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Approaches to the teaching and learning of a chosen topic in geometry
can be located somewhere between what are sometimes perceived as two
extremes. One such extreme is characterised as “intuitive”; the other as
“formal” or “axiomatic”. There seems to be a number of ways of looking at
the relationship between these two positions. Piaget ([6] p 225), for
instance, appears to suggest a hierarchy when he writes:

Although effective at all stages and remaining fundamental from the point of
view of invention, the cognitive role of intuition diminishes (in a relative sense)
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during development. .... there then results an internal tendency towards
formalisation which, without ever being able to cut itself off entirely from its
intuitive roots, progressively limits the field of intuition (in the sense of non-
formalised operational thought).

This perspective of a hierarchy, with a shift, be it sudden or gradual,
from “intuitive” to “formal”, is long-standing. In the UK, as long ago as
1923, the Mathematical Association were recommending three stages in
the teaching of geometry [7]; briefly:

Stage A: intuitive, experimental work;

Stage B: ‘Locally’ deductive work in which formal symbolism and
deductive reasoning is introduced, but where intuition and induction
still have a place and will be used to bridge logically difficult gaps; and

Stage C: Globally rigorous work

This model, interestingly enough, has similarities to the van Hiele
approach which has received some attention over recent years (see, for
example, Fuys et al [4]). In the same vein, the US NCTM curriculum
standards for school mathematics state that “the study of geometry in
grades 5-8 links the informal explorations begun in grades K-4 to the more
formalised processes studied in grades 9-12” (NCTM [8]p 112).

Nevertheless, other viewpoints have been expressed. Fischbein ([3] p
244), amongst others, for example, suggests either a plurality or a dialectic
when he says that:

The interactions and conflicts between the formal, the algorithmic, and the
intuitive components of a mathematical activity are very complex and usually not
easily identified or understood.

In this chapter I consider why people make the decisions that they do when
solving geometrical problems. In doing so, I explore the role of geometrical
intuition in geometrical problem solving and provide an example of the
interplay between students’ intuitive and formal (deductive) reasoning. The
research | describe was designed to investigate the nature of the relationship
between the formal and the intuitive components of mathematical activity
as students were solving a series of geometrical problems (Jones [5]). The
episode | relate involves two pairs of recent mathematics graduates tackling a
well-known geometrical problem. The students were using the dynamic
geometry package Cabri-Géomeétre.

Schoenfeld has written extensively about his work with students solving
(and not solving) the geometrical problem given below (for example,
Schoenfeld [9] and [10]). There are four elements in Schoenfeld’s framework
for analysing mathematical problem solving and within each it is possible to
suggest a role for intuition. The problem-solvers’ resources include intuitive
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knowledge, heuristics involve knowing when to use which strategy, control
focuses on major decisions about what to do in a problem and belief systems
shape cognition, even when the problem-solver is not consciously aware of
holding those beliefs. A conclusion Schoenfeld reaches is that , rather than
being disjoint, “a deductive approach to mathematical discovery .... and an
empirical intuitive approach .. are in fact mutually reinforcing”.

It is helpful, at this point, to give Fischbein’s definition of intuition as a
special type of cognition, characterised by self-evidence and immediacy, and
with the following properties (Fischbein [2] p 43-56): intrinsic certainty,
perseverance, coerciveness, theory status, extrapolativeness, globality, and
implicitness. In Fischbein's view, intuitions are theories or coherent systems
of beliefs. This conception has similarities to Cooney’s [1] idea that the
representation of an intuition is likened to a mini-theory, a model, which
supports reaching a conclusion, with certainty, on the basis of incomplete
information.

Problem

You are given two intersecting lines and a point P on one of them. Show
how to construct a circle that is tangent to both lines and has P as its point of
tangency to one of the lines.

P

Critical decisions in the solution of this problem are:
1. Constructing a perpendicular line through P

2. Constructing the angle bisector of the angle between the two intersecting
lines or constructing a circle centred at the intersection and passing
through P giving an intersection with the second line; a perpendicular line
through this point intersects the perpendicular through P at the centre of
the required circle.

One subject pair, both male and both with some experience of
geometrical constructions, began by reproducing the problem diagram on
the computer screen. Their first approach was to construct a circle with a
centre chosen somewhere between the two intersecting lines, and with
point P as the radius point. They then used the facility available with Cabri
to drag the centre of the circle so that it appeared also to be tangential to
the lower of the two intersecting lines. Though this gave them a solution,
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they were not happy with this and searched for a way of being “absolutely
sure’.

Subject CR says "Well, the tangent is perpendicular to the line of radius,
isn't it?" so they constructed a perpendicular line through P and constrained
the centre of the circle to lie on this perpendicular. Then subject CR
suggested that they construct a perpendicular line to the lower of the two
intersecting lines and move it into the correct place. At this point, TC
wonders if the centre of the circle lies on the bisector of the angle between
the two intersecting lines. With that the problem was solved.

Another subject pair, one female (KH) and one male (KJ), both with
some experience of geometrical constructions, used a similar approach.
They began by creating the diagram for problem 1 and then proceeded to
construct two perpendiculars, one through P and a second perpendicular to
the lower of the two intersecting lines. As was suggested but never
implemented by the first pair, this second perpendicular line was then
dragged into place. At this point, KH says "I tell you the other thing we
could do and that's bisect that angle to find out where they should cross".
With that they too had solved the problem.

For both pairs whose methods are described here, once they had solved
the problem, they discussed their solution method. This resulted in them
drawing up an argument that would properly serve as a proof. In this way,
the solution of the problem suggested the structure of a deductive proof.
None of the pairs studied used the alternative method, suggested above, of
constructing a circle centred at the intersection and passing through P giving
an intersection with the second line. Then a perpendicular line through this
point intersects the perpendicular through P at the centre of the required
circle.

For pair 1, the suggestion to draw the angle bisector was made quite
tentatively towards the end of their problem-solving attempt:

TC: Yes ... Ah! Now would the centre of the circle lie .. I'm just thinking
something slightly different now, because I'm just trying to think, there must
be a way of securing the centre accurately .. and I'm thinking .. does the
centre of the circle ..sit on the bisector of the angle that's made by those two
lines ..

For pair 2 the student was more certain

KH: 1 tell you the other thing we could do and that's to bisect that angle to find
out where they should cross.

This is how the students accounted for their actions as they watched a
video-recording of their problem-solving attempt later the same day. In the
case of pair 1:
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TC: .. [long pause] .. well, partly previous knowledge. | wasn't .. completely sure.
I wasn't saying "Oh, yes. This is what does happen'. | just had a snheaky
feeling that we were missing something and | couldn't work out what it was,
but I thought, well I'm sure the angle .. there must be some connection
between the angle between the two lines and the centre [of the circle]. So,
let's put the line in and see what happens.

It turned out to be right, but it was just a sort of stab .. well, it wasn't a stab in
the dark completely ...

I can't think why, but I was sure we should be bisecting the angle.

In the case of pair 2:

KH: Ohhh! .. [laughs] .. That's quite interesting because, maybe, .. the fact that
there's a cross there [where the two perpendicular lines intersect “opposite’
where the original two lines intersect] actually encouraged me to think well,
we need to know where the cross is going to be. Perhaps if we hadn't have
drawn the other perpendicular it would not have come so quickly.

Looking at that picture now I think .. it's ..er .. er .. | mean just having that
sort of cross there on the screen opposite the angle there, | mean, that just
spells it out. | think perhaps that's why it just came so quickly.

In both cases the students had some difficulty explaining their actions (a
well-established methodological issue). Nevertheless, both previous
experience and the visual image appeared to play a part in determining the
course of action they were suggesting. In this context, Fischbein says,
“Experience is a fundamental factor in shaping intuitions” (Fischbein [2] p
85). However, Fischbein (ibid) then goes on to say that “There is little
systematic evidence available supporting that view, i.e. evidence
demonstrating that new intuitions can be shaped by practice”. In terms of
the visual image, Fischbein ([2] p. 103) claims that visualisation “is the
main factor contributing to the production of the effect of immediacy”.
Fischbein then goes on to relate visualisation to the domain of mental
models. The evidence available from this study supports Fischbein’s views
in the domain of solving geometrical problems.

Further analysis of the data from this study suggests that geometrical
intuition has a role in the planning-implementation, and transition episodes
of a problem-solving attempt (see Schoenfeld [9] p 292 for details of these
episodes). In addition, it is possible to tentatively identify the following
mechanisms as participating in the formation of the subject's geometrical
intuitions: premature closure, primacy effect, factors of immediacy (partic-
ularly visualisation and anchoring), and factors of globality (see Fischbein
[9] p 204-205 for an explanation of these mechanisms). However, because
the analysis examined points of critical decision for the successful solution
of the problem, instances of geometrical intuition may, inevitably, tend to
form points of transition in the problem-solving process or occur during
planning and implementing episodes. The analysis presented here does not
consider how intuition may have led the subjects astray.
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The framework Fischbein ([2]) proposes proved reasonably robust in this
study. His problem-solving categories of intuition were identified, and a
way suggested to differentiate between anticipatory and conclusive
intuitions, in that the subjects’ awareness of the critical nature of any
decision they make appears to be associated with conclusive intuitions.
Secondly, it is possible to tentatively discern the mechanisms that
participated in the generation of these geometrical intuitions. The
explanations supplied by the subjects in this study provides supporting
evidence for these conclusions.

The study described here was designed to provide evidence of particular
aspects of the nature and role of geometrical intuition in the process of
solving geometrical problems, and of the possible mechanisms that par-
ticipated in the generation of these geometrical intuitions. The students
observed here used a mixture of a deductive approach in, for instance,
drawing a perpendicular through point P, and an empirical intuitive ap-
proach provided for by Cabri: being able to ‘drag’ a second perpendicular
into place™. Once they had a solution, the ensuing discussion effectively
provided a proof. This illustrates how a deductive and an intuitive
approach can prove to be mutually reinforcing when solving geometrical
problems.
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! 1The mediating role of the computer is discussed in chapter 4.



