A multi-mechanistic model for precipitation strengthening in Al-Cu-Mg alloys during non-isothermal heat treatments


Khan, I.N. and Starink, M.J. (2006) A multi-mechanistic model for precipitation strengthening in Al-Cu-Mg alloys during non-isothermal heat treatments. In, Poole, W.J., Wells, M.A. and Lloyd, D.J. (eds.) Aluminium Alloys 2006: Innovation Through Research and Technology. 10th International Conference on Aluminum Alloys Switzerland, Trans Tech, 277-282. (Materials Science Forum 519-521).

Download

Full text not available from this repository.

Description/Abstract

A multi-mechanistic model for microstructure development and strengthening during non-isothermal treatment of precipitation strengthened Al-Cu-Mg based alloys is derived. The formation kinetics of the precipitates is modelled using the Kampmann and Wagner numerical model that accounts for complete transformation from the nucleation to the coarsening stages. The increase in critical resolved shear strength of the grains due to the precipitates is based on two mechanisms i.e. modulus hardening mechanism for the shearable Cu:Mg co-clusters and the Orowan mechanism for the non-shearable S phase precipitates. The contributions due to solute and dislocation hardening are also incorporated. The model is verified by comparing the predicted results with differential scanning calorimetry and hardness data on 2024 aluminium alloys. The microstructural development and strength/hardness predictions of the model are in reasonable agreement with the experimental data and the differences are discussed in terms of requirements for further model development.

Item Type: Book Section
Additional Information: Series ISSN 0255-5476
ISBNs: 0878494081 (hardback)
ISSNs: 0255-5476 (print)
Related URLs:
Keywords: precipitation, co-clusters, strength, welding, ageing
Subjects: T Technology > TN Mining engineering. Metallurgy
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences > Engineering Materials & Surface Engineering
ePrint ID: 41238
Date Deposited: 07 Aug 2006
Last Modified: 27 Mar 2014 18:26
Publisher: Trans Tech
URI: http://eprints.soton.ac.uk/id/eprint/41238

Actions (login required)

View Item View Item