence time).

Note that here we slightly diverge from the transition system M™% described in
Section 5. In fact, since we do not require any other condition on the guessed update
timestamps, we can carry over an IMU with timestamps that may violate the FIFO
policy on the store buffers. This is fixed by checking the proper ordering on matching
the writes (we return on this when discussing the write implementation).

Function lock from Fig. 10 is modified such that the write is done by a routine
Write_SC that is exactly the write given for SC instead of the write for TSO. This
ensures that lock acquisition is immediately visible to all the other threads. For function

int read(uint v,uint t){ void fence (uint t) {
if(is_terminated(t)) return 0; if (ts_lastW[t]>cur_tstamp[t])

cur_tstamp([t] = ts_lastW[t];

uint ts_jump, 1i; }

i = th_pos[v][t];

uint nxt_write=th_next_write[v] [i][t];

uint fst_write=th_next_write[v][0][t]; |void write(uint v,int val,uint t) {

assume (if (is_terminated(t)) return;
(ts_jump >= cur_tstamp([t]) && i = th_pos([v]I[t];
(ts_jump < btstamp[v] [nxt_write]) Jjump=th_next_write[v] [1][t];
)i th_pos([v] [t]=Jump;
cur_tstamp[t]=ts_jump; assume (
if((fst_write <= 1) && (btstamp[v] [jump] > cur_tstamp[t])
(tstamp[v] [1] > cur_tstamp[t]) && (value[v] [jump] == val) &&

) (tstamp [v] [Jump] > ts_lastW([t])
return valuel[v] [i];)
return Read_SC(v,t); ts_lastW[t] = tstamp[v] [Jjump];
} cur_tstamp[t] = btstamp([v] [jump];

Fig. 11. Functions read, fence and write for TSO.

unlock, we do the same and further before returning we call fence. This way, we
make immediately visible to all the other threads all the writes that occurred in the
critical section.

The code of functions fence, read and write are illustrated in Fig. 11.

A memory fence flushes the store buffer of the thread executing it and thus we need
to synchronize the current thread timestamp with its last update timestamp. Namely, if
ts_lastW[t] is larger than the timestamp of the last occurred write by t, we assign
ts_lastW[t]to cur_tstamplt]. Note that if this is not the case then the local store
buffer of t is certainly empty (recall bt stamp[v][i] < tstamp[v][i]).

Function read first updates nondeterministically the current timestamp of thread
t such that it is not smaller than the current timestamp of t and is smaller than the
update timestamp of the next write of t. Now, if at least a write of location v by t has
occurred and the last write of v by t is still in the thread buffer, then we return the value
of this write. Otherwise, a read from the shared memory is performed by invoking the
auxiliary function Read_SC that is exactly the function read from Fig. 8.

Observe that the update of the current thread timestamp by read can cause this
value to be larger than the update timestamp of the last write and this may be correct.
To avoid that we wrongly move the time back, in fence we make the assignment only
when this is not the case.

Function write first updates the current position in the v-LU of thread t to the
next write provided that the time of occurrence of this write is larger than the current
thread timestamp, the value of the write matches the guessed value for it and the update
timestamp of the next write is larger than that of the last occurred write (the last one
ensures that the thread store buffers are emptied according to a FIFO policy). Note that,
in the case of a wrong guess of the update timestamps in init, this condition would
not hold and thus the execution would abort. Before returning, the update timestamp of
the last write and the current timestamp of thread t are modified consistently.

D.3 IMU implementation for PSO

We can give an implementation of SMA
for PSO by slightly modifying the implemen-
tation given for TSO as follows.

We use a new array max_t sW in substi-
tution of ts_1astW and change a few lines
in the implementation of function write.
Array max_t sW maintains for each thread t
the maximum update timestamp among all
the occurred writes of t.

In function write (Fig. 12), we do not
require any more that the update timestamp

void write (uint v,int val,uint t){

if (is_terminated(t))
i = thpos[v][t];
jump=th_next_write[v] [1i] [t];
thpos[v] [t]=Jump;

assume (

return;

(btstamp[v] [jump] > cur_tstamp[t])

&& (value[v] [Jump] == val)

)

max._tsW[t] =

(tstamp [v] [Jump] > max-tsW[t]) ?
tstamp[v] [jump] : max_tsW[t];

cur-tstamp[t] = btstamp[v] [jump];

}

Fig. 12. Function write for PSO.

of the current write is larger than the update timestamp of the previous write by t.
Recall that this was required in the TSO implementation in order to ensure that for each
thread t, the guessed occurrence and update timestamps for the sequence of writes by t
(that may be contained in different LU’s) are indeed consistent with the FIFO policy of
a store buffer; in PSO we only need to ensure that the FIFO policy holds for each of the
maximal subsequences containing all the writes of a same location which is ensured by
the remaining constraints and function init. Moreover, the update of ts_lastW[t]
is replaced with the update of max_t swW[t] as follows:

max_tsW(t] =

(tstamp [v] [Jump] >max_tsW[t]) ? tstamp [v][jump] : max_tsWI[t];

	Embedding Weak Memory Models within Eager Sequentialization

