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I 

UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 

SCHOOL OF OCEAN AND EARTH SCIENCE 
Doctor of Philosophy 

 

INVESTIGATING AND MODELLING THE BODY SIZE STRUCTURE OF 

BENTHIC COMMUNITIES 

 

by Janne Ilkka Kaariainen 

 

Benthic communities were investigated in terms of their body size distributions at 
three environmentally contrasting study sites: (i) a shallow-water location on the 
Fladen Ground, North Sea, (ii) a deep-water location in the Faroe-Shetland Channel 
and (iii) and a mid-slope oxygen minimum zone location on the Oman Margin, 
Arabian Sea. The construction of body size spectra formed a central component of 
this analysis and it served as a foundation for further investigations into the 
functioning and dynamics of these communities. The shape of the biomass size 
spectra at all three locations could best be described by biomass increasing as a 
function of body size. In contrast to earlier studies, the biomass distribution patterns 
did not display distinct evidence of bimodality, implying that biomass size spectra do 
not distinguish meio- and macro-fauna as two functionally distinct groups of benthic 
organisms.  
 
The body size spectra were found to vary in different environmental conditions. 
Comparisons of the two NE Atlantic locations revealed that the deeper Faroe-
Shetland Channel site (1600 m) was dominated by smaller individuals than the 
shallower Fladen Ground site (150 m) hence conforming to the deep-sea size 
miniaturisation hypothesis as suggested by Thiel (1975). The size distribution patterns 
at the Arabian Sea site also differed significantly from the other two locations. Two 
taxonomic units (nematodes and polychaetes) overwhelmingly dominated the fauna in 
the low oxygen environment and this was reflected in the shape of the size spectra. 
 
The empirical results formed a basis for a benthic simulation model that attempted to 
reproduce the trends observed in the field data. The size-based approach was observed 
to be successful in modelling the benthic biomass distributions. The results suggested 
that defecation and mortality imposed a strong influence on community size structure. 
Production and energy flow were also estimated at community level by utilising the 
empirical size distribution data and the previously established allometric relations 
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1. INTRODUCTION 

 

1.1 General introduction 
 

One of the primary goals of ecology is to gain an understanding of the functioning 

and dynamics of the faunal assemblages on a system-wide scale. The first step in 

achieving this goal involves characterising the communities in terms of their 

constituent components. For example, benthic communities have been traditionally 

described by using a taxonomic approach. This is a process that involves identifying 

the individual organisms to species level and providing an estimate of their 

abundance. Such analysis is typically carried out for a limited size range (e.g. 

organisms retained on a 500 µm mesh) as counting and identifying all the different 

species at community or ecosystem level is both time-consuming and requires a 

considerable level of expertise (Saiz-Salinas & Ramos, 1999; Robson et al., 2005).  

 

An alternative method of studying marine benthic communities is the investigation of 

their size structure. The way biomass is distributed among the component individuals 

is an important attribute of any community as it is often closely linked to its 

functioning (Strayer, 1986). As such, description of size distribution contains latent 

information about the system dynamics that cannot be obtained by a conventional 

taxonomic approach alone (Platt, 1985). The size-based approach hence offers a tool 

for community analysis at a general level and can provide an alternative or 

complimentary perspective to taxonomic techniques (Rasmussen, 1993).  
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This thesis examines the body size structure of benthic infaunal communities by 

constructing biomass and abundance size spectra for three environmentally 

contrasting locations. The size distributions are used to characterise the benthic 

communities and to assess some of the existing hypotheses that have been central to 

benthic ecology as well as to make further predictions about the functioning and 

controls of benthic systems. The thesis begins by introducing the basic concepts of 

size-based community analysis. The subsequent chapters describe the environmental 

settings of the study sites (chapter 2), the methods used (chapter 3) and a general 

biological description of the benthic communities (chapter 4).  Chapter 5 forms the 

backbone of the thesis as it presents the results of the size spectral analysis from the 

three sampling locations. The following three chapters draw on these data to 

investigate body size miniaturisation in the deep-sea (chapter 6), to estimate 

production and energy flow (chapter 7) and to examine some of the processes that 

control the observed biomass size distributions of benthic communities by using 

simulation modelling (chapter 8). The results are brought together in chapter 9, which 

considers the wider implications and places the conclusions into context with our 

current understanding of benthic ecology.   

 

1.2 Ecological implications of body size 
 

Individual body size is probably the single most important factor in determining and 

controlling the course of life for aquatic animals. Body size can largely determine 

what an organism requires in order to survive and how much of its time and resources 

it spends in meeting those demands (Han & Straskraba, 1998). Entire life cycles are 

often governed by the restrictions or opportunities that the animal encounters as a 
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result of its body dimensions. Numerous biological process have been shown to 

correlate strongly with individual body size (e.g. metabolism, abundance, biomass 

production, nutrient recycling, home range size etc; Peters, 1983; Schmidt-Nielsen, 

1984; Brown et al., 2004). These relationships typically take the form of a power 

function 

 

Y = aMb         (1.1) 

 

where Y is the predicted biological characteristic (dependent variable), M is the 

animal body mass (independent variable) and the two coefficients a and b refer to an 

empirically defined normalisation constant and a scaling exponent, respectively. 

Depending on the value of the exponent these relationships are classified as either 

allometric (a ≠ 1) or isometric (a = 1; Marquet et al., 2005). Most biological processes 

are allometric functions of body size and they plot as a curve on a linear axis (Peters, 

1983). As these data often span a wide range of body sizes, it can be visually more 

informative to express them on logarithmic scales. Logarithmic transformation of the 

allometric power function takes the form of the equation for a straight line 

 

log Y = log a + b log M       (1.2) 

 

where the value of the constant log a corresponds to the Y-intercept and the value of b 

to the slope of this line. An interesting property of these scaling relations is that with 

many biological processes, such as respiration or intrinsic growth rates, the value of b 

has been shown to approximate 3/4 for whole-organism rates and –1/4 (M3/4/M = 
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M(3/4-4/4) = M-1/4) for mass-specific rates (Peters, 1983; Schmidt-Nielsen, 1984; Brown 

et al., 2004).  

 

As a consequence of biological processes scaling closely with individual body size, it 

is reasonable to expect that body size will also have direct implications on population, 

community and ecosystem structures. Consequently, the allometric relations can 

provide a useful conceptual framework for relating individual organisms to the 

structure and dynamics at higher ecological levels.  

 

1.3 Body size spectra 
 

1.3.1 Variety in format 
 

A primary tool for the investigation of community size structure is the construction of 

body size spectra. This involves expressing body size as a series of classes on the x-

axis and plotting a measurement of organism abundance on the y-axis. In other words, 

each individual is assigned to a size class and the measure of abundance in each class 

represents the summed total of its constituents.  

 

These size classes are often expressed on a logarithmic scale (such as the geometric 

scale) where each size class is twice the size of its smaller neighbour. The size classes 

may be based on a direct measurement of a particular body dimension (e.g. maximum 

body length), volume, body mass (dry mass, wet mass, organic carbon) or equivalent 

spherical diameter (ESD), which refers to the diameter of a sphere that has the same 

volume as the measured organism.  
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Abundance on the y-axis can be expressed as total biomass, number of individuals or 

number of species resulting in biomass-, abundance- or species- size spectrum, 

respectively.  The data on the y-axis (measure of abundance) can be presented in a 

number of different ways. Regular body sizes spectrum plots the actual measured 

values in each size class. Relative size spectrum involves converting the actual 

measurements into percentages allowing a direct comparison of the shapes of two or 

more different spectra. Cumulative size spectrum sums the running total in each size 

class and all the classes below it and can be particularly useful in gauging the relative 

contributions of different size classes to the size distribution as a whole. As with the 

size classes on the x-axis, biomass and abundance measurements are regularly 

expressed on a log10- scale effectively resulting in log10 – log2 plots. 

 

Platt and Denmann (1978) outlined the problem of cross-comparing the biomass size 

distributions as the width of the size classes varies considerably (i.e. smaller size 

classes contain organisms of similar size whilst variation of individual body sizes is 

greater in the larger size classes). They proposed that the construction of normalised 

size spectrum may help to correct for this by diving the summed total in each size 

class by its width.  

 

Vidondo et al. (1997) proposed the use power law probability or Pareto type 

distributions to describe body size spectra. This approach is based on an idea of 

plotting the probability that size s of a particle at random will be greater than size S 

(prob[s>S] as a function of S on a double-logarithmic scale (for details see Vidondo et 

al., 1997). In the case of non-taxonomic size distributions this means that the term 
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prob(s>S) is calculated for each measured organism as the fraction of all organisms 

larger than or equal to itself. If the community biomass distribution follows a Pareto 

type distribution then the plotted data will take the form of a straight line. Fitting a 

regression line through these data points will then produce the necessary statistics to 

evaluate the relevant parameters of the underlying Pareto distribution. The advantage 

of this approach is that each measurement contributes one data point to the resulting 

plot hence incorporating all the information from the observations. However, systems 

that are not in equilibrium cannot be appropriately described by the Pareto type 

distribution (Vanaverbeke et al., 2003; Marquet et al., 2005) and it is not 

recommended from the statistical standpoint (Vidondo et al., 1997).  

 

The criteria for inclusion and measurement of individuals also varies depending on 

the nature of the study. Some size spectra have included only certain size fractions of 

the benthic community (e.g. macrofauna; Parry et al., 1999) or specific taxa (e.g. 

nematodes; Vanaverbeke et al., 2003). Other studies have excluded juveniles 

(Warwick, 1984) or have assigned each species uniquely to one size class (by average 

or maximum body size; Kendall et al., 1997). The last type of size spectrum can be 

constructed with a species list and single measurement of body size for each species 

and therefore represent an abstraction of the system as a whole. 

 

1.3.2 Approach in the current study 
 

Several methods exist to construct a body size spectrum reflecting the underlying 

community size structure. The current study has adopted a non-taxonomic approach 

by constructing biomass- and abundance- size spectra for the benthic communities. 
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The size classes are based on body mass (wet weight) and they are expressed on a 

geometric (log2) size scale. No distinction has been made between juveniles and 

adults as any individual present in a size class contributes to the functioning and 

dynamics of that group.   

 

Due to sampling and sample processing, some of the organisms could not obtained 

intact, resulting in the presence of fragmented body parts. This was mainly an issue 

with larger polychaete worms and it was decided that only the fractions with heads 

contributed towards the total abundance estimates. However, all fractions were 

measured for biomass and the fragmented body parts were allocated into their 

respective size classes based on these measurements. Although this may have resulted 

in some of the biomass being assigned into wrong size class, in reality the fragments 

were probably only shifted by one size category (e.g. fragments allocated to size class 

16 belonged to either that size class or class 17 due to logarithmic scaling). Due to 

relatively low number of fragments present in the samples, this was unlikely to have a 

significant influence on the shape of the biomass size spectra. 

 

1.3.3 History of size spectral analysis 
 

Schwinghamer (1981) was the first to apply the size spectral analysis to marine 

benthic communities. He investigated body sizes ranging from bacteria to macrofauna 

by plotting total biomass against equivalent spherical diameter (ESD) on a 

logarithmic scale (base 2). The results for six intertidal stations showed a trimodal 

distribution with three biomass peaks at 0.5-1 µm, 64-125 µm and >2mm 

corresponding to micro-, meio- and macro-fauna, respectively. The peaks were 
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separated by biomass troughs reflecting the transitions between these three groups of 

organisms. 

 

Subsequently, Schwinghamer extended these investigations to coastal sublittoral 

(1983) and to continental shelf and abyssal communities (1985) in order to examine 

the environmental variation in biomass spectra. At all locations the size spectra 

followed the previously established trimodal distribution. Similar observations 

resulted from a temporal study where the size distributions were investigated at an 

intertidal station sampled over an annual cycle (Schwinghamer, 1983). This led 

Schwinghamer to conclude that size structure is a conservative and predictable feature 

of benthic communities. Schwinghamer explained these results by the variable 

sediment perception hypothesis with the three groups occupying different aspects of 

the sediment environment. Microfauna colonise the surfaces of individual particles 

whilst macrofauna regard the sediment as effectively non-particulate either living on 

its surface or burrowing through it. Meiofauna are restricted to a life in the pore 

spaces between the particles. Changes in sediment characteristics, such as water 

content or grain size distribution, were thought to have a modifying effect on the size 

spectra resulting in possible shifts along one or both of the axes (Schwinghamer, 

1985). Subsequent studies have investigated the effect of habitat architecture on the 

biomass and abundance size spectra but have regularly failed to find any shifts in the 

size distribution in response to changes in granulometry (Strayer, 1986; Duplisea & 

Drgas, 1999; Leaper et al., 2001). 

 

Warwick adopted a different approach (1984) to the construction of size spectra as he 

studied the number of species present in each size category. For taxonomic reasons 
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the analysis was restricted to metazoans ranging in size from meio- to macro-fauna. 

The resulting size spectra were remarkably similar to those obtained by 

Schwinghamer (1981, 1983, 1985). The meiofaunal mode occurred at dry body 

weight of 0.64 µg (200 µm ESD) and the macrofaunal mode at 3.2 mg (1.5 mm ESD) 

with the trough in between at 45 µg  (850 µm ESD). Warwick also reported the 

bimodality of meio- and macro-fauna to be invariant with respect to sediment particle 

size. Instead Warwick offered evolutionary explanations (development-, 

reproduction- and feeding-modes, generation time etc) for the observed dichotomy, 

suggesting that meio- and macro-fauna both had an internally coherent set of 

biological characteristics. According to his hypothesis there are two modal size 

classes (corresponding to meio- and macro-fauna) where these two sets of traits are 

optimised. Organisms that fall into size classes on either side of these optima are at a 

disadvantage. 

 

The pioneering studies of Schwinghamer (1981) and Warwick (1984) have been 

widely quoted as evidence that meio- and macro-faunal groups represent two 

functionally distinct assemblages (Parsons et al., 1984; Giere, 1993). However, 

subsequent studies have frequently produced contrasting patterns, yet few have 

challenged the theory directly. The construction of reliable body size spectra can help 

to elucidate whether biomass and abundance distributions are adequate in reliably 

differentiating between the two faunal groups.  
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1.4 Modelling benthic communities 
 

The construction and analysis of biomass and abundance size spectra are important in 

characterising the benthic community structure.  These size spectra have generated 

several hypotheses concerning the factors controlling the size distributions. One way 

of testing these hypotheses is to carry out further experimental work but due to the 

complexity of biological systems and the large number of potential factors involved, 

such studies can be extremely time-consuming. Numerical simulation modelling 

offers a useful tool in focusing these experimental research efforts.  

 

An appropriate simulation model is dependent on two important attributes. First, the 

structure of the constructed model must reflect the structure of the biological system it 

attempts to simulate. Second, the processes that govern the interactions between the 

different parts (variables) of the model must be accurately parameterised. Modelling 

of benthic systems has been hindered by the lack of information on many of these 

processes. However, all organisms, regardless of their taxonomic identity or 

environmental setting, must follow the basic laws of physics, chemical stoichiometry 

and thermodynamics. As most of the biological processes scale with body size in a 

predictable manner (Peters, 1983; Brown et al., 2004), a body size-based approach 

may prove as a good starting point for modelling benthic communities. Such a 

modelling approach can provide additional insights into benthic community dynamics 

and generate testable hypothesis that could help to guide the future experimental 

studies.  
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1.5 Aims 
 

The main objective of this thesis is to investigate marine benthic communities in 

terms of their size structure. As body size scales closely with a number of biological 

processes, the resulting data can be used to further examine the factors that influence 

marine benthos. The specific aims of the project included: 

 

1. Construction of reliable biomass and abundance size spectra for a number of 

environmentally contrasting benthic communities. This enables a close 

scrutiny of the shape of the spectra under different environmental conditions 

as well as examining the existence of a true functional distinction between 

meio- and macro-fauna. 

 

2. Investigation of the suggested body size miniaturisation of the deep-sea 

benthos.   

 

3. Estimation of community production and energy flow by utilising the 

empirical size distribution data and the previously established allometric 

relations. 

 

4. Development of a simple size-dependent benthic ecosystem model to assess 

the suitability of a size-based modelling approach in providing reasonable 

approximations of the field data. This also helps to identify the biological 

processes that are important in maintaining and controlling the observed 

community size structure.
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2. STUDY SITES 

 

2.1 Introduction 
 

Samples for this project were collected from three different sites: (i) a shallow-water 

location on the Fladen Ground, North Sea, (ii) a deep-water location in the Faroe-

Shetland Channel and (iii) and a mid-slope oxygen minimum zone location on the 

Oman Margin, Arabian Sea. The samples from the NE Atlantic were collected prior to 

the commencement of this PhD whilst the sampling in the Arabian Sea provided an 

opportunity to conduct field work (and collect a further sample set) within the project 

itself.  

 

The Fladen Ground site (FG) is located in the northern North Sea, approximately 100 

miles east of Aberdeen, Scotland (figure 2.1). It forms a part of a flat muddy ground 

characterised by an irregular pattern of glacial depressions between 100 and 150 m 

depth (Bashford & Eleftheriou, 1988). This area is further characterised by extensive 

oil industry activity and may be subjected to considerable fishing pressure (Jennings 

et al., 1999).  

 

The Faroe-Shetland Channel site (FSC) is a deep-water location (1,600 m) separating 

Faroe Plateau from the Scottish Continental Shelf (figure 2.2). The channel itself is 

important in the exchange of water between the Atlantic and Norwegian basins. 

Although the area has been a target for some oil exploration over the past 30 years 

(Ferguson, 1997), it is still essentially a pristine deep-water habitat.  
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The Arabian Sea sampling site is located on the Oman Margin (OM; figure 2.3) and is 

characterised by a well-developed oxygen minimum zone (OMZ) that extends from 

about 100 to 1000 m water depth. The samples were collected from the core of the 

OMZ (500 m) where the benthic communities are subjected to an existence in 

hypoxic conditions. Geographically this location is part of the continental margin 

characterised by steep descending rocky outcrops and underwater canyon systems 

best described as a direct continuation of the coastal mountain range (figure 2.4).  

 

These locations were chosen on the merit of their contrasting environmental settings 

and as the emphasis of the study was to compare the influence of these environmental 

gradients on biomass distribution, the actual geographical locations of the sampling 

sites were not as important. The details of the sampling locations are summarised in 

tables 2.1 and 2.2. 

 

2.2 Hydrography 
 

The Fladen Ground sampling site lies in the deeper part of the North Sea. It forms a 

centre of a gyre with limited current movements and is surrounded by major water 

inflows from the Atlantic into the North Sea (‘Fair Isle Current’ and ‘East Shetland 

Atlantic inflow’; Turrell, 1992). Whilst the surface waters are characterised by weak 

tidal and residual currents (although the prevailing winds may influence the surface 

current patterns), the bottom water currents are thought to be slight (< 0.25 m s-1; De 

Wilde et al., 1986). Fladen Ground is thermally stratified during the summer months 

when the thermocline can be found between 30 and 70 m (figure 2.5). The annual 
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variation in the bottom water temperature is small with the range varying from 6 to 8 

C° (McIntyre, 1961; Lee, 1980; Faubel et al., 1983). 
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Figure 2.1. Fladen Ground sampling location 
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Figure 2.2. Faroe-Shetland Channel sampling location 
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Figure 2.3. Oman Margin sampling location. 
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Figure 2.4. The coast of Oman above and below the surface. The 3D view of the 
coastal bathymetry bears close resemblance to the geography on land.   
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Table 2.1. Summary of the sampling locations. 

 

 

 

 

 

 

 

 

 

 

 

 

Site Date Station 
number 

Depth 
(m) Latitude Longitude 

Fladen Ground      
 11/09/00 55526#1 154 58˚15'33 N 00˚44'87 E 
 11/09/00 55526#2 153 58˚15'35 N 00˚44'94 E 
 11/09/00 55527#2 153 58˚11'65 N 00˚56'59 E 
 11/09/00 55528#1 154 58˚18.77 N 00˚58'35 E 
 11/09/00 55528#2 150 58˚18.84 N 00˚58'43 E 

Faroe-Shetland 
Channel      

 02/09/00 55447#6 1622 61˚55'03 N 02˚48'30 W 
 02/09/00 55447#8 1623 61˚54'87 N 02˚48'18 W 
 02/09/00 55447#9 1624 61˚55'05 N 02˚48'12 W 
 02/09/00 55447#10 1623 61˚54'89 N 02˚47'94 W 
 02/09/00 55447#11 1624 61˚54'95 N 02˚48'06 W 

Oman Margin      
 09/12/02 55754#1 504 23˚22'98 N 59˚00'00 W 
 09/12/02 55754#2 505 23˚23'02 N 58˚59'99 W 
 09/12/02 55754#3 511 23˚23'01 N 58˚59'93 W 
 09/12/02 55754#4 492 23˚23'08 N 58˚59'91 W 
 09/12/02 55754#5 528 23˚23'09 N 59˚00'09 W 
 11/12/02 55764#1 502 23˚22'94 N 58˚59'98 W 
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Table 2.2. Summary of the environmental conditions at the sampling locations. 

 FG FSC OM 
    
Date Sept 2000 Sept 2000 Dec 2002 
    
Oceanographic information    
Depth (m) 150 1600 500 
Temperature (ºC) 6-8 -0.5 13.1 
Bottom water oxygen concentration (ml/l) 6-7 6-7 0.11 
    
Sediment information    
Median grain size (phi) 5.2 5.8 5.2 
Percentage of fines >80 >82 >74 
Sediment classification Coarse silt Medium silt Medium silt 
Organic content 1-5 % 1.08 µg/g 4-6 % 
    
Production information    
Estimated annual surface primary production 
(g C m-2 y-1) 200-300 200-300 450 

Estimated flux to the seabed  
(g C m-2 y-1) 53-80 5.2-7.8 37 
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The FSC as a whole is a highly dynamic physical environment with a complex 

hydrographic setting.  The hydrodynamics within the channel can be described as a 

system of five separate water masses that are identified by their temperature and 

salinity characteristics (Turrell et al., 1999). The intermediate water masses separate 

the uppermost warm layer of North Atlantic Water from the sub-zero temperature 

water of the channel floor (Faeroe-Shetland Channel Bottom Water; figure 2.6) 

originating from the deep Norwegian Sea (800 m). Although extremely large 

variations in water temperature have been recorded at intermediate depths within the 

channel, the bottom water temperatures are more constant with typical values less 

than -0.5°C (-0.5 to -1.0 °C; Turrell et al., 1999; figure 2.6). Overall the hydrography 

of the channel plays a very important role both in water exchange between the 

Atlantic and Arctic basins and in global thermohaline circulation (Hansen & Osterhus, 

2000). 

 

The hydrographic setting of the Gulf of Oman is largely driven by the monsoon 

dynamics. The strong seasonal winds lead to upwelling of nutrient-rich waters during 

the SW (June – September) and NE monsoons (December - March). The 

hydrodynamics of the Gulf of Oman are further characterised by intrusion of Arabian 

Gulf Water flowing in through the Strait of Hormuz at depth of about 200-300 m. 

This water mass can be identified by its increased oxygen (and temperature) values 

(figure 2.7). The bottom water temperatures near the study site were measured at 20.1 

˚C at 100 m, 13.1 ˚C at 500 m and then decreasing steadily with water depth to 1.9 ˚C 

at 3000 m. 
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Figure 2.5. Oxygen, temperature and salinity profiles from the FG study area. 
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Figure 2.6. Oxygen, temperature and salinity profiles in the FSC study area. 
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Figure 2.7. Oxygen, temperature and salinity profiles in the OM study area. 
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2.3 Sediments 
 

The sediment environment at Fladen Ground consists essentially of coarse silt with a 

relatively high percentage of fines (> 80%; table 2.2). The median grain size was 

recorded as 26.7 µm (5.2 PHI). The percentage of organic matter in the surface 

sediments is reported to vary from 1 to 5 % (dry weight; Faubel et al., 1983).  

 

The sediment environment in the Faroe-Shetland Channel is highly variable with a 

number of sediment types and features observed across the continental shelf (Masson, 

2001). The study site was characterised by fine-grained sediments (medium silt) with 

a mean particle size of 18.4 µm (5.8 PHI) and relatively high percentage of fines (> 

82%; table 2.2). The total organic carbon content was measured at 1.08 µg g-1 

sediment.  

 

The sediment environment at the OM site was very similar to the FG location. The 

sediment was best described as medium silt with a mean particle size of 26.9 µm (5.2 

PHI) and high percentage of fines (> 74 %; table 2.2). Total organic carbon content of 

the sediments at the core of the OMZ off the coast of Oman has been reported to 

range from approximately 4-6 % (Alagarsamy, 2003). 

 

2.4 Oxygen concentrations 
 

The pronounced monsoon regime of the Arabian Sea and the associated upwelling of 

nutrient-rich waters sustain an increased surface production and a high export flux of 

the organic matter from the surface waters (Gage et al., 2000).  This increased flux of 
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organic matter coupled with limited mixing results in low mid-water oxygen 

concentrations. These oxygen minimum zones (OMZ) are defined as areas where O2 

< 0.5 ml l-1. In areas where the OMZ impinges on the continental margin, the 

associated benthic communities experience extremely low bottom water oxygen 

concentrations.  These are the conditions that also prevail at the current study location 

in the Arabian Sea. The measured oxygen concentrations for the Oman Margin area 

are shown in figure 2.7.  

 

The OMZ was observed to extend from 100 to 1000 m water depth, with the intrusion 

of the Arabian Gulf water mass detected in the oxygen profiles as a peak of locally 

increased values around 200 m water depth. The bottom water oxygen values first 

decreased to 0.11 ml/l at 145 m and then increased to 0.23 ml/l at depth of about 270 

m (Gulf of Arabia Water). The oxygen values then decreased again towards the core 

of the OMZ being 0.11 ml/l at 500 m and then slowly increasing to 0.15 ml/l at 1000 

m, 0.28 ml/l at 1200 m, 1.80 ml/l at 2000 m and 2.52 ml/l at 3000 m (figure 2.7). The 

FG and FSC areas have been reported to have well oxygenated bottom waters (6-7 

ml/l; data supplied by ICES Oceanographic Database and Services). 

 

2.5 Overlying production 
 

Direct measurements of primary production and the flux of organic matter to the sea 

floor are not available for the current study sites at the time of sampling. Instead, 

indirect estimates of primary production have been derived from published ship-based 

measurements as well as estimates based on the satellite data for the relevant areas. 

The ship based production estimates are often representative of a specific time period 
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(e.g. spring phytoplankton bloom) and may vary significantly from the values typical 

for the rest of the year.  

 

Similarly the estimation of the transport rates of organic material from the euphotic 

zone to the sea floor is difficult. In general three processes control the content of 

organic material that reaches the seabed: the amount of surface primary production, 

the local hydrographic conditions and the biogeochemical processes that take place in 

the water column. Measuring this flux accurately is difficult and the data generated is 

often highly dependent on the methods used (Lampitt et al., 2001). Nevertheless, 

empirical formulas attempting to quantify the organic flux to the seabed have been 

developed (Suess, 1980; Berger et al., 1988). The problem with these equations is that 

they generally apply to a continuous rate of transport whereas the current study 

locations experience a high degree of seasonality in some (if not all) of the three 

controlling processes. Despite these limitations the empirical equations can be useful 

in providing estimates of the amount of surface production that may reach the 

underlying sea floor. Suess (1980) introduced a formula that linked the annual surface 

primary production (PP in g C m-2 y-1) and water depth (z in m) to the estimated flux 

(F in g C m-2 y-1):   

 
 
F = PP / (0.0238z + 0.212)       (2.1) 
 
 
 
Although other formulas have been developed (Berger et al., 1988; Herguera, 1992), 

the use of Suess formula was adopted for the current study. Ship-based primary 

production estimates for the Fladen Ground site have been recorded to range from 0.5 

to 3.2 g C m-2 d-1 (Cadée, 1986). These estimates refer to measurements made during 
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the spring phytoplankton bloom (April- May) and are therefore likely to be higher 

than the primary production values during the rest of the year. Overall annual 

production estimates at this location are thought to vary from 50 - 100 g C m-2 y-1 

(Steele, 1956; Fransz & Gieskes, 1984) with the more recent satellite data suggesting 

an annual production of 200 – 300 g C m-2 y-1 (the annual global production maps 

with SeaWiFS; http://marine.Rutgers.edu/opp/swf/ Production/results/all2_swf.html). 

The sediment trap data generally suggested that approximately 1% of the surface 

production reached 70 m water depth (although one sediment trap replicate suggested 

9 %; Cadée, 1986). Applying the most recently estimated annual primary production 

values of 200-300 g C m-2 y-1 at the Fladen Ground site (150 m) to the Suess formula 

results in an estimated flux of 52.9-79.3 g C m-2 y-1 to reach the sea floor. This 

estimation seems relatively high in comparison to the estimate of 1 % (~2-3 g C m-2 y-

1; or even 9 %) suggested by sediment trap data (Cadée, 1986). 

 
Ship-based daily spring bloom production estimates for the FSC site vary from 1.2 - 

1.8 g C m-2 d-1 (Riegman & Kraay, 2001). Mean daily spring bloom production values 

for other NE Atlantic sites have been quoted as 1.2 g C m-2 d-1 (Chipman et al., 1993) 

whilst the satellite data for the FSC area suggest the annual production levels to be 

very similar to those estimated for the FG site (200 – 300 g C m-2 y-1). Applying the 

Suess formula (1980) to an annual production estimate of 200-300 g C m-2 y-1 

indicates an organic flux of 5.2-7.8 g C m-2 y-1 to reach the sea floor.  

 

The empirical daily primary production estimates at the OM site vary from 0.4 – 2.67 

g C m-2 d-1 depending on the monsoon season (Jochem et al., 1993; Owens et al., 

1993; Barber et al., 2001). The annual mean production was estimated to amount to 

approximately 480 g C m-2 y-1 (Barber et al., 2001), which agrees well with the 
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satellite data estimates of 450 g C m-2 y-1. Lee et al. (1998) measured the annual 

surface primary production for their coastal site at 505 g C m-2 and stated that 

approximately 1.6 % of this (8.3 g C m-2) was captured in a sediment trap at a depth 

of 500 m. Applying the Suess formula to a production estimate of 450 g C m-2 y-1 at 

the OM site (depth 500 m) results in an estimated flux of 37 g C m-2 y-1.  

 

It should be stated that at the time of sampling large phytoplankton and jellyfish 

blooms were observed in the coastal surface waters of Oman, sometimes resulting in 

thick, soup like appearance (figure 2.8). Although this production was not measured 

directly, estimates of carbon standing stock on the seabed (at the continental margin) 

were made based on the congregations of decaying jellyfish carcasses that formed 

distinct jelly-detritus patches on the seafloor. These estimates ranged from 1.5 to 75 g 

C m-2 exceeding the estimated annual flux from sediment trap studies by 

approximately an order of magnitude (Billett et al., submitted). 

 



  Chapter 2: Study sites   

30 

 

 

Figure 2.8. The phytoplankton and jellyfish blooms observed in the surface waters 
during the sampling at the Oman Margin in December 2002. 
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3. METHODS 

 

3.1 Sample collection 
 

Sampling at the Fladen Ground and Faroe-Shetland Channel sites took place in the 

Autumn of 2000 during RRS Charles Darwin cruise 123 C4. The Oman margin 

samples were collected in December 2002 as part of RRS Charles Darwin cruise 143. 

All samples were collected using a Bowers & Connely “Megacorer”, capable of 

taking up to 12 cores of 10 cm internal diameter (figure 3.1). The megacorer has a 

hydraulically damped action, which helps to reduce core compaction and any 

potential loss of the flocculent sediment surface layer (Gage & Bett, 2005). The 

megacorer was deployed repeatedly until five successful sample replicates were 

collected for large and small macrobenthos, meiobenthos and an intermediate-sized 

“mesobenthos” from each location (table 2.1; at the OM site only meiofaunal samples 

were collected from the station 55754#1 and in the subsequent analysis these have 

been combined with samples from the station 55764#1). Additional samples were 

collected for sediment particle size analysis.  

 

On recovery of the corer, the function of each coring unit was checked and recorded. 

Core lengths were measured and recorded and any surface and profile features noted. 

Sample acceptance was based on the following criteria: cores > 20cm in length, core 

surfaces essentially level; and, the sediment-water interface intact. Acceptable cores 

were removed from the corer and transferred to the ship’s laboratories for subsequent 

processing. In all cases processing began with the careful removal of the supernatant 

water using a gentle overflow, pump siphon, and/or syringe.  
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Figure 3.1. All samples were collected using a Bowers & Connely “Megacorer”. 
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For the macrobenthos samples, cores were extruded and sectioned to a 10 cm horizon 

(figure 3.2) with the successive cores being pooled (in two fractions) to ideally 

produce a nominal sample size of 7-8 cores (550-628 cm2) for each replicate. Up to 

four of the macrofauna cores were elutriated through 500 and 250 µm sieve meshes 

and the remaining cores through 500 µm only, to separate between the large and small 

macrofauna samples (figure 3.3). For the mesobenthos sample one core (79 cm2) was 

sectioned at 10 cm horizon and this was retained unsieved.  For the meiobenthos 

samples three 20ml syringes were used to subsample a single core with a 0-5 cm 

section retained from each replicate to produce a pooled sample of 10cm2. All the 

material was preserved and fixed in 4%, borax buffered, formaldehyde.  

 

3.2 Sample extraction 
 

3.2.1 Macrobenthos 
 

In the laboratory all the samples were wet sieved through a nest of sieves. Large and 

small macrobenthos samples were separated into 500, 355 and 250 µm fractions. The 

resulting fractions were stained with Rose Bengal, enumerated and sorted to major 

taxa under a stereomicroscope and preserved in ethanol. All metazoan taxa retained 

on the sieves were considered.   
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Figure 3.2. The sample cores were extruded and sectioned to a 10 cm horizon. 
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Figure 3.3. Schematic representation of the initial core sample processing procedure 
at sea. Further sample processing was carried out in the laboratory. 
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3.2.2 Mesobenthos 
 

The mesobenthos samples were divided into 500, 355, 250 and 180µm fractions. 

Upon initial inspection the 180 µm fraction abundance levels were found to be very 

high and consequently these fractions were further sub-sampled by using the “Jensen 

sample splitter” (figure 3.4). This is a “Perspex” cylinder divided radially into eight 

sections. Prior to sub-sampling the total volume of the fraction was determined. The 

sample was then washed into the cylinder and allowed to settle into the sub-sections, 

one of which was randomly chosen for further analysis. To avoid any gradients that 

may have been inadvertently set up during the procedure, the diametrically opposite 

section was also included in the final sub-sample. The volume of the total sub-sample 

was measured and used to determine what percentage of the original sample was 

analysed. The organisms from the sub-sample were enumerated and sorted to major 

taxa under a stereomicroscope and preserved in ethanol. 

 

3.2.3 Meiobenthos 
 

The meiofauna samples were wet sieved on a 45 µm sieve. The material was collected 

to one side of the sieve and washed with Ludox (colloidal silica with a specific 

gravity of 1.15) into a plastic centrifuge tube ensuring that at least four times the 

sample volume of Ludox was added. The samples were centrifuged at 3000 RPM for 

6 minutes to allow the density separation to occur, i.e. less dense, mainly organic 

particles rose to the Ludox surface while the denser, largely inorganic, particles sank 

to the bottom of the tube. After this separation the upper layer of Ludox containing 

the meiofauna and organic debris was decanted through a 45 µm mesh sieve and the 
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collected material was washed onto a Bogorov-type counting tray. The organisms 

were enumerated, sorted to major taxa and preserved in ethanol. The process was then 

repeated four more times and the extracted organisms were pooled with earlier 

specimens.  

 

To assess the efficiency of the centrifuge extraction technique the number of 

meiofaunal organisms present in the residue material was compared with the total 

number of specimens collected in the extraction. As this proved to be particularly time 

consuming the process was carried out for only two of the five samples. For all the 

samples the extraction efficiency was found to be greater than 96 %. 

 

All the nematodes found in the samples (macro-, meso- and meiobenthos) were 

mounted. Initially all nematodes were placed in a solid watch glass filled with a 

1:1:18 mixture of glycerol, ethanol and water (Platt & Warwick, 1983). The watch 

glass was then placed in a dessicator and the water and ethanol were allowed to 

evaporate off slowly over two to three days. The specimens were then mounted in 

anhydrous glycerol on glass microscope slides, c. 25 per slide. Cover slips were 

supported by waxed paper of a thickness appropriate to prevent flattening of the 

specimens and sealed in place with nail varnish. 



  Chapter 3: Methods   

38 

 

Figure 3.4. The Jensen sample splitter.
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3.3 Biomass estimation and size spectra 
 

Organism wet weights were estimated as the product of volume and specific gravity 

(Andrassy, 1956). A specific gravity of 1.13 was assumed for all the organisms used 

in the biomass estimation.  Organism volumes were estimated by resolving the 

specimen bodies into a number of geometric figures ranging from cylinders and 

spheres to truncated cones. For Echinodea 50 % of the total volume was assumed to 

be soft tissue. For other hard bodied taxa (Bivalvia, Ostracoda) the volume of soft 

tissue could be determined directly. 

 

The specimens were examined using a stereomicroscope (compound micrsocope in 

the case of mounted nematodes) fitted with a drawing tube that permitted a virtual 

image of the individual either being drawn or directly measured over the digitising 

tablet of an image analyser (Sigma Scan Image Analysis – version 2.0). The 

measurements were made at the highest magnification that provided sufficient field 

width to encompass the entire specimen to be measured. 

 

In cases where more than 150 specimens of the same taxon were found, 100 

individuals were chosen randomly for the biomass estimation and a density sub-

sampling factor applied to that taxon accordingly. The sub-sampling was achieved by 

thoroughly dispersing all the organisms on a gridded petri dish and measuring all the 

individuals within randomly selected squares, until at least 100 specimens had been 

measured.  In total 8,525 specimens were measured from the Fladen Ground site, 

3,164 specimens from the FSC site and 1,975 specimens from the Oman Margin site. 
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The range of body sizes covered by the nest of mesh sizes used at each study location 

is shown in figure 3.5. These graphs show that at all locations the size range of 

organisms included was adequately covered by the set of sieves used. 

 

The spectra were constructed by using the X2 geometric size classes of Warwick 

(1984) where each class is twice the biomass of the class below. The choice of a 

logarithmic scale is useful in visualising a large range of body sizes and has been 

widely used previously. All the specimens were assigned a body size class and the 

total biomass and abundance in each size class was then used to produce biomass and 

abundance size spectra, respectively.  
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Figure 3.5. Graphical presentation of the range of body sizes covered by the mesh 
sizes (µm) used in the study. 

 



  Chapter 3: Methods   

42 

3.4 Sample limitations 
 

Sample size is always a compromise between covering as large surface area as 

possible and the time constraints associated with sorting these samples. The density of 

larger organisms is reduced in comparison to smaller ones and consequently greater 

sample sizes are required to estimate their abundance and biomass reliably. At 

inappropriate (small) sample sizes the retention of these larger individuals becomes 

random and the estimates of their contribution to the rest of the community are 

similarly unreliable. This can be demonstrated through a hypothetical community 

(Gerlach et al., 1985) where the total biomass of organisms is assumed to amount to 

10 g m-2. This surface area could then contain 100 individuals of 0.1 g, 10 individuals 

of 1 g or one individual of 10g. A sample size of 1 m2 would hence provide reliable 

estimates of the smaller individuals but in order to obtain more accurate estimates of 

the larger ones the sample size would have to be increased. However, time constraints 

associated with sorting smaller individuals from increased sample sizes is not cost-

effective and improvements in the reliability of abundance and biomass estimates are 

small. This has generally resulted in the collection of separate samples for different 

faunal size fractions but it is clear that the limitations at the larger end need to be 

recognised and accounted for in the analysis. 

 

The faunal sediment samples are often sieved through a mesh to reduce the amount of 

sediment and inorganic debris. As with surface areas and sample sizes, different mesh 

sizes are used to target specific faunal size fractions. An inherent property of sieving 

is that it is never a 100 % efficient in retaining only the targeted individuals. A given 

mesh size typically retains some individuals that “should” have passed as organisms 

adhere to other retained particles or the mesh itself (the shape of the organisms may 
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be important). This means that sieved samples always contain organisms that are not 

reliably represented in the resulting extract. The use of variable and overlapping mesh 

and sample size accounts for this limitation at all but the smallest mesh size, where 

the analysis must consider this bias. 

 

3.5 Analytical methods 
 

A wide variety of statistical methods were used to analyse the data sets ranging from 

simple descriptive statistics (e.g. abundance, biomass, average individual size) to 

multivariate analyses of assemblages. The statistical methods are generally described 

within the appropriate chapters but an overview of some of the more specific methods 

are given below. The statistical procedures were carried out by using “Minitab version 

14”, “SigmaPlot version 8” and “Primer version 5” software.  

 

One of the main aims of this study was to characterise the shape of the biomass size 

spectra at the three study locations. This generally involved investigating whether the 

shape of the spectra conformed more to a unimodal or bimodal distribution pattern by 

testing if the individual size classes were significantly different from one another. In 

all cases the analysed data consisted of five replicate data sets hence providing 

appropriate power to conduct all of the applied statistical techniques and to have 

confidence that the generated results were reliable and not susceptible to Type I or II 

errors.  
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3.5.1 Kernel Density Estimation 
 

Manly (1996) investigated the possibility of estimating the precise locations of 

troughs and peaks in biological size distribution data by utilising a technique he called 

“bump hunting” or Kernel Density Estimation. This technique involves comparing the 

properties of observed sample distributions with computer generated samples taken 

with different number of modes. In other words, the location and number of modes in 

size distribution data can be determined by using smoothed bootstrap re-sampling to 

see if the observed spectra are consistent with a continuous null distribution of 

increasing number of modes. The location and the number of modes can be defined 

when the observed and model distributions are consistent (bootstrap test not 

significant at 5% probability level). However, it has been suggested that the 

underlying assumptions of this statistical approach are not met when the test is run for 

averaged distributions (e.g. mean data from replicates) or for manipulated 

distributions such as biomass size spectra (Leaper et al., 2001). Consequently this 

approach was not adopted in the current study. 

 

3.5.2 Unplanned multiple comparison test – Games-Howell method 
 

The Games-Howell is an approximate test of equality of means when the data are 

found to be inherently heteroscedastic (inequality of variances among the samples; 

Sokal & Rohlf, 1995). The method performs unplanned comparisons between pairs of 

means using a studentized range with specially weighted average degrees of freedom 

and a standard error based on the averages of the variances of the means.  
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The minimum significant difference, MSDij, between any pair (i, j) of means is given 

by the following expression (Games & Howell, 1976): 

 

MSDij = Qα[k, v*] (s2
yi + s2

yj)1/2       (3.1) 

where 

v* = (s2
yi + s2

yj)2 / {[(s2
yi)2/(ni-1)] + [(s2

yj)2/(nj-1)]},    (3.2) 

k = number of samples and 

α = the significance level 

s2
y = variance of the means (sample variance/number of observations). 

 

The critical value Qα[k, v*] is obtained from the table of the stundentized range (Sokal 

& Rohlf, 1995). The actual difference between any pair of means is compared to its 

relevant MSD value. 

 

3.5.3 Multivariate analysis 
 

Multivariate analysis is based on comparing the similarity of two or more samples. 

Similarity can be defined as the extent to which the samples share their components. 

Multivariate techniques are thus based on similarity coefficients calculated between 

pairs of samples. These can then be used to either classify the samples into similar 

groups (clustering) or to “map” them on an ordination plot so that the distances 

between the different samples reflect the differences in their composition.  

 

A commonly used measure of similarity between two samples is the Bray-Curtis 

coefficient of similarity (Clarke & Warwick, 1994). The measurement of similarities 
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can be biased by a small number of highly abundant components. To account for this, 

and to obtain a better reflection of the overall community composition, the data can be 

transformed so that less emphasis is given to the highly abundant components. The 

data transformation techniques range from square root to logarithmic to 

presence/absence transformations with fourth root (or double square root) 

transformation probably being the most commonly used method. In the current study 

all the multivariate analyses were performed on untransformed (actual) data sets. 

 

3.5.3.1 Cluster analysis 
 

Cluster analysis is based on the principle that samples within a group (or a cluster) are 

more similar to each other than samples outside the group. Hierarchical methods 

group together samples that are most similar in terms of their community composition 

forming further clusters at increasingly lower level of similarity until all samples are 

connected. The results can be displayed as a dendrogram with one axis representing 

the samples and the other defining the similarity levels. 

 

3.5.3.2 Non-metric multi-dimensional scaling 
 

Non-metric MDS produces a map of the samples based on their dissimilarity so that 

samples that are most dissimilar are plotted furthest apart. These MDS plots are 

produced by an iterative procedure that constructs MDS plots from successive runs 

until an optimal solution is reached. After each run the dissimilarity between each 

sample is plotted against their distance on the MDS plot and a regression line is fitted 

to these points. The goodness of fit of this line is referred to as “stress” with low stress 
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values corresponding to a closer fit. The procedure is repeated until the lowest stress 

value is obtained. Hence the stress value effectively reflects how well the multi-

dimensional relationships among the samples are represented on a two dimensional 

plot. Stress values of less than 0.05 give an excellent representation whilst values 

exceeding 0.3 indicate a fit little better than randomly placed data. 

 

3.5.3.3 Analysis of similarities 
 

Analysis of similarities (ANOSIM) is a non-parametric test that helps to determine if 

a significant difference exists between two or more samples. The test operates on a 

dissimilarity matrix that is generated by comparing the differences (distances) 

between any two replicates (samples being compared must consist of replicate 

measurements). ANOSIM summarises the differences in composition between pairs 

of samples into a single measure that is compared to test the hypothesis that there is 

more difference in composition from sample to sample as opposed to replicate to 

replicate within one sample (i.e. ANOSIM is an analogue to analysis of variance).
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4. BENTHIC COMMUNITY DESCRIPTION 

 

4.1 Introduction 
 

The primary aim of this chapter is to provide an overview of the benthic communities 

in terms of abundance, biomass and taxonomic identity of the constituent organisms. 

Abundance and biomass values have been reported for the community as a whole as 

well as for the commonly used faunal size fractions of meio- and macro-fauna and 

intermediate meso-fauna. Meiofauna has been defined as the collection of organisms 

that passed through a 500 µm mesh but were retained on 45 µm mesh. Macrofaunal 

fraction consists of organisms retained on the 500 µm mesh (excluding retained 

megafauna that was not sampled reliably) whilst mesofaunal fraction has been 

compiled by combining the individuals from 180, 250 and 355 µm fractions.  

 

It is a common procedure that smaller organisms typically classified as meiofauna 

(e.g. nematodes, harpacticoids and ostracods) are excluded from the analysis of larger 

size fractions as they are not thought to be retained adequately on the coarser mesh 

sizes. This approach was also adopted in this chapter for meso- and macro-faunal 

fractions to make comparisons with previous studies more compatible. However, the 

subsequent chapters have not excluded any organisms from the analysis based on their 

taxonomic identity (or any other criteria) to comply with the non-taxonomic approach 

outlined in chapter 1.  
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4.2 Abundance  
 

The total abundance at the three study sites varied from 690,125 ind. m-2 (FG) to 

441,361 ind. m-2 (FSC) and 1,042,754 ind. m-2 (OM; table 4.1, figure 4.1). At all 

locations meiofaunal size range contributed the most to the total abundance (84-99%). 

The densities of macrofaunal size fractions varied from 6,551 ind. m-2 to 2,609 ind. m-

2 and 4,244 ind. m-2 for FG, FSC and OM, respectively. 

 

In terms of taxonomic composition, nematodes dominated the meiofaunal size range 

at all locations (table 4.2). They also contributed the most towards the total densities. 

This was particularly true at the OM site where nemtodes accounted for 99 % of all 

individuals. Similarly polycheates accounted for most of the individuals in the 

macrofaunal size range at all three locations. At the FG and FSC locations a number 

of different polychaete families were recorded with Amphinomidae, Capitellidae and 

Nereidae dominating the FG site and Paraonidae, Capitellidae and Aricidae 

dominating the FSC site. At the OM locations the polychaetes consisted almost 

exclusively of Ampharetidae with some representatives of Spionidae (e.g. Minuspio 

spp. and Paraprionospio spp.). All polychaetes from the OM site were characterised 

by enlarged gill structures that are thought to represent an adaptation to the reduced 

oxygen levels (Lamont & Gage, 2000). 

 

The same polychaete families also dominate the mesofaunal fraction at the OM site. 

At the FG site the intermediate size group consisted predominantly of small bivalves 

(Veneroidae), gastropods (Philinidae) and polychaetes (Opheliidae). The abundance 

of this size group was more than an order of magnitude greater than at the other two 

locations and the increased numbers of small individuals may have represented a 
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recent spatfall event. The abundance of mesofaunal size range at the FSC site was 

relatively evenly distributed between polychaetes, crustacean, nemerteans and 

sipunculids. 
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Table 4.1. Summary of abundance values (ind. m-2) at the three study locations 
(values in brackets refer to standard deviations; n=5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FG FSC OM 

Meiofauna 576,800  (204,554) 431,800  (257,463) 1,033,000  (246,554) 

Mesofauna 106,774  (50,530) 6,951      (2,244) 5,509         (4,706) 

Macrofauna 6,551      (1,703) 2,609      (265) 4,244         (2,218) 

Total 690,125  (251,845) 441,361  (257,682) 1,042,754  (246,774) 
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Figure 4.1. Abundance of the different size fractions at the three study locations (error 
bars represent standard deviations). 
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Table 4.2. The dominant taxonomic group in each size fraction in terms of abundance. 
 

 

 FG FSC OM 

Meiofauna Nematoda Nematoda Nematoda 

Mesofauna Mollusca mixed Polychaeta 

Macrofauna Polychaeta Polychaeta Polychaeta 

Total Nematoda Nematoda Nematoda 
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4.3 Biomass 
 

The total biomass was recorded as more than three times higher at the FG location 

(13.6 g wwt m-2) than at the OM site (4.0 g wwt m-2; table 4.3). The total biomass at 

the FSC site was intermediate (10.7 g wwt m-2). Macrofauna accounted for most of 

the total biomass at all locations although meso- and meio-fauna were also major 

contributors at the FG and OM sites, respectively (figure 4.2). Mesofaunal size 

fraction contributed relatively little at the OM site. In the meiofaunal size range most 

of the biomass was attributed to nematodes whilst polychaetes generally dominated 

the biomass distributions in all other size fractions (table 4.4). 

 

4.4 Abundance-biomass curves 
 

The abundance-biomass comparison (ABC) method was developed by Warwick 

(1986) as a technique to detect the effects of pollution on benthic macrofaunal 

communities. It is based on k-dominance curves (Lambshead et al., 1983) that plot 

cumulative abundance on the y-axis against species rank on the x-axis. The ABC 

method superimposes dominance plots for species abundance and biomass and the 

relative positions of these curves serve as an indicator of the degree of disturbance at 

the sampling site. In undisturbed environments biomass is dominated by few larger 

species that are represented by relatively few individuals and consequently the 

biomass curve is positioned above the abundance curve across the x-axis. Conversely, 

in disturbed environments the community is dominated by smaller individuals that are 

present in high numbers and the abundance curve is positioned above the biomass 

curve. 
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Table 4.3. Summary of biomass values (g wwt m-2) at the three study locations 
(values in brackets refer to standard deviations; n=5). 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 FG FSC OM 

Meiofauna 0.63    (0.20) 0.70    (0.25) 1.13   (0.98) 

Mesofauna 3.55    (2.23) 0.16    (0.04) 0.15   (0.12) 

Macrofauna 9.37    (2.92) 9.86    (3.78) 2.72   (1.86) 

Total 13.55  (4.77) 10.73  (3.97) 4.00   (2.65) 
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Figure 4.2. Biomass of the different size fractions at the three study locations (error 
bars represent standard deviations). 
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Table 4.4. The dominant taxonomic group in each size fraction in terms of biomass. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FG FSC OM 

Meiofauna Nematoda Nematoda Nematoda 

Mesofauna Polychaeta mixed Polychaeta 

Macrofauna Polychaeta Polychaeta Polychaeta 

Total Polychaeta Polychaeta Polychaeta 
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The ABC method was applied to the current data sets. The size classes represented the 

species and they were ranked in order of decreasing biomass and abundance and the 

results were plotted and superimposed as described above. Warwick (1986) had stated 

that this method may not be applicable to meiobenthic organisms, as they do not 

necessarily show an obvious size difference between the organisms inhabiting 

disturbed and undisturbed habitats. Consequently the analysis was generally limited to 

macrofaunal size range (> 500 µm) but plots were also presented for the data sets as a 

whole. 

 

The macrofaunal ABC plots for the FG and OM sites showed that the abundance and 

biomass curves overlaid one another throughout the size classes (figure 4.3). This 

indicates moderate disturbance at these two sites. As already noted the FG site is 

subjected to both extensive oil and gas industry activities and heavy trawling pressure 

(Jennings et al., 1999). The benthic environment at the OM site is not subjected to any 

obvious anthropogenic stress and the disturbance indicated by the ABC plots perhaps 

reflects the reduced oxygen levels and increased downward flux of organic material as 

outlined in chapter 2. At the FSC site the biomass curve was positioned above the 

abundance curve indicating a stable and undisturbed sediment environment. 

 

The ABC plots produced for the data set as a whole displayed a trend of decreasing 

abundance diversity (fewer size classes contributed more to the total abundance). At 

the FG and OM sites the abundance curves were positioned above the biomass curves 

throughout the plots and at the FSC site the two curves overlaid one another (figure 

4.4). This clearly reflected the inclusion of meiofaunal organisms in the analysis as  
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Figure 4.3. ABC plots for the macrofaunal size fraction (> 500 µm) at the (a) FG, (b) 
FSC and (c) OM locations. 
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Figure 4.4. ABC plots for all the data at the (a) FG, (b) FSC and (c) OM locations. 
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the increased proportion of smaller body sizes combined with high overall numeric 

dominance led to the observed trends. As stated by Warwick (1986), it is unclear how 

well the community-wide ABC plots (e.g. including all size fractions) reflect the 

degree of disturbance in benthic communities.  

 

4.5 Comparison with previous studies 
 

Macrofaunal abundance at the FG site has been reported to vary from 2,429 to 6,362 

ind. m-2 (McIntyre, 1961; Hartwig et al., 1983; De Wilde et al., 1986). The estimate 

from the current study (6,551 ind. m-2) is slightly higher but of the same order as the 

previously determined values. The abundance of meiofauna has been reported to 

range from 900,000 to 2,700,000 ind. m-2 (De Wilde et al., 1986; Faubel et al., 1983) 

with the current estimate of 580,000 ind. m-2 representing a slightly lower value. 

 

The biomass estimate of the macrofaunal size fraction (9.4 g wwt m-2) compares 

favourably with the range of values reported previously (5.6 – 42.8 g wwt m-2; 

McIntyre, 1961; Hartwig et al., 1983; De Wilde et al., 1986). The estimate of 42.8 g 

wwt m-2 included individuals of the large bivalve species Arctica islandica that were 

not observed in the current study. Excluding A. islandica, De Wilde et al. (1986) 

reported a biomass value of 14.4 g wwt m-2 for the macrofaunal size fraction. The 

meiofaunal biomass in this study was somewhat lower than previously reported 

values (1.2-8.4 g wwt m-2; De Wilde et al., 1986; Faubel et al., 1983) probably 

reflecting the lower abundances at this size fraction. In general, polychaetes and 

nematodes dominated the biomass and abundance in all studies of macro- and meio-

faunal size ranges, respectively. 
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At the FSC site the abundance of macrofauna (2,609 ind. m-2) was very similar to 

other estimates reported from this site recently (~2,500 ind. m-2; e.g. Bett, 2001). 

However, the biomass estimate in the current study (9.9 g wwt m-2) was 

approximately twice as high as previously published literature values (5.0 g wwt m-2; 

Bett, 2000). In terms of taxonomic dominants, polychaetes and sipunculids have been 

reported to contribute the most to both total abundance and biomass in all studies. 

 

Levin et al. (2000) reported mean macrofaunal abundance of 12,363 ind. m-2 in the 

core of the OMZ (400 m) off the coast of Oman. This was about three times the 

estimate from the current study (4,244 ind. m-2). Similarly Levin et al.’s  biomass 

estimate (15.0 g wwt m-2) was reported as more than five times higher than in this 

study (2.7 g wwt m-2). Levin et al. (2000) stated that the macrofaunal size fraction was 

largely dominated by Spionidae and Cirratulidae polychaetes. Although 

representatives of these taxa were also observed in this study, the samples were 

largely dominated by smaller Ampharetidae polychaetes. The lower abundance 

coupled with smaller body size of Ampharetidae may have accounted for the lower 

biomass estimate. Cook et al. (2000) provided estimates of mean nematode abundance 

at the same location as Levin et al. as 1,700,000 ind. m-2, which was also higher than 

the current meiofaunal abundance estimate of 1,033,000 ind. m-2 (OM meiofauna 

consisted almost exclusively of nematodes). 

 

The benthic communities at FG, FSC and OM sites are generally similar to those 

previously described for these locations. The observed deviations are likely to reflect 

natural variations and may be related to different sampling times (seasonality), 



  Chapter 4: Benthic Descriptors   

63 

slightly different geographic locations (e.g. Oman Margin) and small-scale variation 

in environmental conditions (e.g. sediment and hydrodynamic conditions). 
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5. BENTHIC SIZE SPECTRA 

 

5.1 Introduction 
 

Body size structure is an important attribute of any community. As a number of 

physiological processes are closely linked to individual body size, the community size 

structure may provide an insight into community functioning. Consequently the 

understanding of size distributions forms an important tool in describing, comparing 

and making predictions about marine ecosystems (Rasmussen, 1993). This chapter 

concentrates on characterising the benthic communities in terms of their biomass and 

abundance size structures. These basic patterns and relations will then serve as a 

foundation for the subsequent chapters that utilise the size spectra in testing the 

hypothesis of body size miniaturisation in the deep-sea benthos (chapter 6), estimating 

the benthic secondary production (chapter 7) and developing a size-based simulation 

model (chapter 8). 

 

Sheldon et al. (1972) were the first to describe the size structure of aquatic 

communities in detail. Their observations indicated that pelagic size structure was 

characterised by an even biomass distribution across the size classes. In other words, 

organisms ranging in size from bacteria to whales, all contributed an equal amount of 

biomass within their log2- scaled size classes. These results were further analysed in 

terms of energy transfer models that incorporated size-dependent metabolism and 

constant predator-prey size ratios and the results suggested a slightly decreasing 

biomass trend with increasing body size (Kerr, 1974; Platt & Denman, 1978). The 

original work of Sheldon et al. (1972) has subsequently served as a basis for a number 
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of studies that have applied the size spectral approach to a wide range of marine 

environments.  

 

For example, the application of spectral methods to benthic metazoan communities 

resulted in a bimodal distribution with the peaks corresponding to meio- and macro-

fauna, respectively (Schwinghamer, 1981; Warwick, 1984). This observed size 

distribution pattern was claimed to be conservative in nature and was widely accepted 

as confirmation that the previously operationally defined components of meio- and 

macro-fauna represented functionally distinct entities as well (Giere, 1993). The 

bimodal pattern was observed for both biomass and species size spectra alike, 

although subsequent research efforts on biomass distributions have often failed to 

reproduce these results suggesting that the dichotomy in biomass distributions may 

not be as conservative a feature of benthic communities as first thought (Strayer, 

1986; Drgas et al., 1998; Duplisea & Dragas, 1999; Duplisea, 2000).  

 

The first objective of this chapter is to present the results for the biomass and 

abundance size spectral analyses carried out for the meio-, meso- and macro-fauna 

from three environmentally contrasting habitats: a deep-water location in the Faroe-

Shetland Channel (FSC; 1600 m), a shallow-water location on the Fladen Ground, 

North Sea (FG; 150 m) and a mid-slope oxygen minimum zone location on the Oman 

Margin, Arabian Sea (OM; 500 m).  The results will help to improve our current 

understanding of the benthic communities: for instance, a bimodal size distribution 

would provide further evidence for the claims that meio- and macro-fauna represent 

two functionally distinct components of benthos. Conversely, a continuous body size 

distribution lacking a distinct biomass trough would suggest that either the two faunal 
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groups are only operationally defined entities along a common biomass continuum or 

that biomass and abundance spectra are not suitable measures of the possible 

distinctions. 

 

The second objective involves the comparison of the three sampling locations and the 

investigation of how environmental factors influence the shape of the body size 

distributions. Several studies have investigated the effect of habitat architecture 

(Schwinghamer, 1981; Duplisea & Drgas, 1999; Leaper et al., 2001), organic 

enrichment (Schwinghamer, 1988; Raffaelli et al., 2000), predation (Raffaelli et al., 

2000), trawling (Duplisea et al., 2002) and reduced oxygen levels (Vanaverbeke et al., 

2003; Quiroga et al., 2005) on benthic size structure although some of these studies 

have only considered a subsection of the benthic community (e.g. meio- or macro-

fauna or an individual taxonomic component such as nematodes).  

 

The influence of environmental conditions on the body size distribution patterns was 

assessed by comparing the FG and FSC sites to examine if community size structure 

changes with increasing water depth. The second comparison was established 

between the oxygen minimum zone location in the Arabian Sea and the two well-

oxygenated NE Atlantic sites allowing the examination of how benthic community 

size structure is influenced by the reduced ambient oxygen concentrations coupled 

with the increased flux of organic material from the overlying surface waters. 
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5.2 Methods 
 

As noted in chapter 1, biomass size spectra can be constructed by using several 

techniques. This section briefly summarises the types of spectra and the statistical 

procedures applied in the analysis. More detailed descriptions of the statistical 

methods are provided in chapter 3.  

 

Regular size spectra have been constructed for biomass and abundance data by using 

X2 geometric groupings of organism wet weight (in g) on the x-axis and log10 wet 

biomass or abundance on the y-axis. Each body size class is twice the size of the class 

below ranging from the smallest organisms in class 0 (0.02-0.04 µg) to the largest in 

the size class 29 (10-20 g). Due to the heteroscedastic nature of the data, Games-

Howell unplanned multiple comparison test is used to test for significant differences 

in the total biomass amongst the different size classes.  

 

Relative biomass and abundance spectra are also constructed by converting the data 

within the X2 size classes into percentages. This allows a direct visual and statistical 

(ANOSIM) comparison of the shapes of the spectra between the different study 

locations. The biomass distributions from the current study are also compared to the 

data provided by Schwinghamer (1981). Instead of using X2 geometric wet weight 

classes on the x-axis, Schwinghamer expressed the size classes in terms of equivalent 

spherical diameters on a log2 scale. Consequently the data from the current study have 

also been reallocated into ESD size classes (e.g. 250-500 µm, 500-1000 µm etc).  
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Cumulative frequency size spectra have been constructed for both biomass and 

abundance. The cumulative abundance size spectra are particularly useful in gauging 

differences in the individual body size distributions between the different sites and 

these are presented and discussed in greater detail in chapter 6 that concentrates on 

body size miniaturisation in the deep-sea.  

 

Regression analyses have been carried out on the regular size spectra although the 

differential width of the size classes can complicate this analysis. Because of the 

logarithmic scaling, the smaller size classes contain organisms of similar sizes (e.g. 

size class 4: 0.3-0.6 µg) whereas the larger size classes consist of organisms with a 

wider size range (e.g. size class 29: 10-20 g). Platt and Denman (1978) suggested that 

dividing the total biomass by the width of the size class will help to overcome this 

problem and called the resulting biomass distribution a normalised size spectrum. 

Consequently regression analyses have also been carried out on the normalised 

biomass size spectra.  
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5.3 Results 
 

The size range of taxa varies over 10 orders of magnitude ranging from the smallest 

organisms in class 0 (0.03 µg; for all three sites) to the largest in class 29 (15 g), 22 

(0.1 g) and 20 (0.03 g) for FG, FSC and OM, respectively. The investigation of 

benthic body size structure is inevitably subjected to artifacts (see chapter 3). The 

biomass decrease in size classes 1-4 (rounded shapes of the spectra; e.g. figure 5.1) 

represented the limitations associated with sieving at the smallest mesh size. The 

increased variability at the largest size classes could be attributed to unreliable 

sampling of the larger organisms (sampled surface area too small). Consequently the 

reliable parts of the spectra extended from size class 5 to size class 20. 

 

The general shapes of the regular biomass spectra are observed to be similar at all 

three sites. All spectra are characterised by biomass increasing more rapidly through 

the smaller size classes with the rate of increase slowing at the larger end (figures 5.1, 

5.2 & 5.3). At the FG and FSC sites a slight decrease in biomass is evident between 

the size classes 12 and 15. At the OM site similar decrease in biomass can be 

observed between size classes 10 and 13.  FG location is characterised by local 

biomass maximum around size class 10. This is mainly attributed to the increased 

abundance of small bivalves (Veneroidea), gastropods (Philinidae) and polychaetes 

(Opheliidae). Although some signs of bimodality could be observed in the regular 

biomass size spectra, particularly at the OM site, none of the size classes across the 

reliable parts of the spectra are found to be significantly different from one another 

(G-H unplanned comparison).  
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The abundance spectra at the FG and FSC locations are characterised by a common 

trend of constant abundance at the smallest size classes followed by a more rapid 

decrease between size classes 8 and 15 (figures 5.4 & 5.5). The decreasing trend in 

faunal densities continues at higher size classes although at a slower rate than at the 

intermediate body sizes.  At the FG location the presence of increased numbers of 

small bivalves, gastropods and polychaetes is again detected as a local abundance 

maximum around size class 10.  The shape of the OM site combined abundance 

spectrum follows an approximately similar pattern although a high degree of 

variability can be observed between the individual replicates (figure 5.6).   

 

The shapes of the biomass and abundance spectra can be compared for the three study 

locations (figures 5.7 & 5.8). As differences exist between the total biomass present at 

each site (elevations of the spectra along the y-axis), the biomass recorded at any size 

class is expressed as a percentage of the total thus resulting in the construction of 

relative biomass size spectra allowing a direct comparison between the sites. This 

analysis reveals that FG and FSC locations appear visually similar and the major 

deviation between the two sites is observed around size class 10 where the local 

biomass maximum is attributed to the increased number of smaller organisms as 

discussed above. The OM spectrum displays more variability with local biomass 

maximum observed at size classes 9 and 15. ANOSIM analysis reveals that the shape 

of OM biomass spectrum is significantly different from the other two locations (p < 

0.01). The relative biomass distributions at the FG and FSC sites also differ 

significantly from one another (p < 0.05). These results are further reflected in the 

cluster analysis and the resulting MDS plots (figure 5.9). The relative abundance 

spectra produce similar trends to those observed in the relative biomass distributions. 



  Chapter 5: Body Size Spectra   

71 

55526#1

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

55526#2

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

55527#2

0 5 10 15 20 25 30

B
io

m
as

s (
g 

w
w

t m
-2

)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103
55528#1

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

55528#2

X2 geometric size class

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103
Fladen Combined

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

 

 

Figure 5.1. Regular biomass size spectra for the five replicate samples from the FG 
location and the combined spectrum plotted with 95 % confidence intervals. 
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Figure 5.2. Regular biomass size spectra for the five replicate samples from the FSC 
location and the combined spectrum plotted with 95 % confidence intervals. 

 

 

 

 

 

 



  Chapter 5: Body Size Spectra   

73 

 

55764#1

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

55754#2

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

55754#3

0 5 10 15 20 25 30

B
io

m
as

s (
g 

w
w

t m
-2

)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102
55754#4

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

55754#5

X2 geometric size class
0 5 10 15 20 25 30

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

OM Combined

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 
 

Figure 5.3. Regular biomass size spectra for the five replicate samples from the OM 
location and the combined spectrum plotted with 95 % confidence intervals. 
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Figure 5.4. Regular abundance size spectra for the five replicate samples from the FG 
location and the combined spectrum plotted with 95 % confidence intervals. 

 

 

 

 

 



  Chapter 5: Body Size Spectra   

75 

55447#6

0 5 10 15 20 25 30
10-1

100

101

102

103

104

105

106

107

55447#8

0 5 10 15 20 25 30
10-1

100

101

102

103

104

105

106

107

55447#9

0 5 10 15 20 25 30

A
bu

nd
an

ce
 (i

nd
. m

-2
)

10-1

100

101

102

103

104

105

106

107

55447#10

0 5 10 15 20 25 30
10-1

100

101

102

103

104

105

106

107

55447#11

X2 geometric size class

0 5 10 15 20 25 30
10-1

100

101

102

103

104

105

106

107

FSC Combined

0 5 10 15 20 25 30
10-1

100

101

102

103

104

105

106

107

 

 

Figure 5.5. Regular abundance size spectra for the five replicate samples from the 
FSC location and the combined spectrum plotted with 95 % confidence intervals. 
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Figure 5.6. Regular abundance size spectra for the five replicate samples from the OM 
location and the combined spectrum plotted with 95 % confidence intervals. 
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Figure 5.7. Relative biomass size spectra for the three sampling locations. The reliable 
part of the spectrum is marked on the graph (see text for details). 
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Figure 5.8. Relative abundance size spectra for the three sampling locations. The 
reliable part of the spectrum is marked on the graph (see text for details). 
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Figure 5.9. MDS ordination and dendrogram presentation of the standardised biomass 
data from the three study locations. Hierarchical clustering was based on Bray-Curtis 
similarities derived from untransformed data.  

 

FG

FSC

OM

100

80

60

40

Si
m

ila
rit

y 
(%

)

stress = 0.11



  Chapter 5: Body Size Spectra   

80 

A comparison with the Schwinghamer (1981) data can be carried out by plotting 

biomass against ESD size classes and then standardising these data to percentage 

values (figure 5.10). The biomass distributions are similar for the smallest and largest 

size classes but at the intermediate body sizes the current study sites do not show 

evidence of the biomass trough observed in the Schwinghamer data. This difference 

in the relative biomass distribution is statistically quantified by ANOSIM that showed 

the shape of the Schwinghamer data to differ significantly from the other three 

locations (p < 0.05). The clustering of the four data sets on MDS plots separate the 

Schwinghamer data from the other locations (figure 5.11). The shapes of the FG, FSC 

and OM biomass spectra were also found to be significantly different from one 

another (p < 0.05) and they form separate clusters on the MDS plots. 

 

The error bars (data distribution) in the original Schwinghamer data were observed to 

be particularly large across the reported biomass troughs. When the size spectra in the 

current study were plotted individually on an ESD scale with their respective 95 

percent confidence intervals, the bimodality was not evident (figure 5.12). 

Furthermore the confidence limits at the current study locations were observed to be 

smallest across these size classes implying that the reliable parts of the ESD spectra 

range from 125 µm to 4-8 mm approximately corresponding to the reliable range on 

the X2 scale.  

 

The cumulative biomass size spectra display similar differences between the three 

sites (figure 5.13). The distributions of the FG and in particular the OM site spectra 

resemble the typical sigmoid shape where biomass is accumulated most rapidly at  
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Figure 5.10. Relative ESD biomass size spectra for the three sampling locations and 
the Schwinghamer data (1981). 
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Figure 5.11. MDS ordination and dendrogram presentation of the standardised 
biomass data from the three study locations and the Schwinghamer data (1981). 
Hierarchical clustering was based on Bray-Curtis similarities derived from 
untransformed data.  
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Figure 5.12. ESD biomass size spectra for the three sampling locations with the 95 % 
confidence intervals.  
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intermediate size classes with both extremes displaying slower rates of increase. The 

steepest parts of the accumulation curves for the FG and OM locations fall between 

size classes 17-21 and 13-17, respectively. The shape of the FSC site curve follows an 

exponential mode where the largest size classes seem to contribute the most to the 

total biomass. The cumulative biomass size spectra of the three study locations shift 

along the x-axis with OM spectrum clearly falling on the smallest size classes. The 

FG spectrum extends the furthest into the larger size classes with the FSC spectrum 

positioned in between, although this trend is somewhat masked by the relatively small 

biomass contribution of the intermediate size classes (9-19) at the FSC site. Similar 

general trends are observed in the cumulative abundance spectra where FSC and OM 

spectra both display a shift towards smaller body sizes with the FG spectrum 

extending into larger size classes (figure 5.14). 

 

The regression analyses have been carried out on regular biomass and abundance 

spectra where both body size (mean weight of each size class) and the total biomass 

are plotted on log10-scale (figure 5.15). All regressions were found to be significant (p 

< 0.01).  The resulting slopes for the biomass distribution vary from 0.185 for FG, 

0.258 for OM and 0.322 for FSC. The slope of the FSC regression is found to be 

significantly different from the slope at the FG site (p < 0.01). All the other slopes are 

not significantly different from one another. The slopes for abundance distribution 

were recorded as –0.674 for FSC, -0.734 for OM and –0.806 for FG. Again all 

regressions are significant (p < 0.01) and significant differences are observed only 

between the slopes of FSC and FG locations (p < 0.01). Regression analyses have also 

been carried out for the normalised biomass size spectra (p < 0.01) and the slopes for 

the three locations were recorded as –0.69, -0.82 and –0.97 for FSC, FG and OM, 
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respectively, with FSC being significantly different from the other two sites (p < 0.05; 

figure 5.16).  
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Figure 5.13. Cumulative biomass size spectra for the three study locations. 
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Figure 5.14. Cumulative abundance size spectra for the three study locations. Only the 
smaller end of the spectrum is displayed to allow a closer inspection of the smaller 
size classes.  
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Figure 5.15. Ordinary least squares regression analysis for biomass and abundance at 
the three study locations. The broken lines represent 95 % prediction intervals. All 
regressions are significant (p<0.01).  
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Figure 5.16. Normalised size spectra for the three study locations.  
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5.4 Discussion 
 

5.4.1 Shape of the spectrum  
 

The biomass size spectra were observed to follow the same general pattern for all 

three study locations. The steepest increase in biomass occurred at the smaller size 

classes (0-10) followed by a shallower trend at the larger end of the spectrum. This 

pattern could be partly attributed to the sampling limitations resulting in the rounding 

of the spectra at the smaller size classes and increased variability at the larger end. 

Visually all three biomass spectra displayed small local biomass minima at 

intermediate size classes. For FG and FSC sites these minima occurred over the same 

body size range as the biomass trough reported by Schwinghamer (1981, 1983, 1985). 

At the OM site the local minimum was more pronounced and occurred at slightly 

smaller size classes. Despite these small-scale variations, there were no statistical 

differences detected between the size classes at any of the sites across the reliable part 

of the spectra.  

 

A more direct comparison with the Schwinghamer data (1981) was obtained by 

plotting the biomass in ESD size classes. This revealed that none of the current study 

sites showed evidence of dichotomy. Even the OM site that displayed the most 

pronounced biomass trough in the regular biomass size spectrum appeared to follow a 

pattern of biomass increasing with body size. The width of each ESD size class is 

approximately equal to the combined width of three corresponding X2 size classes 

and hence the reduced resolution associated with ESD size classification resulted in a 

failure to detect the local biomass minimum apparent on a finer scale. These visual 



  Chapter 5: Body Size Spectra   

91 

observations were further quantified statistically as the ANOSIM analysis showed the 

shape of the Schwinghamer data to be significantly different from the current study 

sites. The comparison of the error bars across the size classes for the four locations 

shows that the variability of the Schwinghamer data is particularly large at the size 

classes associated with the biomass trough (figure 5.12). This may reflect the fact that 

samples were collected for meiofauna and macrofauna with a “gap” in sampling in 

between. The apparent biomass trough may thus represent an artificial and 

conservative feature associated with repeated inadequate sampling of the organisms 

that fall between the two size groups. An appropriate sampling of the intermediate 

body sizes at the other three locations resulted in decreased variability across the size 

spectra and these locations did not display a statistically quantifiable biomass trough. 

Despite the small local biomass minima observed in some of the spectra, there is no 

statistically quantifiable evidence that meio- and macro-fauna displayed separate 

biomass peaks and the biomass data suggest that the two groups are methodically 

defined components of the same size continuum.  

 

5.4.2 Size spectra in wider context 
 

In addition to Schwingahmer’s pioneering work, other studies have also provided 

evidence that benthic biomass size spectra may be characterised by a local biomass 

minimum effectively separating meio- and macro-fauna into distinct components 

(Schwinghamer, 1983, 1985; Gerlach et al., 1985; Cattaneo, 1993). Udalov and 

Burkovsky (2002) carried out a study in the silty-sandy littoral zone of a White Sea 

estuary with the sampling stations ranging from strongly desalinated to marine 

conditions. They collected samples for meio-, meso- and macro-fauna and sampled 
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the most seaward station monthly over the summer period of 1995 (June-September). 

They detected a gap in the biomass size spectra in June that corresponded to the 

biomass trough outlined by Schwinghamer (1981). During the following months this 

gap was first temporarily filled by juvenile macrofauna settling on the seabed (July) 

and then re-established as the organisms grew and the juvenile macrobenthos merged 

with the larger adult population (September).   

 

Stead et al. (2005) also reported distinct bimodality in the biomass size spectra of 

stony stream metazoan communities during early spring and autumn months. 

However, the rest of the spectra, constructed at monthly intervals for a 14-month 

period, conformed more to a unimodal pattern. Lack of bimodality has been reported 

in a number of other studies from fresh- (Strayer, 1986; Ramsay et al., 1997) and 

brackish-water environments (Drgas et al., 1998; Duplisea & Drgas, 1999; Duplisea 

2000).  

 

Since Schwinghamer (1981) first carried out the spectral analysis of benthic body size 

structures, the bimodal biomass distribution has been widely quoted in general 

textbooks as evidence that meio- and macro-fauna form two ecologically distinct 

components of the benthic community (Parsons et al., 1984; Giere, 1993). However, it 

is clear that the biomass size spectra constructed for a number of marine and limnic 

environments have not followed a single pattern as has been suggested previously. 

Possible causes of this apparent variation range from inadequate sample collection 

and analysis protocols to inherent natural community functions. 
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5.4.3 What causes the variability in the benthic community size structures? 
 

5.4.3.1 Sampling artifacts 
 

As already discussed, a non-continuous sampling of the benthic fauna is likely to 

produce a non-continuous size distribution. If samples are specifically collected for 

meio- and macro-fauna, it is not surprising that reduced biomass levels are observed 

where there are effectively gaps in the data. The organisms intermediate in size 

between meio- and macro-fauna need to be sampled by an appropriate combination of 

sieve mesh- and sample-sizes relevant to those particular body sizes. Lack of such 

targeted sampling can lead to increased variation in the data. It is also important to 

recognise and account for the inherent limitations of any sampling protocol associated 

with mesh- and sample-size at small and large size classes (see also chapter 3).  

 

The choice of sampling gear may also influence the perceived community size 

structure. For instance, a recent study comparing the performance of a standard deep-

sea box corer and a hydraulically-damped megacorer revealed that box corer samples 

underestimated the macrofaunal abundance by approximately 50 % (Bett et al., 

submitted). This apparent loss of individuals in the box corer samples was attributed 

to the bow wave effect associated with the deployment of this sampler. Bett et al. 

(submitted) also reported that there was a tendency for smaller species to be more 

abundant in the megacorer samples implying that they are more likely to be 

influenced by the bow wave effect. Similar influence can be expected for other 

sampling devices that present a high resistance as they pass through the water column. 

It is likely that at least some of the variability observed in the biomass distribution 

patterns in the past can be accounted for by the inadequate collection and/or analysis 
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of the benthic samples. In the current study the emphasis was on obtaining high-

quality sediment samples and analysing these with a combination of relevant sieve 

mesh sizes and sample surface areas. 

 

5.4.3.2 Community processes as source of variation 
 

Another source of variation in the observed biomass size spectra patterns may arise as 

a result of the natural processes within benthic communities. Warwick (1984), 

investigating species rather than biomass size spectra, explained the observed 

bimodality as a consequence of the macrobenthos having a planktonic life phase. 

According to Warwick (1989), meiobenthos are regarded as being the evolutionary 

oldest faunal component forming a highly efficient consumer unit due to their high 

species diversity and variety of narrowly specialised feeding mechanisms. Most 

macrofaunal species with planktotrophic development produce eggs, and hence 

hatching larvae, that fall in the same size category as meiofauna. In order to avoid 

competition and predation these larvae escape to the water column. They do not settle 

back on the seabed until they are large enough to avoid direct interactions with 

meiofaunal organisms. This size also corresponds to the claimed biomass and species 

trough in the size spectra as well as the typical size of holoplanktonic organisms that 

would cause competition with extended pelagic existence.  

 

Udalov and Burkovsky (2002) also concluded that the bimodal biomass pattern 

resulted from the planktotrophic development of most macrobenthic organisms 

combined with the relatively small proportion of species with direct development. 

They demonstrated this pattern to breakdown in the upper reaches of the estuary 
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where the biomass distribution was observed to be more continuous with biomass 

increasing with body size. They attributed this altered pattern to the increased 

presence of taxa with direct development resulting in the meio- and macro-benthos 

merging into a single unit. 

 

According to this hypothesis, the bimodal biomass distribution should start to 

breakdown in environments where organisms either display direct or lecithotrophic 

development modes. Warwick (1989) predicted such environments to include fresh- 

and deep-water habitats as well as polar regions. Although freshwater studies have 

produced unimodal biomass size distributions (Strayer, 1986; Morin & Nadon, 1991; 

Bourassa & Morin, 1995) others have shown signs of bimodality (Poff et al., 1993; 

Stead et al., 2005). Schwinghamer (1985) showed deep-sea biomass size spectra to 

follow the bimodal pattern but these results may reflect the sampling techniques and 

protocols used. To the best of my knowledge, no biomass size spectra have been 

constructed for the benthic infauna as a whole from polar regions. Kendal et al. (1997) 

constructed species size spectra for Arctic communities and these displayed a distinct 

dichotomy contrary to the hypothesis suggested by Warwick.  

 

Udalov and Burkovsky (2002) also predicted that the observed bimodality is closely 

linked to seasonality. In temperate latitudes reproductive events (e.g. planktonic life 

phase and settlement) proceed during the summer months when primary production is 

at its peak. Conversely, in moderate and tropical latitudes reproduction can be 

extended over most of the year with a more continuous supply of larvae to the seabed 

resulting in a more continuous biomass size spectrum.  
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Both empirical data and theoretical considerations would suggest that biomass 

distribution patterns are highly dynamic both in space and time. The variability 

observed in the biomass size spectra would suggest that bimodality is not a 

conservative or universal feature and if the biomass distributions had to be described 

by a single, general pattern then the continuously increasing biomass with increasing 

body size would probably provide the best approximation. This trend was repeatedly 

observed in the current study although the OM site did show some evidence of 

bimodality.  

 

Local, small-scale variation and even distinct biomass troughs can arise as a result of 

processes such as macrofaunal reproduction and its associated patterns. Although 

these deviations from the continuously increasing biomass distribution can provide 

some evidence that meio-and macro-fauna are two functionally distinct components 

of the benthos, biomass size spectra in general are not effective in distinguishing the 

two groups. This generalisation does not necessarily apply to species size spectra (e.g. 

Warwick, 1984). 

 

5.4.4. The effect of environmental factors on the size spectra 
 

The current study sites allowed a direct assessment of how two major environmental 

parameters influence the size distributions. Fladen Ground and Faroe-Shetland 

Channel represented sampling stations of contrasting water depth but otherwise share 

similar environments. Bathymetry is often related to the amount of organic matter that 

reaches the seabed with the food concentration decreasing with increasing water 

depth. As expected, the standing stock at the FSC location was found to be 
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significantly lower than at the FG site. The aim of this comparison was to determine 

whether the size spectra of the two sites also differed. 

 

The Oman Margin site samples contrast with the two NE Atlantic stations in terms of 

ambient oxygen concentrations. Although some studies have investigated the effect of 

reduced oxygen levels on nematode (Vanaverbeke et al., 2003) and macrofaunal 

(Quiroga et al., 2005) size spectra, no study has examined the effect of hypoxia on the 

benthic community as a whole. 

 

5.4.4.1 Bathymetry 
 

The regular size spectra of the FG and FSC stations mainly differed in their total 

biomass levels. The FG site spectrum was elevated in relation to the FSC spectrum 

but the basic shapes of the two spectra appeared similar. The relative and cumulative 

size spectra showed that the intermediate size classes (9-19) at the FSC site 

contributed less to the total biomass. Conversely, the cumulative abundance size 

spectra showed that the small and intermediate size classes contributed more to the 

total abundance indicating that the benthic community at the FSC location consisted 

of predominantly smaller individuals. The spectra displayed a shift towards the 

smaller body sizes with increasing water depth. 

 

Normalised size spectra and the associated regression analysis have been regularly 

used to compare the size structures between different sites. In the current study all the 

regressions over the reliable parts of the spectra were significant (p < 0.01) and the 

residual variations were relatively small (r2 = 0.931 to r2 =0.977). The slope of the 
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normalised size spectrum can be used to assess the deviations of the community size 

structure from the steady-state distribution. When the slope equals –1, the biomass is 

equally distributed among the size classes. Slope values greater (less negative) than –

1 indicate that biomass increases with size. In the current study the slopes at both FG 

and FSC were greater than –1 (-0.82 and –0.69, respectively) and they were also 

found to be significantly different (p < 0.05). The less negative slope at the FSC site is 

associated with increase of biomass at the larger size classes. 

 

Although the total biomass is significantly lower at the FSC site, the largest size 

classes at the two locations contained similar amounts of biomass. This was attributed 

to the presence of a few larger individuals at the FSC site (Ophiuroidea and 

Sipunculida at size classes 21-22) that were also found to bias the average individual 

biomass estimates (see chapter 6). The results of this chapter clearly outline the 

considerable influence of water depth on the community size structure. The reasons 

for the apparent shifts are discussed in more detail in chapter 6. 

 

5.4.4.2 Hypoxia 
 

The data from the OM site showed the largest degree of variation between the 

individual replicates. As the sampling and analysis protocols were essentially 

identical at all locations, this variability can only be attributed to natural causes. The 

shapes of the biomass and abundance spectra differed from the other two study 

locations regardless of the method of analysis. The regular biomass size spectra 

displayed the most pronounced local biomass minimum around size classes 11-12 (76 
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µg wwt). This was also reflected in the relative biomass spectrum that was found to 

be significantly different from the FG and FSC spectra. 

 

The benthic community at the OM site consisted almost exclusively of nematodes and 

polychaetes that are thought to be more tolerant of the hypoxic conditions than, for 

example, harpacticoids or calcified invertebrates (Levin, 2003). The biomass and 

abundance dominance was found to switch from nematodes to polychaetes abruptly 

between size classes 9-10 in all the sample replicates. Although the size classes at the 

OM site were not found to be significantly different, the taxonomic dominance switch 

coupled with the apparent biomass trough may represent the functional distinction 

between meiofauna (e.g. nematodes) and macrofauna (e.g. polychaetes) as suggested 

by Schwinghamer (1981) and Warwick (1984). 

 

Reduction in the ambient oxygen level is thought to influence individual body size. In 

reduced oxygen conditions the metazoan benthic fauna have often been reported to 

consist of smaller-sized organisms with macro- and mega-fauna typically rare or 

absent (Levin, 2003). Chapelle and Peck (1999) suggested that maximum individual 

body size might be closely controlled by oxygen availability and McClain & Rex 

(2001) similarly observed a positive relationship between maximum body size and 

oxygen concentration for gastropods proposing that this might help to explain the 

pervasive size-depth relationships among deep-sea taxa. These observations suggested 

that smaller individuals have an advantage in hypoxic environments by presenting a 

larger surface area: volume ratio. They may also have greater metabolic flexibility 

that confers an ability to use food resources in the absence of oxygen (Zehnder, 1988). 
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However, these analyses did not include fauna from oxygen minimum zones.  

Organisms permanently inhabiting OMZ sediments may have evolved a different set 

of responses and adaptations to low oxygen levels from those that are temporarily 

exposed to hypoxia (Levin, 2003). Within OMZs, Foraminiferans are the only taxa 

that have shown an obvious decrease in body size with decreasing oxygen 

concentrations. A number of polychaete and nematode taxa have been shown to 

display an opposing trend of increasing body size with decreasing oxygen 

concentration (Levin, 2003). In the current study, individual body size was generally 

shown to be smaller at the OM than at the FG site and of similar size as the organisms 

of the deeper FSC location (chapter 6).  

 

The slopes of the normalized biomass size spectra regression lines were found to be 

steeper than those recorded for the other two study sites indicating that biomass 

decreased with body size at the OMZ location. This shift towards smaller body sizes 

was also recorded in the cumulative biomass and abundance size spectra. Quiroga et 

al. (2005), investigating the macrofaunal size structure of an OMZ community off 

Chile, also reported a steeper gradient of regression lines for the fauna inhabiting the 

permanently low oxygen environment in comparison to well-oxygenated areas. Their 

slope for the OMZ macrofauna was recorded as –0.837, which is closer to the slopes 

recorded for the FG (-0.82) and FSC (-0.69) sites than the OM site in the current study 

(-0.97). When the OM size spectra were restricted to include only the larger size 

classes (size class 10 upwards) the slope of the resulting regression line was found to 

be even steeper (-1.015) thus further deviating from the values reported by Quiroga et 

al. (2005). Vanaverbeke et al. (2003) constructed nematode size spectra for an 

oxygen-stressed site on the Belgian continental shelf and reported a single class 
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biomass peak that was attributed to a particular nematode species (Sabatieria 

puncata) thought to be well adapted to highly polluted conditions. The biomass size 

spectra constructed at the OM site did not show evidence of any one size class 

noticeably dominating the biomass distributions. A local biomass maximum was 

observed at size class 9 but the decrease in biomass was probably attributed more to a 

switch in taxonomic dominance from nematodes to polychaetes than to a specific 

meiofaunal taxa.  

 

OMZs are not only characterized by reduced oxygen levels but also by increased food 

availability that varies inversely with oxygen (Levin et al., 2000). This makes it 

difficult to distinguish their individual effects on the community structure. The food 

arriving from the surface waters is often relatively undegraded and may arrive in 

many forms including phytoplankton cell aggregations or, as observed off the coast of 

Oman, as jellyfish carcasses. These food parcels land on the seabed randomly creating 

a small-scale mosaic of food patches. The abundance and biomass distributions of 

benthic populations may reflect this patchiness hence providing a possible mechanism 

that can result in the increased variability in the biomass and abundance spectra as 

observed at the OM site. The OMZ size spectra clearly differed from the size 

distributions observed at the well-oxygenated sites, the most notable changes being 

the shift towards smaller body sizes and the pronounced biomass minimum 

effectively separating nematode and polychaete populations from one another. 
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5.4.5 Conformation to the metabolic theory of ecology 
 

The metabolic theory of ecology predicts how metabolic rate varies with body size 

and temperature and consequently how this rate imposes controls on ecological 

processes at all levels of organization from individuals to ecosystems (Brown et al., 

2004). At the heart of this theory is the idea that most biological processes can be 

scaled to body size according to allometric equations as discussed in chapter 1. The 

unusual property of these allometric equations is that their scaling exponents can be 

expressed as multiples of 1/4. These quarter-power (or derivatives of thereof) scaling 

exponents have been reported for a number of biological processes ranging from 

metabolic rates to abundance and biomass relations (Peters, 1983). 

 

For example, numerical abundance (N) has been predicted to scale with body size (M) 

as N = M-3/4(Peters & Wassenberg, 1978; Damuth, 1981). Biomass (B) can be derived 

by multiplying population abundance by individual body mass, implying that 

population biomass can be expected to increase with body size (B = M-3/4M  = M1/4). 

As metabolic rate scales with mass as M3/4, it has been predicted that the rate of 

energy use, calculated as the product of individual rate and population density, is 

independent of the body size (M3/4M-3/4 = M0; Peters & Wassenberg, 1978). This is 

known as the “energetic equivalence hypothesis” and it generally applies to 

communities that share a common energy source.  

 

However, it has been suggested that in size-structured communities organisms do not 

share a common energy source and that the energy available to the larger organisms is 

constrained by inefficient energy transfer through the food chain (Brown & Gillooly, 
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2003; Dinmore & Jennings, 2004). This would imply that the quarter-power scaling 

exponent hypothesis would start to breakdown and, for example, the observed scaling 

of abundance with body size would be steeper. In such cases the energy transfer 

efficiency would act as limiting factor (R) and the resulting allometric equation could 

be expressed as N = [R]M-3/4 (Brown et al., 2004). In other words, deviations in the 

scaling exponents from the expected values could suggest that individuals within 

communities do not feed from a common food source and that more complex trophic 

relations prevail. 

 

 In the current study the scaling exponents of biomass and abundance relations 

displayed variations around the expected values of 1/4 and –3/4, respectively (figures 

5.15 & 5.17; tables 5.1 & 5.2) although the slopes of biomass and abundance relations 

derived by ordinary least squares regression models differed significantly (p < 0.05) 

from these theoretically expected values at the FG and FSC locations but not at the 

OM site.  

 

Geometric mean or Reduced Major Axis (RMA) regressions have been claimed to be 

more relevant in estimating the functional bivariate relations in biological data where 

natural variation exceeds the measurement variance (Ricker, 1973; Schwinghamer et 

al., 1986). Consequently the slopes of biomass and abundance relations were also 

determined by RMA regressions. Although these slopes were found to be significantly 

different from the theoretical values for biomass relations at the FG and OM locations 

and for abundance relations at all locations, the RMA regression models produced 

similar general trends to those observed with the OLS regression models (figure 5.17).  
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Figure 5.17. Comparison of the scaling exponents from the three study locations to 
the theoretically expected values of 1/4 and -3/4 for biomass and abundance, 
respectively. OLS: ordinary least squares regression; RMA: reduced major axis 
regression (see text for details). Error bars represent standard errors. 
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Table 5.1. Regression parameters for the regular and normalized biomass size spectra 
(Y = log10a + blog10X). All regressions are significant (p<0.01). OLS = Ordinary 
Least Squares regression; RMA = Reduced Major Axis regression; NOLS = 
Normalised Ordinary Least Squares regression. 
 

Regression Location Slope (b) Intercept (log10a) r2 S.E. slope S.E. intercept 
FG 0.185 0.464 0.398 0.026 0.107 
FSC 0.322 0.562 0.757 0.021 0.085 O

LS
 

OM 0.258 0.195 0.244 0.056 0.241 
FG 0.164 0.029 0.429 0.014 0.025 
FSC 0.261 0.260 0.632 0.018 0.068 

R
M

A
 

OM 0.198 0.036 0.250 0.019 0.034 
FG -0.818 22.77 0.965 0.042 0.555 
FSC -0.690 19.75 0.977 0.028 0.374 

N
O

LS
 

OM -0.974 22.83 0.931 0.071 0.944 
  

Table 5.2. Regression parameters for the abundance size spectra (Y = log10a + 
blog10X). All regressions are significant (p<0.01). OLS = Ordinary Least Squares 
regression; RMA = Reduced Major Axis regression. 
 

Regression Location Slope (b) Intercept (log10a) r2 S.E. slope S.E. intercept 
FG -0.806 0.519 0.925 0.026 0.108 
FSC -0.674 0.594 0.931 0.021 0.085 O

LS
 

OM -0.734 0.247 0.731 0.055 0.236 
FG -0.903 0.020 0.981 0.014 0.025 
FSC -0.811 0.060 0.961 0.018 0.066 

R
M

A
 

OM -0.919 -0.043 0.965 0.019 0.034 
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Although the scaling exponents generally approximated the values predicted by the 

metabolic theory and the energy equivalence hypothesis, the slopes were still 

statistically different in most cases. These results can possibly be explained by the fact 

that benthic communities show some evidence of size-structured feeding relations and 

that the predicted scaling exponents must be corrected for the appropriate limiting 

resource (R). In this scenario all benthic organisms do not feed from a common food 

pool but are instead characterised by size-structured food webs with larger predators 

feeding on smaller prey. The reduction in available energy with increasing body mass 

supports fewer larger organisms and this is depicted by the steeper abundance – body 

size regression lines. However, benthic infaunal communities, may not necessarily 

display size structured food chains as, for example, larger bivalves may be filter 

feeding directly on the same organic matter as the smaller organisms (Dinmore & 

Jennings, 2004). Dinmore and Jennings (2004) predicted the slopes of abundance – 

body mass relationships by using a simple model that accounted for the energy 

transfer efficiency between different trophic levels (as identified by stable isotope 

analysis). Their results suggested that the slopes of empirical benthic size spectra 

were consistent with their theoretical predictions based on the trophic structure and 

energy transfer efficiency. 

 

5.4.6 Summary 
 

The data presented in this chapter suggest that biomass size spectra do not separate 

meio- and macro-fauna as two functionally distinct units. The biomass distribution 

patterns could be generally described as a continuously increasing function of body 
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size and as such they do not conform to the bimodal trend reported by Schwinghamer 

(1981). The current data and other previously published reports (e.g. Duplisea & 

Drgas, 1999; Udalov & Burkovsky, 2004; Stead et al., 2005) suggest that variable 

biomass distribution patterns may arise as a result of spatial and temporal variation or 

inappropriate sampling and analysis protocols. Body size spectra do appear to reflect 

changes in environmental conditions and generally approximated the theoretically 

expected patterns as outlined by the metabolic theory of ecology (Brown et al., 2004).
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6. BODY SIZE MINIATURISATION IN THE 

DEEP-SEA 

 

6.1 Introduction 
 

Benthic organisms generally depend on food originating from the overlying surface 

waters. As both the quantity and the quality of food decrease with water depth and 

distance from the shore (Rowe & Staresinic, 1979, Suess, 1980) the benthic standing 

stock can also be expected to follow the same trend. Deep-sea organisms have been 

suggested to adapt to these decreased food levels in one of two ways. Some taxa 

[gastropoda (Clarke, 1960); isopoda (Wolff, 1962); amphipoda (Thurston, 1979)] 

have been shown to increase in size (gigantism), potentially allowing them to forage 

further in search of limited food resources. On the other hand meio- and macro-faunal 

communities have shown trends towards body size miniaturisation with increased 

water depth. Thiel (1975) formulated a hypothesis stating that ‘associations governed 

by constantly limited food availability are composed of smaller individuals on 

average’ and attributed this to the fact that food limitation does not allow the higher 

energy consumption of larger organisms on a local scale (Thiel, 1979). 

 

Subsequent studies attempting to test this hypothesis have produced conflicting results 

with some studies providing support (Carey, 1981; Gage, 1977; Soetaert & Heip, 

1989; Soltwedel et al., 1996) and others contradicting it (Shirayama, 1983; Smith & 

Hinga, 1983; Tietjen, 1989). The variable sampling and sorting methods used in these 

studies may in part explain some of these contradicting results. For example, 
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Shirayama (1983) and Polloni et al. (1979) outlined the need to compare samples that 

were both spatially and temporally consistent, relevant and reliable. Most of the 

studies have also attempted to analyse benthic size structure in terms of average 

individual biomass values, although potentially more information can be revealed by 

using body size spectral methods.  

 

With access to appropriate, high quality sample sets, this chapter aims to investigate 

the body size miniaturisation of benthic infaunal assemblages with increasing water 

depth. It primarily focuses on comparing the two NE Atlantic study sites with 

contrasting water depths (Fladen Ground 150 m; Faroe-Shetland Channel 1600 m) 

although the data from the Arabian Sea OMZ location are also considered. The 

relative merits and limitations of using average individual biomass and spectral 

methods are discussed. 

 

6.2 Methods 
 

The simplest way to compare body sizes between the study sites is to use ‘average 

individual biomass’ (AIB), sample biomass divided by sample abundance (e.g. Bett & 

Gage, 2000). As the samples were sieved through a nest of mesh sizes, the data can be 

analysed in three different ways: (1) the overall sample total combining all the sieve 

fractions (500, 355, 250, 180, 45 µm) together (i.e. >45 µm), (2) separate fractions 

including only the specimens retained on that particular sieve mesh (i.e. largest 

fraction >500 µm, next fraction <500µm but >355 µm etc.), and (3) cumulative 

fractions giving the notional catch as if each sieve had been used on its own 
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(e.g.>500, >355, >250, >180 and >45 µm). Total sample AIB values were calculated 

for all three data ‘treatments’ as a mean value of the five replicates from each site.  

 

A more detailed method of gauging potential differences in benthic size structure 

between the study sites is the construction of body size accumulation curves. All 

specimens were assigned to a body size class and the cumulative percentage of 

individuals present in each size class was plotted. The relative differences between the 

replicates and the sites were assessed using the Analysis of Similarities (ANOSIM) 

routine provided by the PRIMER software (Clarke & Green, 1988; Warwick & 

Clarke, 1991). As applied here, ANOSIM tests were based on analyses of 

dissimilarity matrices generated by summing the differences between the cumulative 

percentages of any two replicates. For example, for Fladen Ground samples the 

cumulative percentage in each size class of replicate one was deducted from the 

respective cumulative percentage of replicate two. The absolute differences were then 

summed and the resulting value was used as a measure of dissimilarity between the 

two replicates. The procedure was repeated for all the replicates at all the sites to 

produce the dissimilarity matrices. This approach was used for the data set as a whole 

and for major taxonomic (Polychaeta, Crustacea and Nematoda) groups separately 

where possible. The dissimilarity matrices were also used to plot Multi-Dimensional 

Scaling ordination maps where the distance between the replicates or sampling sites 

represents the degree of dissimilarity (replicates most dissimilar to one another plotted 

furthest apart). 
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6.3 Results 
 

The mean absolute abundance and biomass values recorded at Fladen Ground were 

higher than those observed at the deeper FSC site (table 6.1). The highest overall 

abundance levels were recorded at the Oman Margin site and were coupled with the 

lowest biomass values reflecting the fact that this site is mainly dominated by small 

nematodes. At all sites, polychaetes dominated the macrofauna and nematodes the 

meiofauna in terms of numbers and biomass. At the Fladen Ground site high numbers 

of bivalves (Veneridae), gastropods (Philinidae) and polychaeta (Opheliidae) were 

recorded in the smaller sieve fractions (180-355 µm). Although some smaller 

macrofauna were found at the FSC site, the relative numbers were low in comparison 

to the Fladen Ground location.  Apart from a few small bivalves, the Oman Margin 

site fauna consisted almost exclusively of nematodes and polychaetes. 

 

The overall body size (measured as AIB for all the sieve fractions combined) did not 

differ significantly between the Fladen Ground and FSC sites (figure 6.1 -

accumulative 45 µm fraction; figure 6.2 – all combined). Inspection of the 

accumulated fractions (figure 6.1) reveals that the average individual biomass at the 

FSC site was higher in most of the sieve fractions. However, the individual fractions 

displayed an opposing trend with average body size at Fladen Ground being larger at 

intermediate mesh sizes (figure 6.2). These observations imply that it is the presence 

of the largest individuals (>500 µm) at the FSC site that contribute considerably to the 

observed AIB values. If the organisms retained on the 500 µm sieve are excluded 

from the analysis, average individual biomass is found to be significantly larger in all 

the sieve fractions from the Fladen Ground site (figure 6.3). The AIB at the Oman 
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Margin site was generally found to be the lowest of the three locations in most of the 

sieve fractions, regardless of whether these fractions were considered individually or 

cumulatively (figures 6.4, 6.5 & 6.6). The influence of the particularly small AIB in 

the 500 µm fraction was reflected as reduced AIB in all the subsequent accumulative 

fractions as well (figure 6.4). When the largest fraction (500 µm) was removed from 

the data set, the AIB of the OM site seemed visually closer to the other two sites 

although significant differences were still detected between the three sites (figure 6.6). 
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Table 6.1. Summary statistics of benthic community abundance, biomass and average 
body size at shallow-water (Fladen Ground, 150m), deep-water (FSC, 1600m) and 
OMZ (OM, 500 m) sites based on 5 replicate sets at each location. (AIB, average 
individual biomass; p, probability result of Kruskal-Wallis-test comparison between 
the sites). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parameter Units Fladen 
Ground FSC Oman 

Margin p 

      
Macrofauna 
abundance > 500 µm ind/m2 8,403 2,988 4,932 0.022 

Total abundance ind/m2 801,426 471,422 1,057,381 0.039 
Total biomass g(wwt)/m2 15.0 11.0 4.1 0.012 
AIB total g(wwt)/m2 1.9x10-5 2.7x10-5 3.9x10-6 0.006 
AIB < 500 µm g(wwt)/m2 6.6x10-6 2.8x10-6 1.3x10-6 0.005 
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The problem of randomly retaining larger specimens in benthic samples is not 

uncommon. At the largest sieve fraction the presence of larger individuals is closely 

related to the surface area covered by the sampling device. Consequently, the analysis 

of benthic samples is always a function of the area covered and the mesh size used. 

The presence of random larger individuals can easily skew the results of the analysis 

and often in macrobenthic work a larger mesh size may be used to try to remove this 

effect (e.g. use of 2 mm mesh on top of a 500 µm mesh). As a larger mesh size was 

not used in the current study it is possible that the presence of few larger individuals 

may mask the real trends in the data set and consequently their exclusion may be 

justified to reveal the true underlying pattern in size distribution. In fact, at the FSC 

location the larger size classes contained specimens of sipunculids and ophiuroids that 

contributed considerably to the total biomass but had a relatively small influence on 

the overall abundancies. 

 

Figure 6.7 shows the overall body size cumulation curves for each replicate from the 

three study sites. All of the FSC and most of the OM curves lie above the Fladen 

Ground ones over most of their range. This depicts an obvious shift in the distribution 

of body sizes between the three sites, with the FSC and OM communities being 

clearly dominated by smaller organisms. The OM site data were further characterised 

by a high degree of variability as depicted by the wide spread of the accumulation 

curves over the size range.  The body size distributions (i.e. the shape and position of 

the curves) were statistically tested by using ANOSIM and the Fladen Ground site 

was found to be significantly different from the other two sites (p < 0.01). There was 

no significant difference between the FSC and the OM sites. The MDS plots similarly 

showed the replicates from the FG site to cluster away from the FSC and OM 
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locations (figure 6.11).   The analysis of major taxa showed that both nematodes (all 

three sites) and crustaceans (FG and FSC only) followed the same trend and that again 

there were significant differences between the sites (figures 6.8 & 6.9; p < 0.01). 

Polychaetes displayed an opposing trend (figure 6.10) with a higher proportion of 

smaller individuals encountered at the Fladen Ground site than at the other two 

locations (p < 0.01). Again FSC and OM were not siginificantly different from one 

another. These differences were also detected on the resulting MDS plots (figure 

6.11). 
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Figure. 6.1. Mean body size for the accumulative sieve fractions. * denotes a 
significant difference between the two sites (MANN-WHITNEY U p < 0.05; error 
bars are 95% CI). 
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Figure 6.2. Mean body size for the individual sieve fractions. * denotes a significant 
difference between the two sites (MANN-WHITNEY U p < 0.05; error bars are 95% 
CI). 
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Figure 6.3. Mean body size for the accumulative sieve fractions (excluding the 500 
µm). * denotes a significant difference between the two sites (MANN-WHITNEY U 
p < 0.05; error bars are 95% CI). 
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Figure 6.4. Mean body size for the accumulative sieve fractions (error bars are 95% 
CI; there are significant differences in all sieve fractions: Kruskal-Wallis test p < 
0.05). 
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Figure 6.5. Mean body size for the individual sieve fractions (error bars are 95% CI; 
there are significant differences in all sieve fractions: Kruskal-Wallis test p < 0.05). 
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Figure 6.6. Mean body size for the accumulative sieve fractions (excluding the 500 
µm; error bars are 95% CI; there are significant differences in all sieve fractions: 
Kruskal-Wallis test p < 0.05). 
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Figure 6.7. Body size accumulation curves for the overall data set (black line: FG; 
blue line: FSC; red line: OM). 
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Figure 6.8. Body size accumulation curves for the Crustacea (black line: FG; blue 
line: FSC). 
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Figure 6.9. Body size accumulation curves for the Nematoda (black line: FG; blue 
line: FSC; red line: OM). 
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Figure 6.10. Body size accumulation curves for the Polychaeta (black line: FG; blue 
line: FSC; red line: OM). 
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Figure 6.11. MDS plots for the three sampling sites based on the dissimilarity 
matrices generated by summing the differences between the cumulative percentages 
of any two replicates (see text for details); (a) Overall data set, (b) Nematoda and (c) 
Polychaeta. 
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6.4 Discussion 
 

As outlined in the introduction, the emphasis on the discussion of body size 

miniaturisation in the deep-sea is mainly on the comparison of the two NE Atlantic 

sites (FG and FSC).  Although the data from the Oman Margin site are also 

introduced and put into context, it is perhaps simpler to try to demonstrate the 

observed trends between the other two sites separately as the differences in their 

environmental characteristics resulted largely from the contrasting water depths (e.g. 

not further complicated by reduced oxygen levels).  

 

Most of the studies that have previously attempted to test Thiel’s (1975) hypothesis 

have used average individual size to try to gauge changes in the underlying body size 

structure. The fact that these studies have provided contradictory results is not 

surprising considering the complexity and the limited value of AIB data. By definition 

average values consider all the individuals in the sample and thus can be highly 

sensitive to the presence of extreme data points. These can potentially mask the true 

trends in underlying size structure, as rare large individuals have little influence on 

body size accumulation curves but can have a marked effect on AIB values. For 

example, in the present study the inclusion of larger individuals from the 500µm 

fraction at the deeper site was enough to skew the average values to the point that the 

body sizes appeared larger on all other sieve fractions. The body size accumulation 

curves clearly depicted a significant shift towards smaller body sizes at the deeper site 

and only by excluding the largest organisms from the analysis were the AIB values 

able to reflect this trend. This clearly highlights the limited value of attempting to 

reduce benthic body size distributions to a single average value. 
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The comparison of the body size accumulation curves for major taxa produced 

contradicting results. Nematodes and crustaceans followed the trend of the data set as 

a whole, whereas polychaetes displayed smaller body sizes at the Fladen Ground site. 

The deviation of the polychaete body size structure from the general trend may have 

resulted from either different taxonomic composition and the associated recruitment 

histories or the degree to which the two sampling sites are subjected to habitat 

disturbance. For example, high numbers of small polychaetes (Opheliidae) and 

molluscs (Veneridae, Philinidae) were encountered at the Fladen Ground site, 

suggesting that a relatively recent settlement event had taken place. The occurrence of 

large spat falls relatively late in the season is not unusual as, for example, Philinidae 

gastropods have been recorded to spawn throughout the summer with the larval 

settlement time typically more than 30 days (Hansen & Ockelmann, 1991; Wilson, 

2000). There was no evidence of recently settled juvenile macrofauna at the deeper 

FSC site.  

 

The sampling location at Fladen Ground is also subjected to disturbance by extensive 

oil industry activity and offshore fisheries whilst the FSC location represents a 

relatively undisturbed deep-sea environment. Environmental disturbance (e.g. 

pollution) has been shown to result in smaller body sizes of macrobenthic organisms, 

whereas meiobenthos may not display an obvious size difference between 

conservative and opportunistic species (Warwick, 1986). It is possible that the trends 

observed in the size accumulation curves of the major taxa reflected the increased 

disturbance levels at the FG sampling site. If this is the case the observed shift in the 
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body size distributions with depth may be even more pronounced in undisturbed 

habitats. 

 

The reasons for the observed size miniaturisation patterns remain unclear. Rex and 

Etter (1998) stated that the size related adaptations to the environmental conditions in 

deep-sea benthos should be examined at species level with the measurements 

standardised to similar species assemblages and common growth stages. Although a 

species-level approach could help to elucidate some of the factors responsible for the 

size-depth patterns, it is difficult to extend this approach to community level as it is 

not realistic to expect the benthic communities to have a consistent taxonomic 

composition over a broad bathymetric range. Thiel’s original hypothesis (1975) about 

body size miniaturisation in deep-sea environments applied to benthic assemblages as 

a whole and hence a different approach may help to determine some of the causative 

factors at this level. One alternative is to use the non-taxonomic approach adopted in 

this study that assumes organisms of similar size to respond similarly to 

environmental constraints.   

 

Thiel (1975) argued that the causative agent is the limited food supply, which results 

in smaller body sizes on average. He explained this by comparing the advantages of 

being either small or large in a food-limited environment. Although the cost of 

maintaining a given biomass of smaller organisms is higher than that required to 

maintain the same biomass of larger organisms, the high individual food demands of 

larger animals and the requirements to maintain a critical population density for 

reproduction generally favours smaller body sizes. This hypothesis generally applies 

to infauna (e.g. meio- and macro-fauna) that feed on the sediment locally. Organisms 
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(e.g. some megafauna) with broader home ranges can display increased body sizes 

with water depth as they benefit from reduced vulnerability to local extinction and are 

able to feed over larger areas hence utilising their metabolic advantage (Thiel, 1979; 

Rex & Etter, 1998).  

 

With the exception of hydrothermal vents and cold seeps, the main food source for 

benthic communities is generally the organic matter synthesised in the overlying 

surface waters (Sokolova, 2000). The amount of organic matter reaching the sea floor 

is often a function of water depth with the organic content decreasing with increasing 

bathymetric depth (Rowe, 1971). The flux of organic material to the seafloor is not 

easy to determine and data for the two study sites are scarce. As most of the organic 

material that reaches the sea floor is utilised by the fauna (Gage & Tyler, 1991; Cole 

et al., 1987), the standing stock of benthos is a good indirect measurement of this flux. 

Although primary production at the two study sites has been reported to be similar (~ 

1 g C m-2 d-1; Cadée, 1986; Riegman & Kraay, 2001), there are differences in the 

benthic biomass levels (table 6.1). Using Suess’ (1980) equation linking primary 

production of organic carbon in surface waters to particulate organic carbon flux to 

depth it can be estimated that the FSC site receives about 10% of the organic input 

that reaches the Fladen Ground site. Although the Suess equation has been criticised 

(Lutz et al., 2002) and there may be additional organic inputs to the North Sea 

(Austen et al., 1991), it may nevertheless be reasonable to suggest that there is an 

order of magnitude difference in the organic matter flux to the two study sites. It is 

therefore conceivable that food limitation may act as a contributing factor in 

controlling the optimal body size of benthic communities resulting in smaller body 

size distribution observed at the FSC site in the current study. 
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A number of other environmental factors have been suggested to explain differences 

in body size structure between contrasting habitats and perhaps the most obvious one 

in the analysis of benthic communities is that of sediment grain size distribution. For 

instance, Schwinghamer (1981) hypothesised that sediment granulometry determined 

the size distributions of infaunal organisms and that shifts would occur in the size 

spectra in response to changes in particle size composition but subsequent studies 

have frequently provided contrary evidence (Warwick, 1984, Duplisea & Drgas, 

1998, Leaper et al., 2001). Similarly, Chapelle and Peck (1999) suggested that 

individual body size may be correlated with dissolved oxygen concentration but in 

this study both the bottom water oxygen levels and the particle size distribution of 

sediments were very similar suggesting that the differences in size distributions 

between the two NE Atlantic stations did not result from variations in these parameter 

values and that other factors such as temperature, hydrodynamics and predation may 

also influence the observed size structures.  

 

If the hypothesis proposed by Chapelle and Peck (1999) is true for benthic infauna in 

general, then it would be expected that the organisms sampled at the core of the OMZ 

at the Oman Margin site should display signs of decreased body size, particularly at 

the largest sieve fraction (500 µm). This trend is observed in the current study where 

the overall body size distribution was significantly smaller at the Oman Margin 

location (figure 6.7 (a)).  Although the body size distribution of the Oman Margin 

polychaetes was found to be significantly larger than at the FG, no significant 

differences were detected between the deeper FSC and the OM locations (figure 6.7 

(b)). These findings imply that the body size of the benthic infauna at the OM site 
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may be controlled by the oxygen availability as suggested by Chapelle and Peck. 

However, OMZ areas are often characterised by other environmental gradients, such 

as sediment organic content, that may also influence the size distributions and 

therefore make it difficult to distinguish the effect of individual gradients (Levin et 

al., 2000). 

 

Benthic environments within the OMZ areas are typically characterised by a high 

sediment organic content as a result of the reduced mid-water consumption of the 

organic matter sinking from the highly productive euphotic zone (Levin et al., 2000).  

It is possible that the reduced size distribution at OM site in comparison to FG 

location reflects the low oxygen concentration within the OMZ. However, it is also 

equally possible that the increased food availability counteracts this effect allowing 

the existing organisms to attain larger body sizes than otherwise expected. Although it 

is probable that both processes influence the body size distribution at the OM site, it is 

very difficult to assess their individual contributions.  

 

The results from this study are effectively based on data from only two sampling 

stations located on the continental margin and slope and so their implications must be 

interpreted with caution. The construction of size spectra for a number of stations 

across a bathymetric gradient are required to further assess the existing hypothesis 

concerning the size-depth patterns. Overall the results from the two locations 

appeared to follow the pattern of smaller organisms dominating the deeper sediment 

environment with food availability acting as one possible control. 
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7. BENTHIC SECONDARY PRODUCTION 

AND ENERGY FLOW 

 

7.1 Introduction 
 

Productivity can be defined as the rate at which assimilated matter is converted into 

body mass. For steady-state systems the amount of biomass produced equals the 

amount eliminated and hence production forms a central component of energy flow 

and organic matter recycling within the ecosystem (Tumbiolo & Downing, 1994). For 

instance, benthic organisms play an important role in mass and energy transfer 

between different parts of the system. In many cases this is represented by directly 

linking primary producers to higher predators (e.g. demersal fish). The role of benthos 

in redistributing and recycling organic matter and nutrients is also unequivocal. The 

measurement of secondary benthic production and the understanding of the controls 

that influence it are therefore essential in comprehending ecosystem functioning and 

dynamics (Tumbiolo & Downing, 1994).Unfortunately the process of measuring 

production and energy transfer dynamics at community level is difficult and the size-

based approach discussed in the previous chapters can offer an attractive alternative to 

producing first approximations. 

 

Secondary production is classically quantified by using techniques such as the 

increment summation method, the removal summation method, the instantaneous 

growth method or estimation of production by the Allen curve (e.g. Hynes-Hamilton 

& Coleman, 1968; Waters, 1977; Crisp, 1984). However, these techniques often 
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require repeated measurements of abundance and biomass of known population 

cohorts. These data requirements make it a difficult task to establish at community or 

ecosystem level due to time constraints and the difficulty of associating rare species to 

particular cohorts (Sprung, 1993). Consequently, ecologists have developed indirect 

estimation methods such as empirical models that attempt to predict secondary 

production from more easily obtained community parameters such as individual body 

size (Brey et al., 1996). 

 

Banse and Mosher (1980) and Schwinghamer et al. (1986) produced allometric 

scaling equations that predicted production as a function of body mass. These models 

were essentially based on the hypothesis that a negative exponential relation exists 

between body size and metabolic rate (Peters, 1983). However, metabolic rate and 

production of benthic organisms is also influenced by other controls such as 

temperature and resource availability (Brown et al., 2004). The rates of biological 

processes are known to increase exponentially with temperature and the quantity and 

quality of food is thought to decrease with water depth in marine benthic ecosystems 

(Rowe, 1971). Consequently, Tumbiolo and Downing (1994) improved the earlier 

empirical relations by considering the effects of temperature and water depth on the 

production of marine invertebrates. The resulting allometric relation predicts annual 

production (P) as a function biomass (B) in g dwt m-2, maximum individual size (Wm) 

in mg dwt, temperature (T) in ˚C and water depth (d) in meters: 

 

log10P = 0.18 + 0.97log10B – 0.22log10Wm + 0.04T – 0.014Tlog10(d + 1) (7.1) 
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Multivariate analysis carried out by Tumbiolo and Downing (1994) showed that, 

corrected for temperature and depth variations, secondary production varied with 

body mass as Wm
-1/4 across a number of different environments as predicted by the 

metabolic theory of ecology (Brown et al., 2004). 

 

Production can also be empirically related to respiration over a broad range of body 

sizes (Humphreys, 1979). Schwinghamer et al. (1986) calculated annual respiration 

(R) of meio- and macro-fauna from annual production (P) using the relations derived 

for benthic invertebrates by Banse (1979) and Banse and Mosher (1980). This relation 

was expressed in kcal m-2 y-1 (kcal m-2 ≈ cm3 m-2 ≈ g wwt m-2; Schwinghamer 1981, 

Schwinghamer et al., 1986): 

 

Log10R = 0.367 + 0.993log10P      (7.2) 

 

The body size-based estimates of community production and respiration enable the 

determination of benthic energy demand on a larger scale. The aim of this chapter is 

to use biomass size spectra in conjunction with these empirically derived allometric 

equations (eqs 7.1 & 7.2) to provide estimates of secondary production at the three 

study sites. Production estimates are compared across the sampling sites and the 

relative contributions of the various size classes to total production are assessed. This 

approach helps to highlight potential gaps in our current understanding of material 

and energy transfer dynamics at community level hence providing focus and direction 

for the future research efforts in this area. 
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7.2 Methods 
 

Annual production and respiration estimates were derived for the size classes 

encompassing the reliable part of the biomass size spectrum (chapter 5). The 

allometric formula developed by Tumbiolo and Downing (1994) was used to estimate 

production at the three study sites (eq 7.1). This model predicts benthic secondary 

production as a function of two powerful and easily measurable variables of 

community structure: biomass and maximum individual body size. Due to the non-

taxonomic approach of the current study the maximum individual body size was 

substituted for maximum body size at each size class. As this modification is not 

strictly analogous to the original parameter, it may have an influence on the resulting 

production estimations. However, it was felt that the method could still be trialled and 

the early results showed that the production estimates derived from this approach 

appeared to agree reasonable well with other independently obtained community 

production estimates (see discussion). The model outlined by Schwinghamer et al. 

(1986) was used to derive estimates of community respiration from the production 

values (eq 7.2).  

 

Based on these estimations a number of benthic production size spectra (BPSS) were 

constructed. The regular BPSS were plotted by determining the total production (g 

wwt) in each size class. The relative BPSS standardised the production estimates to 

percentages that were also plotted as a cumulative percentage spectra. 

 

In addition to considering the size classes on their own, an alternative approach was 

adopted where size classes were combined together to form three groups. The 
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combination of size classes followed the approach introduced by Schwinghamer et al. 

(1986) with meio- and macro-fauna representing the smaller and larger ends of the 

metazoan size spectrum, respectively. A third group (mesofauna) was added to 

represent the intermediate body sizes and thus the meiofaunal group included size 

classes 5-7 (< 180 µm ESD), the mesofaunal group size classes 8-12 (180-500 µm 

ESD) and the macrofaunal group size classes 13-20 (> 500 µm ESD). The production, 

biomass and respiration values were presented as summed totals for each group. The 

analysis also allowed the derivation of estimates for P:B ratios by dividing the 

estimated annual production by the observed biomass in each group. 
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7.3 Results 
 

Total annual production was found to be highest at the FG site (42.2 g m-2 y-1), with 

the FSC (13.4 g m-2 y-1) and OM (13.8 g m-2 y-1) locations having lower values (table 

7.1, figure 7.1). Annual production and respiration of meio- and meso-fauna 

decreased with water depth, but at the deepest site (FSC) the production of 

macrofauna was higher than at the intermediate OM site. However, these trends may 

reflect variations in environmental parameters other than water depth. For instance, 

the OM site is strongly characterised by permanently low oxygen concentrations and 

increased downward flux of organic carbon. 

 

The increased production and higher standing stock at the shallower FG site in 

comparison to the FSC location probably reflected two factors. First, the incoming 

flux of organic carbon at this location is expected to be higher than at the deeper FSC 

site (Rowe, 1971; Suess, 1980). In other words food availability may limit the 

production proportionally more at the FSC site resulting in lower standing stock. The 

second factor is related to temperature, which influences the rates of biological 

processes. The deeper FSC site is characterised by water temperatures that are nearly 

10 degrees below those recorded at Fladen Ground and consequently the production 

rates can be expected to be lower. 

 

Differences in temperature and water depth can also help to explain the fact that the 

total annual production at the OM site was similar to FSC despite the total biomass 

being significantly lower (table 7.1). As already outlined, water depth in the Tumbiolo 

and Downing model is included to reflect the flux of organic material to the seabed.  
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Table 7.1. Estimated values of annual production and respiration presented together 
with measured biomass values (all in g wwt m-2). Values in parenthesis are standard 
deviations. Meio-, meso- and macro-fauna defined as groups that combine the original 
X2 size classes (see text for details). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

   FG FSC OM 
P 6.5 (1.7) 1.8 (0.7) 3.0 (2.9) 

B 0.7 (0.2) 0.2 (0.1) 0.3 (0.3) 

P:B 9.3 (0.2) 8.3 (0.4) 9.3 (0.5) 

M
ei

of
au

na
 

R 14.9 (3.8) 4.2 (1.7) 7.1 (6.7) 

P 21.4 (12.4) 3.7 (0.8) 5.2 (4.0) 

B 4.3 (2.7) 0.8 (0.2) 1.0 (0.7) 

P:B 5.0 (0.2) 4.7 (0.2) 5.4 (0.2) 

M
es

of
au

na
 

R 49.3 (28.2) 8.6 (1.8) 12.0 (9.1) 

P 14.4 (5.4) 7.9 (1.9) 5.6 (3.9) 
B 8.0 (3.3) 5.7 (1.8) 2.6 (1.9) 

P:B 1.8 (0.2) 1.4 (0.1) 2.1 (0.2) 

M
ac

ro
fa

un
a 

R 33.2 (12.5) 17.3 (4.0) 12.7 (8.7) 

P 42.2 (18.6) 13.4 (2.1) 13.8 (9.8) 

B 13.0 (5.8) 6.7 (1.8) 3.9 (2.6) To
ta

l 

R 97.5 (42.5) 30.1 (4.3) 31.8 (22.2) 
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Figure 7.1. Estimated annual production at the three study locations (error bars 
represent standard deviations). 
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Although an increased flux of organic carbon was expected as a result of reduced 

water depth and the associated increase in quantity and quality of the food, the flux at 

the OM site is not simply a function of water depth. The hydrodynamics associated 

with monsoon seasons result in increased surface primary production and as the water 

column between 100-1000 m is typically devoid of oxygen, and hence pelagic 

organisms, the organic matter sinking from the surface arrives on the seabed relatively 

undegraded. The increased surface production coupled with minimal mid-water 

consumption results in increased input of food to the seabed. Consequently the Suess 

formula (1980) probably underestimates the sedimentation rate of organic carbon at 

this location. 

 

At the FSC site macrofauna contributed more than 50 % to the overall production 

while at the other two sites these values were closer to 30-40 % (table 7.1). This 

pattern was also evident in the regular and relative benthic production size spectra 

where the largest size classes were shown to contribute the most towards total 

production at the FSC site (figures 7.2 & 7.3). In contrast, meiofauna accounted for a 

larger proportion of production at the OM site (22 %) than at the other two locations 

(FG 15 %; FSC 13 %). The cumulative production percentage spectra also showed 

that meio- and meso-faunal size classes contributed more at the OM and FG sites 

(figure 7.4).  

 

The production size spectra of the FG location displayed a distinct peak around size 

class 10 (figures 7.2 & 7.3) reflecting the increased numbers of small bivalves, 

gastropods and polychaetes at this site. As the biomass size spectrum did not have a 

temporal component (i.e. the biomass size spectrum represent a snapshot in time), it is 



  Chapter 7: Production and Energy Flow   

142 

difficult to assess how these organisms will influence both biomass distribution and 

production as they grow larger. It is reasonable to expect that these juveniles are 

subjected to higher mortality rates through increased predation and competition 

pressures. Consequently, the estimate of annual production at the FG site may have 

been overestimated. The OM site production size spectrum also reflected the trends 

observed in the biomass distributions. The bimodality is evident, with distinct 

production peaks corresponding to high densities of nematodes and polychaetes in the 

meio- and macro-faunal size ranges, respectively.  

 

P:B ratios were derived for the three size groups from the estimated production and 

the observed biomass values. The P:B ratios were very similar at all three sites within 

each size group. However, differences were observed between meio-, meso- and 

macro-fauna (figure 7.5). Meiofaunal P:B values approximated 9 at all study 

locations. This is in close agreement with previously published estimates (Giere, 

1993) indicating a biomass turnover time of about 1.5 months. Macrofaunal P:B ratios 

were close to 2 with an associated turnover time of about 6 months. Mesofaunal P:B 

values were observed to be intermediate. In all three groups, P:B ratios were lowest at 

the deepest (FSC) location implying the longest turnover times.  
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Figure 7.2. Regular benthic production size spectra for the three study locations. 
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Figure 7.3. Relative benthic production size spectra for the three study locations. 
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Figure 7.4. Cumulative benthic production size spectra for the three study locations. 
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Figure 7.5. P:B ratios at the three study locations (error bars represent standard 
deviations). 
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7.4 Discussion 
 

7.4.1 Context and limitations 
 

Production values can be expressed in a number of different units ranging from grams 

wet weight to grams organic carbon making the comparison between different studies 

complicated (Saiz-Salinas & Ramos, 1999). Assuming a dry-to-wet weight ratio of 

0.25 and that benthic organisms are approximately 40 % organic carbon by dry weight 

(Rowe, 1983), the annual production of benthic metazoan infauna at the current study 

sites ranged from 4.2 g C m-2 y-1 at the FG location to 1.3 g C m-2 y-1 at the FSC site 

and 1.4 g C m-2 y-1 at the OM site. These production estimates are of the same order 

and compare favourably with previous production estimates from a wide variety of 

environments. For example, annual production estimates have been reported to range 

from 5.3 g C m-2 y-1 at Fladen Ground (De Wilde et al., 1986), 0.3 – 11 g C m-2 y-1 in 

the Antarctic settings (Arntz et al., 1994; Brey & Gerdes, 1997; Saiz-Salinas & 

Ramos, 1999) to 25 g C m-2 y-1 in temperate estuarine habitats (Warwick & Price, 

1979). 

 

The use of allometric equations in estimating community production represents an 

indirect and simplistic method that incorporates several conversions, approximations 

and assumptions (e.g. decrease of food availability with increasing water depth; 

bioenergetic similitude of organisms of the same size etc). The numeric estimates 

obviously reflect these approximations and assumptions and should be interpreted 

with caution. When the limitations of the allometric production estimation techniques 

are acknowledged and accounted for, this approach can be useful in providing broad 

conclusions about the community and ecosystem energy flows as well as offer some 



  Chapter 7: Production and Energy Flow   

148 

perspective on shifts in secondary production patterns across environmental gradients 

(Saiz-Salinas & Ramos, 1999).  

 

7.4.2 Input flux versus energy demand 
 

The flux of organic material to the seabed was estimated from a formula that 

expresses it as a function of surface primary production and water depth (Suess, 

1980). At the FG location the annual amount of organic carbon arriving on the 

seafloor was estimated to be in the range of 53-79 g C m-2 y-1 (chapter 2). The energy 

demand of meio-, meso- and macro-fauna can be determined by assuming that the 

total production represents a given fraction of the consumed organic carbon. Thus 

based on their production estimate (4.2 g C m-2 y-1) and 20 % energy conversion 

efficiency (Ankar, 1977) the total energy demand amounts to 21.1 g C m-2 y-1 

indicating that the downward flux of organic carbon is sufficient to support the 

estimated production of benthic metazoan infauna at this location.  

 

The downward flux of organic carbon at the deeper FSC site was estimated as 5.2-7.8 

g C m-2 y-1. The energy demand of meio-, meso- and macro-fauna at this station 

amounted to 6.7 g C m-2 y-1 implying that these fauna account for most of the organic 

carbon arriving from the surface.  

 

The organic carbon flux at the OM site was estimated as 37 g C m-2 y-1 with the 

energy demand of the metazoan infauna representing approximately 6.9 g C m-2 y-1. 

As at the FG site, the influx of organic material exceeds the carbon demands of the 

organisms investigated in this study. 
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As discussed earlier, the incoming carbon flux determined by using the Suess 

equation (1980) may underestimate the true flux at the OM site. This was highlighted 

during the field sampling program when dense aggregations of scyphomedusan 

jellyfish, Crambionella orsini (Vanhöffen 1888), were observed in the surface waters 

of the study area. Similarly, high numbers of dead jellyfish carcasses in varying stages 

of decay were observed on the seabed at depths varying from 350 to 3300 metres. At 

the deepest stations jelly detritus was observed as patches measuring several metres in 

diameter (Billett et al., submitted). These patches were estimated to cover 

approximately 17 % of the sediment surface presenting a standing stock as great as 78 

g C m-2. This value is more than twice the estimated annual downward organic carbon 

flux as determined by the Suess equation. The sinking jellyfish carcasses may 

therefore represent a significant pathway of organic carbon from the surface to the 

deep sea. Although these events are probably episodic, they still serve to highlight the 

complexity of the OM system. The influence of these rapid inputs of organic material 

on benthic community structure and production are largely unknown. 

 

7.4.3 Partitioning of production 
 

The incoming flux of organic material varies in composition and not all of it can be 

utilised as food by benthic organisms. This results in part of the carbon being buried 

into sediments. The total amount or organic material utilised by benthos depends on 

the community composition and whether the community is limited by food 

availability. For example, at the FG and OM sites the comparison of input fluxes and 

energy demands would suggest that a large proportion of the organic carbon is either 
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utilised by organisms other than the benthic metazoans considered in this analysis (i.e. 

micro- and mega-fauna) or removed from the system in the form of carbon burial. 

Schwinghamer et al. (1986) showed that microorganisms (e.g. bacteria) accounted for 

most of the secondary production (81-92 %) within the benthic communities at an 

intertidal site in the Bay of Fundy, Canada. It is of course very likely that at the 

current study sites smaller organisms (and megafauna) not included in these 

estimations also utilised some of the organic carbon. 

 

7.4.3.1 Microorganisms and protozoans 
 

A number of studies have investigated the influence of seasonally deposited 

phytodetritus on the deep-sea protozoan and metazoan communities and reported the 

metazoan density and biomass levels to be similar before and after the food arrival 

(Gooday et al., 1996), while foraminiferans have shown an increase in both density 

and biomass in response to phytodetritus arrival (Gooday & Lambshead, 1989). Other 

protists (Turley et al., 1988) and bacteria (Lochte, 1992) have been shown to respond 

similarly to increased phytodetritus levels. Pfannkuche (1985) also reported bacterial 

biomass to double after sedimentation of particulate organic matter but detected no 

change in the biomass of the meio-, macro- or mega-fauna. 

 

The apparent lack of response by metazoans has been attributed to the fact that 

protozoans may be better competitors as a result of their higher growth rates. 

Foraminiferans specifically can employ a highly mobile network of granuloreticulate 

pseudopodia that constitute an extremely efficient system for accumulation of food 

particles hence providing a competitive edge over metazoan organisms (Travis & 
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Bowser, 1991; Bernard & Bowser, 1992). Gerlach et al. (1985) assessed the role of 

foraminiferans in both benthic biomass and metabolic size spectra and found that they 

played a significant role in the smaller size classes. 

 

At the FG location a large number of Foraminiferan tests were observed in the sorted 

sediment samples. In some size fractions (180-355 µm) these tests were particularly 

abundant closely agreeing with the observations recorded by previous studies at this 

location (McIntyre, 1961; De Wilde, 1986). Although it is difficult to estimate what 

proportion of the observed tests contained live individuals, it is clear that 

foraminiferans constitute a significant part of the benthic community at this site. 

Similarly calcareous foraminiferans have been reported to be particularly abundant in 

the core of the Oman Margin OMZ (Gooday et al., 2000). 

 

It is then possible that foraminiferans significantly contribute to annual production at 

the FG and OM sites. Although some foraminiferans were present at the deepest 

sampling site (FSC), their numbers in the sorted samples were negligible in 

comparison to those observed at the FG location. The low numbers of this highly 

effective consumer unit at the deeper site may have either allowed metazoans to 

realise the production niche that was occupied by foraminiferans at the shallower 

station or the microorganisms may represent a link between the newly arrived organic 

material and the higher trophic levels. Either way this would represent a potential shift 

in the partitioning of production among size groups at the two stations and may have 

further implications for the rates of nutrient recycling.  
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7.4.3.2 Larger organisms 
 

At the opposite end of the size range, the reliable parts of the biomass- and 

production- size spectra did not include large macro- and mega-fauna. For instance, 

the biomass dominance of a relatively large bivalve, Arctica islandica, at the FG 

location is well documented in a study by De Wilde et al. (1986). As Arctica islandica 

typically feeds on the organic matter either directly from the overlying water column 

or as it settles on the sea bed, it is also likely to be an efficient consumer of the 

incming flux.  

 

7.4.4 Energy budgets 
 

The speculative nature of benthic production and organic matter flux estimates 

derived from the Tumbiolo & Downing and Suess equations are reflected in the 

following energy budgets. As the size-dependent approach generally predicts the 

average behaviour of all organisms in one size category, it may not be accurate in 

providing production estimates for a particular species. For instance, deviations from 

the average trend may arise at more specific levels as a result of decreasing transfer 

efficiency with increasing number of trophic levels. Nevertheless, these energy 

budgets are likely to be indicative of broader trends that exist within the benthic 

ecosystem and provide a convenient method for producing bulk estimates at the 

community level. 
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7.4.4.1 Fladen Ground energy budget 
 

Previous studies have estimated the surface primary production at the FG site as ~ 90 

g C m-2 y-1 (Steele, 1974) of which approximately 25 % or ~25 g C m-2 y-1 is assumed 

to reach the seabed (Hartwig et al., 1983). More recent estimates of surface primary 

production are in the region of 200-300 g C m-2 y-1 (the annual global production 

maps with SeaWiFS; http://marine.Rutgers.edu/opp/swf/ Production/results/ 

all2_swf.html). Assuming that a similar proportion of surface production reaches the 

seabed (25 %), the flux would approximate 50-70 g C m-2 y-1, which is close to the 

value obtained from the Suess formula (53-79 g C m-2 y-1). The energy demand of 

meio-, meso- and macro-fauna amounted to 21.1 g C m-2 y-1 leaving approximately 30 

g C m-2 y-1 for other size groups and burial.   

 

DeWilde et al. (1986) reported the biomass of large bivalve Arctica islandica as 3.6 g 

C m-2. Assuming that A. islandica together with other larger species account for 5.0 g 

C m-2 of biomass and that they have P:B ratios approximating 1 (i.e. they reproduce 

biomass equal to their own body weight in a year; DeWilde et al., 1986), then it can 

be assumed that at least 25 g C m-2 y-1 of the organic matter arriving on the seabed is 

accounted for by the smaller organisms such as bacteria and foraminiferans (ignoring 

carbon burial). If these microorganisms are assumed to have an energy conversion 

efficiency of 50 % (Ankar, 1977), their annual production would add to about 12.5 g 

C m-2 y-1. 

 

Combining the estimates of annual production for the size groups results in total 

production of 21.7 g C m-2 y-1 with microorganisms accounting for 12.5 g C m-2 y-1 

(58 %), meiofauna for 0.7 g C m-2 y-1 (3 %), mesofauna for 2.1 g C m-2 y-1 (10 %), 
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macrofauna for 1.4 g C m-2 y-1 (6 %) and megafauna for 5 g C m-2 y-1 (23 %; table 

7.2).  

 

7.4.4.2 Faroe-Shetland Channel energy budget 
 

Given that the calculated energy demand of metazoan infauna (6.7 g C m-2 y-1 for 

meio-, meso- and macro-fauna) accounts for most of the incoming organic carbon 

(5.2-7.8 g C m-2 y-1) this may suggests that the FSC site is characterised by sequential 

carbon utilisation. The micro- and mega-fauna at the FSC site also ultimately depend 

on the incoming organic material as their food source and consequently carbon must 

be passed through the trophic levels to support the existence of all size fractions. Due 

to the lack of information on the biomass of microorganisms at the FSC location 

(bacterial biomass in a similar environment on the Voring Plateau has been reported 

as 0.9 g C m-2; Koster et al., 1991), it is only possible to estimate the production of 

metazoan organisms. The production of meio-, meso- and macro-fauna was estimated 

as 1.3 g C m-2 y-1. Megafaunal biomass for epibenthic organisms (> 5 cm in size) has 

been estimated as 0.15 g C m-2 (Jones et al., submitted) and it can be assumed that the 

smaller mega-fauna contribute approximately 0.05 g C m-2. Assuming a P/B ratio of 1 

for the megafaunal size fraction, their annual production can be estimated as 0.20 g C 

m-2 y-1 and their annual carbon demand as 1.0 g C m-2 y-1. The total metazoan benthic 

production at the FSC site can hence be estimated as 1.6 g C m-2 y-1 with meiofauna 

accounting for 12 % (0.2 g C m-2 y-1), mesofauna for 24 % (0.4 g C m-2 y-1), 

macrofauna for 52 % (0.8 g C m-2 y-1)  and megafauna for 12 % (0.2 g C m-2 y-1; table 

7.2). 
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7.4.4.3 Oman Margin energy budget 
 

No megafauna were observed in the core of the oxygen minimum zone during the 

field sampling program. As the annual organic carbon demand of the meio-, meso- 

and macro-fauna is relatively small (6.9 g C m-2 y-1) in relation to the organic carbon 

flux, it is the microorganisms that seem to utilise most of the newly arrived carbon 

(~30 g C m-2 y-1; ignoring carbon burial see below). Again assuming 50 % energy 

conversion efficiency, the production of microorganisms can be estimated to amount 

to 15 g C m-2 y-1 and the total production to be 16.4 g C m-2 y-1. The microorganisms 

hence represent 91 % of the total production with meiofauna accounting for 2 % (0.3 

g C m-2 y-1), mesofauna for 3 % (0.5 g C m-2 y-1) and macrofauna for 4 % (0.6 g C m-2 

y-1; table 7.2).  

 

As with the FG location, these results suggest that microorganisms account for the 

vast majority of benthic production at the OM site with the smaller P/B ratios and 

shorter biological turnover times possible resulting in increased rate of nutrient 

recycling further fuelling the high surface production at this site. However, 

microorganisms are unlikely to utilise all of the excess carbon as proposed above. 

Instead some of this carbon is probably buried into sediments and effectively removed 

from the system. The sediment environments below oxygen minimum zones have 

been suggested to act as sinks for carbon arriving from the overlying water column 

and atmosphere (Cowie, 2005). In the Arabian Sea this may be particularly true as 

large amounts of organic material in the form phytodetritus or other pelagic particles 
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(e.g. jellyfish carcasses) sink through the water column and are deposited on the 

seabed. 

7.4.5 Respiration 
 

Respiration can be described as the summed power expenditure of all metabolic 

processes thus representing the total carbon demand of the organisms (Peters, 1983). 

Total respiration should therefore approximate total energy demand (in terms of 

carbon) for food limited steady state systems. Annual respiration of the meio-, meso- 

and macro-fauna was determined from their production estimates by using the 

empirical relation derived by Schwingamer et al. (1986; eq 2). These amounted to 9.8 

g C m-2 y-1 for the FG site, 3.0 g C m-2 y-1 for the FSC site and 3.2 g C m-2 y-1 for the 

OM site. Corresponding figures for the benthic community as a whole can be 

estimated by including megafauna in equation 7.2 and by assuming that the annual 

respiration of the microorganisms equals their annual production (Schwinghamer et 

al., 1986). These estimates amounted to 33.6 g C m-2 y-1 for the FG site, 3.5 g C m-2 y-

1 for the FSC site and 18.2 g C m-2 y-1 for the OM site (table 7.2).  

 

In situ experiments at the FG site have reported respiration values of 7.2 g C m-2 

month-1 during the summer months when biological activity is high (DeWilde et al, 

1986). Based on these monthly values and assuming reduced biological activity 

during the winter months, DeWilde et al. (1986) estimated annual respiration to be in 

region of 50-70 g C m-2 y-1, which is closer to the estimated flux of the organic carbon 

at the FG site and the value derived from the empirical equation of Schwinghamer et 

al. (1986).  
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Table 7.2. Energy budgets for the three study sites (all units g C m-2 y-1). Values in 
brackets refer to estimated production. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* In reality microorganisms probably account for a smaller proportion of the “excess” 
organic carbon and some of it is lost from the system in the form of carbon burial. 
 

 

7.4.6 Summary 
 

The body size-based approach in estimating community production and energy flow 

can provide additional insights into the system dynamics on scales that would be 

difficult to establish by any other means. The results from this analysis showed that, 

in general, the estimated carbon demand at the three locations was supported by the 

estimated flux of incoming organic material. The total infaunal production varied 

from 42 g wwt m-2 y-1 at the FG location to approximately 14 g wwt m-2 y-1 at the 

FSC and the Arabian Sea (OM) sites. The downward flux of organic matter at the FG 

and OM sites exceeded the estimated carbon demand of the included infauna and 

further analyses suggested that microorganisms and megafauna account for some of 

the incoming organic carbon. This was in contrast to the energy budget estimated for 

  FG FSC OM 

Microorganisms 25.0   (12.5)* - 30.0   (15.0)* 

Meiofauna 3.3     (0.7) 0.9   (0.2) 1.5     (0.3) 

Mesofauna 10.7   (2.1) 1.9   (0.4) 2.6     (0.5) 

Macrofauna 7.2     (1.4) 4 .0  (0.8) 2.8     (0.6) 

Megafauna 25.0   (5) 1.0   (0.2) - 
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Total 71.2   (21.7)* 7.8   (1.6) 36.9   (16.4)* 

 Carbon flux 50-70 5.2-7.8 37.0 

 Respiration 33.6 3.5 18.2 
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the FSC location where the incoming flux approximately equalled the energy 

demands of meio-, meso- and macro-fauna.  

 

A part of the incoming organic carbon at all three locations will not or cannot be 

utilised as a food source and this fraction is consequently buried. The carbon burial 

rate at FSC location is probably low, whereas at the FG and particularly at the OM 

site, where the incoming flux of organic material exceeds the estimated energy 

demand of the benthos, the rate may be significantly higher.  
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8. MODELLING BENTHIC BODY SIZE 

STRUCTURE 

 

8.1 Introduction 
 

Modelling benthic communities is often limited by the lack of quantitative 

information on many of the biological processes. This probably reflects the relative 

complexity associated with sampling and obtaining empirical estimates for the 

biological functions of benthic organisms. Further complications can be attributed to 

the high degree of uncertainty in these measurements due to natural variation and the 

difficulty of extrapolating species-specific measurements to community level 

processes (Blackford, 1997). Consequently fewer benthic community models exist in 

comparison to those developed for pelagic environment (Ebenhöh et al., 1995). 

 

One approach to modelling the benthos is to use the underlying size structure. This 

approach is based on the idea that individual body size is closely related to most 

biological functions (Peters, 1983; Schmidt-Nielsen, 1984; Brown et al., 2004). It also 

assumes that organisms of the same size behave similarly in terms of bioenergetics 

regardless of their taxonomic or functional identity. The relative simplicity of the 

size-based approach can hence potentially ensure that the parameterisation is not 

overcomplicated and that the relevant empirical data are already available or can be 

easily attained. The first step in size-based investigations is to assess whether the 

models are capable of explaining the patterns observed in the empirical data. This 

means that additional complexities such as functional groups (e.g. deposit- and 
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suspension feeders) are excluded. A successful size-dependent model may help to 

improve the understanding of processes that control the functioning and dynamics of 

benthic communities.  

 

A size-based modelling approach was adopted by Peters (1978) and Griesbach et al. 

(1982) for hypothetical animal communities. Peters (1978) constructed a size-

dependent model that predicted the biomass distribution of a community in terms of 

four processes: ingestion, respiration, defecation and mortality. Organisms within the 

community were assigned to one of five size classes that all fed from the same 

detritus food pool. Peters stated that a pelagic lake community separated into 

continuous size classes may represent a “real-life” analogue of this hypothetical 

assemblage. Griesbach et al. (1982) displayed that one use of this model could be in 

bioaccumulation studies where the distribution of a chemical pesticide (DDT) was 

modelled within the framework described by Peters (1978). Although the approach 

was again hypothetical, the model results showed a qualitative similarity with 

previously published empirical data. Although both studies demonstrated the potential 

and flexibility of a simple size-based modelling approach, they also outlined the need 

to improve the empirical bases of the model in order to make quantitative predictions.   

 

The model described here attempts to make those quantitative predictions by applying 

the approach presented by Peters (1978) to a marine benthic community in the deep 

Faroe-Shetland Channel. High-quality replicate size distribution data have been 

collected and analysed for the metazoan benthic infauna (45-500 µm) and these 

results have served as a basis for the current model that seeks to reproduce the 

observed biomass distribution. Modifications have been made to the Peters model by 
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increasing the number of size classes and by adapting the equations and parameter 

values so that they are based on published literature values relevant to benthic 

processes. The specific aims of this project were three-fold: (1) to construct a body 

size-based model that describes the benthic community biomass distribution, (2) to 

assess if the size-based approach alone can reproduce the patterns observed in the 

field data and if so (3) to identify the processes that control the distribution of biomass 

in the model.  
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8.2 Model description 
 
 

8.2.1 Basic description 
 

The model describes a closed system in which meio- and macro-fauna feed from the 

same food source (detritus; figure 8.1). There are 16 size classes in the model 

encompassing the reliable part of the empirical biomass spectra (i = 5:20) as well as a 

detritus compartment.  The organic matter is assumed to be of uniform composition 

regardless of whether it is biologically bound within the size classes or forms part of 

the detritus pool. Biomass is determined by four processes: ingestion (I), respiration 

(R), defecation (D) and mortality (Z). At each time step losses through respiration, 

defecation and mortality are returned to the detritus compartment representing the 

closure term. In reality some of these processes would represent true losses from the 

system (e.g. respiration in the form of CO2) but as this model describes a closed 

system, these losses have been retained to simulate the flux of incoming organic 

material. Net growth is determined by the difference between ingestion (I) and the 

loss terms (R, D & Z) within each size class at each time step. The biomass flux for 

each size class (Bi) is described by: 
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where a  Michaelis-Menten type function limits both ingestion and mortality. Det and 

Bi represent the biomass in the detritus compartment and in the body size class i 

whilst king and kZ are the ingestion and mortality half saturation constants,  
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respectively. Time is represented by t. The transfer of material through the detritus 

compartment is described by: 
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8.2.3 Parameterisation: body size relationships 
 

The parameter values for ingestion and mortality have been derived from published, 

body size-based relations. Cammen (1980) summarised previously published data 

relating organic matter ingestion rates (adjusted for sediment organic content) and 

individual body size of benthic deposit feeders and detrivores. These data were 

converted so that ingestion and body size were expressed as a specific rate (d-1) and 

grams wet weight (assuming 0.25 dry-to-wet weight ratio), respectively. The resulting 

data were used to derive a linear regression model (n = 19; r2 = 0.69; p < 0.001; figure 

8.2) that was converted to a power function format: 

 

I = 0.091M-0.26         (8.3) 

 

where M represents body mass (g wet weight) and I represents the ingestion rate (d-1).  

Although these data exclude suspension feeding organisms, they are still likely to 

provide a reasonable reflection of the benthic community at the FSC site were most of 

the organisms (in the included size range) feed directly from the sediment. 
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Natural mortality rates for benthic organisms are difficult to parameterise, as little 

experimental data exists. However, at steady state, annual production should be 

balanced by the amount of material lost and thus mortality has been suggested to scale 

closely with annual production rates (Banse & Mosher, 1980). Brey (1999) 

established an approximation between production (expressed as somatic 

production/biomass ratio, P/B) and specific mortality rates (Z) as displayed by the 

linear regression model in equation 8.4 (n = 103; r2 = 0.92; p < 0.001).  

 

Z = 0.082 + 0.925(P/B)       (8.4) 

 

The determination of size-based mortality rates then required an allometric equation 

relating P/B ratios to individual body size. Schwinghamer et al. (1986) established 

this relation for meio- and macro-faunal organisms from published literature values 

(eq. 8.5 – P refers to somatic production), where  

 

P/B = 0.696M-0.208        (8.5) 

 

Equations 8.4 and 8.5 were then used in combination for the parameterisation process 

of mortality rates (table 8.1). Respiration and defecation are expressed as fractions of 

total organic matter ingested (equations 8.6 & 8.7). Little published data exists on 

providing estimates on what fraction of ingested material is accounted for by 

respiration. Cammen (1989) estimated that benthic organisms lose between 2 to 5% of 

the total ingested carbon through respiration and consequently this range was used as 

an initial estimate in the model with the highest respiration parameter value (αi = 0.05) 

assigned to the smallest size class (Bi). Brey (2001) estimated that 1-79 % of ingested 
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material is lost through defecation (21-99 % assimilation efficiency) in aquatic 

invertebrates and again this range was used in the parameterisation process for 

defecation with the highest parameter value (βi = 0.8) assigned to the smallest size 

class (Bi). 

 

Ri = αi ; Ri+n = αi – 0.002       (8.6) 
 
Di = βi ; Di+n = βi – 0.05       (8.7) 
 
 
In the absence of published data, the parameterisation process of the half saturation 

constants for ingestion (king) and mortality (kz) is difficult but the initial sensitivity 

analysis revealed that constant numeric values (in the range of 0.05-100) make 

negligible difference to the model outcome. The gradients in k values can be 

effectively taken to reflect the species turn-over rate or ‘pace of life’ with the smaller 

organisms following the ‘live fast, die young’ or r-selection mode. Consequently both 

half saturation constants were nominally set to range from 0.1 (g) at the smallest size 

class to 1.6 (g) at the largest. 

 

The 16 size classes included in the model followed a logarithmic scale (base 2) and 

the mean body sizes of the size classes ranged from 8.9x10-7 to 2.9x10-2 grams wet 

weight (table 8.1). These values were used to derive the relevant numeric values for 

the ingestion and mortality rates (equations 8.3-8.5). Model components and flows are 

expressed in grams of mass wet weight and grams per day, respectively. The model is 

initialised by evenly distributing the measured total biomass from Faroe-Shetland 

Channel (7 g wwt m-2) among the 16 size classes and the detritus pool with the time 

step set to 0.05 d.  
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Figure 8.1. Schematic presentation of the model structure. Only two size classes (i, i + 
n) are shown. I = ingestion, R = respiration, D = defecation, Z = mortality.  
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Figure 8.2. Linear regression model describing the relationship between ingestion rate 
of organic material and individual body size for benthic organisms. The broken lines 
represent 95 % prediction intervals. The regression model is statistically significant 
(p<0.01). The data are from Cammen (1980). 
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Table 8.1. The parameter values used in the model. 

 Standard parameter values 
  I (d-1) R D Z (d-1) king (g) kZ (g) 
  0.9 0.035 0.45 0.01 1 1 
 Gradients in parameter values 
X2 Mean wwt (mg) I (d-1) R D Z (d-1) king (g) kZ (g) 
5 0.00089 3.40 0.050 0.800 0.032 0.1 0.1 
6 0.0018 2.84 0.048 0.750 0.028 0.2 0.2 
7 0.0036 2.37 0.046 0.700 0.024 0.3 0.3 
8 0.0071 1.98 0.044 0.650 0.021 0.4 0.4 
9 0.014 1.66 0.043 0.600 0.018 0.5 0.5 
10 0.029 1.38 0.041 0.550 0.016 0.6 0.6 
11 0.057 1.15 0.039 0.500 0.014 0.7 0.7 
12 0.11 0.96 0.037 0.450 0.012 0.8 0.8 
13 0.23 0.81 0.035 0.400 0.010 0.9 0.9 
14 0.46 0.67 0.033 0.350 0.009 1 1 
15 0.91 0.56 0.031 0.300 0.008 1.1 1.1 
16 1.8 0.47 0.029 0.250 0.007 1.2 1.2 
17 3.6 0.39 0.028 0.200 0.006 1.3 1.3 
18 7.3 0.33 0.026 0.150 0.005 1.4 1.4 
19 15.0 0.27 0.024 0.100 0.004 1.5 1.5 
20 29.0 0.23 0.022 0.050 0.004 1.6 1.6 
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8.2.4 Standard model run 
 

The initial model run acted as a standard against which all the subsequent runs were 

gauged. The standard model run was defined as a case where all parameters were set 

constant across the size classes (table 8.1; figure 8.3a). The parameter values for 

ingestion, respiration, defecation and mortality were determined as the approximate 

median values of the overall range as determined by equations 8.3-8.7. The parameter 

values for the half-saturation constants in the standard model run were set to 1. 

 

8.2.5 Sensitivity analysis 
 

The effect of size dependent parameter gradients on the resulting biomass distribution 

was examined in two ways. First, one process at a time was assigned a size-based 

gradient (figure 8.3b) and the model sensitivity was gauged against the standard run. 

The size-based gradients for ingestion and mortality were determined from the 

allometric equations 8.3-8.5 using the mean body size at each size class (table 8.1). 

The size-based gradients for respiration, defecation and the half saturation constants 

were set to vary according to the range of parameter values stated in table 8.1. These 

size-based gradients could be described by either linear or exponential functions but 

the initial sensitivity analysis indicated that both types of gradients produced similar 

results (not shown). Consequently, the simpler, linear functions were applied in this 

study. 

 

The second sensitivity analysis involved applying the size-based gradients to all the 

processes simultaneously and then setting one parameter constant, across all size 

classes, at a time. These model runs are summarised in table 8.2. 
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The model was run to a steady state. A steady state was reached when the change in 

the biomass values of the state variables at the beginning of successive years was less 

than 1 percent. The amount of time taken to reach steady state varied depending on 

the parameter setup and ranged from 2 years for the standard run to 26 years for the 

model run 13. At equilibrium the biomass from each size class was plotted against the 

mean body size to produce the results in the same format as the empirical data.  

 

The deviations of the model results were determined for each size class from the 

empirically determined data points (averaged for each size class) as well as from the 

linear regression model (figure 8.4). The actual (absolute) deviations at all size classes 

were summed for each run and this value provided a ‘deviation index’ of how well the 

model fitted the empirical data or the linear regression line. 
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Figure 8.3. Graphical presentation of the parameter values used in the model: (a) 
constant values and (b) size based gradients. I = ingestion, R = respiration, D = 
defecation, Z = mortality and k = half-saturation constants for ingestion and mortality. 
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Table 8.2. Summary of model runs (c = standard parameter values; g = gradient in 
parameter values; gmod = modified gradient). 
 

Model run I King D Z Kz R 
1     standard c c c c c c 
2     I g c c c c c 
3     king c g c c c g 
4     D c c g c c c 
5     Z c c c g c c 
6     kz c c c c g c 
7     R c c c c c g 

8     Rmod c c c c c gmod 
9     all g g g g g g 
10   all – I c g g g g g 
11   all – king g c g g g g 
12   all – D g g c g g g 
13   all – Z g g g c g g 
14   all – kz g g g g c g 
15   all – R g g g g g c 

16   all with Rmod g g g g g gmod 
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Figure 8.4. Biomass size spectrum at the FSC site. The individual data points refer to 
the replicate empirical data points. Ordinary least squares regression line is also 
plotted (with 95 % prediction intervals). 
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8.3 Model results 
 

The standard run of the model (model run 1; no size-dependency) produces a uniform 

biomass distribution (figure 8.5a). Applying body size gradients to only ingestion and 

then only to the half saturation constants for ingestion (runs 2 & 3; figures 8.5b & c) 

results in the smallest organisms dominating the biomass distribution. This is an 

opposing trend to that observed in the field data and is also reflected in the relatively 

high deviation index values (table 8.3).  

 

Applying gradients to all the other parameters (D, Z, kZ & R) one at a time results in 

model biomass increasing with larger size classes (model runs 4-7; figures 8.5d, e, f & 

g). Size-based gradient in defecation, mortality and half saturation constant for 

mortality (kZ) produce biomass distribution patterns that resemble both the observed 

data and the linear regression model (model runs 4, 5 & 6; figures 8.5d, e & f). These 

visual observations are supported by the relatively low deviation index values (table 

8.3). A size-based gradient in respiration alone (model run 7; figure 8.5g) results in a 

nearly identical biomass distribution of the standard run (figure 8.5a). Increasing the 

numeric range of respiration parameter values in the model to 4-14 % (note: R and D 

are expressed as fractions of total ingestion and their sum cannot exceed 1, hence the 

range of increased R values is limited) makes negligible difference (model run 8; 

figure 8.5h).  

 

When size-based gradients are applied simultaneously to all the processes (model run 

9; figure 8.6a), biomass is overestimated at the smaller size classes and 

underestimated at the larger end. When ingestion or king is held constant (with 
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gradients in all other processes) the model distribution resembles the empirical 

biomass distribution (model run 10-11; figures 8.6b & c).  

 

When defecation, mortality, kZ or respiration is held constant (one at a time with 

gradients in all other parameters; figures 8.6d, e, f & g), the model biomass 

distribution does not resemble the data. This non-resemblance to the empirical data is 

highlighted by the relatively high deviation index values at these model runs (table 

8.3). The notable exception is model run 16 that applies the modified range of 

respiration values in conjunction with gradients in all other parameters (figure 8.6h). 

This run results in a close resemblance to empirical data and the regression model 

(table 8.3).  
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Figure 8.5. Comparison of the model (continuous line) and empirical data (black 
squares with 95 % confidence intervals) for the Faroe-Shetland Channel site. Model 
run 1 shows the results when all the parameter values were held constant. The 
subsequent graphs display results as gradients were applied to one parameter set at the 
time: (run 2) ingestion, (run 3) king, (run 4) defecation, (run 5) mortality, (run 6) kz, 
and (run 7) respiration and (run 8) modified respiration. 
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Figure 8.6. Comparison of the model (continuous line) and empirical data (black 
squares with 95 % confidence intervals) for the Faroe-Shetland Channel site. The 
graphs display the results body size-based gradients were applied to all processes (run 
9) and then to all processes apart from: (run 10) ingestion, (run 11) king, (run 12) 
defecation, (run 13) mortality, (run 14) kz and (run 15) respiration. Run 16 shows 
results when a size-based gradient was applied to all processes but increased 
parameter values were used for respiration (see text for details). 
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Table 8.3. The deviation indices of the predicted biomass values from both the 
empirical data and the linear regression model. The model runs have been ranked in 
an ascending order. 
 

Empirical data Linear regression 
model run index Model run index 
5       (Z) 1.5 5       (Z) 1.3 
10     (all-I) 1.8 10     (all-I) 1.6 
11     (all-king) 2.8 11     (all-king) 1.7 
4       (D) 3.1 4       (D) 2.0 
6       (kz) 3.5 6       (kz) 2.4 
16     (all with Rmod) 4.6 16     (all with Rmod) 3.6 
8       (Rmod) 5.1 8       (Rmod) 4.3 
7       (R)) 5.5 7       (R)) 4.7 
1       (standard) 5.6 1       (standard) 4.8 
9       (all) 5.8 9       (all) 5.0 
15     (all-R) 6.1 15     (all-R) 5.4 
14     (all-kz) 8.0 14     (all-kz) 7.6 
12     (all-D) 8.1 12     (all-D) 7.7 
2       (I) 9.6 2       (I) 9.4 
3       (king) 10.3 3       (king) 10.0 
13     (all-Z) 10.4 13     (all-Z) 10.2 
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8.4 Discussion 
 

8.4.1 Empirical data 
 

Reliable empirical data are required to assess the accuracy of model predictions. The 

sampling protocol in the current study has been specifically designed to cover the 

entire size range of benthic meio- and macro-faunal organisms with replicate 

sampling providing increased confidence in the observed trends. Although it is 

difficult to determine the exact shape of the observed size distribution, the sampling 

design and the recognition and exclusion of unreliable data (due to inherent sample 

bias) has ensured that the included size classes provide a high-quality estimation of 

the true size distribution of benthic metazoan organisms. The trend of biomass 

increasing with body size also generally conforms to the metabolic theory of ecology 

that provides a quantitative framework for predicting a number of biological 

processes (e.g. metabolic rate, abundance or biomass) in terms of individual body size 

and temperature (Brown et al., 2004).  This theory predicts biomass to increase as a 

function of individual body size (B = M1/4) and although the scaling exponents (the 

predicted and actual slope of the regression lines) differ slightly (possibly due to food 

limited FSC environment – see chapter 5), they are reasonably similar. 

 

8.4.2 Size-based modelling approach 
 

The model is shown to be capable of producing a variety of biomass distribution 

patterns depending on the parameterisation set-up. These results suggests that a 

simple, size-based approach is appropriate in modelling the benthic biomass 
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distribution without including functional groups or other factors that further help to 

characterise benthic communities. The omission of functional differentiation does not 

deny their existence but instead implies that they do not impose a strong enough 

influence to be included in the model structure. As the size-based modelling approach 

is capable of replicating the empirical data it can also help to outline some of the 

processes that control the size distributions of benthic communities. 

 

8.4.3 Ingestion 
 

The model results suggest that ingestion does not follow a size-dependent pattern. 

Previous hypotheses have predicted that benthic ingestion rates may instead be 

dependent on the organic content of the sediments where the rate will increase only up 

to a maximum level beyond which the utilisation of food is not limited by the 

availability but by the time it takes to process it (e.g. Lopez & Levington, 1987). 

Different feeding modes are also likely to influence the rate of ingestion (Taghon & 

Green, 1992). This implies that the ingestion process of benthic organisms is likely to 

be more complicated than a straightforward size dependency would suggest. 

 

8.4.4 Defecation 
 

A size-based gradient in defecation values alone produces a biomass distribution 

pattern that closely follows the observed data (figure 5d). Although this results from 

the fact that smaller organisms are placed at a disadvantage (losing more of the 

ingested material), there are some theoretical considerations why defecation values 

should be scaled to body size. For instance, when ingestion rates are set equal across 
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the size classes, the gradient in defecation values can be interpreted to reflect size 

dependent assimilation efficiency. Organisms with larger body size generally have 

greater gut volumes and hence longer gut passage times than smaller animals (Gage & 

Tyler, 1991). The increased gut passage time in turn could allow a more complete 

digestion of the same food material and result in increased assimilation efficiency 

(Jumars et al., 1990).    

 

8.4.5 Respiration   
 

Theoretical and empirical evidence suggests that respiration is likely to follow a size 

dependent relation (Peters, 1983; Brown et al., 2004). For instance, Mahaut et al. 

(1995) compiled data relating individual body size to respiration rate for deep-sea 

organisms. Considering only the deep-sea benthos, a statistically significant linear 

regression model can be derived from these data to relate the two variables (r2 = 0.84; 

p < 0.01). In the current study respiration (like defecation) was expressed as a fraction 

of total ingestion and the influence of a size-based based gradient in the respiration 

values was found to be negligible to the overall biomass distribution. This can 

possibly be explained by the fact that respiration was expressed as a relatively small 

proportion (2-5 %) of total ingestion. Increasing the parameter values for respiration 

decrease the amount of biomass retained at the smallest size classes as these 

organisms now use more energy through respiration. These observations suggest that 

the original range of respiration values (2-5 %) probably underestimates the actual 

proportion and that even the increased values independently have a minimal influence 

on the observed biomass distribution (runs 7 & 8; figure 5g & h). However, when size 

based gradients are applied to all the processes simultaneously the use of increased 
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respiration parameter values results in a distinctively different size distribution that 

more closely resembles the empirical data (run 16; figure 6h) suggesting a synergistic 

effect. 

 

8.4.6 Mortality 
 

The deviation index values revealed that a size-based gradient in the mortality rates 

produced the closest fit to both the empirical data and the linear regression model 

(table 8.3). Parameter sensitivity analysis also reveals that the alteration of the 

mortality rate values is particularly important in controlling the elevation of the model 

biomass distribution along the y-axis. Application of increased mortality rate values 

(> 0.3; not shown) result in increased biomass accumulation in the detritus pool 

implying that whilst having a gradient in Z values is important in determining the 

shape of the model spectrum, the numeric values of mortality rates generally 

determine how much biomass is retained within the size classes. These results further 

suggest that mortality processes are important in shaping the benthic biomass 

distribution. Previous modelling studies investigating the impacts of bottom trawling 

on benthos have also shown that increased mortality caused by trawling can have 

significant impact on the size structure (Duplisea et al., 2002). These results highlight 

the need for further experimental work in determining and quantifying mortality rates 

for benthic organisms. 
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8.4.5 Half saturation constants 
 

Of the two half saturation constants included in the model, mortality (kZ) in particular 

seems to have a relatively strong influence on the resulting size distribution. It is 

difficult to assign a specific ecological meaning to either of the half saturation 

constants in benthic context. However, a size-based gradient in kZ values is supported 

by the model results. Considering the influence of the mortality rates on the resulting 

biomass distribution outlined previously, this observation re-emphasizes and warrants 

further empirical investigations of the mortality rates of benthic organisms. 

 

8.5 Conclusions 
 

Observed biomass size spectrum at the Faroe-Shetland Channel site shows that 

biomass increases with body size. This increase is further quantified by a significant 

linear regression. A size-based modelling approach is capable of replicating these data 

and as such can help to understand the processes that control empirical size 

distributions. The model results suggest that ingestion is not size-dependent and that 

the respiration rates do not seem to impose a strong influence on the predicted 

biomass distribution. Size-based defecation rates (with larger organisms displaying 

slower rates) produce model predictions with relatively close resemblance to the field 

data possibly reflecting size-dependent assimilation efficiency. Similarly mortality 

parameters are important in controlling the shape of the predicted size distribution 

with the numeric values of mortality rates generally determining the amount of 

biomass retained in the size classes.  
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As mortality parameter values are indirectly estimated from allometric production 

equations, further empirical studies are required to investigate the mortality rates of 

benthic organisms. The next steps in the development of this benthic model will also 

include moving from a closed system representation to an open model allowing a 

closer examination of how processes such as pulsed input of food or seasonality affect 

the benthic communities. This will require further data on both the incoming flux of 

organic matter to the seabed and its fate within the benthic community over an annual 

cycle. 

 



  Chapter 9: Conclusions   

185 

9. CONCLUSIONS 

 
The main objective of this thesis was to investigate benthic body size structure and to 

use such data to gain further insights into the functioning and dynamics of benthic 

communities. The aims outlined in chapter 1 have generally been met and the 

constructed size spectra have successfully served as a foundation for a number of 

further applications. This concluding chapter summarises the main finding, attempts 

to place them into a wider context and proposes some relevant future research 

directions.  

 

9.1 Do biomass size spectra provide concrete evidence that meio- and macro-

fauna form two distinct units of benthic organisms? 

 

Aim 1: 

Construction of reliable biomass and abundance size spectra for a number of 

environmentally contrasting benthic communities. This enables a close scrutiny of 

the shape of the spectra under different environmental conditions as well as 

examining the existence of a true functional distinction between meio- and macro-

fauna. 

 

The results from this project indicate that biomass size spectra are not reliable at 

distinguishing meio- and macro-fauna as two functionally distinct groups of 

organisms. In contrast to the trends reported by Schwinghamer (1981, 1983, 1985), 

the shapes of the biomass size spectra established in the current study sites do not 

conform to a bimodal distribution pattern. None of the three study sites display 
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statistically significant changes in biomass at the size classes covering the meio- and 

macro-faunal size range. The shapes of the spectra generally followed a pattern where 

the total biomass continuously increased with individual body size. The reasons for 

the observed disparity between the results from this study and those described by 

Schwinghamer may be related to sampling and data analysis protocols. 

 

In terms of sample collection, equipment that potentially creates a bow wave that 

disturbs the sediment surface during sample collection (e.g. box corer) have been 

reported to lose up to 50% of the organisms in terms of abundance (Bett et al., 

submitted). At the processing stage the organisms are typically extracted from the 

sediment matrix by using an appropriate combination of sieve mesh size and sample 

surface area that largely determine the reliability of the resulting abundance and 

biomass estimates. If the sample collection and processing protocol do not reliably 

cover the entire size range included in the analysis, then it is likely that the resulting 

data will be either misleading or inconclusive. For example, when the results from the 

current study are compared to the data published by Schwinghamer (1981) it was 

evident that the latter data were characterised by increased variability at the 

intermediate body sizes possibly indicating inadequate sampling in this part of the 

spectrum. 

 

Biomass size spectra do appear to vary both as a function of space and time as 

discussed in chapter 5. For example, in temperate latitudes macrofaunal development 

at fully marine locations is characterised by a planktonic phase that may give rise to 

seasonal bimodal benthic biomass distribution pattern (e.g. Udalov & Burkovsky, 

2004). However, in environments such as fresh- and brackish-water habitats, 
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macrofaunal development is often direct and consequently bimodality in the biomass 

size spectra is not evident (e.g. Drgas, 1998; Duplisea & Drgas, 1999; Udalov & 

Burkovsky, 2004). The results from this project support these notions and indicate 

that biomass size spectra do not reliably distinguish meio- and macro-fauna as two 

functionally distinct units on a universal scale. 

 

9.2 Do body size spectra reflect changes in the environmental conditions? 
 

Aim 2: 

Investigation of the suggested body size miniaturisation of the deep-sea benthos. 

 

The sampling sites in the current project represented three environmentally 

contrasting locations and these variations were also reflected in the characteristics of 

the respective body size spectra.  Although the general shape of the three spectra 

appeared visually similar (increasing biomass with individual body size), statistical 

analysis (ANOSIM) revealed significant differences between the study sites. At the 

Arabian Sea site this could mainly be attributed to the slight bimodality in the biomass 

size spectra where the two local biomass maxima corresponded to nematodes and 

polychaetes, respectively. The reduced oxygen levels at this site have resulted in the 

benthic community being overwhelming dominated by these two groups of organisms 

that have adapted for an existence in hypoxic environment. The biomass size spectra 

clearly reflected this change in the community structure. 

 

Further differences were evident when the size spectra were investigated in greater 

detail. For instance, accumulative size distrubutions displayed a shift towards smaller 
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body sizes at the deeper FSC station (1600 m) in comparison to the shallower Fladen 

Ground site (150 m). The reasons for the observed deep-sea size miniaturisation are 

unclear but one possible explanation conforms to the hypothesis suggested by Thiel 

(1975), which stated that ‘associations governed by constantly limited food 

availability are composed of smaller individuals on average’. A similar trend of body 

size miniaturisation was observed at the Arabian Sea site and this could possibly be 

attributed to the additional effect of maximum body size being limited by the 

available oxygen as suggested by Chapelle and Peck (1999). These variations in the 

body size spectra imply that size distribution patterns do vary in response to 

environmental conditions and as such the body size spectra can provide a 

complimentary method to the taxonomic approach for detecting community level 

changes across environmental gradients. 

 

9.3 What does a size-based approach of community analysis reveal about the 

functioning and dynamics of these systems? 

 

Aims 3 & 4: 

Estimation of community production and energy flow by utilising the empirical size 

distribution data and the previously established allometric relations. 

 

Development of a simple size-dependent benthic ecosystem model to assess the 

suitability of a size-based modelling approach in providing reasonable 

approximations of the field data. This also helps to identify the biological processes 

that are important in maintaining and controlling the observed community size 

structure. 
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The fact that several biological processes are closely related to individual body size 

allowed this study to make indirect estimations of total benthic production at the 

community level as well as to develop a size-based simulation model that helped to 

highlight some of the controlling processes and to generate new testable hypotheses. 

Although this project did not involve a detailed taxonomic analysis of the sampled 

communities, most specimens were identified to higher taxonomic levels (i.e. class or 

family). This analysis revealed that the communities at the three study sites differed in 

terms of the constituent organisms. 

 

The size-based approach may provide additional insights into the system dynamics. 

Indirect estimations of total benthic community production were made by utilising 

previously published allometric relations. The direct measurement of total production 

at community level is complicated especially for deep-sea environments. These data 

were therefore able to provide production estimates on scales that would be difficult 

to establish by any other means. 

 

These results showed that, in general, the estimated carbon demand at the three 

locations was supported by the estimated flux of incoming organic material. The total 

infaunal production varied from 42 g wwt m-2 y-1 at the Fladen Ground location to 

approximately 14 g wwt m-2 y-1 at the FSC and the Arabian Sea (OM) sites. The 

downward flux of organic matter at the FG and OM sites exceeded the estimated 

carbon demand of the included infauna and further analyses suggested that 

microorganisms and megafauna account for some of the incoming organic carbon. 

This was in contrast to the energy budget estimated for the FSC location where the 
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incoming flux approximately equalled the energy demands of meio-, meso- and 

macro-fauna. Allowing for the carbon demands of micro- and mega-fauna (that also 

ultimately depend on this food source), these findings imply a degree of carbon 

recycling through the various trophic levels. This process may be more pronounced at 

the FSC site than at the other two locations and may influence the rates of nutrient 

recycling from benthos back to the water column.   

 

A part of the incoming organic carbon will not or cannot be utilised as a food source 

and this fraction is consequently buried. The data suggest that although at the FSC site 

the carbon burial rate is probably low, at the FG and particularly at the OM site, 

where the incoming flux of organic material exceeds the estimated energy demand of 

the benthos, the rate may be significantly higher. This would imply increased carbon 

burial at the OM site hence conforming to earlier notions that the sediment 

environments below oxygen minimum zones may act as sinks for carbon arriving 

from the overlying water column and atmosphere (Cowie, 2005). 

 

The simulation model constructed as part of this project showed that a size-based 

approach was appropriate in modelling the empirical size distribution patterns without 

the need to include any additional complexity (e.g. functional groups that typically 

characterise these systems). Furthermore, the model sensitivity analysis implied that 

size-based gradients in ingestion rates were not supported by model results or that 

respiration rates alone had a negligible influence on the observed size distribution 

patterns. Conversely, size-based defecation and mortality rates were supported by the 

model results. Size-dependent defecation rates can be related to assimilation 

efficiency with longer gut lengths and residence times of larger organisms allowing a 
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more complete digestion of the same food material. Similarly, the size-dependent 

mortality rates conform with existing observations of larger organisms having longer 

life spans.  

 

9.4 The next steps in size-based community analysis 
 

9.4.1 Temporal component in body size spectra 
 

Although a few studies exist that have investigated the changes in body size spectra 

over an annual cycle (Schwinghamer, 1983; Udalov & Burkovsky, 2004; Stead et al., 

2005), these data alone are unable to conclusively outline how biomass distribution 

patterns vary in time. Such data are essential in forming the empirical basis for further 

simulation modelling that attempts to investigate the effect of seasonal deposition of 

organic material to the seabed and the subsequent influence on the biomass size 

spectra. 

 

9.4.2 Model development 
 

The next steps in the development of the benthic model will include moving from a 

closed system representation to an open model allowing a closer examination of how 

processes such as pulsed input of food (seasonality) affect the benthic communities. 

The model results from this study also highlighted the need for experimental work to 

be carried out to determine the mortality rates of benthic organisms to improve the 

parameterisation process. Similarly, further empirical work could involve utilising 

tracer studies in attempting to find out what part of the benthos takes up the newly 
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arrived organic material and how it is transferred across the trophic levels before 

being recycled back into the water column or buried. 

 

9.4.3 Utilisation and development of theoretical relations 
 

The construction and integration of full body size spectra over an annual cycle can be 

time consuming and it would be advantageous if the shape of the spectrum could be 

derived by sampling only a part of the community. For example, the metabolic theory 

of ecology (Brown, 2004) states that biomass should increase as a function of 

individual body size with the scaling exponent of 1/4 characterising this relationship. 

This theoretical relation is generally expected to apply to communities that share a 

common energy source. The linear regression models derived in this study provided 

evidence that this theoretical relation may apply to benthic communities if additional 

factors such as food limitation are included in the process. Further investigations 

would therefore be useful in determining if the metabolic theory of ecology could 

provide a framework for the derivation of full size spectra from empirical data that 

only covers part of the size range (e.g. macrofauna). 
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11. APPENDIX 

 

Biomass and abundance data from the three study sites 

 

Biomass values (g wwt m-2) at the FG site. 

 
 
 
 
 
 
 

X2 size class 55526#1 55526#2 55527#2 55528#1 55528#2
0 3.3x10-5 2.0x10-6 1.9x10-6 3.3x10-4 0
1 0 0 1.3x10-3 0 0
2 1.9x10-3 3.7x10-3 8.0x10-3 3.9x10-3 7.6x10-3

3 1.2x10-2 2.2x10-2 2.6x10-2 1.3x10-2 5.0x10-2

4 2.7x10-2 5.8x10-2 6.3x10-2 5.2x10-2 8.0x10-2

5 5.7x10-2 7.2x10-2 1.3x10-1 7.3x10-2 1.4x10-1

6 2.2x10-1 2.5x10-1 3.0x10-1 1.2x10-1 1.6x10-1

7 2.3x10-1 3.0x10-1 5.7x10-1 4.3x10-1 4.3x10-1

8 2.5x10-1 3.9x10-1 3.2x10-1 2.1x10-1 2.8x10-1

9 2.9x10-1 2.8x10-1 1.1 x100 4.8x10-1 1.1 x100

10 8.6x10-1 6.3x10-1 3.0 x100 1.1 x100 2.2 x100

11 5.1x10-1 7.3x10-1 2.7 x100 7.5x10-1 1.3 x100

12 2.4x10-1 1.7x10-1 1.2 x100 7.0x10-1 8.9x10-1

13 2.8x10-1 3.0x10-1 8.0x10-1 5.8x10-1 8.1x10-1

14 4.0x10-1 3.1x10-1 6.8x10-1 8.2x10-1 6.7x10-1

15 6.2x10-1 2.3x10-1 2.3x10-1 8.2x10-1 1.0 x100

16 8.7x10-1 3.4x10-1 1.1 x100 1.0 x100 6.8x10-1

17 8.2x10-1 2.9x10-1 1.9 x100 1.8 x100 1.3 x100

18 1.6x100 7.2x10-1 4.1 x100 1.5 x100 3.3x10-1

19 7.9x10-1 8.5x10-1 7.1x10-1 1.0 x100 1.8 x100

20 0 2.1 x100 3.5 x100 2.0 x100 0
21 1.7 x100 1.3 x100 0 1.0 x100 0
22 0 0 0 3.1 x100 2.3 x100

23 0 0 0 1.3x101 0
24 0 0 0 0 0
25 0 0 0 0 1.8101

26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 1.2x103 0 0 0 0
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Biomass values (g wwt m-2) at the FSC site. 
 

 
 

X2 size class 55447#6 55447#8 55447#9 55447#10 55447#11
0 1.2x10-4 2.6x10-4 1.6x10-3 2.5x10-3 5.5x10-4

1 9.4x10-4 1.0x10-3 1.2x10-2 9.6x10-3 2.0x10-3

2 5.4x10-3 4.2x10-3 1.3x10-2 1.9x10-2 7.6x10-3

3 1.1x10-2 1.1x10-2 1.1x10-2 1.9x10-2 8.9x10-3

4 9.6x10-3 1.7x10-2 5.3x10-2 1.3x10-2 2.2x10-2

5 1.5x10-2 2.9x10-2 8.0x10-2 1.6x10-2 1.3x10-2

6 2.7x10-2 4.6x10-2 1.2x10-1 1.1x10-1 3.3x10-2

7 1.1x10-1 1.2x10-1 5.9x10-2 2.3x10-1 8.7x10-2

8 1.7x10-1 1.3x10-1 7.8x10-2 1.9x10-1 1.8x10-1

9 1.8x10-1 1.8x10-1 7.2x10-2 1.4x10-1 1.0x10-1

10 1.4x10-1 1.3x10-1 2.1x10-1 1.8x10-1 2.7x10-2

11 2.3x10-1 7.2x10-2 1.6x10-1 2.1x10-1 1.3x10-1

12 3.2x10-1 2.9x10-1 1.9x10-1 1.5x10-1 1.1x10-1

13 1.7x10-1 1.5x10-1 4.4x10-1 1.3x10-1 1.1x10-1

14 2.4x10-1 2.2x10-1 1.4x10-1 1.9x10-1 1.5x10-1

15 3.3x10-1 3.2x10-1 2.3x10-1 1.8x10-1 2.1x10-1

16 3.1x10-1 4.9x10-1 2.6x10-1 6.7x10-1 5.3x10-1

17 5.1x10-1 3.7x10-1 3.2x10-1 6.0x10-1 6.4x10-1

18 1.3x100 7.6x10-1 1.1x100 1.4x100 1.3x100

19 1.8x100 4.8x10-1 1.7x100 7.0x10-1 1.4x100

20 2.1x100 1.8x100 4.0x100 0 6.7x10-1

21 1.9x100 7.2x10-1 0 6.8x100 6.5x10-1

22 2.1x100 0 3.4x100 4.3x100 1.3x100

23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
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Biomass values (g wwt m-2) at the OM site. 

 
 

X2 size class 55764#1 55754#2 55754#3 55754#4 55754#5
0 1.5x10-5 5.4x10-4 2.8x10-3 5.1x10-4 6.5x10-4

1 1.9x10-3 3.2x10-3 1.9x10-2 5.2x10-3 1.0x10-2

2 1.1x10-2 3.1x10-2 7.0x10-2 2.7x10-2 3.7x10-2

3 2.8x10-2 3.8x10-2 5.2x10-2 2.4x10-2 3.1x10-2

4 1.2x10-1 4.2x10-2 1.5x10-2 8.2x10-2 3.2x10-2

5 3.3x10-1 1.0x10-1 6.0x10-4 5.4x10-2 6.7x10-2

6 1.7x10-1 1.4x10-1 3.3x10-3 3.8x10-2 8.5x10-2

7 3.4x10-1 1.4x10-1 8.0x10-3 7.6x10-3 1.7x10-1

8 6.7x10-1 1.5x10-1 1.8x10-2 2.0x10-2 2.5x10-2

9 9.5x10-1 5.9x10-1 5.9x10-2 2.9x10-1 4.9x10-1

10 2.5x10-1 1.8x10-1 3.5x10-2 7.2x10-2 3.4x10-1

11 5.7x10-2 6.7x10-2 3.2x10-2 2.9x10-2 1.6x10-1

12 7.7x10-2 5.1x10-2 3.0x10-2 4.7x10-2 1.1x10-1

13 3.5x10-1 2.9x10-1 6.6x10-2 3.6x10-2 2.5x10-1

14 6.4x10-1 1.1x100 2.5x10-1 6.3x10-2 5.6x10-1

15 1.1x100 2.0x100 4.3x10-1 7.0x10-2 4.5x10-1

16 4.8x10-1 3.1x10-1 4.3x10-1 2.3x10-1 0
17 7.8x10-1 5.6x10-1 8.8x10-2 2.3x10-1 4.8x10-1

18 0 1.1x100 0 2.4x10-1 0
19 0 0 1.6x10-1 0 0
20 5.1x10-1 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
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Abundance values (ind. m-2) at the FG site. 

 
 
 

X2 size class 55526#1 55526#2 55527#2 55528#1 55528#2
0 1168 64 64 12000 0
1 0 0 24000 0 0
2 17000 33000 72000 35000 68000
3 56000 98000 118000 59000 226000
4 60000 130000 142000 117000 181000
5 64508 82000 142127 82000 158050
6 123788 141862 167310 67382 91375
7 63710 82549 160065 119879 119884
8 36662 56318 45826 29605 38253
9 21217 20254 76535 33172 77867
10 30156 21914 108614 39414 80287
11 9828 13760 52457 14879 24258
12 2142 1536 11260 6828 8246
13 1260 1408 4013 2701 3775
14 1008 736 1593 1962 1600
15 714 288 255 968 1275
16 546 192 765 637 425
17 210 96 573 484 375
18 210 96 573 229 50
19 42 64 64 76 125
20 0 64 191 76 0
21 42 32 0 25 0
22 0 0 0 25 25
23 0 0 0 51 0
24 0 0 0 0 0
25 0 0 0 0 25
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 84 0 0 0 0
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Abundance values (ind. m-2) at the FSC site. 

 
 

X2 size class 55447#6 55447#8 55447#9 55447#10 55447#11
0 4000 18 58000 92000 20000
1 16000 17000 208000 172000 35000
2 48127 38000 113000 172000 69000
3 48000 50000 50000 88000 40484
4 21273 39789 118946 30000 50968
5 17268 33724 90109 17725 14611
6 15240 26998 67715 60775 18025
7 29490 37518 17566 67133 24843
8 24601 19021 11149 27129 25629
9 13048 13538 5238 10747 7362
10 5099 4471 7538 6300 939
11 3732 1319 3215 3934 2576
12 3044 3092 1760 1700 1003
13 755 673 1637 615 509
14 560 491 309 467 350
15 356 364 273 212 271
16 178 273 164 318 271
17 153 109 91 170 191
18 153 109 127 170 159
19 127 36 127 42 96
20 102 73 182 0 32
21 25 18 0 106 16
22 25 0 36 42 16
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
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Abundance values (ind. m-2) at the OM site. 

 
 

 

 

 

X2 size class 55764#1 55754#2 55754#3 55754#4 55754#5
0 582 19000 99000 18000 23000
1 33328 57000 332000 92000 188000
2 95910 283000 630000 239000 328000
3 125164 170000 232000 110000 141000
4 279582 94000 33517 184000 72101
5 373366 117253 708 60038 75602
6 93525 78599 2499 21754 47796
7 94926 39703 2213 2110 47860
8 95006 21595 2515 2922 3343
9 66852 41956 4290 20388 33993
10 8738 6897 1289 2318 11750
11 1067 1210 621 509 3149
12 700 462 287 446 1019
13 1560 1258 302 175 1130
14 1417 2372 541 159 1226
15 1258 2229 541 80 494
16 271 175 271 127 0
17 239 159 32 80 143
18 0 143 0 32 0
19 0 0 16 0 0
20 16 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0


