Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum

Pagani, Mark, Pedenchouk, Nikolai, Huber, Matthew, Sluijs, Appy, Schouten, Stefan, Brinkhuis, Henk, Sinninghe Damsté, Jaap S., Dickens, Gerald R., Backman, Jan, Clemens, Steve, Cronin, Thomas, Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R., Kaminski, M., King, J., Koc, N., Martinez, N. C., McInroy, D., Matthiessen, Jens, Moore, T. C. Jr., Moran, Kathryn, O´Regan, M., Pälike, Heiko, Rea, B., Rio, D., Sakamoto, T., Smith, D. C., Stein, Rüdiger, StJohn, K. E. K., Suto, I., Suzuki, N., Watanabe, M. and Yamamoto, M. (2006) Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, 442, (7103), 671-675. (doi:10.1038/nature05043).


[img] PDF - Version of Record
Restricted to Registered users only

Download (247Kb) | Request a copy


The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world1,2,3. This warming is associated with a severe shoaling of the ocean calcite compensation depth4 and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates1,2,3,4. Together these observations indicate a massive release of 13C-depleted carbon4 and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean5, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming6. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity2. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion—and associated carbon input—was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1038/nature05043
ISSNs: 0028-0836 (print)
Related URLs:
Subjects: Q Science > QE Geology
Divisions : University Structure - Pre August 2011 > School of Ocean & Earth Science (SOC/SOES)
ePrint ID: 41258
Accepted Date and Publication Date:
10 August 2006Published
6 July 2005Submitted
Date Deposited: 11 Aug 2006
Last Modified: 31 Mar 2016 12:12

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics