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Doctor of Philosophy

An Improved Mixed-Error Non-Equilibrium Stock-Production Model
and its Application to some Brazilian Fish Stocks

by

Silvia Helena Bulizani Lucato

A new and more comprehensive estimation method for stock-production models is
proposed, to provide more reliable stock assessment when data availability is limited.
Using difference equations to implement a non-equilibrium production model, the new
approach (named POEEM, for Process and Observation Errors Estimation Method)
incorporates uncertainties due to both process and observation errors, employing
a non-linear model fitting approach. The method has been evaluated using both
simulated and real data sets, and has been applied to data from some Brazilian fish
stocks. The weighting ratio between process and observation errors has proved to be
a crucial factor in determining the model results, and a fully satisfactory method for
selecting this ratio is still required. Sensitivity analyses conducted with the simulated
data have been used to study the behaviour of the method for a range of exploitation
and noise levels. Data series with low and medium levels of noise yielded consistent
results irrespective of the level of exploitation, whereas very noisy data series did not
provide reliable results.

For comparison, data from a previously analysed stock was also tested with
POEEM and resulted in peculiar results for the stock status and management ad-
vice. Data from four demersal species caught off southeastern Brazilian coast were
also analysed employing POEEM, and more conventional methods. For all of them
further analyses on mapping some parameters sensitivity must be conducted in order
to increased the reliability of the results. Two species have the POEEM estimated
assessment trend corroborated by independent biological studies. King weakfish is
apparently on the verge of a collapse, with very low levels of production and biomass.
Jamaican weakfish is around its maximum sustainable yield and the exploitation level
on this stock should not be intensified. For the other two species, high levels of un-
certainty were responsible for contradictory outcomes. For whitemouth croaker, the
balance between process and observation error could not be consistently achieved,
because of high amount of observation noises. For grey triggerfish, the assessment
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revealed a collapsed stock, but previous biological studies do not corroborate this
scenario. Discarding onboard and fleet behaviour appear to be confusing the analysis
of this data series.

In general, the new method seems to be capable of giving useful results, consistent
with biological studies, when a limited amount of data is available. However, further
work is needed to find a satisfactory method for fixing the weighting ratio. In order
to improve the Brazilian stock assessments, both fishery and biological data must be
continuously collected to maintain and update the results, and effort data needs to
be collected for other fleets, and incorporated in the analysis.
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Chapter 1

Introduction

1.1 Motivation

The overall fishery production in Brazil has increased approximately 30% in the last

10 years, especially at the beginning of the 21st century when production reached

just over 1,000,000 t (FAO, 2005, IBAMA, 2004). Marine aquaculture is responsible

for the majority of this rise. However, marine and freshwater fisheries also show an

upwards trend in their productions (IBAMA, 2004).

This phenomenon is a result of recent investment strategies in fishery and aquaculture

adopted by the Brazilian government. A number of new measures with economic and

social impacts have been put into practice, together with a review and amendment

of current legislation. These measures range from (1) renewal of the fishing fleet,

(2) a loan program for small scale fisheries and aquaculture, (3) a loan program

for fishery and aquaculture development in Northern and Northeastern areas, (4)

an infrastructure program to improve landing, storage, trade, and transportation

facilities for fishery and aquaculture, (5) a joint venture program for foreign fleets, (6)

re-enlisting professional fishers, (7) a review of environmental legislation to encourage

the use of federal reservoirs for aquaculture, (8) fleet monitoring through satellite and

onboard observers, (9) fuel subsidies, (10) deployment of artificial reefs, (11) literacy

1



Introduction Chapter 1

and further education programs for fishers, and (12) closed season insurance (SEAP,

2003).

Conversely, very little attention has been given to fundamental research in fish popu-

lation and environmental dynamics, and development of sustainable fishery practices,

even though effective fisheries management is dependent on the scientific understand-

ing of the fishery resources abundance, resilience, and relationship with the envi-

ronment. Brazil has acknowledged several international treaties on sustainable and

responsible fishery and environmental protection (Froese and Pauly, 2005), however,

most of their provisions have not been legally implemented.

Comparing global levels of fishery production, including marine and freshwater re-

sources, with Brazilian production, the former has a lower rate of increase (FAO,

2005). In particular, marine fisheries have been largely decreasing in the last two

decades (Watson and Pauly, 2001) since the vast majority of fish stocks are either

fully fished, overfished, depleted or recovering (Schiermeier, 2002), particularly top

predator species (Myers and Worm, 2003). There have been several claims about the

crisis in the fishing sector since catch levels are at unsustainable levels (Watson and

Pauly, 2001, Pauly et al., 2002).

Fishery resources are renewable but limited by the environmental capacity, since they

are based on the extraction of wildlife. As a result, fishing pressure has to be con-

trolled, otherwise it will at best increase up to the point of economic unprofitability,

and at worst will result in a total stock collapse beyond replacement repair (Pope,

2002). Modern fisheries are characterised by overcapitalisation and overcapacity of

the fishing fleets, which impose a high pressure in the fisheries power (Gréboval and

Munro, 1999). Fleet reduction policies have been highly recommended due to the

current unsustainable fishing levels specially in the developing world (Garcia and

Newton, 1997). The current exploitation scale is considered to be far too intensive

to be sustainable for a long term activity (Pauly et al., 2002). Despite large eco-

nomic and social investments, without the living resources the sector would cease to

exist. There has been a recent case of a cod stock collapse along the Canadian east

2



Introduction Chapter 1

coast, where social, cultural, and economic costs were enormous (Hilborn et al., 2003).

Therefore, to disregard the state of the fisheries resources with respect to biological

and environmental factors, when investing and legislating on fishing and aquaculture

is very shortsighted.

In order to conduct either traditional single species stock assessment (Hart and

Reynolds, 2002) or to apply the ecosystem based approach (Garcia et al., 2003) there

is a need for the basic data of the fishery. Total catch, measures of effort, and popu-

lation structure in length and/or age are among the basic data, and increases in the

complexity and volume of the data are required as the chosen assessment model be-

comes more advanced (Hart and Reynolds, 2002). There have always been problems

even in the collection of such basic data in Brazil. Lack of continuity and improper

data recording for catch and effort were results of institutional instability due to

changes in government policies (Lima and Dias Neto, 2002). Furthermore, catch data

is recorded according to common names which might represent more than one species

(Freire, 2005).

Without the basic fishery data there have been few schemes to conduct fishery as-

sessment modelling (Magro et al., 2000, Cergole and Avila-Da-Silva, 2005). Although

these modelling efforts have provided useful scientific background for a few imple-

mented policies, they are not conducted on a regular basis, and they are mainly

focused on biological studies rather than stock assessment modelling.

Effective fishery management requires data collection and analysis, frequently through

quantitative biological and ecological fishery modelling. Research is fundamental for

the development of management plans, for the prevention of overfishing, for recovering

collapsed or overfished stocks, for the sustainable exploitation of new resources, and

for establishing sustainability indicators. Stock assessment is based on mathematical

and statistical concepts and approaches which have been developing for 150 years

(Smith, 1994), but still has a long way to go. Although there has always been a

lot of criticism on the accuracy of the results (Hilborn and Walters, 1992, Hilborn

and Mangel, 1997), methodological improvements are constantly appearing (Quinn
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and Deriso, 1999, Haddon, 2001, Hart and Reynolds, 2002). Moreover, assessment

methods are inevitably uncertain since a biological system is never so deterministic as

a physical one (Schnute, 1987). The uncertainties arise from biological, ecological and

technological grounds and ideally all these ought to be addressed in the assessment

process in order to provide mathematical consistency, and accurate results within

known confidence limits (Hilborn, 1997).

Complete coverage of landing points and reduction of the observation uncertainties

are desirable features in a proper data collection system (Schnute, 1994, Sparre, 2000,

Evans and Grainger, 2002). Costs of fisheries data collection are generally high and

proportional to the level of detail required. Parsimony should be take in account

when costs represent a constrain to achieve an efficient system.

Overfishing occurs when fish stocks are reduced below sustainable levels of replace-

ment after natural and fishing mortality. Reduction of the catch-per-unit-effort, low

spawning stock biomass, reduction of the size at first reproduction are among the

signs of overfishing, i.e. the adult stock has been reduced to a level that is unable

to replace, through reproduction and body growth, the portion of the population

which has been taken naturally and by the fishing gears. Fluctuations of catches

have been the subject of governmental and scientific attention since the middle of

the nineteenth century, when the expression overfishing was firstly used (Cleghorn,

1854). Management measures, such as seasonal closure of fisheries during spawning

time, establishment of minimum landing size, and total catch allowance for a species,

are set to avoid overfishing.

Several methodologies are currently used to deal with uncertainties in the stock assess-

ment modelling i.e. nonlinear approaches, maximum likelihood and Bayesian methods.

Nonlinear estimation will be used as the main estimation tool to carry out stock as-

sessment in this study, which will consider a single species stock assessment for each

of the four demersal species which are responsible for a great part of the demersal

fishing production in the southeastern coast of Brazil (Castro, 2000, Ávila-Da-Silva

et al., 2005).The species are whitemouth croaker (Micropogonias furnieri (Desmarest,
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1823)), king weakfish (Macrodon ancylodon (Bloch and Schneider, 1801)), Jamaica

weakfish (Cynoscion jamaicensis (Vaillant and Bocourt, 1883)) and grey triggerfish

(Balistes capriscus (Gmelin, 1789)). A stock assessment method with an appropriate

mathematical basis for accurate estimation in situations when little data is available

will be used.

1.2 Brazilian Fisheries

Brazilian marine fisheries together the with Uruguayan and Argentinean ones compose

the FAO Southwest Atlantic Ocean major fishing area 41 (CWP, 2005). Argentinean

marine fishery production has sharply increased until 1997 when it reached the max-

imum of just over 1,300,000 t (Figure 1.1) and has decreased since then. However,

in 2004 the Argentinean marine production level was nine times the Uruguayan pro-

duction and twice as much as the Brazilian one (Figure 1.1). The wide continental

shelf, a rich subantarctic current, and the export of nutrients and organic matter

from land to coastal waters are responsible for the great productivity in these waters.

Uruguay and Argentina signed the Rio de la Plata and Its Maritime Area Treaty in

1973 allowing access to resources exploitation to Uruguay in the area between 34◦ S

and 39◦30′ S latitude. Comparatively, the Brazilian fisheries production has increased

up to 750,000 t in the 1980s but dropped to current levels in the late 1980s whereas

the Uruguayan marine catches have rissen considerably in the 1970s after the treaty

with Argentina and have remained at the same levels since then (Figure 1.1).

Fishing is a minor sector of the Brazilian economy in comparison to other animal

protein production. One of the reasons for this is the cultural preference for meat

reflected in the per capita consumption of animal protein in kg/person/year; i.e. 6.8

of fishery products, 37.1 of beef, 12.6 of pork and 31.2 of poultry (SEAP, 2005). The

fish consumption is high only in the Amazon watershed region, i.e. 30 kg/person/year

(SEAP, 2005) due to the absence of agriculture there. On the other hand, Brazil-

ian livestock production employs intensive production systems and relies on modern
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Figure 1.1: Marine fishery production for the countries in the Southwest Atlantic Ocean, i.e. FAO

area 41. Data from FAO Fisheries Global Information System (CWP, 2005).

technologies resulting in highly productive crops. As a consequence of the economic

importance of livestock raising this is a well regulated sector. Fisheries, on the other

hand, where production is dependent on environmental factors, are neglected in terms

of regulation and enforcement.

The Brazilian coastal environment has a low biological productivity compared with

temperate regions since it is mostly located in the tropical and subtropical zones,

without strong seasonal oceanographical variability and large scale upwelling pro-

cesses (Aidar et al., 1993, Bassoi, 2005). The only exception occurs off the southern
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Table 1.1: Brazilian fishery production in weight (t) and percentage (%) of the weight based, in

the geopolitical regions during 2002, for various production systems, i.e. industrial, small scale, and

aquaculture production. Data for both freshwater and marine ecosystems. Source IBAMA (2004)

Region Industrial Small Scale Aquaculture

(t) % (t) % (t) %

North 25,199.0 9.2 231,984.0 85.0 15,797.0 5.8

Northeast 13,269.0 4.7 187,675.5 65.8 84,181.0 29.5

Southeast 63,836.5 41.4 52,966.0 34.4 37,246.5 24.2

South 149,237.5 58.1 19,468.5 7.6 88,194.5 34.3

Centre-west 0.0 0.0 11,946.0 31.6 25,868.0 68.4

Total 251.542.0 25.0 504.040.0 50.0 251.287.0 25.0

coast of Brazil, where the Subtropical Convergence of the Brazil-Falklands (Malv-

inas) Current and continental land runoff play a fundamental role in the biological

productivity of the southwestern Atlantic Ocean (Seeliger et al., 1997).

The social consequences of unsustainable fisheries are high since, on average 50%

of the total production comes from small scale fishing, with a rather wide and un-

even distribution between the geographical regions (Table 1.1). Therefore, ecological

impacts on the natural populations, environmental changes, and social-economic con-

sequences of the fisheries justify the need for more comprehensive research to support

sustainable management in Brazil.

1.3 Aims of this Study

As a consequence of the neglect of stock assessment studies in Brazil and the urgent

need to support effective management measures, this study has been designed to

develop and use an appropriate stock assessment method with the available data for

the target species of a bottom pair trawl fleet, aiming to
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1. propose a new estimation method for stock-production models which incor-

porates process and observation uncertainties, using a non-equilibrium least

squares framework, appropriate for situations when data availability is a con-

straint,

2. test the performance of the proposed method through a comprehensive sensi-

tivity analysis, pointing out the potential advantages as well as deficiencies,

3. provide stock assessments for four marine fisheries resources from Southeastern

Brazil, using the new approach. Discuss the assessment outcomes together with

independent scientific knowledge and current management regulations. Provide

recommendation for management measures and further studies.

1.4 Thesis Outline

This work consists of seven chapters. This chapter places the management system

of the Brazilian fisheries into perspective, pointing out deficiencies and discrepan-

cies. Whereas there is a global and wide-ranging discussion on different assessment

approaches (such as, ecosystem based, singles species, multispecies, and Bayesian

frameworks), in Brazil very little assessment is conducted at present. The lack of ba-

sic data, and economic and political incentives for stock assessment analysis, means

that traditional fisheries resources remain poorly understood, with critical signs of

overfishing. Recent government policies have stimulated the race for fish, especially

offshore fishing, and there is an urgent need for decision makers to base their man-

agement plans on scientific knowledge.

Chapter 2 focuses on the theory of stock production modelling as a single species

assessment methods, due to its low data requirement. Starting with an overview of

the concepts and definitions of the stock production model, the chapter continues by

describing different types of parameter estimation methods emphasising the nonlinear

approach, as used in this study. In addition, the role of uncertainty estimations,
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parameter correlation, bias, and confidence interval estimation by bootstrapping is

examined.

The third chapter deals with formulation of the stock production model used as a

starting point for this research. Considering the importance of incorporating un-

certainties in the estimation process, a stock production model which aims to allow

both process and observation errors and has been previously proposed is analysed

in this chapter. The data and results obtained here are compared with the previous

estimation and discussed, especially with respect to perceive inconsistencies and im-

perfections in the previous work. This provides a general framework for the further

analysis of the chapter 4 and 5.

Chapter 4 introduces a new stock production model estimation method which in-

corporates both observation and process uncertainties in a new approach using a

nonlinear minimisation routine. Natural mortality and stock resilience are considered

in the model structure. Apart from catchability, the model also attempts to provide a

best estimate of the true value of current biomass and presents a short-term biomass

forecast.

Chapter 5 provides the results obtained using this stock assessment method for each

species and compares these with the results of others various stock assessments con-

ducted with current methodology.

The current management actions for each of the species are discussed in Chapter 6

together with the implications of the present analyses for future management actions.

The final chapter (Chapter 7) provides an overview of the scientific contributions of

this thesis and recommendations for further improvements in the stock assessment of

these species.
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Chapter 2

Underlying Theory and

Methodology

2.1 Introduction

How many fish are in the sea? What are the causes of fluctuations in the levels of

fishery catches? How much fish can be caught without compromising future catch?

Some of these questions have been asked since the beginning of the fishery sciences in

the second half of the 19th century (Smith, 1994) and are still intriguing the scientists

nowadays.

Substantial progress in approaches to fishery modelling has been made due to increase

in the model realism. Recently, fishery models tend to be regarded as “tools for

thoughts” (Schnute and Richards, 2001) so that each part of the fish stock dynamics

can be approached in a systematic way, and a range of consequences can be explored.

However, given the complexity of real fish populations and the fisheries based on them,

models are still simplified descriptions of the reality, and an entire fishery system will

hardly be representable in detail by a simple estimation model.

Fish population dynamics play a fundamental role in the management of sustainable

fisheries. A particular key feature is the stock’s natural capability of renewal in the
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face of both changes in environmental conditions, and increases in fishing mortality

caused by human operated catching gears. The finite carrying capacity of the envi-

ronment is one of the driving forces of population biomass, since biomass can only

increase up to a threshold where living resources become scarce. At this upper level,

competition for resources will limit population replacement and net biomass increase

reaches a minimal rate.

The population size decreases below the carrying capacity level when subjected to a

fishery. The “room” left is filled by the so-called “surplus production”. At this lower

level, competition for living resources is reduced and relative abundance of these re-

sources becomes higher, allowing faster growth and enhancement of stock biomass,

and/or surplus production. Theoretically the population size can be maintained in-

definitely at just below the carrying capacity level by a fishery and surplus production

will always fill the difference.

This effect, so called density-dependent regulation, is widely present in animal popu-

lations. Density-dependent factors in an environment include available food, nutrients

in the water, and shelter; and the buildup of metabolic wastes, among others. A par-

ticular habitat will support a maximum number of organisms of a population, known

as carrying capacity (K) of the environment. As the density increases, i.e. population

numbers approach the carrying capacity of an environment, competition for resources

rises, and therefore, increases mortality from limited food, higher disease frequencies,

among others effects. Even though fertilisation is favoured by high population densi-

ties, density dependence effects can reduce the recruitment, i.e. since competition for

resources may reduce the surplus energy available for reproduction, and reproduction

output will fall (Jennings et al., 2001, Myers, 2002). Density-independent factors

include droughts, storms, and volcanic eruptions.

The surplus production concept is the essence of every sustainable fishery assessment

from the simplest production models ((Schnute and Richards, 2002, Quinn II and

Collie, 2005) for an excellent overview) to the very sophisticated dynamic pool models

(see, for example (Shepherd and Pope, 2002a,b, Beddington and Kirkwood, 2005,

11



Underlying Theory and Methodology Chapter 2

Lorenzen, 2005)) and a crucial quantity for estimation and consideration for fisheries

management purposes.

2.2 Stock Production Model

The surplus production model (Ricker, 1975, Sparre et al., 1989), generalised pro-

duction model (Rivard and Bledsoe, 1978), production model (Gulland, 1983), stock

production model (Shepherd, 1987), and biomass dynamic model (Hilborn and Wal-

ters, 1992) are some of the current names given to variations on the original Graham-

Schaefer model (Graham, 1935, Schaefer, 1954).

The Graham-Schaefer model describes the dynamics of the stock entirely in terms

of the biomass and production of the exploitable population. The data requirement,

for the simplest forms, comprises only a time series of total catch and another of

either total fishing effort or an abundance index. Therefore, such models are easily

applicable when data availability is poor. The conceptual simplicity of the stock

production models has however been blamed for leading to some non-realistic results.

It has been suggested by Hilborn and Walters (1992) and Ludwig and Walters (1985)

that low contrast (dynamic range) in fishing effort and stock abundance has a major

influence on the results, since the data set is not very informative. Even sophisticated

models and parameter estimation methods may not yield reliable results if the data

set lacks information.

However, studies using age-structured models with growth and age at first capture

parameters do not necessarily provide superior parameter estimation than production

models (Ludwig and Walters, 1985, 1989) and these authors suggested that stock

assessment with dynamic pool models should always also employ production models,

since the data requirement is easily fulfilled and stock production model results serve

to provide a useful comparison.
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2.2.1 Model Concepts and Definitions

In a stock production model, by definition, a population is treated as one big unit of

biomass without detailing its age and length structure. Recruitment and individual

growth are considered as part of the population biomass enhancement process, and

mortality as part of the biomass losses.

Deterministically, the (“exploitable”) population biomass in the next period of time

(t + 1) will be equal to the (exploitable) biomass during the current period of time

(t) plus the positive effect of production (P ) less the deleterious effect of total catch

(C) according to the following equation,

Bt+1 = Bt + Pt − Ct. (2.1)

The pioneering Schaefer model (Schaefer, 1954, 1957) describes production changes

in time of an exploitable population, using differential equations and a quadratic

function for surplus production, in the absence of a fishery,

dBt

dt
= Pt = rBt

(
1− Bt

Bmax

)
, (2.2)

where dBt
dt is the population production at certain time t, r is the intrinsic rate of

the population increase, i.e. the difference of the per capita birth and death rates in

the absence of density dependence, Bt is the biomass at certain time and Bmax is the

maximum biomass level, also called pristine biomass.

A second well-known production model, proposed by Fox in the 1970s (Fox, 1970,

1971, 1975), assumed a logarithmic relationship for surplus production and an expo-

nential relationship between catch-per-unit-effort and average effort,

Pt = rBt

(
1− lne Bt

lne Bmax

)
, (2.3)

where the terms are the same as in the Schaefer model, and loge is the natural

logarithm. The main consequence of this assumption is that the stock will never

become extinct, consistent with the idea that the economical viability of the fishery
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will fail before biological extinction occurs. However, there is current evidence that

multispecies fisheries can actually extinguish species, and the real situation may only

be discovered far too late (Dulvy et al., 2003).

The third widely used production model form was proposed by Pella and Tomlinson

(1969),

Pt =
r

p
Bt

(
1−

(
Bt

Bmax

)p
)

, (2.4)

where r, Bt, and Bmax are the same terms as in the Schaefer model. They introduced

a parameter p which controls the skewness of the biomass-production curve. The

Schaefer model is equivalent to the Pella-Tomlinson form when p = 1 and the Fox

model is the limit of the Pella-Tomlinson form as p → 0.

The essential difference between Eq. 2.3 and Eq. 2.4 is that the former only declines

gradually for Bt > Bmax, whereas the latter declines very sharply and may take large

negative values of production.

Quinn and Deriso (1999) presented an extensive mathematical analysis of all these

previously proposed production functions, as well as some other production curves

with slight theoretical variations.

2.3 Model Fitting

After selecting the model(s), i.e. equation(s), which describes the studied situation,

it is necessary to move from the general form to the specific numerical form. This is

called model fitting (Gilchrist, 1984).

In order to avoid a failure of an assessment model, Schnute and Richards (2001)

advised some standard procedures. Firstly, the modeller should keep a skeptical

view of the model produced, recognising model limitations due to assumptions about

the parameter estimation. In particular, process error, measurement error, and model

uncertainties have to be included in the estimation procedures. Secondly, all available

information of the studied system needs to be considered in order to expand the
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knowledge background and include new features in the model which could help in

drawing robust conclusions. Thirdly, one should follow the “classical requirements for

model quality control” such as residual analysis, diagnostic checking and verification

of the computer code. Finally, regulatory strategies which could be evaluated through

a model should be implemented. in practice, all these aspirations are rarely achieved.

In order to fit a model to data Schaefer (1954) developed a mathematical approach

which considered populations under equilibrium conditions, and so deriving a linear

relationship between catch-per-unit-effort and effort for this model. To improve the

accuracy of this stock production model , various functional relationships between

catch-per-unit-effort and effort were introduced. Gulland (1961) proposed an equi-

librium approximation relating catch-per-unit-effort with the average effort in earlier

years and Fox (1970, 1971) assumed an exponential relationship between catch-per-

unit-effort and average effort, corresponding to the model Eq. 2.3.

However, these methods still assume the equilibrium condition and this assumption

may be of very doubtful validity and lead to results which are highly biased (Hilborn

and Walters, 1992, Quinn and Deriso, 1999, Williams and Prager, 2002, Punt, 2003).

In the late 1960s Pella and Tomlinson (1969) first proposed a non-equilibrium param-

eter estimation approach through time series fitting (Hilborn and Walters, 1992) with

observation-error estimators (Polacheck et al., 1993). On that basis, a range of new

procedures based on non-equilibrium parameter estimations using differential equa-

tions have since been suggested by several authors (Schnute, 1977, Fletcher, 1978,

Rivard and Bledsoe, 1978, Uhler, 1979).

Difference equations, i.e. a discrete time model for production functions were intro-

duced by Walters and Hilborn (1976) and Hilborn (1979). This approach allows

growth, mortality and recruitment to be treated separately from net biomass growth

and/or decline.

Although stock production models are simple conceptually and in terms of their data

requirement, the mathematical procedures for model fitting may nevertheless became

fairly complicated, and require the use of advanced numerical mathematics procedures
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(Hilborn and Walters, 1992, Schnute and Richards, 2001). With regard to fitting a

model to data, there has, of course, been a considerable improvement in parameter

estimations with the advent of the computer, and methods which were previously

unfeasible can now be implemented easily.

The biomass-production balance is deterministically described (in discrete time form)

by Eq. 2.1. Furthermore, when one (or more) time series of abundance index from

research surveys are not available, i.e. in the majority of the situations, catch-per-

unit-effort (CPUE) is used as an abundance index, and assumed to be proportional

to the true population abundance,

Ut =
Ct

Et

= qBt, (2.5)

where Ut is CPUE at time t, Ct is catch at time t, Et is effort of time t, q is the

catchability coefficient and Bt is biomass of the population at a time t.

With regard to CPUE, two facts should be considered here. Firstly, the reported

CPUE is actually landing-per-unit-effort (LPUE) (Jennings et al., 2001) since part

of the catch is discarded at sea, especially undersized marketable species and the

non-commercial ones, which are not landed or kept onboard for legal and economic

reasons. Considering a trawl net, a substantial amount of invertebrates and fish is

caught as bycatch and a great part of it is returned to the water as discards. Therefore,

the reported CPUE underestimates the actual amount captured, which also varies

according to the gear selectivity. For the purposes of this work, the term CPUE is,

as usual, going to be used in place of landing-per-unit-effort, without however, losing

sight of the difference between them.

Secondly, the proportionality between population abundance and CPUE has been

broadly (Hilborn and Walters, 1992, Jennings et al., 2001) and deeply (Paloheimo and

Dickie, 1964, Harley et al., 2001) discussed. In theory, the amount of fish captured by

a fishing gear is proportional to the fish population abundance at a certain fishing site

and time. The main relationship may however, be better represented in practice, by

an exponential function (Hilborn and Walters, 1992, Harley et al., 2001), and there
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might exist other relationships which are poorly investigated (Harley et al., 2001)

such as,

Ut = qBβ
t , (2.6)

where β is the exponential term. When β equals 1, the relationship is linear and

Eq. 2.5 and Eq. 2.6 are the same. This model has been widely used in a number

of stock assessment models, e.g. (Shepherd, 1987, Conser, 1998, Chen and Andrew,

1998, McAllister et al., 2001, Prager, 2002). When β assumes a value different from

1 two situations can arise. First, β > 1 produces a hyperdepletion situation, i.e. the

stock appears to be depleted since CPUE dropped quickly but abundance had not

decreased as fast as CPUE, such as tuna stocks whose dense shoals in feeding sites

are quickly fished and therefore the CPUE drops sharply. Second, β < 1 generates

a hyperstability, which shows a stable CPUE even while abundance drops dramati-

cally, for instance cod, haddock, sole and plaice (Harley et al., 2001). Biologically,

the former has low depletion or extinction risk, whereas the latter is a very danger-

ous relationship since depletion signals might come too late for management action.

Hyperstability has been the main relationship found for a variety of gadiformes and

flatfish species, for a range of age and trawl nets (Harley et al., 2001) and failure

to recognise this is believed to be partly responsible for historical depletion of the

Northern cod in the Great Banks (Rose and Kulka, 1999).

Other factors that interfere in the proportionality between CPUE and population

abundance are mostly related to environmental and technical aspects. The population

abundance for a certain area and time is driven by a number of environmental and

biological characteristics such as the population concentration patterns, the dynamics

of the movement (or diffusive behaviour) of the stock (Hilborn and Walters, 1992)

and density-dependent habitat selection (Rose and Kulka, 1999). In addition, the

catch process involves a number of technical aspects related to the fishing gear such as

operational characteristics of fishing gear and variability in catchability. Fishers’ skills

are also a fundamental factor determining the catch success. A number of aspects

should therefore, really be considered when assessing the proportionality between
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CPUE and abundance such as search efficiency, handling time, factors determining

the effort deployed and choice of ground fishing by fisher such as the desirability of

different areas because of differences of CPUE (Hilborn and Walters, 1992). However,

in practice those factors are most often not considered due to difficulties in gathering

this kind of information.

The assessment of fish populations most frequently therefore assumes a simple propor-

tionality between CPUE and abundance, and a major deficiency in the models might

be the assumption of linearity between those variables. However, overestimation of

stock size and consequently underestimation of the fishing mortality due to random

noise in the data have been experienced with more complicated nonlinear models (see

(Lassen and Medley, 2001)), and the balanced of advantage is still unclear.

Despite the great range of factors affecting the proportionality of CPUE and stock

biomass, the parsimony principle should be used as often as possible. For the purposes

of this study, biomass will therefore be considered as linearly proportional to CPUE.

The possible uncertainty of this assumption will be allowed for only as process error in

the parameter estimation, in order to avoid an increase in the number of parameters

to be estimated. It is recognised that if this assumption is false, the validity of

the results may be compromised. However, a more complex treatment would only

be possible if additional data were available to determine the true relationship, and

regrettably such data are generally lacking.

2.3.1 Parameter Estimation

For stock production models the principal parameters to be estimated are, in order of

importance, catchability, pristine biomass, current (or initial) biomass, and possibly,

but rarely, also resilience and natural mortality.

In statistical modelling, parameters are quantities which determine model behaviour

but are not directly measurable. The process of assigning numerical values for param-

eters is called estimation (Gilchrist, 1984). In fishery modelling, growth and mortal-
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ity rates, fecundity at age and biomass in the next year are all quantities frequently

treated as parameters (Hart and Reynolds, 2002).

The overall parameter estimation process involves three steps. First, one must es-

tablish the model and define the parameters to be estimated. Second, acquire data

from a population and proceed with the parameter estimations according to the cho-

sen mathematical/statistical approach. Finally, establish a criterion to judge the

goodness-of-fit for any particular combination of model and parameter estimates

(Hilborn and Walters, 1992). However, the best fitting results, and consequently,

their estimated parameters may not necessarily provide the most accurate prediction,

since the results may depend on the method chosen, and peculiarities in the historical

data and model structure may also influence the results (Hilborn and Walters, 1992,

Haddon, 2001). It is therefore desirable for a model (and the parameters estimated)

to be testes retrospectively by cross-validation, i.e. by fitting to part of the data and

testing the predictions using the remainders, and/or by testing predictions against

new data if and when it becomes available.

Least Squares Method

In the current fishery modelling literature, there are three different main approaches

in use for parameter estimation. First, Least Squares Estimation has been very widely

used in fishery modelling since the early times, for both linear models, and currently

also for nonlinear minimisations. The basic idea of least squares method is to find a

set of parameters that reduces to a minimum the (squared) deviations between the

observed data and the expected values obtained from the model.

The least squares method is relatively easy to use, adaptable, objective and the results

may, in practice, often be close to the maximum likelihood solution, which has resulted

in its wide use, from stock production models (e.g. Schaefer (1954), Conser (1998))

to virtual population analysis (e.g. Shepherd (1999), Lassen and Medley (2001)).

This method does not necessarily require one to make explicit assumptions about the
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process and observation uncertainties. In addition, further estimations (e.g. confi-

dence intervals) can be carried out through modern computational methods such as

bootstrapping (Efron and Tibshirani, 1993).

Non-linear least squares estimation, has followed the same principle of linear estima-

tion and has been implemented using more advanced mathematical and numerical

techniques. The difference between linear and nonlinear approaches is that the lat-

ter does not necessarily, have a quadratic sum of squares surface. Thus, in order to

find the minimum least squares, it is necessary to use an iterative numerical search

scheme such as Newton, Simplex and Levenberg-Marquardt’s methods. There has

been some criticism by Hilborn and Walters (1992) with respect to the use of the

nonlinear estimation method, but it is possible to easily overcome them relatively

easily nowadays.

Firstly, the allegation that it is a slow method and that models with high number

of parameters would take far too much time to converge to a solution can often be

solved with a powerful computer widely available nowadays.

Secondly, the iteration may reaches a false (local) minimum when the local search will

take any direction leading to a poorer fit. For small deviations, this can be true, but

the algorithm could find better (global) minimum if larger steps were taken. To avoid

and overcome this possible situation the modeller should take a series of measures such

as increasing massively the number of model iterations and runs (giving the method

more “room” to find the global minimum); start the estimation with different values

of initial guesses to see if the model converges to the same parameter values; re-run

the model with the parameter values perturbed from those previously found as an

initial guess. If the model has reached the global minimum it should not give a

different output.

Thirdly, initial guesses are stated to be art instead of science. There are a few

procedures to help one to find initial guesses in a systematic approach. For instance,

using previous knowledge, or published values, similarly to the use of priors in the

Bayesian methods; try linear approximations to the model and use the values found

20



Underlying Theory and Methodology Chapter 2

as initial guesses; try a wide range of different starting values until a set which leads

to model convergence is found.

Despite the current interest in development of alternative numerical methods based

on more elaborate theories, least squares is a still robust method and is a useful

starting point for the fishery data analysis. According to (Patterson et al., 2001)

frequentist methods are particularly attractive because of the availability of nonpara-

metric techniques, permitting relaxation of the error distribution assumptions, but

this development is not pursued here. Moreover, the least squares approach can ap-

proximate to the maximum likelihood estimator (see below) if the error distributions

are approximately normal, and either the variance is constant over the range of vari-

ables, or the proportional change in variance is known, in a weighted least-squares

scheme. However, the estimates will not be maximum likelihood if the magnitude of

the errors are not similar, and the changes in the variance are unknown (Lassen and

Medley, 2001)

Likelihood Method

The second most used method in fishery modelling is the use of Likelihood functions,

which has been applied to fishery modelling since the 1980s in the form of Maximum

Likelihood Estimation.

In principle, likelihood is the probability that a set of parameters is correct given the

data (Gilchrist, 1984, Haddon, 2001). During the model fitting process, given the

observed data, there will be a set of parameters which is most likely to explain the

data. Probability models generally look at the model and the data from the other

end, i.e. describe how likely the observed data are, given the parameters, which is

not usually the same thing. For some probability distributions there is no major

difference, but conceptually the likelihood approach emphasises careful choice of the

criteria for fitting models to data (Lassen and Medley, 2001).
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In the early 1990s, there was an overconfident belief that the most rigorous works

in fishery parameter estimations were being conducted by maximum likelihood esti-

mation (see (Hilborn and Walters, 1992)). However, least squares methods are still

frequently used in the analysis of fisheries data. Theoretically, using likelihood meth-

ods is better, but there are a several reasons that makes least squares more popular

in practice.

Firstly, if the probability distribution for the likelihood estimation is assumed to be the

normal distribution both methods become equal. Secondly, there is normally a large

uncertainty involved in the specification of the error structure of the likelihood. Least

squares can sometimes provide as good estimation as likelihood, just by applying some

reparametrisation with the advantages of using a more straightforward procedure.

Thirdly, for many parametric likelihoods (e.g. using Poisson distribution), maximum

likelihood can be reformulated in terms of least squares. Finally, since numerical

procedures of least squares are much simpler, they are less likely to break down than

more general approaches, particularly where there are many parameters to estimate

(Lassen and Medley, 2001).

Bayesian Method

Finally, but not least important, the third most used method in recent fishery model

fitting is the Bayesian framework. This started being used in fishery sciences in the

late 1990s following the earlier introduction of the likelihood method. The Bayesian

approach is based on the conditional probability theorem and assumes a prior prob-

ability distribution for parameter values using previous knowledge or beliefs. These

probabilities are then, in effect, multiplied by the likelihood of the parameters in

order to estimate a posterior probability distribution. This approach explicitly quan-

tifies the uncertainties and should be particularly useful for decision making analyses

(Gelman et al., 1995, McAllister and Kirkwood, 1998). However, a non-informative

prior distribution can generate misleading results (Punt and Hilborn, 1997) and the

methods tend to be computationally very demanding.
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Furthermore, Dennis (1996) present a wide and deep discussion on both philosophical

and practical grounds, questioning the actual gains of changing frequentist statistical

methods for Bayesian statistics in ecological science. According to Dennis (1996)

scientific arguments may be difficult to make convincing with Bayesian reasoning.

The relationship of likelihood and Bayesian analysis lies in two points. First, the

maximum likelihood definition relates to a set of parameters, i.e. when the likelihood

function reaches its maximum point. Second, a Bayesian estimator uses likelihood,

along with prior probabilities and a “cost” function, to define a set of parameters

where the expected cost is minimised (Lassen and Medley, 2001). Unless the prior

distribution are highly informative, which is unusual, the Bayesian posterior distri-

butions are broadly centred around the maximum likelihood solution.

2.3.2 Sources of Uncertainty

Deviations between observations (data) and expected values (theory/model) are al-

ways present in any parameter estimation methods. These deviations are referred to

as residuals, random noise or errors.

In fishery sciences, uncertainty is acknowledged to be the result of a lack of perfect

knowledge of many factors that affect stock assessment, estimation of biological refer-

ence points and management (Restrepo, 2000). Uncertainty plays such a fundamental

role in stock assessment that international policies and agreements (e.g. Anonymous

(1994), FAO (1995)) have pointed out the necessity for making this information avail-

able to managers. Therefore, consideration of uncertainty must be conducted as part

of the decision support process in fishery management, when assessing the current

state of the resource and the resulting forecasts (Patterson et al., 2001).

Within the fishery world, there is a variety of sources of uncertainty. According to

Rosenberg and Restrepo (1994) there are five types of uncertainty: (1) measurement

or observation error is an uncertainty in the observed quantities such as catch or

fishing effort, (2) process error is an uncertainty in the population dynamics process
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such as recruitment, (3) model error is an uncertainty in the specification of model

parameter or model structure, (4) estimation error is an uncertainty in the imprecision

of the estimated model parameter such as population production or catchability and

results from any of these previous uncertainties, and (5) implementation error results

from the inability to achieve a target harvest strategy exactly. Hilborn and Peterman

(1996) recognised three more types of uncertainty. First, uncertainty due to future

environmental conditions associated to fluctuations of the environmental state. It is

advised that one should consider them in the stock assessment projections, but the

probabilities associated with these changes are very difficult to estimate. Second,

future social, political and economic conditions such as uncertainties resulting from

changes in government subsidies, markets, and policies. There are (as far as I am

aware) no assessments which routinely make projections about social and economic

factors. Third, management objectives create an uncertainty resulting from the fact

that management action today may cause undesirable effects in future, so the action

will be changed. Although a range of types of uncertainty can always be found in

population assessment, they are not usually all assessed simultaneously (Rosenberg

and Restrepo, 1994).

Among all sources of error, observation or measurement and process error are the two

which are most extensively discussed in the literature. Special statistical approaches

have been developed to deal specifically with them and to evaluate their impact

for management purposes (e.g. Chen and Paloheimo (1998), Patterson et al. (2001),

de Valpine (2002)), whereas estimates of most of the other errors would be little more

than guesswork. As explained by Lassen and Medley (2001) there is a fundamental

difference between process and measurement errors, since the former introduces a real

change in the system, whereas the latter introduces no underlying change and there-

fore does not affect future observations. This important difference has fundamental

implications for the estimation process, and is the foremost reason to conduct studies

which allow process and observation errors to be considered separately.
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Building a model consists of establishing a relationship between parameters, data

and uncertainty. The former relationship is based on the theory and the latter on

assumptions about the error structure. In order to assess the effectiveness of the

parameter estimation there are methods to evaluate the confidence in the parameter

estimations. Analysing the variance of residuals has been the approach most used in

least squares analysis, for example.

In addition to the examination of variance of residuals, the confidence intervals of

the estimated parameters can also be calculated. One elegant and useful practical

approach for calculating confidence intervals is the bootstrap method, developed by

Efron and Tibshirani (1993). The residuals from the model fit are calculated as

the differences between predicted values and observed values. One then generates a

new data set by sampling from the residuals, with replacement, and adding a “new”

residual to each predicted data point. These are then used in a new estimation, to

re-fit the model, and obtain new values for the parameters. With a few hundred such

estimates of the parameters one can look at the parameter distributions, variances

and covariances directly, and analyse them (Hilborn and Walters, 1992).

2.3.3 Parameter Correlation and Bias

Parameter correlation is an undesirable but widely found feature in fishery models. It

occurs, for example, when supposedly independent variables are actually correlated

with each other, making it impossible to affirm with confidence which independent

variable is causing a change in the dependent variable. For example, separating the

natural mortality rate from fishing mortality in catch-at-age analysis is a hard task

since they have a very high negative correlation (Hilborn and Walters, 1992).

In stock production modelling, parameter correlation is also a problem, characteristi-

cally appearing as an elongated and skewed central area of a plot of sum of squares as

a function of two parameter values. This feature happens, inter alia, because the catch
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this year depends partly on the catch of the year before and so forth. Consequently,

in a time series of catch and biomass, they are serially correlated.

Bias is also a frequent feature in fitting model to data, since the data sets are usually

time series, and therefore, not entirely independent from both previous states of the

fishery and random noise. The current approach to deal with this problem is to make

simulations of the population, assuming the estimated parameters are correct, and

analyse the bias in the output (Hilborn and Walters, 1992).

Catch data can be biased by under-reporting which could, in principle, be allowed for

in the model. However, the size of this bias would have to be estimated from data,

which can only be performed if the necessary data is available.

2.4 Summary and Forward Look

The evolution in mathematical model fitting approaches has opened a variety of possi-

bilities for new improved stock production models, and further assumptions regarding

error structures.

Stock production model is a data modest fisheries model that can be useful if it

can be made to work satisfactorily. Nonlinear parameter estimation using difference

equations has become one of the elegant methods allowing growth, mortality and

recruitment to be treated separately from biomass. Simple methods are useful as a

basis. If additional information is available, more complex models can also be applied

and compared

In addition, the stock production model is considered to be the most suitable type of

stock assessment method for the present research, as regards its data requirements.

Moreover, it should be the first step in quantitative stock assessment. Furthermore,

uncertainty is present in every model and will not necessarily be reduced by making

models more elaborate.

26



Underlying Theory and Methodology Chapter 2

The least squares method will be used for parameter estimation, since it has proved

to be a useful, reasonably robust and potentially adequate simple method. Further

analysis required for the validation of this method will also be conducted, using the

bootstrapping method.
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Chapter 3

The Conser Mixed Model

3.1 Introduction

Since the stock production model was first proposed (Graham, 1935, Schaefer, 1954),

it has been widely applied to a variety of resources, including migrating fish (Goodyear

and Prager, 2001, Prager, 2002), invertebrates (Polovina, 1989, Chen and Mont-

gomery, 1999, D’Incao et al., 2002), temperate fish (Rose, 2004), and tropical fish

species (Pella and Tomlinson, 1969). A range of different methods for parameter

estimation have been proposed e.g. (Pella and Tomlinson, 1969, Fox, 1970, Schnute,

1977, Rivard and Bledsoe, 1978, Tsoa et al., 1985, Polacheck et al., 1993, Pella, 1993,

Chen and Andrew, 1998, McAllister and Kirkwood, 1998, Meyer and Millar, 1999b,

Prager, 2002, Schnute and Richards, 2002, Punt, 2003).

In practice, stock production models generally employ difference equations instead of

differential equations. The formulation allows growth, mortality, and recruitment to

be treated separately from biomass. Each parameter has a biological interpretation,

separate from any other process. In principle, an independent parameter estimation

is thus promoted (Conser, 1998) which can be conducted by using either additional

data or previous studies. Despite being used in a different manner than the Bayesian

framework, this is a way to incorporate prior information into the analysis. This
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approach avoids over-parameterisation which is commonly found when the number

of independent parameters to be estimated is higher than the number of independent

data sets (Shepherd, 1987).

Fitting time series difference equations with nonlinear minimisation is an elegant

approach which avoids the unreliable assumption about stock equilibrium and pro-

motes the inclusion of uncertainties, regarded as a essential features in the estimation

processes (Hilborn and Peterman, 1996).

Production relationships were first written as difference equations by Walters and

Hilborn (1976) and Hilborn (1979), when a multiple linear regression was proposed

as the estimation method regarding catch-per-unit-effort and effort as independent

variables.

A surplus production difference equation model is used as the starting point in this

work. The production model was proposed by Shepherd (1987) and can be considered

as one of the general class of models described by Schnute (1985). In order to estimate

reliable parameters when fitting the model to available data, Shepherd (1987) treated

catchability and natural mortality together with the intrinsic growth rate and pristine

biomass as separate parameters. Furthermore, a re-parameterisation was presented

in terms of current and pristine biomass, suggesting that reasonable ranges of two of

those parameters ought to be selected to obtain a good fit.

In the Shepherd model (Shepherd, 1987), the natural mortality rate (M) can be fixed,

as in more elaborate models such as virtual population analysis (Pope and Shepherd,

1985, Shepherd and Pope, 2002a). This procedure serves two different purposes.

Firstly, it allows the results of stock production and age structured models to be

more similar and so more easily comparable. Secondly, it clarifies the representation

terms of biologically meaningful parameters and so increases the chance of obtaining

convincing results, since prior estimates of natural mortality are often available from

basic biological research.
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Conser (1998) pointed out the lack of a formal statistical modelling for parameter

estimation in Shepherd (1987) and proposed a numerical framework considering both

observation and process errors, hereafter called “Conser Mixed Model (CMM)”. Here

the term “mixed” is used to describe a model which considers both observation and

process error in the estimation procedure.

Using a composite objective function minimised by the Marquardt algorithm, Conser

(1998) conducted a stock production model assessment on a sablefish stock (Anoplopo-

ma fimbria) caught off the USA Pacific coast.

However, the proposed statistical framework contains some inconsistencies in the

assumptions and statistical configuration which will be explained in detail in the fol-

lowing sections. In short, the CMM formulation of process error is not fully consistent

with the biologically processes concept. Moreover, setting the same weight for process

and observation errors, as in the CMM, does not guarantee a mixed model and fixing

the stock resilience is not a justifiable assumption, since it has deep implications for

the management actions. Further comments on these are made in the discussion of

this chapter.

Therefore, the objective of this chapter is to reproduce the analysis of Conser (1998),

analysing and pointing out the inconsistencies of the statistical model, and suggest-

ing improvements. The following two sections describe the CMM and its parameter

estimation method. In the section 3.4 results are analysed and structural and method-

ological deficiencies are exhibited and discussed.

3.2 Model background

The production dynamics is based on the basic first order difference equation (Eq. 2.1)

which describes the balance between production and catch over time. The production

function is the one proposed by Shepherd (1987) and is described below.
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By definition, production is related to recruitment as well as to spawning stock size

and are therefore expects a high variability in the process and a poor fit to any simple

model (Shepherd, 1987).

Although Schaefer’s logistic model (Eq. 2.2) assumes a decreasing linear relation-

ship between net production per unit biomass and biomass itself, Shepherd (1982)

suggested that a curvelinear relationship may be more appropriate. Moreover, con-

sidering a constant natural mortality and assuming a linear relationship for the net

production/biomass ratio, for large stock sizes, would result in an unfeasible negative

estimate of production due to recruitment (Shepherd, 1987).

A traditional stock-recruitment relationship by Beverton and Holt (1957) is therefore

selected to model positive (or gross) production. The relationship has a curvelinear

asymptotic shape and non-negative values. Equation (3.1) expresses the gain in

biomass, i.e. that due to growth of individual fish and recruitment, in a density-

dependent situation,

Ppt =
aBt

1 + Bt
K

, (3.1)

where Ppt is the positive time unit t production and has the unit of biomass; a is

the parameter that represents the maximum instantaneous annual rate of positive

production, i.e. the slope at the origin of the positive production curve, and its unit

is yr−1; K represents the stock biomass threshold up to which growth is controlled

by density-dependent effects, i.e. pristine biomass.

The loss of stock biomass (i.e. the decreasing effect of natural mortality) is quantified

in Eq. 3.2, where Npt is the negative production; M is the instantaneous rate of

natural mortality and its unit is yr−1, and Bt is the biomass,

Npt = MBt. (3.2)

Combining Eq. 3.1 and Eq. 3.2 gives the net surplus production, i.e. the difference

between positive and negative production,

Pt = Ppt −Npt =
aBt

1 + Bt
K

−MBt. (3.3)
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The per capita production or production-biomass ratio (Pt/Bt) proposed by Shepherd

(1987) is,
Pt

Bt

=
a

1 + Bt
K

−M. (3.4)

Here, the production biomass ratio is therefore a nonlinear function, as opposed to

the Graham-Schaefer model where the relationship is assumed to be linear.

In order to complete the parameterisation, a and K are substituted by slightly more

convenient parameters. Thus,

a = (α′ + 1)M, (3.5)

or,

α′ = (a−M)/M = α− 1, (3.6)

where α′ is the resilience of the stock and is dimensionless. In biological terms, re-

silience is equivalent to the maximum net production/biomass ratio, i.e. the maximum

sustainable yield/biomass ratio, for a given natural mortality. Resilience is propor-

tional to the slope of the biomass and production curve at the origin, and may be

expected to be somewhere between 1 and 10, based on assessment for which good

data are available (Shepherd, 1987).

By definition, in the absence of the fishery, the stock biomass is at its virgin stage

(B = Bmax), also known as pristine biomass, and therefore, the production/biomass

ratio (P/B) is zero. Once the fishery has started, Bmax is the exploitable virgin stock

biomass, i.e. the portion of the virgin biomass that could have been exploited under

constant exploitation patterns. The parameter K can then be expressed as,

K =
Bmax

α′
. (3.7)

Thus, by substituting Eqs. 3.5 and 3.7 and into the production/biomass ratio curve

(Eq. 3.4), the Shepherd model (1987) is described as,

Pt = α′MBt




1− Bt
Bmax

1 + α′Bt
Bmax


 . (3.8)
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The selection of Bmax leads to others quantities of management interest. The biomass

yielding maximum net production (BMSY ) is obtained by differentiating Eq. 3.8 with

respect to biomass and setting dPt/dBt = 0,

BMSY =

(√
1 + α′ − 1

α′

)
Bmax. (3.9)

Next, maximum sustainable yield (MSY ) is given by substituting Eq. 3.9 into Eq.

3.8,

MSY =
α′M√
1 + α′

BMSY

(
1− BMSY

Bmax

)
. (3.10)

With these equations in place, it is now possible to estimate the parameters to best

fit the actual data.

3.3 Parameter Estimations

Due to the lack of a statistical framework for the parameters estimation in Shepherd

(1987), Conser (1998) proposed a nonlinear statistical parameter estimation using

least squares minimisation and considering observation and process error in the ob-

jective function, i.e. the Conser Mixed Model (CMM).

The statistical model proposed by Conser (1998) first transformed exploited stock

biomass, net production, and virgin biomass into indexes by multiplying them with

catchability (q),

bt = qBt

pt = qPt (3.11)

bmax = qBmax

t = 1, · · · , Y.

Then, these indexes are used to substitute biomass, production, and catch in the

dynamic equation (Eq. 2.1). The process error (εt) is based on a normally distributed

random variable with mean 0 and variance σ2
ε , and is included as a log-normal error,
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multiplying predicted biomass, for reasons which were not clearly stated in Conser

(1998),

bt = (bt−1 + pt−1 − qCt−1)e
εt . (3.12)

The observation or measurement error (ηt) is taken to be a log normal error multi-

plying the expected index of stock biomass (b′t), i.e.

b′t = bte
ηt , (3.13)

i.e. ηt = ln(b′t − bt),

t = 1, · · · , T.

In other words, ηt is the natural logarithm of the difference between the true index

of stock abundance and estimated biomass.

The observed catch (C ′
t) is related to the true catch (Ct) by a further observation

error δt,

C ′
t = Cte

δt , (3.14)

i.e. δt = ln(C ′
t − Ct),

t = 1, · · · , T − 1.

Both observation error terms are thus assumed to be log-normally distributed random

variables, with mean 0 and variance σ2
ε .

Adding the above equations (Eq. 3.12, 3.13, and 3.14) builds Conser’s objective func-

tion (Eq. 3.15) which is minimised with respect to estimated biomass and catchability,

SS = λε

T−1∑

t=1

ε2
t +

T∑

t=1

η2
t + λδ

T−1∑

t=1

δ2
t , (3.15)

where SS is the sum of squares, λε and λδ are the weights for the process error

and catch observation error, respectively, relative to the CPUE observation error.

Observation error is thus represented by both η2
t and δ2

t . The process error is defined

as ε2
t and is related to the dynamic equation (Eq. 2.1 and Eq. 3.12).

As pointed out above, some inconsistencies have been noticed in the CMM estimation

approach. Firstly, process error is fundamentally the uncertainty in the population
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dynamic processes such as recruitment and mortality rate fluctuations. Therefore,

process error is expected to be related to the production equation (e.g. Eq. 2.2, 2.3,

2.4, and 3.8), which describes the process of incorporation and reduction of the stock

biomass in relation to the carrying capacity of the environment and intrinsic growth

rate. However, Conser (1998) included process error in the dynamic equation (Eq.

2.1), which comprises process and observation errors simultaneously. Process error

is accounted for the presence of the production term, and observation error by both

catch and biomass terms. For this reason, the dynamic equation should be consid-

ered deterministic rather than stochastic with the process error applied to the highly

variable production term itself, rather than the result (the estimated biomass). As a

result of Conser’s process error assumption, different sources of noise are merged and

likely to be confounded.

Secondly, the weight of process and measurement terms in the objective function is

assumed to be equal to one which does not guaranteed to produce a model with

observation and process uncertainties balanced. Actually, Conser’s assumptions lead

in practice, to an observation error model since the sum of process errors squared is

far bigger than the sum of observation errors squared (Table 3.1 on page 40). This

fact is also related to the previous inconsistency of the treatment of process error in

the dynamic equation.

In general, the observation error is related to the measurement of effort and catch

data, i.e. to the collected information. However, in practice the observation weight in

the CMM was only attributed to CPUE, and that associated with catch was assumed

to be zero, based on the inference that catch data is collected with negligible error.

Therefore, ignoring observation errors from catch data results, in practical term, in a

simpler objective function.

Finally, resilience was assumed to have a fixed value in the CMM and no further

evaluation was carried out. Since resilience determines how conservative the assess-

ment will be,evaluation with a range of resilience values is highly desirable but was
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not conducted. Fixing an arbitrary but high value for resilience is not a conservative

assumption and can have dangerous consequences for fish stocks.

3.4 Model configurations

As explained in the previous section, there are several inconsistencies or imperfections

in the model assumptions and the statistical configuration of the CMM which will be

addressed here. These are (i) the unusual formulation of the process error; (ii) the

neglecting of a weighting balance for process and observation errors in the objective

function and (iii) the analysis of a range of resilience values.

To deal with these points the following procedures will be conducted. First, Conser’s

data will be re-analysed as a starting point of this study. This is conducted with a

slightly modified objective function already assuming a process error in the production

model (Eq. 3.8) and observation error weight. Second, the balance of observation and

process error in the objective function will be investigated (a) by comparing models

in which one of the two terms is set to zero and (b) by finding the weight ratio

between observed and process error which equalises the variance of observation and

process deviations. Third, the output of the stock production model is examined for

a range of values of Bmax, since the model is highly sensitive to this value and its

choice influences the management approach. Finally, the model stability is tested

when Bmax and α′, are no longer regarded as fixed but estimated instead.

3.4.1 Approximate Reproduction of Conser’s Results

In order to avoid an undefined behaviour of the log-normal objective function due

to negative arguments during minimisation, Conser’s original objective function (Eq.

3.15) was modified into,

SS = λρ

T−1∑

t=1

ρt + λθ

T∑

t=1

θt, (3.16)
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where λρ and λθ are the relative weights for process error and observation error

respectively. The process (ρt) and observation (θt) errors were formulated as follows,

ρt =
(Bt − B̂t)

2

B
2
t

, (3.17)

θt =
(B′

t −Bt)
2

B′2
t

, (3.18)

where Bt is the minimised value of biomass, Bt is the average of modelled biomass,

B̂t is the value of biomass estimated through the dinamic equation (Eq. 2.1), B′
t is

the biomass index data, either from the observed time series of a research survey or

CPUE data, and B′
t is the average of biomass index data. Process and observation

uncertainties calculated for each year are actually the fractional deviations which

approximate to log-normal errors and the sum of all deviations is comparable to the

relative variance of the data.

Using CPUE and catch data series, the objective function (Eq. 3.16) was minimised

with respect to the catchability and estimated biomass of each and every year. The

minimisation was conducted using a nonlinear estimation routine which employs both

the Quasi-Newton algorithm, and the line-search method. The quasi-Newton method

evaluates, at each step, the function at different points in the parameters space in

order to approximate the first-order and second-order derivatives. Then, it uses this

information to follow a path towards the minimum. At each step of the main algo-

rithm, the line-search method searches along the line containing the current point,

parallel to the search direction, which is a vector determined by the main algorithm

(MATLAB, 2005).

The optimisation function “fminunc”, i.e. minimisation of an unconstrained multi-

variable function, from MATLAB V6.5 was employed. The minimisation settings

were found by trial and error, in order to avoid local minima and to certify the model

convergence. In addition, a wide range of initial values was tested, and the program

was re-run with estimated results from previous runs, in order to ensure that a global

minimum rather than a local minimum was reached.
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The maximum number of iterations was set to 300,000, the maximum number of

function evaluations allowed was 20,000,000 and the termination tolerance of the

function value was 10−8. The initial values for the nonlinear least squares optimisation

were B1 = 220 kton, α′ = 5, M = 0.07 year−1, Bmax = 260 kton, and q = 1.0.

The original data has been estimated from age 2+ at the beginning of the year and

carried out previously by Crone et al. (1997) using the Stock Synthesis model and

swept area estimates of stock biomass from bottom trawl surveys on the continental

slope in recent years. As a result, the data series has been pre-analysed before being

minimised by the proposed objective function. Catch represents reported landing plus

annual estimates of discards. The instantaneous rate of natural mortality (M = 0.07

year−1) and resilience (α′ = 5) were used from previous studies and treated as fixed

parameters, and observation and measurement errors were equally weighted to one

(Conser, 1998). Biomass unit, kton, stands for US kilotons and corresponds to 0.907

kt in SI unit system.

Table 3.1 presents Conser’s original data set and estimated parameters, i.e. catcha-

bility, estimated biomass and pristine biomass; together with the parameter estima-

tion, found in this study by the nonlinear estimation, i.e. catchability and estimated

biomass. Model diagnosis, i.e. sum of squares, sum of observation error, and sum of

process errors are also listed in the table.

In Conser’s original results, the estimated biomass decreases over time by a factor

of four whereas for the present study the decrease is slightly smaller, a factor of 3.6

times, for the same set of fixed parameters and initial guesses. The modified objec-

tive function is probably responsible for the slightly lower reduction in the estimated

biomass in this work. The normalisation of the objective function scales the devia-

tions, which is convenient when values with different magnitudes will be compared.

Management quantities such as MSY and BMSY were fairly similar for both studies

(Table 3.1). According to Conser (1998) the period which the observed biomass index

values were not similar to the estimated biomass values, are probably due to envi-

ronmental conditions, being specially favourable during late 1970s, leading to good
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Table 3.1: Conser original data and estimated results for the sablefish off the USA Pacific coast and

results of the present study, where q= catchability, SS= sum of squares,
∑

θ2
t = sum of all observation

deviations,
∑

ρ2
t = sum of all process deviations, BMSY = biomass at maximum sustainable yield,

Bmax= pristine biomass, MSY = maximum sustainable yield.

Estimated Biomass (kton)
Year Biomass index Catch (kton) Conser, 1998 present work
1971 248.66 4.428 249.77 252.58
1972 247.10 7.667 247.83 250.35
1973 242.51 6.183 242.35 245.01
1974 238.54 9.046 239.05 240.71
1975 232.12 11.113 232.54 233.83
1976 222.69 22.03 223.90 224.45
1977 202.01 8.531 201.54 204.21
1978 194.07 11.619 198.09 197.26
1979 193.80 20.14 194.44 193.69
1980 177.77 8.697 179.05 177.58
1981 182.82 11.478 181.28 178.69
1982 176.58 18.823 178.01 172.12
1983 168.47 13.629 165.38 161.67
1984 158.90 13.979 157.06 152.65
1985 146.73 16.022 146.64 142.12
1986 132.89 14.705 133.59 129.93
1987 123.78 14.291 123.21 121.19
1988 113.39 11.827 112.97 112.00
1989 105.97 11.277 105.86 105.63
1990 98.98 9.760 99.48 99.81
1991 96.89 10.284 95.69 97.55
1992 92.43 10.063 90.10 93.76
1993 84.51 8.914 82.84 88.10
1994 76.91 8.209 75.93 83.16
1995 69.06 8.479 69.48 78.41
1996 62.21 8.974 63.53 74.21
1997 56.96 8.484 58.43 70.82

q 1.353 0.996
SS 0.011 0.083∑
θ2
t 0.003 0.054∑

ρ2
t 0.075 0.029

K 44.537 52.000
BMSY 64.557 75.374
Bmax 222.687 260.000
MSY 6.550 7.648
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Figure 3.1: Surplus production (kton) as a function of stock biomass (kton) for sablefish, with Conser

(1998) results and this study estimation, where obs indicates the observed values of biomass and

production, and est indicates the estimated values of biomass and production, Conser obs indicates

Conser (1998) observed results and Conser est indicates Conser (1998) estimated results. Production

has been calculated from Shepherd model (Shepherd, 1987) in both studies.

recruitment, while in the early 1990s adverse conditions may lead to poor recruit-

ment. Overall, the model results found here were satisfactorily close to Conser (1998)

results although biomass values are somewhat higher but production are very similar

(Figure 3.1). Management actions should seek to avoid any further increase in the

catch, since the observed biomass in the last few years is already less than the biomass

for the maximum sustainable yield (Figure 3.1).

The simple relationship production/biomass from stock production models cannot

track transient fluctuations presented in the data, so the expected fit is considered

adequate when the model curves passes through the general scattered of the data.
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3.4.2 Uncertainty and Residual Analysis

Although the CMM claims to consider both observation and process errors in the

minimisation function, in this study different weights for observation and process er-

rors of the objective function have been tested. This procedure serves fundamentally

three purposes: (i) to verify the behaviour of the minimisation routine when consider-

ing extreme situations such as only observation and only process error modelling; (ii)

to find the right balance between process and observation deviations, quantifying a

balanced variance ratio between them; (iii) to show the importance of analysing both

errors together since results based on just one kind of error (process or observation)

can differ greatly.

Figure 3.2 (A) shows the minimisation results for an observation error estimation only,

i.e. the process error weight is null and observation error weight (λθ) is one. Therefore,

the deviations seen by the minimisation routine relate to observation uncertainty

only. The curve has a similar trend as the collected data. In addition, the dramatic

reduction in the observation error term (
∑

θ2
t ) (Table 3.2) is reflected by a decrease

of catchability (q). Since only
∑

θ2
t is minimised major deviations appear in the

process error, which, however, is a null term and ignored. Both scenarios present

net production, i.e. gross production less the natural mortality which may result in

negative values.

The results of the process error model are shown in the Figure 3.2 (B). The estimated

values for production tend to follow the model very closely presenting two curves

with similar shape. In this case, the observation error weight is null and process error

weight (λρ) is one. Compared with Figure 3.2 (A), q value seems to be quite stable.

High residuals are permitted in the null term (observation errors) as the method

attempts to decrease the value of total residuals (Table 3.2). Estimated values of

BMSY and MSY are the same for all scenarios since they depend on assumed values

(Eq. 3.9 and 3.10) which were invariable for all situations.
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Figure 3.2: Surplus production (kton) as a function of stock biomass (kton) for sablefish. (A)

Observation error model where objective function observation error weight is one and processes

error weight is zero. (B) Process error model where objective function observation error weight is

zero and processes error weight is one. Note that the scales differ between panels (A) and (B).

Table 3.2: Minimisation results of the observation and the process error model run separately, for

the objective function Eq. 3.16, where mixed model means both, observation and process errors.

observation process mixed balanced mixed
model type model model model model
λθ 1 0 1 1∑

θ2
t 2.634 ∗ 10−10 0.193 0.054 0.051

λρ 0 1.0 1.0 1.5∑
ρ2

t 44.982 0.003 0.029 0.032
SS 2.634 ∗ 10−10 0.003 0.083 0.099
q 0.698 1.000 0.996 0.995
Bcurrent (kton) 81.59 92.76 70.82 75.36
BMSY (kton) 75.37
MSY (kton) 7.65
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3.4.3 Weighting Consistency and Ratio

In order to find the balanced variance ratio for observation and process error, some

parameters summarising the results for each pair of error weights have been calculated,

and the results between models compared. Firstly, the ratio between the sum of

squares of the observation error and process error, is defined as the variance ratio V

(Eq. 3.19),

V =

∑T
t=1 θ2

t∑T
t=1 ρ2

t

. (3.19)

Secondly, the ratio between the process error and observation error weights, is defined

as the weight ratio W (Eq. 3.20),

W =
λρ

λθ

. (3.20)

Figure 3.3 (A) has been generated using a range of weights for observation and process

errors and the values of V and W have been calculated for each set of weights. The

curve has an exponential tendency. It was assumed that observation and process

errors should have the same magnitude. Consequently, it is expected that the variance

ratio would be similar to the weight ratio, or V/W ≈ 1. So, the “right” balance

between V and W is achieved when the ratio V/W is equal one, which, in this case

are when λρ = 1 and λθ = 0.65 and when λρ = 1.5, λθ = 1. The minimisation

results for the balanced scenario are shown in the last columns of Table 3.2 and

the production as a function of stock biomass for the same scenario in Figure 3.3

(B). Although catchability is equal for both balanced scenarios, the current biomass

estimation is slightly bigger for V/W ≈ 1, which predicts a stock just at its BMSY .

In general, the results and the figure of mixed model for W = 1 and V/W ≈ 1 are

very similar.
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Figure 3.3: (A) Variation of variance ratio as a function of weight ratio, (B) Production (kton) as a

function of stock biomass (kton) for sablefish, for V/W ≈ 1.

3.4.4 Fixed Parameters

The biomass reduction over time is an important process in the stock production

modelling especially to verify the sustainability of the fisheries. This stock production

model shows a particular sensitivity to the assumed pristine biomass (Bmax) due to

the fact that the reconstruction of the biomass time series is time dependent and is

calculated via the dynamic equation (Eq. 2.1). Therefore, depending on the assumed

value of virgin biomass the current state of the stock could range from overexploited

to underexploited. Consequently, when there is no estimate of biomass index at the

beginning of the stock exploitation, it is recommended to verify a range of values for

this parameter in order to observe the management consequences.

Figure 3.4 presents the variation of the different Bmax values, calculated for the entire

time series. Note that, especially for the estimation of recent biomass, the difference

can be higher at the beginning of the time series.

The assumed initial value of pristine biomass has a clear influence on the estimation

of the current stock biomass, and consequently, on the current stock status as seen

in Table 3.3. Assuming low pristine biomass, the stock has an overexploited current

biomass and high decreasing rate, whereas for high pristine biomass (300 kton) the
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Figure 3.4: Time series of reconstructed biomass for different values of pristine biomass (Bmax),

using Eq. 3.16, where Bt is the biomass estimated by minimisation, B(hat)t is the biomass calculated

sequentially and B′t is the observed biomass, based on the index values.

Table 3.3: Estimated biomass and reduction rates for a range of initial values of pristine biomass

(Bmax), for observation and process errors model.

Bmax(kton) 220 260 300
Binitial(kton) 206.28 253.74 303.96
Bcurrent(kton) 41.36 75.36 103.53
Binitial

Bcurrent
4.99 3.37 2.94

Bcurrent

BMSY
0.65 0.99 1.19

Bcurrent

Bmax
0.19 0.29 0.35
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stock is underexploited and low biomass decreasing rate (Table 3.3). Consequently,

the management quantities will be directly influenced by pristine biomass.

3.4.5 Estimation of Other Parameters

The objective function was initially set to be minimised with respect to catchability

and biomass as the simplest case possible. However, it would be desirable to be able

to estimate other parameters, such as pristine biomass and resilience, as well. The

model sensitivity to those estimations will be examined in this section.

Estimation of Pristine Biomass (Bmax)

An estimation of three parameters simultaneously i.e. pristine biomass, catchability

and biomass has been carried out. The results can be seen in Figure 3.5 (A) and

Table 3.4. The values obtained for pristine biomass and the management quantities

(BMSY and MSY) seem to be plausible, as are the total sum of squares and sum

of error components. However, the estimate of catchability was very small and the

overall results are not precautionary when compared with previous minimisation, as

observed in Figure 3.5 (A) where most of the observed points are under the estimated

curve, i.e. observed production is lower then estimated. Letting pristine biomass be

estimated brought the estimated variance ratio V closer to one.

Estimation of Resilience (α′)

Resilience of the stock is the ability to take advantage of natural variation, absorb-

ing and exploiting it, in order to avoid deleterious consequences for its survival and

maintenance (Hilborn and Walters, 1992). This ability depends on a wide range of

population strategies. In this natural situationthe ability to survive variations of
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Figure 3.5: Stock production (kton) as a function of biomass (kton) for sablefish, when other param-

eters are estimated, see table 3.4. (A) pristine biomass (fitted value Bmax = 330.5), (B) resilience

(fitted value α′ = 1, 733), and (C) pristine biomass and resilience (fitted value Bmax = 320.1 and

α′ = 67.3).
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Table 3.4: Results of the model minimisation when values of pristine biomass and resilience are

estimated together with catchability and biomass. Parameter units are in the text.

Bmax α′ Bmax and α′

q 0.699 0.900 0.707
Bmax(kton) 330.51 260.00 320.10
α′ 5.00 1753.00 67.27
BMSY (kton) 95.81 6.06 34.56
MSY (kton) 9.72 17.35 17.57
Bcurrent(kton) 123.70 92.30 133.57
Bcurrent

Bmax
0.37 0.36 0.42

SS 0.35 0.32 0.57∑
θ2
t 0.18 0.15 0.31∑

ρ2
t 0.17 0.16 0.26

λθ 1 1 1
λρ 1 1 1
V 1.07 0.93 1.21
W 1.00 1.00 1.00

natural mortality is the key issue, and therefore, could be generalised as k-strategist

species will have low resilience whereas r-strategist species will have a high value.

As a result, resilience is a model parameter particularly important to stocks assess-

ment because its magnitude determines how precautionary the approach will be,

considering the stock’s biological response to perturbations. Therefore, the objective

function (Eq. 3.16) was minimised with respect to catchability, biomass, and resilience

and the sensitivity of the model was analysed.

The result of this minimisation is represented in Figure 3.5 (B) and in Table 3.4.

Although the estimated catchability is similar to that of other analyses, the estimated

resilience is extremely high (over 1000) and unrealistic since this would imply that

the stock could never be driven to collapse. This is also reflected in the very low value

of BMSY (6 kton) and the MSY (over 17 kton) even though the sum of squares and

sum of the error terms are reasonable.
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Estimation of Both Pristine Biomass and Resilience

Finally, when both parameters, pristine biomass and resilience, were estimated by

the nonlinear routine, the results were also unrealistic, although not quite as much as

when resilience was estimated only (Table 3.4 and Figure 3.5 (C)). The model diag-

noses values (SS,
∑

ρ2
t ,

∑
θ2

t ) were consistent, i.e. demonstrating that the minimisa-

tion worked as it is supposed to, however the generated parameters were extremely far

from any reasonable interpretation of stock dynamics and should not be considered

credible.

3.5 Discussion

In this chapter a non-equilibrium stock production model expressed by difference

equations has been introduced. For the model estimation routine, process and ob-

servation errors were considered and a nonlinear estimation method was employed.

The population parameters natural mortality, stock resilience, and catchability, were

generally set to fixed prior values but have also been treated as estimated parame-

ters. The way these parameters affect the interpretation of the status of the exploited

population was explored.

Process error was introduced in the production function as this is more consistent with

the fundamental definition of process error (Rosenberg and Restrepo, 1994). The pro-

duction function incorporates the population fluctuation in terms of recruitment and

mortality variations, for instance. Despite the fact that process noise modelling has

been applied to the dynamic equation by several authors (Walters and Hilborn, 1976,

Schnute, 1977, Polacheck et al., 1993, Chen and Andrew, 1998), there are no clear

biological mechanism leading to this assumption. When process error is accounted

for in the dynamic equation, observation errors affecting the catch and biomass index

data are also conflated into the process error, whichis an undesirable feature. The
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weighting of the error terms does not correspond to a clear separation between the

fundamental sources of error.

For the re-implementation, the Conser model (Conser, 1998) had to be modified to

avoid negative arguments during minimisation which would lead to crash of the log-

normal objective function. The results generated by minimising the modified Conser

objective function were consistently similar to the original work, suggesting the new

objective function and minimisation algorithm are acceptable.

The use of weighted least squares minimisation is particularly advantageous due to the

flexibility of the fitting procedure, demonstrating how changes in the relative weight

of both sources of errors can vary the estimated results. If the data variances were

known, then the approximate weights are given by w = 1/σ2 (Lassen and Medley,

2001). In this study, process and observation error variances were unknown but were

assumed to be similar (if approximately scaled), so a range of relative weight values

were tested in order to find an equally balanced objective function. When only one

error was admitted at one time, by setting the weight of the other term to zero, the

estimation clearly “twisted” putting all the error in the other term, demonstrating

that the model needs the right balancing between both errors. The relative weight

applied should ideally transform the response variances to a constant value (Lassen

and Medley, 2001) consistent with the known expected errors in the data and the

process.

Conser (1998) pointed out the importance of assuming both errors, justifying this

with the wide variation the parameters can have if just one of the uncertainties was

considered. A highly variable output was identified when just one of the components

of uncertainty was estimated showing the need of assuming both errors, especially

since there have been several studies (Polacheck et al., 1993, Chen and Andrew, 1998,

Punt, 2003) carried out considering either observation or process error, but not both.

Clearly, the weighting ratio has been proved to be crucial for the model estimation.

The estimated current biomass can be bigger or smaller than BMSY just by alter-

ing the weight ratio. In fact, setting the weights of observation and process errors
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beforehand is an indirect control of the sum of both observation errors squared and

process errors squared. Neither observation error nor process error only models yield

credible results. Another fundamental influence in the current biomass estimation is

the setting value of pristine biomass. Under and overexploitation stock status can be

reached by slightly varying the value of pristine biomass.

The process error is defined as log-normally distributed by Conser (1998) since its

deviations are assumed to be dominated by recruitment fluctuations which are usually

considered as log-normally distributed (Fogarty, 1993). However, there are other

factors in addition to recruitment which affect the sequential evolution of biomass.

Thus, considering the combined effect of these processes, it is not clear that the

resultant should be log-normal.

When resilience is also estimated, the this parameters assumes unrealistic values.

Therefore, resilience should probably be used as a set value but a limited range of it

should also be tried. The estimation of pristine biomass seems to be more sensitive,

probably because of being scaled with estimated biomass in the production function

whereas resilience is just a multiplying factor, i.e. without constrain, in the same

equation. Even though estimated pristine biomass are more realistic it was fairly

optimistic and should be considered with caution.

The pointed out inconsistencies in Conser model assumptions, i.e. peculiar process

errors formulation, neglecting the weighting balance for process and observation errors

in the objective function and the lack of analysis of a range of resilience values were

proved to be coherent. As a result of the inadequate process error incorporation and

the fixation of certain parameters, this objective function will not be objective of

further analyses since it will be proposed an improved estimation method.
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3.6 Summary

The reimplementation of Conser (1998) method was successful since the present re-

sults were satisfactory close to the previous studies (Conser, 1998), even though tech-

nical reasons resulted in a slightly modified objective function.

The adjustments of weighting in the objective function lead to very different results,

and must be incorporated as part of the optimisation process. Neither observation

nor process error only models yielded credible results and therefore should not be

preferred. The correct weighting of observation and process errors need to be found

in order to obtain meaningful results.

The attempts to minimise resilience and pristine biomass together with the other two

minimised parameters, catchability and estimated biomass, were not very successful.

Estimation of more than the two suggested parameters should be conducted with

caution and for comparison purposes.

For considering Conser (1998) objective function unsatisfactory with respect to the

process error assumption and the fixed parameter further investigations are not going

to be conducted. Instead a new objective function will be proposed the the following

chapter.
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Chapter 4

The Process and Observation

Errors Estimation Model

(POEEM)

4.1 Background of the Research Methodology

Estimating the status of the population via a stock production model serves two

purposes, first to provide simple assessment when only incomplete information is

available and second to provide a comparison with more elaborated models when

data availability is not a constraint.

Stock production models have improved throughout a variety of methodological and

theoretical aspects since they were first proposed. Improvements made by incorpo-

rating natural mortality, stock resilience, recruitment, and environmental variables

(Shepherd, 1987, Fréon et al., 1992) and also by the use of a variety of approaches to

parameter estimations (Polacheck et al., 1993, Pella, 1993, Chen and Andrew, 1998,

McAllister and Kirkwood, 1998, Quinn and Deriso, 1999, Schnute and Richards, 2002)

have all contributed to this.
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A major recent improvement in fisheries modelling is the recognition and incorpo-

ration of uncertainties in the estimation process, since ignoring uncertainties in the

available data can lead to biased predictions and has been recognised as a potential

cause of stock collapse in fisheries management (Hilborn and Peterman, 1996). There-

fore, in order to arrive at a reliable stock assessment different sources of uncertainty

and ways to deal with these uncertainties have to be considered.

4.1.1 New Proposed Model Fitting

The incorporation of uncertainty in the estimation model varies according to the

approach employed. The Bayesian framework uses data and prior knowledge, to

estimate the probability of a hypothesis (Gelman et al., 1995). The use of different

sources of information may be specially advantageous when data are limited and

subject to a large uncertainty (Ludwig, 1996). Basically, uncertainty is included by

specifying the prior probability distribution of a parameter. The prior probability

is then multiplied by a likelihood estimate, generated from the analysis of the data,

resulting in the posterior estimation (Gelman et al., 1995).

When employing likelihood-based methods, process errors can (in principle) be treated

as parameters and consequently be estimated during model fitting (Schnute, 1994,

Schnute and Richards, 1995). On the other hand, reparameterisation of the model

into a state-space model, employing a Kalman filter, and the use of a likelihood

estimation is a way to recognise both, observation and process errors (Pella, 1993,

Schnute, 1994, Freeman and Kirkwood, 1995, de Valpine, 2002). Almost all such

models are based on linear equations, and assume normally distributed errors (Millar

and Meyer, 2000).

In addition, state-space models incorporating process and measurement uncertainties

can also be treated by Bayesian approaches with nonlinear, non-gaussian state-space

models (Meyer and Millar, 1999a, Millar and Meyer, 2000, de Valpine, 2002). How-

ever, Pella (1993) suggested the use of bootstrapping instead of Kalman filter since
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this method failed to estimate precise parameters when process error was admitted,

in at least one case, due to the information matrix properties.

In the least squares approach, which is used in this study, uncertainty is accounted

for in the objective function, during either linear or nonlinear optimisation (Gilchrist,

1984). The reliability of the estimated parameters in a stock production model may

be more linked to the method used to fit to observed data than to the algebraic form

of the underlying population dynamic model (Polacheck et al., 1993).

According to Chen and Andrew (1998) the most frequently employed approaches for

stock production models have been (i) equilibrium estimators, as originally applied

by Schaefer (1954), (ii) effort-averaging estimators presented by Fox (1975), (iii)

process error estimators used by Walters and Hilborn (1976), Schnute (1977), and

(iv) observation error estimators applied by Pella and Tomlinson (1969), Ludwig and

Walters (1985), Ludwig et al. (1988). Clearly, the former two approaches do not

explicitly incorporate any error in the estimation, resulting in highly biased results

(Hilborn and Walters, 1992, Polacheck et al., 1993, Punt, 2003) and therefore, should

only be used for comparison and educational purposes.

The latter two approaches incorporate either process error or observation error. Mod-

els including only the process error estimator assume that all deviations are related

to the actual but unpredictable changes in population size between years, whereas

catch and the abundance index are assumed to be correctly measured. A number

of process error estimators have been proposed (Walters and Hilborn, 1976, Schnute,

1977, Polacheck et al., 1993), some of them using multiple regression analysis for

estimation.

On the other hand, models including only the observation error estimator consider

noise arising in the observed abundance index, while the population dynamic of the

fish stock is assumed to be precise. The least squares method is commonly used

for this kind of estimation (Hilborn and Walters, 1992, Polacheck et al., 1993, Chen

and Andrew, 1998), especially when CPUE and catch data is available. It has been

suggested (Hilborn and Walters, 1992, Polacheck et al., 1993) that observation error
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estimators are more robust than process error estimator due to the uncertainties in the

error assumptions and the formulation of the dynamic models. However, the presence

of process error when only observation error is considered can lead to substantial

negative bias in the estimates of the variance (Punt and Butterworth, 1993). Despite

the wide acceptance (FAO, 1996, Hilborn and Mangel, 1997, Chen and Andrew, 1998)

that both errors are present in the real dynamics and assessment of a fish stock, they

were rarely incorporated simultaneously in stock production models (Conser, 1998).

In this chapter, a new estimation method for the stock production model is proposed,

which includes observation and process errors simultaneously, employing a non-linear

least square approach. The new method is called Non-Equilibrium Least Squares

Process and Observation Errors Estimation Method (POEEM) and will be tested

through simulated data sets for assessing its robustness. First, the new method is

tested on simulated data, and the reliability of the results is assessed by Monte Carlo

methods. The data of Conser (1998) will then be analysed with the new method and

results will be compared with the previous chapter.

4.2 New Estimation Method

Previous studies (Walters and Hilborn, 1976, Schnute, 1977, Polacheck et al., 1993,

Conser, 1998) considered production error in the dynamic equation (Eq. 2.1) which

comprises variation of biomass in time, balanced with production gain and catch loss.

Essentially, this function conflates both errors, process error in the production, and

observation error from the catch and CPUE data. Therefore, the representation of

process error in this equation is not consistent with the proper definition of process

error.

In the new method (POEEM), the process error is regarded truly as the uncertainty

generated during the underlying population dynamics, i.e. recruitment, reproduction

and mortality. In the stock production model these population dynamic aspects are
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related to the stock production process by,

Pt = α′MBt




1− Bt

Bmax

1 +
α′Bt

Bmax


 + ∆Pt, (4.1)

where Pt is production at time t, α′ is the stock resilience, M is the natural mortality,

Bt is the estimated biomass at time t, Bmax is the pristine biomass, and ∆Pt is the

process error. The latter is therefore estimated as,

∆Pt = Pdt − Pmt, (4.2)

where Pdt is the production calculated from the dynamic equation (Eq. 2.1) and Pmt

is the production estimated from the Shepherd model (Eq. 3.8). The process error

estimate is then normalised by the mean of the calculated production (Pdt) in order

to scale the deviation to the magnitude of the production,

ρt =
(Pdt − Pmt)

Pdt

. (4.3)

The observation error term is related to the abundance index,

Ut =
Ct

Et

+ ∆Ut = qBt + ∆Ut, (4.4)

where Ut is CPUE at time t, Ct is catch at time t, Et is effort at time t, q is the catch-

ability coefficient, and Bt is biomass of the population at a time t. The observation

error (∆Ut) is described as,

∆Ut = Ut − qB∗
t , (4.5)

and then normalised to give θt,

θt =
(Ut − qB∗

t )

U t

, where (4.6)

B∗
t =

Bt + Bt+1

2
.

B∗
t is the estimated biomass at time t, and is taken as the average of biomass between

the current and the next period of time, allowing the estimation of biomass in the

next period of time t, which is another small methodological enhancement since most
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of the studies (Polacheck et al., 1993, Chen and Andrew, 1998, Conser, 1998) are only

concerned with current biomass. Here the observation error term is also normalised

with the average of CPUE in order to scale the magnitude of the observation devia-

tions. The purpose of the normalisations is to make both of the errors estimators of

the same order, i.e. order of one, so that their relative sizes are comparable.

Consideration of uncertainty in indices of abundance is fundamental to estimating

uncertainty in stock size using an assessment model (Patterson et al., 2001).

By combining process and observation error, an appropriated weighted objective func-

tion is expressed as

SS = λρ

Y−1∑

y=1

ρt
2 + λθ

Y∑

y=1

θt
2, (4.7)

where λρ and λθ are the relative weights for process error and observation error,

respectively. This objective function allows for variation of the two weights which is

desirable in order to find the balanced result of observation and process errors.

Each minimisation requires a data series of catch and CPUE, so the objective function

(SS) is minimised with respect to q and true biomass, using a nonlinear parameter

estimation technique from MATLAB V6.5. The optimisation function “fminunc”, i.e.

minimisation of an unconstrained multivariable function, was employed. This func-

tion uses a Quasi-Newton Method, the most favoured gradient information method,

since it builds up curvature information at each iteration to formulate a quadratic

model problem (MATLAB, 2005).

In general, the maximum number of iterations was set to 300,000, the maximum

number of function evaluations allowed was 20,000,000 and the termination tolerance

of the function value was 10−8. These values were found, by trial and error, to be

necessary to ensure convergence of the method on this rather difficult minimisation

problem.
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4.2.1 Simulation Study

The performance of the POEEM was tested first on simulated catch, production and

CPUE data series. Catch simulated data was generated by the following equations,

C = LEα′MBt, where (4.8)

LE ≈ F

α′M
,

where LE is the level of exploitation of each simulated population and proportional

to the expected fishing mortality, α′ is the stock resilience, M is the natural mortality,

Bt is the biomass at time t, and F the fishing mortality. Essentially, the equation

generates a population biomass, proportional to the stock resilience, which is reduced

by the fisheries activity and natural mortality. A initial value of biomass is set, pro-

portional to pristine biomass. Independent normally distributed errors with N(0, σ2)

were used to simulate ρt and θt, respectively process and observation errors. Process

error was then, added to the production curve in the Eq. 4.1 which will calculate

biomass through the Eq. 2.1 also used in the CPUE estimation. Observation error

was added to CPUE according to Eq. 4.4.

Low, medium and high noise levels or variance error, 0.1, 0.5, and 0.9 respectively,

were assumed. The same values were assumed as low, medium and high levels of

exploitation. Therefor, the model performance was analysed in a total of nine sce-

narios. To each scenario, the objective function was minimised with respect to q and

Bt employing the unconstrained minimisation procedure described above.

4.2.2 Weighting Consistency and Residual Ratio

For the mixed model, it was assumed that observation and process uncertainties

should have the same magnitude, which means,
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R2
θ = R2

ρ, (4.9)

where R2
θ =

T∑

t=1

θt
2,

and R2
ρ =

T∑

t=1

ρt
2,

where R2
θ is the sum of all observation residuals squares, i.e. the sum of the squared

observation deviations. Similarly, R2
ρ is the sum of all process residuals squared. The

estimated error variance ratio, V is defined as,

V =

∑T
t=1 θ2

t∑T
t=1 ρ2

t

, (4.10)

and this study seeks solutions where V ≈ 1. To achieve this, the weight of each

error term in the estimation model is treated as a fixed parameter and is set before

the minimisation is carried out. This approach gives, some control over the variance

ratio. The controlling ratio is the weight ratio W (Eq.4.11) and is defined as,

W =
λρ

λθ

. (4.11)

Consequently, the assumption that observation and process noise have the same mag-

nitude is equivalent to V = W or V/W = 1.

Thus, in order to find the weighting ratio for the mixed model which comply with

the initial assumption, several data series were simulated with levels of exploitation

and levels of noise both taking (relative) values of 0.1, 0.5 and 0.9. The parameters

q = 1.0 and M = 0.1 were fixed for all simulations whereas Binitial, α′ and Bmax were

tested over a range of values.

Table 4.1 shows the sum of observation errors squared, the sum of process errors

squared, the weight of each error term, the variance ratio, and the weight ratio, for

several data series with different levels of noises and exploitation, and a range of

initial values for Binitial, α′ and Bmax. Observation and process error were added

to each data series in equal quantity. Therefore, for the same level of noise, it was

expected to find V/W ≈ 1 when W was 1 irrespectively to the initial parameter

settings assumed. However, for all the scenarios of W = 1, V/W was extremely big,
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Table 4.1: Model residual diagnoses for simulated data set with several levels of exploitation and

noise, from a a range of pristine biomass, catchability and initial biomass, where
∑

θ2 is the sum

of observation errors squared ,
∑

ρ2 is the sum of process errors squared, λθ is he weight of the

observation errors, λρ is the weight of the process errors, V is the variance ratio, W is the weight

ratio, and V/W is the residual ratio for simulated data series.

W=1
∑

θ2
∑

ρ2 λθ λρ V W V/W
0.373 0.006 1 1 66.752 1 66.752
0.269 0.003 1 1 83.269 1 83.269
0.261 0.005 1 1 56.278 1 56.278
0.327 0.011 1 1 30.624 1 30.624
0.275 0.003 1 1 86.592 1 86.592
0.213 0.016 1 1 13.080 1 13.080
0.266 0.008 1 1 35.189 1 35.189
0.261 0.010 1 1 25.341 1 25.341
4.691 0.418 1 1 11.215 1 11.215
0.286 0.001 1 1 220.699 1 220.699
0.301 0.001 1 1 276.881 1 276.881
0.286 0.001 1 1 220.699 1 220.699
9.309 0.038 1 1 247.876 1 247.876
5.265 0.024 1 1 219.276 1 219.276

V/W ≈ 1
∑

θ2
∑

ρ2 λθ λρ V W V/W
0.132 7.459 1 0.0160 0.018 0.016 1.104
0.057 12.380 1 0.0040 0.005 0.004 1.146
0.048 14.607 1 0.0039 0.003 0.004 0.840
0.054 13.247 1 0.0037 0.004 0.004 1.105
0.087 4.756 1 0.0180 0.018 0.018 1.019
0.040 9.907 1 0.0038 0.004 0.004 1.065
0.061 14.197 1 0.0038 0.004 0.004 1.135
0.043 7.598 1 0.0052 0.006 0.005 1.083
0.041 7.952 1 0.0050 0.005 0.005 1.031
0.060 16.059 1 0.0037 0.004 0.004 1.008
0.050 13.483 1 0.0035 0.004 0.004 1.058
0.056 3.507 1 0.0150 0.016 0.015 1.068
0.055 15.125 1 0.0032 0.004 0.003 1.155
0.055 13.769 1 0.0024 0.004 0.002 1.667

V ≈ 1
∑

θ2
∑

ρ2 λθ λρ V W V/W
0.319 0.290 1 0.0900 1.098 0.090 12.203
0.225 0.186 1 0.1200 1.206 0.120 10.047
0.217 0.256 1 0.1000 0.847 0.100 8.473
0.215 0.202 1 0.1200 1.068 0.120 8.902
0.261 0.267 1 0.1300 0.977 0.130 7.514
0.229 0.241 1 0.1000 0.952 0.100 9.524
0.159 0.155 1 0.2000 1.021 0.200 5.106
0.219 0.204 1 0.1000 1.076 0.100 10.760
0.203 0.189 1 0.1700 1.073 0.170 6.309
0.194 0.173 1 0.2000 1.119 0.200 5.593
0.262 0.146 1 0.0900 1.790 0.090 19.886
0.264 0.120 1 0.1000 2.212 0.100 22.120
0.272 0.247 1 0.0600 1.101 0.060 18.350
0.250 0.309 1 0.0600 0.809 0.060 13.482
8.488 6.638 1 0.0666 1.279 0.067 19.210
8.533 4.519 1 0.0870 1.888 0.087 21.702
0.259 0.182 1 0.0800 1.420 0.080 17.749
4.314 3.257 1 0.1300 1.325 0.130 10.189
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since production errors were far smaller than observation errors. On the other hand,

when V/W was close to one, λρ had to be quite small in order to have process and

observation residuals balanced. Considering that, the same amount of noise has been

set simultaneous for process and observation errors in each data series, it was expected

to find V ≈ 1 when W = 1. However, the required value of W to result in V/W ≈ 1

was smaller than one. Thus, independently of the initial parameter settings, for

simulated data with noise added with equal magnitude, estimated observation error

was always bigger. Consequently, to be consistent with the assumption that process

and observation errors are balanced, V ≈ 1 will be considered as a coherent residual

ratio, i.e. the sum of observation errors is similar to the sum of process errors, and

the weight ratio W is chosen freely (by trial and error) to achieve this.

4.2.3 Model Consistency

The model performance was tested with different scenarios. The level of exploitation

was set to 10%, 50% and 90%, to represent respectively an underexploited population,

population around maximum exploitable production and an overexploited stock. For

each level of exploitation, noise levels of 10%, 50% and 90% fo observation and process

error were included in the data.

For each scenario, the initial parameter settings were: Binitial = 180 kton, α′ = 2,

M = 0.1 year−1, Bmax = 500 kton and q = 1.0. The normally distributed error

was added to the production model (Eq. 4.1) and to the CPUE (Eq. 4.4) and the

minimisation procedure described above was used.

The results of these simulation scenarios are presented below. The frequency distri-

bution of the catchability (q) and biomass at the next period (Bt+1) are shown in

Figure 4.1 and Figure 4.2, respectively. The basic statistic results for the simulation

diagnoses, i.e. Sum of Squares (SS) and residual ratio (V ) are listed in Table 4.2.

The weight ratio (W ) was determined before the simulations by trial and error using a

range of values of W since it is the way to influence the variance of the observation and
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Table 4.2: Basic statistic of the minimisation parameters (q and Bt+1) and model diagnoses (SS

and V) for a range of levels of exploitation (LE) and levels of noise (LN), where min is the lowest

estimated values, max is the highest estimated values and σ is the standard deviation. The ”best

value” of q was 1.0

catchability (q)
LE LN ntotal nanalysed min max mean median σ
0.1 0.1 226 213 0.90 1.16 1.03 1.02 0.06
0.1 0.5 209 81 0.97 12.40 2.62 1.49 3.04
0.5 0.1 224 221 0.81 1.23 1.05 1.06 0.10
0.5 0.5 232 174 1.01 2.96 1.82 1.72 0.41
0.9 0.1 200 196 0.93 1.18 1.05 1.05 0.05
0.9 0.5 210 157 0.76 2.13 1.26 1.24 0.28

biomass at the next period (Bt+1)
LE LN ntotal nanalysed min max mean median σ
0.1 0.1 226 213 316.09 354.05 335.32 336.13 7.30
0.1 0.5 209 81 35.85 359.27 262.19 288.95 81.90
0.5 0.1 224 221 90.99 181.55 127.69 125.21 18.58
0.5 0.5 232 174 29.49 185.78 95.98 95.58 34.95
0.9 0.1 200 196 29.85 57.2 41.38 41.03 5.362
0.9 0.5 210 157 15.70 158.75 56.04 50.47 27.05

sum of squares (SS)
LE LN ntotal nanalysed min max mean median σ
0.1 0.1 226 213 0.086 0.53 0.24 0.23 0.07
0.1 0.5 209 81 2.26 10.91 5.78 5.25 2.10
0.5 0.1 224 221 0.092 0.47 0.23 0.22 0.064
0.5 0.5 232 174 2.21 11.39 5.71 5.55 1.61
0.1 0.9 200 196 0.085 0.74 0.26 0.25 0.094
0.9 0.5 210 157 2.03 11.81 6.11 5.92 1.94

variance ratio (V)
LE LN ntotal nanalysed min max mean median σ
0.1 0.1 226 213 0.61 3.81 1.88 1.75 0.74
0.1 0.5 209 81 0.32 3.95 2.22 2.32 0.95
0.5 0.1 224 221 0.38 4.20 1.37 1.21 0.65
0.5 0.5 232 174 0.33 3.92 1.49 1.25 0.81
0.1 0.9 200 196 0.25 4.25 1.59 1.41 0.77
0.9 0.5 210 157 0.33 4.00 1.90 1.67 0.90

63



The Process and Observation Errors Estimation Model (POEEM) Chapter 4

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
0

50

100

150

200 "best value"

fr
eq

ue
nc

y LE0.1, LN0.1

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
0

50

100

150

200 "best value"

LE0.1, LN0.5

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
0

50

100

150

200 "best value"

fr
eq

ue
nc

y LE0.5, LN0.1

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
0

50

100

150

200 "best value"

LE0.5, LN0.5

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
0

50

100

150

200

q

fr
eq

ue
nc

y

"best value"

LE0.9, LN0.1

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
0

50

100

150

200

q

"best value"

LE0.9, LN0.5

Figure 4.1: Frequency distribution of catchability (q) calculated from simulated data series with

level of exploitation (LE) 0.1, 0.5 and 0.9 and levels of noise (LN) 0.1 and 0.5, where the ”best

value” of q was 1.0.

process errors in order to achieve the balance of the uncertainties. For each value of W ,

around a dozen realisations were run and the mean, median and standard deviation

of V were checked. Once the variance ratio mean and median was approximately one,

the value of W was employed in the optimisation of a few hundred simulated data

series. The number of data series analysed for each scenario is also listed Table 4.2.

The total number of simulated data series is slightly bigger then the analysed ones

since results with the variance ratio (V ) bigger than four and small than 0.2 were

considered unbalanced and therefore have been dismissed from further analyses.
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Figure 4.2: Frequency distribution of biomass at the next period (Bt+1) calculated from simulated

data series with level of exploitation (LE) 0.1, 0.5 and 0.9 and levels of noise (LN) 0.1 and 0.5.

Noise Level of 10%

The histograms on the left of Figure 4.1 represent catchability estimated from simu-

lated data series whose added level of noise was 10% and the exploitation rate was,

from top to bottom, 10%, 50% and 90%, respectively. In order to achieve V ≈ 1

for this level of noise, the set value of W was 0.06 for 10% of exploitation, 0.09 for

50% of exploitation and 0.12 for 90% of exploitation. Irrespectively of the level of

exploitation, the modal class has a high frequency, comprises values of q within 10%

of its initial value (1.0) and the dispersion is close to the modal class (Figure 4.1 and

Table 4.2).

Forecast biomass for the next period (Bt+1) obtained through the simulated data

with 10% of level of noise are shown on the left of the Figure 4.2 in the same order
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of the level of exploitation as q. The modal classes are also well marked for all three

levels of exploitation and the data dispersion is small (Figure 4.2). As expected, the

lower level of exploitation (10%) has a higher estimated biomass for the next period,

decreasing substantially for higher levels of exloitation.

The sum of squares of the objective function (SS) for low levels of noise (0.1) was

quite small and exhibited only a small dispersion (Table 4.2) while the variance ratio

(V ) has mean and median around one (Table 4.2).

Noise Level of 50%

For scenarios with a noise level of 50%, q estimated from simulated data series is

represented in the histograms on the right of Figure 4.1. Levels of stock exploitation

are, respectively, from top to bottom 10%, 50% and 90%. the set values of W to

result in V ≈ 1 for 50% of noise was 0.09, 0.17 and 0.17 for exploitation levels of 10,

50, and 90% respectively. Irrespectively of the level of exploitation, the modal class is

not as marked and the dispersion is bigger compared with the previous level of noise

(Figure 4.1). For levels of noise of 0.1 and 0.9 the modal class central point of q is

1.25 whereas for level of noise of 0.5 it is 1.75. The median estimated values of q are

about 50% larger than the actual value of q (Table 4.2). Low level of exploitation and

medium level of noise (LE0.1, LN0.5) revealed a large dispersion of the catchability

estimate (Figure 4.1). It also has a higher mean and median of V than other scenarios

(Table 4.2). In general, the SS were considerably higher than for lower levels of noise

as expected (Table 4.2).

Noise Level of 90%

For a high level of noise, i.e. 90%, it was not generally possible to find a weight ratio

(W ) which would result in variance ratio (V ) of approximately one for any level of

exploitation. Tables 4.3 shows the basic statistics of the estimated model parameters

and Table 4.4 present model diagnoses for all levels of exploitation. They point out
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the high dispersion of those results when high levels of noise were introduced into the

simulated data. Most of the results of q and Bt+1 are unrealistic. The variance ratio

varies enormously which is incompatible with the initial assumptions and the SS is

considerably higher than at lower levels of noise. Therefore, it was not possible to

estimate reliable parameters with desirable precision. Median was a more meaningful

statistics since the dispersion was far bigger than previous scenarios. As formerly

observed the higher the level of exploitation the smaller is the dispersion.

For both tables (Tables 4.3 and 4.4) minimum and maximum values of are affected

by occasional extreme results, therefore, the median gives a more reliable estimate.
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Table 4.3: Basic statistics of catchability (q-top panel) and biomass at next period (Bt+1-lower

panel), when a range of values of W was used, for simulated data with level of exploitation (LE)

0.1, 0.5 and 0.9 and levels of noise 0.9. ”Best value” of q is 1.0.

q W n min max median mean σ
0.2 7 0.77 36665 6890.50 10022.44 13289.31

LE 0.1 0.27 10 0.71 36880 4.48 7349.81 12893.94
0.3 10 1.20 44424 4.59 6202.78 14519.11
0.32 31 0.71 91228 2.55 8911.32 20431.92
0.4 20 1.23 20017 3.04 3242.41 5609.51
0.42 10 1.06 34158 2.80 4211.72 10640.72

LE 0.5 0.45 8 1.08 18110 2.52 2265.88 6401.99
0.47 10 1.94 43785 2.47 6623.46 14436.41
0.5 12 1.00 51047 2.38 6559.79 16107.14
0.48 11 0.47 14631 1.33 1458.52 4388.97

LE 0.9 0.5 22 0.47 51047 2.00 3867.54 12090.99
0.52 6 0.77 2.03 1.41 1.42 0.48

Bt+1 W n min max median mean σ
0.2 7 -0.25 427.02 0.08 167.42 211.00

LE 0.1 0.27 10 -0.26 468.91 184.01 195.26 176.47
0.3 10 -0.11 381.14 188.55 176.05 133.35
0.32 31 -0.10 467.99 233.71 200.05 145.86
0.4 20 -0.97 140.41 74.40 59.92 55.41
0.42 10 -0.56 147.87 84.48 70.65 64.15

LE 0.5 0.45 8 0.11 167.25 121.82 108.05 60.79
0.47 10 -0.41 158.30 71.12 69.57 57.01
0.5 12 0.03 190.82 107.94 107.50 62.62
0.48 11 -0.65 242.94 71.37 80.25 72.75

LE 0.9 0.5 22 0.03 243.29 92.03 98.96 67.45
0.52 6 20.96 217.14 120.05 113.00 72.36
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Table 4.4: Basic statistics of sum of squares of the objective function (SS) and variance ratio(V),

when a range of values of W was used, for simulated data with level of exploitation (LE) 0.1, 0.5

and 0.9 and levels of noise 0.9.

SS W n min max median mean σ
0.2 7 5.55 21.46 5.79 10.78 6.81

LE 0.1 0.27 10 7.52 28.88 15.27 15.06 6.86
0.3 10 8.66 26.17 16.62 17.07 6.36
0.32 31 9.11 54.98 17.59 19.02 9.29
0.4 20 10.90 27.72 17.47 16.66 5.69
0.42 10 11.03 24.53 14.21 15.83 5.14

LE 0.5 0.45 8 12.51 33.30 19.63 21.16 6.87
0.47 10 11.26 24.57 17.99 17.40 4.57
0.5 12 14.05 33.67 23.63 23.14 6.68
0.48 11 10.87 27.438 21.25 19.41 5.26

LE 0.9 0.5 22 10.92 33.668 22.61 21.58 6.44
0.52 6 11.601 42.261 23.12 24.32 10.36

V W n min max median mean σ
0.2 7 6.81E-07 160020 6.20E-06 23159.26 60354.88

LE 0.1 0.27 10 2.77E-07 5117 7.91 545.34 1608.61
0.3 10 5.48E-07 264 8.98 33.35 81.41
0.32 31 2.17E-07 4356 12.18 181.27 780.08
0.4 20 3.79E-07 15.30 1.80 3.71 5.04
0.42 10 1.82E-07 24.76 2.05 6.84 10.01

LE 0.5 0.45 8 2.48E-06 55.78 3.14 10.76 18.89
0.47 10 3.73E-08 9.08 2.49 2.61 2.67
0.5 12 2.27E-07 113.71 3.95 16.54 31.98
0.48 11 2.19E-07 89.38 8.96 15.20 25.15

LE 0.9 0.5 22 2.27E-07 119.35 6.95 19.39 32.91
0.52 6 1.39 18.75 4.63 6.48 6.71
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4.2.4 Conser (1998) Dataset Analysis

In this section, the sablefish data set (Conser, 1998) used in the previous chapter

was analysed according to the POEEM (Eq. 4.7). The results are shown in Figures

4.3, and 4.4 and Table 4.5. The latter displays the initial parameter settings and the

results of the estimation for various weighting scenarios.

First, the mixed model was employed with either observation error or process error

only, to verify the importance of regarding both errors in the estimation process.

Figure 4.3 shows the result of the POEEM when (A) λθ = 1 and λρ = 0, i.e. an

observation error model and (B) λθ = 0 and λρ = 1, i.e. a process error model. When

only observation errors were considered, the model pushes all the deviations to the

null term (process error) in order to decrease the sum of squares (Table 4.5) whereas

for the process error only case, all deviations are accounted for in the observation

error, which is the null term (Table 4.5). The data dispersion around the estimated

production curve clearly reflects the value of SS in each situation (Figure 4.3) and the

results of the management quantities, q and Bt+1, are of doubtful validity (Table 4.5).

The two curves easily exemplify the bias in the results, since situation (A) shows a

stock near its maximum sustainable yield levels while (B) places the stock at a fairly

low level of exploitation (Figure 4.3 and Table 4.5).

It is clear that considering either process or observation errors alone in the model

fitting can strongly bias the results and may lead to a wrong conclusion about the

state of the stock. For the POEEM, the question is, whether the residual ratio (V/W )

or the variance ratio (V ) has to be approximately one in order to obtain a meaningful

and realistic result. Figure 4.4 shows the results of the observed and the estimated

curves, with the POEEM when (A) the errors variance ratio (V ) was approximately

one and (B) when the V/W was approximately one. The curves again show the

stock in opposite exploitation stages, i.e. for the curve (A) the stock is still at a

low level of exploitation with high biomass and increasing production, while curve

(B) represents an overexploited stock which requires strict management regulation in

order to recover to sustainable levels (Figure 4.4 and Table 4.5). However, the results
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Figure 4.3: Surplus production (kton) as a function of stock biomass (kton) for sablefish employing

POEEM. (A) Observation error weight is one and processes error weight is null. (B) Observation

error weight is null and processes error weight is one. Note that the scales differ between panels A

and B.
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Figure 4.4: Surplus production (kton) as a function of stock biomass (kton) for sablefish employing

POEEM. (A) for V ≈ 1 and (B) for V/W ≈ 1. Note that the scales differ between panels A and B.
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Table 4.5: Initial parameter settings and results of the minimisations, of sablefish data set employing

the mixed model, with different weighting settings, where ‘obs only’ is the model estimation which

minimises observation error only, and ‘proc only’ is the model estimation which minimises process

error only.

Parameter Settings
V ≈ 1 V/W ≈ 1 obs. only proc only

q 1 1 1 1
Bt+1 (kton) 220 220 220 220
α′ 5 5 5 5
M year−1 0.07 0.07 0.07 0.07
Bmax(kton) 300 300 300 300

Estimated Parameters and Diagnoses
qest 0.7754 1.9981 0.6946 1.0
Bt+1,est(kton) 131.8284 29.6951 94.6498 114.8159
Bt+1
Bmax

0.44 0.10 0.32 0.38
MSY (kton) 8.8243 8.8243 8.8243 8.8243
n. iterations 203 135 34 156027
SS 0.3953 0.0378 0.0011 9.86 ∗ 10−9∑

θ2
y 0.3495 0.0195 0.0011 0.5537∑

ρ2
y 0.3274 0.3646 1.86 ∗ 103 9.86 ∗ 10−9

λθ 1 1 1 0
λρ 0.14 0.05 0 1
V 1.0676 0.0536 5.9 ∗ 10−7 5.61 ∗ 107

W 0.14 0.05 0
V/W 7.6259 1.0716 0

of the simulations (see section 4.2.2) suggest that V ≈ 1 should be regarded as a

more reliable balance since setting V/W ≈ 1 did not yield results consistent with the

known parameters for simulated data sets. The results obtained for V/W ≈ 1 are

in this case not extreme or unfeasible, and for real data the correct values for V are

unknown. This issue is discussed further below.

Goodness-of Fit Surface

The number of estimatable parameters during a model fitting is limited by the data

available and their independency. One cannot achieve reliable results when too many

parameters are estimated. However, the choice of the initial parameters may have

a crucial influence on the model outcome, due to parameter correlations and over-

parameterisation of the estimation. Therefore, it is important to analyse the per-
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Figure 4.5: Goodness-of-fit surface of the sablefish data set fit through POEEM for a range of values

of α′ and Bmax, SS is shown on a logarithmic scale.

formance of the model for a range of the parameters which are specified and not

determined directly.

Here the data set used by Conser (1998) was minimised with POEEM using a range of

values of resilience and pristine biomass in order to find the interval of both parameters

with small sum of squares of the objective function. The set values of α′ were 0.1,0.3,

0.5, 0.75, 1, 2, 3, 4, 5, 7 and the Bmax were 100, 170, 250, 300, 400, 500, 650, 750,

850, 1000.

This procedure of parameter space mapping enables us to explore the behaviour of

the model in relation to a larger number of uncertain parameters, for which direct

minimisation fail.

Figure 4.5 represents the sum of squares calculated for these ranges of resilience and

pristine biomass values, with SS shown on a logarithmic scale.
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The dark blue region has the lowest sum of the residuals, which corresponds to α′

between 1 and 7 and Bmax between 100 and 300 (kton). The fact that the dark blue

region has a curved border, i.e.̀‘banana” shape, with the regions of larger SS reflects

the correlation between both parameters. It also shows that the values of α′ and Bmax

chosen for the previous analysis (α′ = 5, Bmax = 300 kton) lie well within the region

with smaller SS, but that equally good fit could be obtained for a very wide range

of these parameters, which cannot therefore be determined with useful precision.

Bootstrap for Estimation of the Confidence Limits

In order to calculate the confidence intervals of the estimated model parameters, q

and Bt+1 a bootstrap method (Haddon, 2001) has been chosen.

The bootstrapping method has become popular for a number of reasons. Firstly, its

principle, regarded as elegant and powerful, comprises the resampling from the empir-

ical distribution function (i.e. the sample) rather than from the actual and unknown

probability density function. Secondly, bootstrapping can be easily implemented and

its name has become clearly recognisable as the resampling approach (Haddon, 2001).

In principle, bootstrapping regards the observations as a random sample from the

population and any random sample from the observations are also a random sample

of the investigated population. This assumption relies on independence of the ob-

servations (Lassen and Medley, 2001). In fisheries modelling, where the sequential

dependence between observations is intrinsically part of the population dynamics, an

alternative approach of fitted model and residuals is often used. Each observation is

made up of the model estimate and the residual error. If each of the model estimates

are combined with residuals drawn randomly with replacement, a new simulated data

set is created (Lassen and Medley, 2001).

Bootstrapping was conducted on the Conser (1998) data for the two balanced scenar-

ios of section 4.2.4. A confidence interval for q and Bt+1 in each one of the balanced

scenarios, V ≈ 1 and V/W ≈ 1 was determined (Table 4.5).

74



The Process and Observation Errors Estimation Model (POEEM) Chapter 4

A new CPUE series is generated adding normally distributed noise (N(x, σ), where

x = 1 and σ =

√∑
θ2
t

t
). Then, the model was recalculated using the new CPUE,

the former catch data series, the estimated biomass and catchability, and the fixed

natural mortality, resilience, and pristine biomass. Each new estimation of q and Bt+1

was recorded, and after several hundred estimations, the results were summarised in

a histogram and their confidence interval was calculated.

When the histogram approximates to the normal distribution, a parametric boot-

strapping confidence intervals around the parameter can be obtained from the usual

normal form,

CI = ŵ ± zn−1,a/2se, (4.12)

where CI is the confidence interval, ŵ is the parameter estimated, zn−1,a/2 is the

normal distribution, for n bigger than 30, value for n − 1 degrees of freedom (n is

the number of bootstrap replicates) and a/2 is the percentage of the confidence limit

desired, and se is the standard error (Zar, 1996, Haddon, 2001).

However, if the results distribution is not symmetric the former approach will produce

a biased confidence interval. Therefore, it is recommended (Haddon, 2001) to use the

estimation of the percentile of the results distribution instead. The percentile is the

value which lies in the percentile position, when data is ordered.

In this study, both confidence interval methods were employed on each balanced

scenario with confidence limit set to 95%. Therefore, for the parametric approach,

z = 1.96 and for the percentiles approach, a 95% bicaudal confidence interval is given

by the 97.5 and 2.5 percentiles of the total number of catchability and biomass on

the next period estimated.

The total number of bootstrap samples varied between scenarios, due to the time

required for calculation. For V ≈ 1, the total number of estimations conducted was

450. However 9 results failed to converge to a real number and were therefore rejected

from further analysis. In this case, the 2.5 percentile was the eleventh number and
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Figure 4.6: Frequency distribution of bootstrapping estimation of q (A and C) and Bt+1 (B and D),

when V ≈ 1 (A and B) and V/W ≈ 1, where Para is the parametric confidence interval and Perc is

the percentile confidence interval.

the 97.5 was the 430th result. For V/W ≈ 1, the 2.5 percentile and the 97.5 were

respectively, the 13th and the 489th results.

Figure 4.6 exhibits the histograms of catchability and biomass at the next period for

V ≈ 1 (A and B) and V/W ≈ 1 (C and D) and the estimated parameter values,

here named as “best value”, and their 95% confidence interval calculated through the

parametric methods (Para) and the percentiles ones (Perc).

For the V ≈ 1 situation, there is a much higher dispersion of both bootstrap estimated

parameters in an asymmetric distribution. Although a modal class is visible, there

are several other classes with high frequency too (Figure 4.6). Consequently, the
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percentile confidence interval is more suitable for both estimated parameter, q and

Bt+1 (Figure 4.6).

On the other hand, the bootstrapping estimation of q and Bt+1 for V/W ≈ 1 is

very close to the normal distribution, with a clear modal class and therefore, the

parametric confidence interval is more suitable, especially for Bt+1 (Figure 4.6).

The size of the confidence interval for each scenario is a consequence of the observation

noise resultant of the model fitting. For V ≈ 1 the
∑

θ2 is about 18 times bigger than

the same sum for V/W ≈ 1, which is clearly reflected in the size of the estimated

confidence intervals.

4.3 Discussion

The methodology proposed in this chapter, to simultaneously incorporate observation

and process error in stock production model estimation utilising a non-linear least

squares approach is, in principle, a considerable improvement on former approaches

in which both errors were considered in the model fitting of stock production models

(Conser, 1998). By considering the process error in the production model and the

observation error in the abundance index, the new method (POEEM) treats both

uncertainties separately, which is not exactly the case when process uncertainty is

assumed to be in the dynamic equation (Eq. 2.1). The use of a non-linear least

squares approach is advantageous for its straightforward implementation.

Moreover, considering both errors together has been proven to be essential for reliable

parameter estimations. When only one of the noise terms is present, by weighting the

other as null, the results were biased to extreme situations, of either underexploited

stock or highly noisy. The former lead to the potentially dangerous conclusion of

stock underexploitation (not likely after a long term fishing activity). In the latter,

there is a lot of variability in the data not explainable by the relationship between
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the variables, which promotes a high risk that the data are not representative of long

term average behaviour of the population (Hilborn and Walters, 1992).

With regards to weighting the objective function, the determination of the right

balance has crucial management implications, since it may determine our picture

of size of the current state of the stock and hence future action required. Where

equal error is introduced as in the simulated data set, the conclusion drawn is that

the variance ratio should be approximately one (V ≈ 1) in order to find robust and

reliable results. However, fitting the sablefish data set with the mixed model, values of

q and Bt+1 for V ≈ 1 are close to the results of fitting observation error only or process

error only which has already been shown as unrealistic. For this real data set, the true

values of V is not known so, the weighting V/W ≈ 1 should probably be pursued

in order to correctly balance the POEEM objective function. This assumption is

supported by the plotted results of observed and estimated biomass and production

for sablefish (Figure 4.4). The result of V/W ≈ 1 clearly display observed data

scattered around the estimated curve in a credible way, without the artificially good

fit as seen for V ≈ 1.

Comparing the results of the analysis of sablefish stock with the various objective

functions, the current results seems to yield two extreme scenarios, whereas the former

chapter estimated an intermediate stock status.

From the simulations, two main generalisations could be drawn. Firstly, the higher

the level of noise the higher the estimation dispersion within the same level of ex-

ploitation. Among various levels of exploitations, the lower the exploitation, the

higher the variance. Secondly, the higher the exploitation level, the higher the values

of W required to result in V ≈ 1. High values of W mean high values of λρ and conse-

quently, low values of
∑

ρ2. Thus, the higher the levels of exploitation, the lower the

sum of fractional deviations of the production and the higher the sum of fractional

deviations of the observations.

When attributing deviations to both variables, dependent and independent, it is

therefore crucial to know the ratio between the variances of these variables in order
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to determine them precisely. However, the likelihood surface of the variation of both

parameters corresponds to a saddle point rather than a maximum (Copas, 1972). In

fisheries studies, the necessity of regarding observation and process errors in the com-

putation becomes entangled in this requirement (Schnute, 1987, Hilborn and Walters,

1992). The assumption of the variance ratio equal to one was arbitrary but relies on

an educated guess, since it is not unrealistic to assume that observation noises may

have the same magnitude as process noises. However, the problem of choosing the

correct weighting is crucial to achieve coherent estimations, cannot be regarded as

solved and further work on this issue is required.

Even though resilience and pristine biomass are fixed for the model fitting, mapping

the sum of squares for a range of these parameters could serve to find more plausible

values for them (i.e. giving a smaller sum of squares). This approach is desirable since

resilience and pristine biomass are correlated and therefore can not be independently

estimated. Furthermore this methods also serves to indicates the confidence region

of the results (Shepherd, 1987).

The bootstrapping has proved to be a useful method for determining confidence limits,

and allows varying the calculation for different frequency distribution of the results.

The confidence intervals for the parameter estimation is specially important in fish-

eries assessment when preparing information for management.

Finally, the objective function optimisation needs from a few hundred to a few hun-

dred thousand iterations to converge to an output which fulfills the tolerance setting.

This is necessary to avoid local minima. However, an important consequence is that

the estimation is extremely time consuming.

4.4 Summary

The results presented in this chapter highlight the fact that observation and process

errors have to be properly considered in order to achieve reliable stock assessment.
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Ignoring either of these errors or combining them into one error source is likely to

lead to biased results which could have adverse effects on the fisheries management

process.

The new approach proposed in this chapter was successfully tested with simulated and

real data. It was found in this study that finding the correct weight ratio between

observation and process error is crucial and non-trivial. It was expected that the

relative weight applied to the observation and process errors would be inversely related

to the relative size of these errors after this data had been analysed by the stock

production model. This prediction corresponds to V/W ≈ 1. However, the analysis

of the simulated data showed that this prediction did not hold. Instead, for the

simulated data the weighting ratio (W ) to balance the objective function has to be

chosen so as to result in V ≈ 1. For real data (sablefish) however, the assumption of

V/W ≈ 1 appears to be more realistic for this particular fishery.

In addition to balancing observation and process errors the method (POEMM) in-

corporated bootstrapping to determine the confidence limits of the parameters q and

Bt+1. The method was used to calculate limits for different error distributions re-

sulting from observation variance. The higher the variance the higher the estimation

dispersion and therefore wider confidence interval. However, the method is flexi-

ble to adapt to asymmetrical distributions and therefore appropriate for determining

confidence intervals of the mixed model.

In summary, it was not possible to find a satisfactory automatic procedure for deter-

mining the weighting ratio between observation and process error. Therefore, there

still is a need of a procedure to ensure that the estimated error variances for both pro-

cess and observation errors are comparable with the expected levels for such errors,

requiring future further research”
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Chapter 5

Application to Brazilian Fish

Stocks

5.1 Introduction

In most Brazilian fisheries, management is far from ideal. Most of the policies are

based on a minimal precautionary approach of setting a minimum size at first capture,

and a closed season and area to protect the spawning stock. These measures aim to

assure that a reasonable portion of the stock will reproduce and therefore, allow re-

placement of the fish caught. Although the minimum size approach is a starting point

for the fishery management, it requires that the fishing gears be selective enough to

target a specific size range. Concomitantly, closures of spawning grounds and seasonal

fishing bans would complement this minimal approach by allowing the replacement

of biomass by fish recruitment into the population. Although those measures are

applied with relative success to avoid catches of immature fish, they should really be

considered alongside a combination of others measures, which would for instance aim

to avoid decreasing the spawning stock biomass below the sustainable levels, in order

to address the full range of possible deleterious effects of fisheries. Furthermore, en-
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forcement of any measures is also a key issue without which,any management attempt

will be frustrated and therefore, this should be given high priority.

In order to provide further support for an effective fishery management, in this chapter

the stock assessment of four demersal species will be carried out using the previously

proposed method. The species studied are whitemouth croaker, king weakfish, Ja-

maica weakfish, and grey triggerfish which are among the most important demersal

fishery resources off the southeastern coat of Brazil.

In general, little information is available on the biomass of the fish stocks in Brazil.

Moreover, data for further stock assessment are rarely existent and, if available, are

not entirely reliable (Freire, 2005). Since little data is available for those species,

a stock production model using the new proposed method is ideal to conduct the

assessment of those fish stocks. An overview of the state of each species will be pro-

vided, combined with current management action. Suggestions for future studies and

management recommendations based on the results of the assessments and general

scientific knowledge of those species will be made.

5.2 Environmental and Ecological Background

5.2.1 History and Dynamics of the Studied Fleet

Demersal fisheries are some of the most important marine industrial fisheries in the

southern and southeastern Brazilian coast and have been intensively operated for over

six decades (Castro, 1998, 2000).

The pair bottom trawl fleet has been responsible for most of the demersal fish landed

in this region. Thus, an evolving description of the pair bottom trawl catch and effort

is important to conceive the pre-data situation and match it with current scenarios

analysed here. This is also the only fleet for which a reasonably long time series of
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effort data is available. However, the reduced and discontinuous data availability has

limited the period studied in this chapter to the last fifteen years.

When the pair bottom trawl fleet was first registered in 1944, the Santos (24◦S,46◦

W) fleet was composed of four medium and eleven small boats (Figure 5.1). The

smaller boats had an endurance for one day fishing trips only, whereas the larger

ones were able to stay for several days on the fishing grounds. During the following

decade, although some pair bottom trawl and otter-trawl boats expanded their fishing

grounds to the southern continental shelf, they were still landing in Santos due to

its proximity to trade markets. During the 1960s, government policies promoted

the increase of the fleet by means of tax reductions and subsidies (Castro, 2000).

In the early 1970s, decreasing shrimp catch prompted boats from other trawl fleets

to diversify their catches to other bottom-dwelling fish populations (Castro, 1998).

During the 1970s, some fish stocks, such as king weakfish, had already shown signs

of overfishing in southern populations (Valentini et al., 1991) and the mean CPUE

was 109.6 kg/hauls with a yearly effort of 14, 884.6 hauls (Castro, 2000). In the next

decade, due to economic instability and rising tax, the fishing grounds were reduced

and the large size boats landed their catches in the harbours of the southern region

even though the main customer markets were still concentrated in southeastern states.

The effort decreased by 15% and CPUE rose to 158.3 kg/haul. By the 1990s, the

yearly effort was 7,689 hauls and the average CPUE was 183.0 kg/haul (Castro, 2000).

At present, there are three different pair bottom trawl fleets operating in the southern

and southeastern coast of Brazil which use different landing harbours, working differ-

ent fishing grounds and pursuing diverse target species. The fleet which is subject of

this study lands in Santos and has been fishing between Cabo Frio (23◦S) and Cabo

de Santa Marta Grande (29◦S) between 10 and 60 m depth (Figure 5.1). The wooden

and steel boats of this fleet vary in size between 17 and 25 m (mean= 21.1± 2.03m),

have engine powers between 188 and 406 HP (mean= 298.2 ± 49.7 HP), and an av-

erage crew size of 8.3 people (±1.6) (Castro, 2000). This multispecies fishing fleet
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Figure 5.1: Detail of Brazilian south and southeastern coast, the pair bottom trawl fleet fishing

grounds and important landmarks. Each boarded area represents a geopolitical state whose acronyms

stand for RS= Rio Grande do Sul, SC= Santa Catarina, PR= Paraná, SP= São Paulo, RJ= Rio de

Janeiro, ES= Esṕırito Santo e MG=Minas Gerais.

has currently four main target species (Figure 5.2) whitemouth croaker (Micropogo-

nias furnieri), king weakfish (Macrodon ancylodon), Jamaica weakfish (Cynoscion

jamaicensis) and grey triggerfish (Balistes capriscus) representing altogether between

60 and 70% of the demersal fish landed in Santos (Castro, 2000, Carneiro and Castro,

2005).

While these species are also caught by different fleets, the pair bottom trawl has been

responsible for the majority of their catch. Figure 5.3 on page 87 displays the data

analysed in this chapter, which consist of (for each species) total catch of all fleets,

pair bottom trawl catch and CPUE for the pair bottom trawl. Although total catch

is available from 1986, the pair bottom trawl catch and effort data is available only
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A

DC

B

Figure 5.2: Illustration of the four studies species, (A)Whitemouth croaker after Cervigón et al.

(1992), (B)King weakfish after Cervigón et al. (1992), (C)Jamaican weakfish after Cervigón et al.

(1992), (D)Grey triggerfish after Schneider (1990).
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Figure 5.3: Total catch (t), pair bottom trawl catch (t), and CPUE (t/fishing days) of (A) white-

mouth croaker (WC), (B) King weakfish (KW), (C) Jamaican weakfish (JW), (D) Grey triggerfish

(GT) from 1986 to 2004.

from 1990 to 2004 which is the studied period here. Previous total catch data for each

species contain inconsistencies and therefore, are used only to provide a reference.

As shown in Figure 5.3, the total landing of all species have fluctuated considerably

up-and down. In general, from 1986 until early 1990s all species had a high catch level,

decreasing considerably during the 1990s. Recovering on the catches levels happened

in the late 1990s for Jamaican kingfish, king weakfish and grey triggerfish but it

was again followed by a period of decline up to the present. Except for whitemouth

croaker, the other species CPUE trend follow the total catch and pair trawl catch

trend. The whitemouth croaker presents a fluctuation on its CPUE with relevant

increase since early 1990s. This feature might present a mixture of effects, such

as catch of two different stocks, which could shadow the results. Since the 1990s,
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several studies (Valentini et al., 1991, Castro and Castro, 1995, Castro, 1998) have

suggested that the intense exploitation of those target species were leading them to

overexploitation.

5.2.2 Underlying Environmental Aspects off the Southeast-

ern Coast of Brazil

This section provides an overview of the important ecological features in the region

where the stocks studied spend their life cycle. The ecosystem off the south and

southeastern Brazilian coast (23◦-29◦S latitude) is influenced by a number of geo-

logical and oceanographic features. The region has a modest number of mangroves

and estuaries to enrich the area by river runoff and to provide nursery and grow-

ing grounds. The most important mangroves are found in “Santos-Bertioga”(24◦ S,

46◦ − 47◦ W), in “Iguape-Cananéia-Paranaguá”(25◦ S, 47.5◦ W) and “São Francisco

do Sul” (Fig. 5.1). The two major estuaries are the “Ribeira de Iguape”(25◦ S, 47.5◦

W) and the “Itajáı” river (Fig. 5.1).

The widest portion of continental shelf is near Santos with 230 km and the narrowest

regions are the northern edge (Cabo Frio) with 50 km and the southern edge (Cabo de

Santa Marta Grande) with 70 km. The latter is the northern limit of the Subtropical

Convergence of the Brazil-Falklands (Malvinas) Current. The seafloor is composed

of sand and mud with few rock features, making it largely suitable for trawling gears.

The area is influenced by the South Atlantic Central Water (SACW) which is a

cold and nutrient rich water mass that promotes the biological production mainly

during spring and summer months (Sep-Mar). Seasonal changes in the direction of

the wind, caused by the southward displacement of the South Atlantic anti-cyclonic

system, leads to elevation of the upper layer of the SACW which may rise above

the edge of the continental shelf. During spring and summer, the water column

on the continental shelf may become highly stratified and productive because of its

low temperature, low salinity, and high nutrient concentrations. Typical cold-water
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fauna may be present in the region during these months. Eventually, under specific

local wind conditions, the SACW may reach the surface. This coastal upwelling is

influenced by the bathymetric profile and the abrupt change in the coastline in Cabo

Frio (Fig. 5.1) and is considered an environmental barrier to some species and a limit

to their species distribution (Figueiredo, 1981, Castro, 1998, Vazzoler et al., 1999).

5.3 Data, Sampling and Analysis

5.3.1 Data and Sampling

The data set analysed in this chapter has been collected by the Fishery Institute, the

fisheries research agency of São Paulo State government. The data has been gath-

ered through interviews with fishers and skippers since 1990 in the main commercial

fisheries ports in Santos. A general description of the sampling structure and current

situation of the fishery activity can be found in Gasalla and Tomas (1998).

The data set comprises the total catch for each species in all fleets and the pair bottom

trawl catch for each species in tonne, and the fishing effort for this fleet from 1990

to 2004 in fishing days. Fishing days is a data collected directly from in the fishers

interview and a unit easily comparable with other studies. The other units available

resulted from indirect observation and therefore, were not considered.

5.3.2 Stock Assessment Data Analysis

The stock assessment conducted for each species comprised two estimation approaches.

Firstly, the process and observation errors estimation method (POEEM) was used

with a non-linear least squares approach, i.e. non-equilibrium approach described in

detail in the previous chapter. Additionally, bootstrapping was used to estimate con-

fidence intervals for each of the parameters determined. Values of natural mortality,

estimated according to Pauly (1980), from previous studies were incorporated in the
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assessment and the source cited. Even though Pauly’s methods is generally criti-

cised as non-realistic due to its linearised estimation these were the only estimation

available. Total mortality (Z) was estimated by the linearised catch curve (Beverton

and Holt, 1957, Sparre and Venema, 1997) and fishing mortality was the difference

between those values.

The long history of exploitation of all species where considered when setting the

value of pristine biomass and the initial values of biomass for the analysed period.

In addition, those species have a wide latitudinal distribution range also considered

when setting initial values.

Secondly, the traditional observation error method (Pella and Tomlinson, 1969, Lud-

wig and Walters, 1985, Ludwig et al., 1988, Chen and Andrew, 1998, Su and Liu,

1998) was employed, treating the dynamic equation (Eq. 2.1) as deterministic and at-

tributing all uncertainties to the biomass and abundance index relationship (Eq. 2.5).

The biomass time series is estimated by projecting the biomass at the start of the

catch time series (Binitial) forward under the historic annual catches (Polacheck et al.,

1993). The deviations between estimated biomass and observed biomass were min-

imised by the non-linear optimisation routine ”solver” from Microsoft Excel, which

uses the Generalized Reduced Gradient (GRG2) Algorithm (Excel, 2006). For com-

parative purposes three alternative stock-production models due to Schaefer (1954)

(Eq. 2.2), Fox (1970) (Eq. 2.3) and Shepherd (1987) (Eq. 3.8), were also used for the

production estimation. Previous studies (Hilborn and Walters, 1992, Polacheck et al.,

1993) justified the use of observation error estimators, suggesting they are superior

to process error estimators due to their robustness in face of the uncertainty of the

error assumptions and the formulation of the dynamic models.
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5.4 Whitemouth Croaker

5.4.1 Biological Aspects

Whitemouth croaker (Micropogonias furnieri (Desmarest, 1823)) (Figure 5.2(A)) is a

bottom dwelling species widely distributed in the Americas, from the Yucatan Penin-

sula to Patagonia (Cervigón, 1993) and living in a wide range of salinity. Although,

the species can be found down to 100 m depth, its highest abundance occurs at less

than 50 m depth (Menezes and Figueiredo, 1980).

Its demersal habits are reflected in the main prey, i.e. crustaceans, polychaetes and

ophiuroids (Vazzoler, 1991). Off the south and southeastern Brazilian coast, it is

the most important demersal fishery resource (Valentini et al., 1991, Castro, 1998,

2000). Several studies (Vazzoler, 1971, Isaac, 1988, Vazzoler, 1991, Vazzoler et al.,

1999) distinguish between two populations in this area, the southeastern one which is

distributed from 23◦S to 29◦S and the southern one from 29◦S to 33◦S. However, Levy

et al. (1998) found close genetic similarity between the south and southeastern popu-

lation when considering 17 enzyme and one protein-encolding loci. The southeastern

population is the subject of this study.

Whitemouth croaker fisheries yield has presented a downwards trend in the eighties

and nineties. In the last four years, catch has substantially increased (Figure 5.3)

due to a rise in catches by shrimp trawlers and sardine seiners. Although the seiners

are not allowed to catch whitemouth croaker, both fleets have faced an enormous

reduction of their target species and therefore turned towards alternative catches to

pay the boat expenses (Castro et al., 2003, Gasalla et al., 2003, Tomas and Cordeiro,

2003).

Signs of changes in the population structure have been found in the sizes of first re-

production, growth parameters and reproduction season. The catch size composition

for trawlers, seiners and liners together ranges from 140 to 710 mm with a modal

class of 347 mm (Carneiro et al., 2005). The immature fish is a minor fraction of
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the catch since the size at first reproduction is currently 292 mm for females and 243

mm for males (Carneiro et al., 2005). These values are slightly bigger than results

from the 1970s, 275 mm for females (i.e. 7 months old) and 250 mm for males (i.e. 4

months old) (Vazzoler, 1971). Although Carneiro et al. (2005) found that the catch

is composed of groups from 2 to 14 years and the growth parameters are L∞ = 961

mm, k = 0.08 year−1 and t0 = −0.99 year, the authors believe that these parameters

are overestimated when using the Bhattacharya method (Sparre and Venema, 1997),

and recommended age determination from otoliths. The current age determination

results differ greatly from earlier studies (Vazzoler, 1971, Isaac, 1988, Vazzoler, 1991),

and it is not clear whether they are reliable.

The whitemouth croaker reproduction cycle is closely related to the estuarine waters

and for this population the spawning grounds are at Bom Abrigo (Figure 5.1) (Vaz-

zoler, 1971). Currently, spawning happens during two main periods, i.e. mid-winter

and late spring (Carneiro et al., 2005). However, earlier studies (Isaac-Nahum and

Vazzoler, 1983, 1987) found that the two spawning seasons happened somewhat ear-

lier in the year, the first one during autumn and early winter and the second late

winter and early spring. Despite this evidence of changes in the population structure,

which are recommended to be incorporated in the fisheries modelling, in this study

the available data set comprises the last fifteen years which correspond to the current

period only.

The fisheries recruitment happens during summer and autumn, when a higher number

of smaller fish has been found in the landings (Carneiro et al., 2005). Population

parameters were estimated by Carneiro et al. (2005) according to the methods in the

section 5.3.2. Natural mortality (M) was estimated to 0.22 year−1, fishing mortality

(F) was 0.37 year−1, the exploitation rate (E) was 0.63 and the survival rate (S) was

55% (Carneiro et al., 2005).

91



Application to Brazilian Fish Stocks Chapter 5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

W

V

0 0.5 1 1.5 2 2.5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Biomass (t)

P
ro

d
u
ct

io
n
 (

t)

obs
estA

B

Figure 5.4: Whitemouth croaker estimated through non-equilibrium POEEM,(A) variation of vari-

ance ratio (V ) as a function of weight ratio (W ), and (B) biomass (t) as a function of production(t).

5.4.2 Model Results

For the mixed model stock assessment this biological background knowledge was

utilised. Therefore, the initial parameter settings for whitemouth croaker were q =

0.1, Binitial = 10000 t, α′ = 2, M = 0.22 year−1 and Bmax = 50000 t.

The results of the weighting consistency test for the objective function is displayed

in Figure 5.4(A). Despite the fact that W = 0.791 brings V/W ≈ 1, the relationship

between variance ratio (V ) and weight ratio (W ) is unclear and inconsistent. Similar

values of W resulted in highly variable values of V and consequently finding the

residual ratio close to one has just happened by chance.

Although the search for the residual ratio (V/W ) has proved to be inconclusive and

unpredictable, the biomass of the stock of whitemouth croaker was estimated through

POEEM using the weighting balance presented in Table 5.1. Notably, the weight ratio

W = 0.791 resulted in both, V and V/W being approximately one. The results of this

calculation is shown in Figure 5.4 (B) and Table 5.1. According to the model outcome,

the stock is overexploited since the estimated biomass for the next period is about

14% of the pristine biomass (Bmax) (Table 5.1). Curiously, the observed production
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Table 5.1: Results of the stock production model from different models and parameter estimation

approach for whitemouth croaker.

Observation Error POEEM
Schaefer Shepherd Fox V/W ≈ 1 W = 1

q 6.8 ∗ 10−5 6.8 ∗ 10−5 6.8 ∗ 10−5 6.6 ∗ 10−05 7.7 ∗ 10−5

Bt+1(t) 12625 12821 12793 7014 7579
Bmax(t) 49997 46687 45293 50000 50000
Bt+1
Bmax

0.25 0.28 0.28 0.14 0.15
MSY (t) 5226 3807 3958 2947 2947
BMSY (t) 24989 14438 16758 18301 18301
r(year−1) 0.42 1.06 2.55 0.66 0.66
SS 3.6 ∗ 107 3.5 ∗ 107 3.5 ∗ 107 1.06 1.61
λθ 1 1∑

θ2
y 0.60 0.33

λρ 0.791 1∑
ρ2

y 0.59 1.27
V 1.02 0.26
V/W 1.29 0.26

was always higher than the estimated one (Figure 5.4), which is not satisfactory

since estimated curve should go through the observed values. Further estimations of

parameters confidence intervals were not conducted because of the inconsistency in

the weighting balance and the unreliable estimated curve.

When whitemouth croaker stock production was analysed with observation errors

only, the parameter values were q = 0.1, α′ = 2, M = 0.22 year−1 and Bmax = 50000

t for all of the production models. The results found (Figure 5.5 and Table 5.1)

were more optimistic than the POEEM model fitting. However, there are signs of

overexploitation with the stock depletion ranging from 25 to 28 % of the pristine

biomass (Table 5.1). Apart from the instantaneous growth rate (r) and the biomass

at maximum sustainable yield (BMSY ), all the other results were similar between the

different production equations (Table 5.1).

The sum of residuals squared (SS) are higher in the observation error only fitting

than in POEEM, but the values are not comparable since the latter has a normalised

objective function which reduces the residual values to close to one.
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Figure 5.5: Whitemouth croaker biomass (t) as a function of production(t) for Schaefer, Shepherd

and Fox production models, estimated through non-equilibrium observation error.

5.4.3 Discussion

Even though the modelling results with the whole range of production model ap-

proaches were fairly close, the conflicting weighting ratio determination reveals unre-

liable results that should be used only with great caution.

The overfishing status of the stock, i.e. the trend of the adjusted curves, seems to

be concordant but it is not possible to employ the estimations into further reference

points estimations for whitemouth croaker. A previous study (Castro, 2000) suggested

that the stock is stable and the effort should not exceed levels set during that time,

but this advice was not followed and the yield/biomass ratio has been increasing.
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The assumed value of pristine biomass considered the long term exploitation the

stock has been subject to. Lower values were chosen but resulted in current biomass

lower than the current landing level. This emphasises the need of the mapping of the

goodness-of-fit surface for a range of pristine biomass and resilience values.

The fact that other fleets have contributed notably to recent catches (see Figure 5.3)

can have an important influence on the stock biomass for two reasons. Firstly due

to the direct augmentation of the fishing effort. Secondly, sardine seiners perform a

different fishing operation, which could catch part of the population that is not avail-

able on the trawlers fishing grounds. Therefore for further reliable stock assessment,

it is suggested that CPUE of all of the fleets should be considered in the analysis,

which at the moment was not possible due to the lack of effort data from the other

fleets.

Despite the fact that the species has been exploited since the 1950s with a sharp

rise recently, the yield has increased in the last four years, without a correspondent

increase on the CPUE related to the pair bottom trawl. The recent boost in the catch

levels can be dangerous since it is likely to bring about a faster decline of the total

population biomass. According to a ecosystem based analysis (Gasalla, 2004), the

decline of shark stocks seems to be one of the reasons of this increase since not only

were sharks one of the whitemouth croaker main predators, but also the shark stock

reduction should increase the availability of food to species like whitemouth croaker

that is a key species in the community structure. This should allow an increase

of biomass and hence CPUE of pair bottom trawl observed in the figure 5.3 (A).

However, that could also represent a variation of catchability due to redistribution of

the stock.

In addition to a more comprehensive effort data for a reliable stock assessment, a

genetic studies should be conducted in order to determine the populations bound-

aries. Moreover, age determination would improve the reliability of the population

parameters, which would be used in more elaborated models and serve for comparison

purposes with this mixed model.
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5.5 King Weakfish

5.5.1 Biological Aspects

King weakfish (Macrodon ancylodon (Bloch and Schneider, 1801)) (Figure 5.2(B)) has

a wide latitudinal distribution, from Venezuela to Argentina (Menezes and Figueiredo,

1980). As a bottom dwelling species it is found down to 60 m depth, with higher

abundance around 30 m, using this area to predate on fishes and shrimps (Juras and

Yamaguti, 1985). The species is normally divided into two population, the southern

one which occupies latitudes higher than 28◦ S and the southeastern one which lives

between 23◦ and 28◦ S (Yamaguti, 1979, Juras and Yamaguti, 1985, Magro et al.,

2000) and is the subject of study in this chapter.

The species has been very important for the demersal fishery in both amount of

catch and trade value (Carneiro and Castro, 2005) and is currently considered to be

overexploited. Since the 1970s, the catch of king weakfish has shown a downwards

trend since the total annual catch was 3000 t early in this period, decreased to 1200 t in

1980s, reached 700 t in the 1990s (Castro and Castro, 1995, Castro, 2000, Carneiro and

Castro, 2005) and has a current level of 450 t. During the 1980s there was a decrease

in the effort, and an increase of the catch few years later. Therefore, Castro (2000)

suggested that king weakfish had responded positively when the effort diminished.

Unfortunately, the effort units used in the previous studies are not comparable with

the present study, therefore only the past trend is considered. In addition, catch data

prior to 1980s (Castro and Castro, 1995) include the southern and southeastern stock

which might mislead deeper comparisons.

The pair bottom trawl fleet catches king weakfish between 110 mm and 460 mm of

total length, with modal class of 320 mm. However, 19.1% of the catch is smaller than

the size at first reproduction for both genders together, 259 mm (Carneiro and Castro,

2005), which is likely to cause recruitment overfishing. The size at first reproduction

has decreased greatly during the last fifty five years (Lara, 1951, Castro, 2000), which
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is strong evidence of the overfishing effect in the population structure. The current

estimated size at first reproduction is 290 mm for females and 239 mm for male

(Carneiro and Castro, 2005).

The growth curve parameters estimated by indirect methods resulted in L∞ = 506.59

mm, k = 0.17 year−1 and t0 = −1.91 year (Carneiro and Castro, 2005) whereas

other important estimated parameters such as natural mortality (M) was 0.22 year−1,

fishing mortality (F) was 0.75 year−1, the exploitation rate (E) was 0.77 and the

survival rate (S) was 38%. These population parameters were estimated by Carneiro

and Castro (2005) according to the methods in the section 5.3.2. The maximum

sampled length corresponded to an age of 13 years (Carneiro and Castro, 2005).

However old fish are rarely found in the landings which is another evidence of the

heavy exploitation of the species (Castro, 2000). In general, older females produce a

higher amount of eggs which seems to results in more successful offspring (Palumbi,

2004). For this reason this females should be targeted os a fundamental source of

biomass replacement.

Spawning seems to happen all year around, with a stronger peak in late spring and

summer at Barra do Icapara and Bom Abrigo (25◦S). Recruitment of one-year-old

fish happens during spring (Carneiro and Castro, 2005).

5.5.2 Model Results

In order to set the minimisation parameters in the POEEM, the above background

knowledge and the long term stock exploitation was taken into account. Thus, for

king weakfish initial parameter settings q = 0.01, Binitial = 5000 t, α′ = 1, M = 0.22

year−1 and Bmax = 50000 t were used.

These settings led to the mixed model weighting consistency analysis shown in Figure

5.6(A). The residual ratio was reasonably coherent therefore, the weight ratio for

V/W ≈ 1 was W = 0.09 and w = 0.2 for V ≈ 1 (Figure 5.6).
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Figure 5.6: King weakfish estimated through non-equilibrium POEEM,(A) variation of variance

ratio (V ) as a function of weight ratio (W ), (B) biomass (t) as a function of production (t), for

V/W ≈ 1, and (C)biomass (t) as a function of production (t), for V ≈ 1.
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Table 5.2: Results of the stock production model from different models and parameter estimation

approach for King weakfish.

Observation Error POEEM
Schaefer Shepherd Fox V/W ≈ 1 W = 1 V = 1

q 1.3 ∗ 10−4 1.3 ∗ 10−4 1.3 ∗ 10−4 1.3 ∗ 10−04 7.1 ∗ 10−5 7.5 ∗ 10−5

Bt+1(t) 441.3 236.6 264.3 300.1 800.3 645.9
Bmax(t) 2580 4474 2652 50000 50000 50000
Bt+1
Bmax

0.171 0.053 0.100 0.006 0.016 0.013
MSY (t) 743 593 720 1887 1887 1887
BMSY (t) 1290 785 981 20711 20711 20711
r(year−1) 1.15 4.32 5.82 0.44 0.44 0.44
SS 1.8 ∗ 106 2.6 ∗ 106 2.0 ∗ 106 1.19 1.88 1.62
λθ 1 1 1∑

θ2
y 0.58 1.78 1.42

λρ 0.09 1 0.20∑
ρ2

y 6.82 0.11 0.99
V 0.08 16.79 1.43
V/W 0.94 16.79 7.15

The results of the stock production model estimation for king weakfish using POEEM

are given in Figure 5.6 (B and C) and Table 5.2. As expected, the stock is found to

be on the verge of collapse, having a current estimated biomass of only 0.6 % of the

pristine biomass and nearly 70 time smaller than the biomass at maximum sustainable

yield (MSY), for V/W ≈ 1 (Table 5.2). The observed biomass and production exhibit

a high dispersion around the estimated data series (Figure 5.6) producing a high sum

of squares (Table 5.2). Estimation for V ≈ 1 scenario present a slightly higher

production than to V/W ≈ 1, but the stock is also around the collapse (Figure 5.6).

When the weight ratio (W) was equal one, the
∑

θ2 was bigger than the
∑

ρ2, fea-

ture found for both, the sablefish data analysis and the simulations, in the previous

chapter.

The confidence interval for catchability and forecast biomass for the next year was

just conducted for V/W ≈ 1 scenario using the bootstrapping approach. So, for

illustration purposes both methods, parametric and percentile confidence interval,

were calculated for both parameters. The former is recommended when the data

distribution is close to the normal curve. The latter is suggested for asymmetrical
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Figure 5.7: Frequency distribution of bootstrapping estimation of catchability (A) and biomass at

next year (B) for king weakfish stock from POEEM minimisations, where Para is the parametric

confidence interval and Perc is the percentile confidence interval.

parameter distribution. The value of σ used for this estimations was 0.19. Details of

these estimation method are presented in section 4.2.4.

From a total of 546 estimation, 412 were used in this analysis since most of them

resulted in either no real number or the V/W ratio was bigger than 4 or smaller than

0.2.

Despite the fact that distribution of catchability estimated from bootstrapping is

irregular, both confidence intervals, parametric and percentile, have similar limits.

The “best value” is located on the modal class and at the middle of the confidence

range (Figure 5.7(A)). The fact that the lower limit of q is twice as small as the upper

limit, will have a direct influence on the estimation of management quantities. For

instance, inferring stock biomass using the CPUE and catchability relationship (Eq.

2.5) and taking the q confidence interval as reference will result in upper biomass

interval twice as big as the lower one.

Values of forecast biomass for the next year are asymmetrically distributed and there-

fore, the percentile estimation for the confidence interval is more coherent than the
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Figure 5.8: King weakfish biomass (t) as a function of production(t) for Schaefer, Shepherd and Fox

production models, estimated through non-equilibrium observation error.

parametric method. The upper limit is more than three times bigger than the lower

limit which will greatly influences the management measures. This wide dispersion

of the results is caused by the high observation standard deviation from the model

fitting (Figure 5.7(B)).

For the observation errors only analysis, the parameter settings for all production

models were q = 0.01, α′ = 1, M = 0.22 year−1 and Bmax = 50000 t. Figure 5.8 and

Table 5.2 display the results for the stock production model estimation in these sce-

narios. All production model estimations agreed with the current overexploited status

of the population, just varying the intensity of the overexploitation. The Shepherd
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model, has the smallest forecast biomass and the lowest percentage of the pristine

stock. The Schaefer model provides the most optimistic scenario. Catchability and

sum of squares were similar for all models (Table 5.2).

More importantly, all estimation approaches have resulted in estimated biomass at

next year with similar magnitude of the current level of total catch (≈ 450t) which

is unrealistic and must not be considered into further studies. Therefore, the need of

mapping the space of a range of pristine biomass and resilience proves to be compul-

sory to further inferences.

5.5.3 Discussion

Since POEEM allows for both types of uncertainties in model fitting, its results are

regarded as more reliable. Previous results for natural mortality were incorporated

into the POEEM model fitting. King weakfish exhibits a fairly low level of production

and a stock on the verge of collapse for both weighting circumstances. The detection

of the long term reduction of the size at first reproduction corroborates this diagnosis.

The heavy exploitation with recruitment and spawning stock overfishing, are the

reasons for this critical situation, probably rooted in the high trade value and customer

appreciation.

The long term exploitation the king weakfish stock has been subject to was consid-

ered when assuming pristine biomass, specially when lower values of pristine biomass

resulted in unrealistic current biomass, i.e. lower than the current landing levels.

Therefore, the need of the mapping a range of pristine biomass and resilience values

through the goodness-of fit surface is a crucial complementary analysis that must

be conduct in order to produce reliable results. Even though the the observation

error only analysis may look more realistic they do not consider the process error

component which is an important part of the uncertainty.

Although the confidence intervals for catchability and biomass at next year were

quite wide, it is desirable to work with a range of possible values due to natural
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and measurable uncertainties in the stock assessment procedure. However, the initial

values of pristine biomass and resilience must be mapped in terms of the sum of

squares before further conclusion can be drawn on parameters estimations.

Effective recovery measures for this species should comprise a set of policies focused

on protection of the spawning grounds and season, and an increase the size at first

capture. The latter is a specially difficult measure since strict enforcement is crucial

for the full accomplishment of it and that is one of the poorest aspects of the Brazilian

fisheries management.

5.6 Jamaican weakfish

5.6.1 Biological Aspects

The Jamaican weakfish (Cynoscion jamaicensis (Vaillant and Bocourt, 1883)) (Figure

5.2(C)) is distributed from Panama to Argentina, from shallow waters down to 100

m depth (Menezes and Figueiredo, 1980), but limited to waters warmer than 17◦

C (Figueiredo, 1981). Fish and shrimp are the main prey of this demersal species

(Magro et al., 2000). It has been exploited since the 1960s, but the effort has increased

recently, as the abundance of this resource is believed to have been reduced (Castro,

2000, Castro et al., 2005b).

This study will focused on the southeastern stock of Jamaican weakfish whose sepa-

ration was supported by morphological and meristic aspects (Spach and Yamaguti,

1989a,b,c). The catch of this resource had had a descending trend since the mid 1980s

for 10 years. In the late 1990s, its catch increased dramatically but still did not reach

the high 1980s levels. Another drop in the early 2000s and a small increase in the

last two years (Figure 5.3) has been noticed as a consequence of the shrimp trawlers,

seiners and gill net boats redirecting their effort to bottom dwelling resources, i.e.

rising total effort (Castro et al., 2005b). The current scenarios do not conform to the

Castro (2000) interpretation of a stock in equilibrium, since there was a drop in the
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CPUE from the 1980s (112.35 kg/hauls) to the 1990s (99.70 kg/haul) which suggests

that this resource must not be a subjected to a further rise in effort.

Jamaican weakfish catch size ranged from 110 to 365 mm with modal length of 230

mm, which are 3 and 4 year-old fish. Considering that its size at first reproduction is

about 193 mm, the species is not likely to have suffered severe recruitment overfishing

compared to the previous resource. The smallest fish are one-year-old and their

recruitment has happened during autumn and winter (Castro et al., 2005b). A growth

study using indirect methods found fish from 2 to 8 years old in the catch and further

parameters were L∞ = 390 mm, k = 0.2 year−1 and t0 = −0.88 year (Castro et al.,

2005b). Comparison with studies from the 1960s to the late 1980s have given similar

results (Castro et al., 2005b).

Natural mortality (M) was 0.54 year−1, fishing mortality (F) to be 0.70 year−1, the

exploitation rate (E) 0.76 and the survival rate (S) was 29% (Castro et al., 2005b),

estimated by Castro et al. (2005b) according to the methods in the section 5.3.2. The

spawning season seems to have two strong peaks, one in late spring and the other

during summer, throughout most of the population distribution area. Recruitment of

one-year-old fish happens during spring (Castro et al., 2005b). Higher catches take

place during late spring and summer when the species is concentrated in shallow water

due to the penetration of the SACW into the continental shelf off the southeastern

coast, whereas the catch is lower during winter in this region (Castro et al., 2005b).

5.6.2 Model Results

The mixed model fitting incorporated results from Jamaican weakfish previous studies

in selecting the initial parameter settings. These were q = 0.1, Binitial = 7000 t,

α′ = 2, M = 0.54 year−1 and Bmax = 30000 t.

The weighting consistency analysis for the POEEM objective function was satisfactory

reached in this case. In order to reliably have V/W ≈ 1, the weight ratio used was

W = 0.3 and for V ≈ 1 W was 0.6 (Figure 5.9(A)).
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Figure 5.9: Jamaican weakfish estimated through non-equilibrium POEEM,(A)variation of variance

ratio (V ) as a function of weight ratio (W ), (B)biomass (t) as a function of production (t), for

residual ratio approximately one (V/W ≈ 1), and (C)biomass (t) as a function of production (t),

for variance ratio approximately one (V ≈ 1).
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Table 5.3: Results of the stock production model from different models and parameter estimation

approach for Jamaican weakfish.

Observation Error POEEM
Schaefer Shepherd Fox V/W ≈ 1 W = 1 V ≈ 1

q 3.2 ∗ 10−4 3.2 ∗ 10−4 3.2 ∗ 10−4 6.8 ∗ 10−5 6.2 ∗ 10−5 3.3 ∗ 10−4

Bt+1 (t) 1379.1 1594.0 1563.5 14236.0 1567.0 1742.8
Bmax (t) 27853 5022 3971 30000 30000 30000
Bt+1
Bmax

0.050 0.317 0.394 0.475 0.052 0.058
MSY (t) 6558 1307 1336 4341 4341 4341
BMSY (t) 13926 1260 1469 10981 10981 10981
r(year−1) 0.94 4.61 7.58 1.62 1.62 1.62
SS 2.80 ∗ 106 1.50 ∗ 106 1.54 ∗ 106 4.39 6.48 0.36
λθ 1 1 1∑

θ2
y 2.16 5.10 0.23

λρ 0.3 1 0.6∑
ρ2

y 7.42 1.38 0.22
V 0.29 3.70 1.06
V/W 0.97 13.70 1.8

The Jamaican weakfish stock biomass and production relationship is shown in Figure

5.9 (B and C) and further results are found in Table 5.3. For both weighting balance

the stock has apparently a recovering status, varying the current levels of recovering.

While for V/W ≈ 1 the stock is already at MSY levels, for V ≈ 1 it is still on

overexploitation levels but on the recovering trend (Figure 5.9). Most of the POEEM

estimated values of production are bigger than the observed ones when V/W ≈ 1

(Figure 5.9 (B)). When the model was minimised with W = 1, i.e. equal weight for

observation and measurement errors, the sum of observed errors squared was smaller

than in all other scenarios for this species (Table 5.3).

The uncertainty about the “real” weighting balance has consequences in further anal-

ysis, since considering distinct population status would wider the range of possible

outcomes without increasing the results reliability. So, due to the uncertainty about

the most suitable weighting balance, the confidence interval was only estimated, for

V/W ≈ 1 for illustration purposes, since further investigation on a reliable method

to determine the balance must be conducted. The value of σ used in the confidence

intervals estimation was 0.1. The number of resampling used in the bootstrapping
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Figure 5.10: Frequency distribution of bootstrapping estimation of q (A) and Bt+1 (B) for Jamaican

weakfish stock from POEEM minimisations, where Para is the parametric confidence interval and

Perc is the percentile confidence interval.

estimation was 435 out of 444 in total because 9 of them failed to converge to a real

number result.

The distribution of catchability estimations were close to the normal curve with low

data dispersion, reflecting the small value of sigma (Figure 5.10 (A)). Both confidence

intervals, parametric and percentile, presented similar limits but the parametric one

is more desirable since it is statistically more a robust method. The result considered

the “best value” is placed in the modal class, i.e. around the middle of the confi-

dence range. The smaller confidence interval will also narrow the estimation of other

management quantities.

The forecast biomass for the next year shows a distribution skewed to large biomass

the right which requires the percentile confidence interval since these are more consis-

tent (Figure 5.10 (B)) than the parametric one. The forecast biomass exhibits a wide

dispersion and therefore, these estimates would yield wider management scenarios.

The observation error only estimator had the following initial parameter settings for

all production models, q = 0.1, α′ = 2, M = 0.54 year−1 and Bmax = 30000 t. Results
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Figure 5.11: Jamaican weakfish biomass (t) as a function of production(t) for Schaefer, Shepherd

and Fox production models, estimated through non-equilibrium observation error.

of this model fitting approach within all production curves are shown in Figure 5.11

and Table 5.3. Each production method indicates a different status for the population.

The Schaefer model predicts an overfished stock, whose biomass in the next year is

just 5% of the pristine biomass (Table 5.3). The Shepherd and Fox models predict a

healthy stock where its forecast biomass is bigger than the BMSY and the depletion

rate ranges between 32 and 40%.

The conflicting results among the models possibly occurs because this stock has a

low level of exploitation. The simulation conclusions suggested that lower levels of

exploitation can result wider range of results. Highly exploited populations do not
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present such variable results (see king weakfish analysis). However, all estimation

approaches yielded similar levels of estimated biomass at next year.

Besides, the essential need of mapping a range of Bmax and α′ values added to the

lack of reliability in the estimated quantities. Unless further investigations on this

ground were carried out the estimations should not be considered.

5.6.3 Discussion

The POEEM results show that Jamaican weakfish stock is depleted but recovering

and should not be subject of further effort. The diverging findings for the observation

only estimator and the mixed model, associated to the weighting balance uncertainty

indicate that further testing on several values of pristine biomass and resilience would

be useful.

In order to produce realistic current biomass, assumed values of pristine biomass

took into account the long term fisheries exploitation the stock of Jamaican weakfish

has been subject to. Lower values of pristine biomass yielded current biomass lower

than the current landing levels. It therefore, reinforce the essential requirement of the

mapping the goodness-of fit surface through a range of pristine biomass and resilience

values, specially when the past catch history has a high level of uncertainties which

just increase the level of noise and is very uninformative.

There are two pieces of evidence that corroborate with POEEM suggestions on the

current state of the stock. Firstly, there has been no considerable changes in the size

at first reproduction in the last 30 years (Magro et al., 2000, Castro et al., 2005b).

Secondly, the fisher seem to target mature fish, i.e. there has been no alarming signs

of exploitation of juveniles, which is desirable to preserve the sustainability of the

fisheries.

The fleet seems to take advantage of the seasonal migration of this species, and in-

crease the catch during summer, when Jamaican weakfish is found in the shallower

waters to avoid the SACW. During winter, the species seem to migrate to other re-
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gions (Rossi Wongtschowski and Paes, 1994, Rocha and Rossi Wongtschowski, 1998),

and as a result the catch is reduced. Therefore, the species seasonal migration is a

natural protection against overexploitation, since its “disappearance” during winter

is reflected in the catch. The seasonal closure of shrimp trawling has a positive effect

on this species, as it reduces its catch by this fleet and especially since this is their

spawning season. If the closure would be extended to the pair bottom trawl there

should be a considerable enhancement of the stocks for all species.

5.7 Grey Triggerfish

5.7.1 Biological Aspects

Grey triggerfish (Balistes capriscus Gmelin, 1789) (Figure 5.2(D)) is distributed in

the western Atlantic from Nova Scotia to Argentina and in eastern Atlantic from

the Mediterranean to Angola (Robins and Ray, 1986). Triggerfish can be classified as

demersal-pelagic species according to its feeding habits and behaviour. It predates on

invertebrates with and without hard shells (Magro et al., 2000), such as crustaceans,

gastropods, cephalopods, polychaetes and fish (Bernardes, 1988). The species has

been found as prey of epipelagic fish (Zavala Camin and Lemos, 1997) and also is

associated with floating Sargassum (Aiken, 1983).

Its broad distribution may imply the existence of several populations but no studies on

this matter for the Brazilian coast have been published so far. For the purpose of this

thesis, the triggerfish landings from the Santos fishery port will be analysed. These

landings have been mainly caught between Santos and Bom Abrigo (Castro, 2000).

The species has been exploited since 1967 as bycatch, but from the 1980s on its catches

has increased and started to be commercialised as a separate fishery due to the decline

of the other main resources, transforming the species into one of the pair bottom trawl

target species (Castro, 2000, Castro et al., 2005a). The landings of triggerfish have

been fluctuating enormously since late 1980s with dramatic reductions in late 1980s,
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mid 1990s and currently (Figure 5.3). In addition, the species is exploited by line

fishing in northern areas (Castro et al., 2005a). Castro (2000) suggested that the

wide fluctuation in triggerfish catches implies a necessity for more detailed studies.

Triggerfish catch size from trawls ranges from 140 mm to 410 mm fork length, with

most fish bigger than 200 mm fork length, which corresponds to mature fish (Castro

et al., 2005a). Indirect growth and age methods found fish in the catch with age

varying from 2 to 9 year-old, but it is believed that younger fish are discarded onboard

(Castro et al., 2005a). In the 1980s, 16% of the fish landed was immature (Bernardes,

1988). Further growth parameters were estimated as L∞ = 531 mm, k = 0.18 year−1

and t0 = −0.23 year (Castro et al., 2005a).

Spawning takes place in late spring and summer at the outer part of the continental

shelf (Zavala Camin and Lemos, 1997, Bernardes and Dias, 2000). Current natural

mortality (M) was estimated as 0.21 year−1, fishing mortality (F) 1.76 year−1, the

exploitation rate (E) 0.89 and the survival rate (S) was 14%. The latter is 23%

higher now than in the middle 1980s whereas total mortality is 16% higher for the

same period (Castro et al., 2005a). Population parameters were estimated by Castro

et al. (2005a) according to the methods in the section 5.3.2.

5.7.2 Model Results

The POEEM model fitting incorporated the initial parameter settings from previous

studies. For grey triggerfish these settings were q = 0.1, Binitial = 5000 t, α′ = 2, M

= 0.21 year−1 and Bmax = 30000 t.

The determination of the weighting consistency for the mixed model objective func-

tion was coherent for V/W ≈ 1 whereas for V ≈ 1 it was not possible to find even

though the number of decimal places of W were increased (Figure 5.12 (A)). The

values of weight ratio (W) that reliably reached V/W ≈ 1 was 0.11 (Table 5.4) for

grey triggerfish. It was not possible to find a value of W which would result in V ≈ 1,
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Figure 5.12: Grey triggerfish estimated through nonlinear POEEM,(A) variation of variance ratio

(V ) as a function of weight ratio (W ), and (B) biomass (t) as a function of production (t), for

residual ratio approximately one (V/W ≈ 1)

.

Table 5.4: Results of the stock production model from different models and parameter estimation

approach for Grey triggerfish.

Observation Error POEEM
Schaefer Shepherd Fox V/W ≈ 1 W = 1

q 5.3 ∗ 10−5 5.3 ∗ 10−5 5.3 ∗ 10−5 2.0 ∗ 10−4 1.3 ∗ 10−4

Bt+1 (t) 538.6 174.8 354.5 516.7 822.0
Bmax(t) 11184 9486 10511 30000 30000
Bt+1
Bmax

0.048 0.018 0.034 0.017 0.027
MSY (t) 463 732 668 1688 1688
BMSY (t) 5592 2165 3889 10981 10981
r(year−1) 0.17 1.43 1.60 0.63 0.63
SS 1.43 ∗ 108 1.39 ∗ 108 1.41 ∗ 108 2.50 3.77
λθ 1 1∑

θ2
y 1.21 3.56

λρ 0.11 1∑
ρ2

y 11.73 0.21
V 0.10 16.78
V/W 0.94 16.78
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since the stock the level of noise is to high, and therefore only results of V/W ≈ 1

will to be shown here.

Figure 5.12(B) displays triggerfish production as a function of stock biomass and the

minimisation outcome are listed in Table 5.4. The stock has apparently collapsed

and the forecast biomass is only about 1.7 % of the pristine biomass (Table 5.4).

Observed biomass and production present a wide dispersion including negative pro-

duction (Figure 5.12), which may indicate a high level of noise in the data set. Model

minimisation for W = 1 resulted in sum of observation errors squared being larger

than the sum of process errors squared (Table 5.4), which has been a constant feature

in the model optimisation through POEEM.

The bootstrapping confidence interval for q and Bt+1 was estimated with a σ = 0.28,

originated from the
∑

θ2
y of the POEEM results. The number of resampling values

used for the confidence interval estimation was 428 out of a total of 483, due to two

features. First, the inability of convergence to a real number and second due to V/W

ratio being bigger than 4 or smaller than 0.2 as in the section 4.2.3.

Both parameter distributions were wide mirroring the high value of σ. Due to its

proximity with the gaussian curve (Figure 5.13) the parametric confidence interval

can be consistently used. The “best value” is in the modal class as expected (Figure

5.13). Due to the large dispersion of the biomass at the next year (Figure 5.13(B))

the management action should be carefully planned.

The initial parameter settings for the Schaefer, Shepherd and Fox production model

fitted by the observation error only estimator were q = 0.1, α′ = 2, M = 0.21 year−1

and Bmax = 30000 t. These production models predict that the stock is overexploited

and very close to collapse (Figure 5.14 on page 116 and Table 5.4). Although variable,

the predicted biomass for the next year is less than 5% of the original pristine biomass

(Table 5.4). The Schaefer model gave the most optimistic scenario but the deviations

between the models were large (Table 5.4).

113



Application to Brazilian Fish Stocks Chapter 5

0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 6.1 6.6

x 10
 4

0

20

40

60

80

100

q

fr
eq

ue
nc

y

"best value"

Para Para

PercPerc

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

50

100

150

200

B
t+1

(t)

fr
eq

ue
nc

y

"best value"

ParaPara

Perc Perc

A

B

Figure 5.13: Frequency distribution of bootstrapping estimation of q (A) and Bt+1 (B) for Grey

triggerfish stock from POEEM minimisations, where Para is the parametric confidence interval and

Perc is the percentile confidence interval.

The observation error estimate tend, in this case of high level of stock exploitation, to

corroborate the trend of the POEEM, but results of the former should not be given

much weight because of the high uncertainty associated with these results (Table

5.4). Moreover a range of pristine biomass and resilience must be tested to verify the

reliability of the chosen initial values. The great influence of this parameters in the

stock estimation outcome demand this procedure.

5.7.3 Discussion

Stock production model analysis employing POEEM minimisation for triggerfish

stock revealed a collapsed stock, resulting from a downward catch trend with sig-

nificant fluctuations during the analysed period. Those results should be used with

caution due to the lack of knowledge about the population boundaries, migration

patterns and recruitment. Further studies on age and growth aspects should greatly

contribute to understand changes in the population structure. These aspects are fun-

damental and ought to be considered in the stock assessment either to provide model
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Figure 5.14: Grey triggerfish biomass (t) as a function of production(t) for Schaefer, Shepherd and

Fox production models, estimated through nonlinear observation error.

parameters or as a guidance for the parameter settings. The need for additional in-

formation about this stock becomes clear from the fact that current results (Castro

et al., 2005a) of size at first reproduction and catch size structure do not reflect this

level of concern about the state of the stock. Furthermore, if the stock biomass is re-

ally at this low level, the surrounding populations of triggerfish could probably move

to occupy the empty niche and balance this population size.

Even though the assumed value of pristine biomass considered the long term fisheries

exploitation the grey triggerfish has been subject to, unrealistic results were not

avoided. The complementary mapping the goodness-of fit surface through a range of
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pristine biomass and resilience values is therefore crucial, specially when the stock is

subject to several pressures and the available data is not informative.

There are two events playing a crucial role in the triggerfish assessment results.

Firstly, the discarding of small individuals onboard, which has already been docu-

mented (Castro et al., 2005a) is biasing the capture. This problem, well known in the

fisheries literature, renders the use of landings data inappropriate since distortions in

the recorded catch lead to biases in stock size and fishing mortality rate estimation

(Patterson, 1998).

Moreover, the causes and magnitude of discarding are so variable and unpredictable

that incorporating them into the model estimation may not lead to more realistic

results. Conversely, independent fishery data analysis may offer a way to characterise

the uncertainty associated with the systematic bias in catch misreport and incorpo-

rate this results into the stock assessment. In addition, management actions will be

unpredictable where misreporting and discarding are present, since the uncertainty is

extremely difficult to characterise and may crucially influence medium- or long-term

forecasts (Patterson et al., 2001).

Secondly, the species has become one of the fleet’s target species due to the decline

in the catch of more profitable resources. Rising catches of the former target species

can redirect skippers, i.e. effort, back to them in detriment of triggerfish catch, which

due to its feeding and behaviour habits occupies a different niche. Therefore, the fact

that its catch has decreased does not necessarily reflected a shrinkage in the stock

abundance but it may be a process uncertainty related to multispecies catches and

fleet dynamics.

Thus, the stock abundance and catch relationship will have the already accounted

observation error and the process error associated to it. This process noise is not only

driven by ecological factor of species distribution, but also by skipper choices. Both

uncertainty can not be accounted together to this relationship since there is no way

to separate them. Moreover, incorporation of fleet dynamics and its trade aspects
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can only be added if those movements follow a predictable pattern which is rarely the

case.

5.8 Fish Stock Management in Brazil

Stock management comprises a set of actions that aims to maintain fishery activity

which is economically viable, on a sustainable and long-term level. These actions are

rooted in three important aspects. Firstly, actions ought to be legally bounded by

official policies, based on the best scientific knowledge available and on international

agreements and principles. Secondly, promoting widespread, constant and uncondi-

tional enforcement, not only in terms of making the policies known to the involved

public but also to put them into action. In general, for proper fisheries management

the effort employed in the policy making process is just a small part, since without an

effective enforcement the policies are just an inadequate set of regulations. Finally,

the measures have to be monitored in order to regularly assess their effectiveness and

adequacy in relation to the current situation.

In this section, the current Brazilian legislation affecting the four species analysed here

and the fleets involved in their fisheries will the examined in relation to the model

findings. The set of policies presented here were put into place by the Brazilian federal

government, which is the only administrative body allowed to legislate over fisheries

resources.

5.8.1 Current Legislation

With respect to the species studied, there are two direct policies in place (i) estab-

lishing the minimum landing size for all four species and (ii) classifying king weakfish

and whitemouth croaker as overexploited which requires a management plan to be

put into practice until 2009 for both of them. Two indirect policies also have an effect

on the four species studied here. These are two closure seasons, one for seabob and
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the other for pink shrimps trawling, which have a positive effect on those four species

in form of reduction of effort leading to their exploitation.

The current minimum landing size policy is suitable for triggerfish, but it sets a

size which is rather too small size for the other three species studied here. The

existing knowledge about these species (Carneiro et al., 2005, Castro et al., 2005b)

should be sufficient to change the current policy. However, more importantly, effective

measures should evaluate the actual fishing gear selectivity since the current policy

dates from 1983 and technological innovations introduced in the last 22 years have

most probably changed the selectivity of those gears. Furthermore nursery grounds

should be protected to avoid the species being caught before reaching maturity. This

is more desirable than allowing escapement from the net, since this can still damage

the fish. Both measures should help to prevent recruitment overfishing.

Considering that nursery grounds generally support a number of species, there might

well be an overlap of area and time among fish stocks, making this an effective measure

to protect the whole community. The shrimp fisheries closed seasons might also

contribute to this matter, especially that for the seabob which takes place in late

spring and early summer when king weakfish, Jamaican weakfish and whitemouth

croaker have their recruitment. Therefore this seasonal closure should be extended

to the pair bottom trawl as well. Triggerfish would need a specific policy to avoid its

catch during late spring and summer since its reproduction takes place at the outer

part of the continental shelf.

The management plans required for king weakfish and whitemouth croaker should

follow FAO instructions (FAO, 1995, 1996, Cochrane, 2002) setting a comprehensive

and robust set of measures.

In terms of direct fleet control measures, there are two possibilities concerning fishing

effort control and one possibility concerning avoidance of recruitment overfishing.

Firstly, the fishing effort controls set a maximum number of boats in the fleet, which

was established in 1997 for trawlers and seiners when the number of boats was just

“frozen”. Secondly, it legislates the gear dimensions and mesh size for trawlers and
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gillnets. The third fleet measure prohibits trawling on the shallowest strip of sea,

limited from one side by the average tide levels and on the other by 2 to 5 nautical

miles depending on the region. This measure protects the nursery grounds which are

mainly inshore.

5.8.2 Enforcement and Monitoring

Even policies prepared with very accurate scientific knowledge are not useful if they

are not implemented effectively. Furthermore, it is fundamental for a proper main-

tenance of the regulations to constantly monitor and evaluate those measures, since

the fisheries are dynamic and highly variable systems.

Enforcement off the Brazilian coast and at the fisheries port is a herculean task,

because of the size of the area and the number of people involved, Too few enforcers

have to control too many fishers and businesses. This unsatisfactory situation can

make use of new technology to monitor and enforce the law. Furthermore, education

is needed to make the policies known and respected. However, the enforcement must

be much more emphasised and strengthened by the government, if it expects some

return from the effort employed in the policy making and more importantly if it wants

to fulfill its duty of environment protection.

5.9 General Discussion and Recommendations

The similarity of results between the observation error only estimator and POEEM

seems to depend on the level of exploitation of the stocks, i.e. for fairly heavily

exploited populations the results were similar, but for lower levels of exploitation,

the different models predicted a variety of scenarios. Conceptually, POEEM is more

consistent with the actual circumstances, due to its underlying proposed properties

should be preferred. Even though there has been some support for observation error

only methods, this kind of model fitting (Chen and Andrew, 1998), incorporation of
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both, observation and process error, is the most recommended analysis (Rosenberg

and Restrepo, 1994, Hilborn and Peterman, 1996, Meyer and Millar, 1999a, Millar

and Meyer, 2000).

Evaluating a range of initial values for pristine biomass and resilience serves to guide

the choice of a credible parameter settings which would also correspond to a lower sum

of squares. This parameter space mapping proved to be harder then expected and

therefore was not conducted here as comprehensive as expected. Since they are not

estimated by the model, it is crucial that all four species have further determination

using a range of α′ and Bmax to increase the reliability on the final optimisation

outcome. In addition, to validate the estimation each pair of α′ and Bmax must be

weighting balanced, which is a high time consuming task because of the high number

of iterations the optimisation routine needs to reach conversion. Moreover, the lack

of a clear determination for the weighting ratio just increase the possible range of

outcomes.

With regard to the whitemouth croaker stock, it was not possible to draw any

firm quantitative conclusions about its status from the POEEM estimation. The

levels of noise in this species data set is very high and, as observed in the simula-

tions of the previous chapter (4.2.3), the results are not consistent with the model

assumptions. However, the population status of overexploitation should be seriously

considered, since the trend of the stock production curves were concordant which

should be a sign for highly exploited populations. In addition, a previous study (Cas-

tro, 2000) suggested not to increase the fishing effort, which has not been followed.

More comprehensive catch and effort data are necessary for more conclusive stock

production model analyses. Further population aspects, such as population deter-

mination through population genetic studies, age and growth studies through direct

methods could be investigated. As an immediate management measure, the mini-

mum landing size should be increased to 292 mm, which is the mean length where

50% of the population have reached maturity (L50) (Carneiro et al., 2005) and the
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Bom Abrigo area should be closed during, at least, one of their reproduction peaks,

winter and later spring.

King weakfish presented a low level of production and a collapsed stock caused

mainly by recruitment and spawning stock overfishing. Even though there is a strong

need of further investigation in the pristine biomass and resilience space mapping, this

trend should be considered for further management actions, since the decrease of the

size at first reproduction corroborates this diagnoses. For an effective management

and recovery plan, the king weakfish spawning grounds, e.g. at Bom Abrigo, should

be closed during late spring and summer. In addition, the size at first capture must

be increased in accordance with Carneiro and Castro (2005) and it must be effectively

enforced.

The POEEM results revealed that the Jamaican weakfish stock is on a recovering

status, probably result of the population biological and ecological strategies described

in the section 5.6. Even considering the need of further estimations on the initial

parameter settings, if the fishery effort can be held at the current levels no further

actions, other them monitoring the stock, need to be taken. Management actions

affecting the previous species will have a positive impact on this species, since they

share habits and habitat. This is specially advantageous since the main fleet uses a

multispecies gear with reduced selectivity making it virtually impossible to formulate

species selective policies.

Grey triggerfish stock was revealed as being collapsed using the POEEM. Further

investigation in the pristine biomass and resilience mapping are also essential for this

species. This result should be used with caution due to the lack of knowledge of

fundamental species dynamic aspects, and since if the species populations become so

low, other populations of triggerfish could occupy the empty niche and replenish the

population size. However, in order to increase the model accuracy of POEEM more

reliable fishery data is necessary. The main sources of model uncertainty comes from

the unknown amount of discarding onboard. Monitoring and decreasing this practice

would not only improve the model accuracy but also benefit the stock itself. Fur-
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thermore, the discarding of triggerfish is subject to increase if the other three species

are caught at economically viable levels. The amount of triggerfish landed therefore

reflects its economical value as much as stock abundance. Biomass estimation from

scientific surveys is ideal data for further independent analyses, since the fleet dy-

namics may be misleading with respect to stock abundance. Despite the uncertainty

about the status of this stock catches should be prohibited during summer, i.e. its

spawning season, as a precautionary measure. In the mean time, more precise data

needs to be gathered in order to provide improved predictions.

The general need of increase in the minimum lading size could be met by a change in

the mesh size, considering the technological innovations contribute to vary the gear

selectivity and update scientific advice must be seek by the policy makers.

The Bom Abrigo region (25◦ S) is part of biologically rich system of coastal lagoon

and estuary. So, it plays a vital role in the life cycle of whitemouth croaker, Jamaican

weakfish and king weakfish, and it should be seriously considered as part of a marine

protected area, or at least, for a seasonal closure for any fishing gear. Considering that

shrimp trawlers are not allow to operate during part of the year, this measure should

be extended to all trawlers, especially during spring and summer when reproduction

and recruitment are taking place for those three species.

Finally, small improvements in the catch should not be considered as indicating a

stock recovery, but as natural environment fluctuation. All four species have long

life cycles since several year classes are present in the catch. Consequently, actual

changes and improvement in the stock biomass are only consistent when they persist

for few generations. Monitoring those stock biomass changes through CPUE and/or

research surveys are essential to the success of management plans.
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5.10 Summary

The results of this chapter suggest that in order to increase the reliability of the

model estimations and confidence intervals for all four species there is a crucial need

to evaluate a range of pristine biomass and resilience as an usual practice for this

model.

Reliable data is always required for a meaningful modelling of fish stocks. For all

species studied the outcome trend of POEEM gave a reasonably idea of the current

stock status. For king weakfish and Jamaican weakfish stocks the trend was supported

by comparison with conventional models and historical data in these two extreme

cases. While the former stock has important signs of collapsed the latter seems to be

at around sustainable levels but effort must not be increased.

For whitemouth croaker, the available data was very noisy, leading a meaningless

analysis of the stock, even with the advanced methods of POEEM, i.e. separating

process and observation errors.

Triggerfish data is also difficult to analyse since the effects of discarded juveniles

seems to play an important role in the catch-landing proportion, interfering adversely

in the assessment results. Furthermore, commercial (marketing) aspects are playing

an important part in this fishery due to interaction with the other three species.

Based on the model findings, fishery management measures can be recommended

for the four species. These include seasonal closures of spawning grounds (for king

weakfish), increasing the size at first capture (for king and Jamaican weakfishes),

and improving gear selectivity (for king weakfish and triggerfish). In general, the

Bom Abrigo region (25◦ S) should be considered as part of marine protected area, or

at least be closed for fishing activities during the shrimp closure season, due to its

importance in the species life cycle.

For the two species with low data quality, whitemouth croaker and triggerfish, more

detailed and accurate monitoring, and further biological studies are recommended.
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Finally, monitoring of management measures and stock biomass changes are essential

to the success of management plans. Improvements in the catch must be consistent

for several generations, in order to be considered an effect of the measures instead of

a naturally environmental variation.
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Conclusions

This final chapter presents an overview of the scientific contributions of this study.

Several stock production models have been investigated in this study and a number

of conclusions have been drawn in the preceding chapters. Stock production models

are particularly useful when limited amount of data is available, i.e. a situation faced

in large number of important fisheries worldwide. In addition, less data demanding

models allow data collection resources to be used allocated with parsimonious to more

demanding areas, such as recruitment, which is always desirable.

A new stock production model and fitting method has been developed, with the

aim of improving the reliability of the results. For the first time, both process and

observation error were explicitly included in a non-equilibrium stock production model

and minimised using a weighted least squares methods.

The sensitivity of the new model and method, POEEM, were tested with both simu-

lated data and real fishery data. The latter also served for comparison with previous

studies.

POEEM was first evaluated with sablefish stock, since the species stock production

has been previously assessed through a similar method and it would serve for com-

parison purposes. This data set has been already estimated using a biomass-based

model. Further, POEEM was used to analyse four demersal species which have been
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exploited during six decades but little data was available until recently and stock

assessment has been conducted sparsely.

6.1 Process and Observation Errors Estimation

Model-POEEM

In principle, the new model and fitting approach, POEEM, has two fundamental

advantages. First, it allows for the simultaneous incorporation of observation and

process error and the employment of a non-equilibrium least squares framework for

the optimisation. The inclusion of process uncertainty in the production model rather

than in the dynamic equation, as traditionally conducted, is in agreement with the

general understanding about the origin of process noise. Practically, it fulfilled pub-

lished recommendations of allowing for both types of errors in the model fitting pro-

cess, since both are known to be significant and of comparable magnitude.

Second, while the current POEEM formulation as presented here uses the Shepherd

stock production model to quantify the stock biomass dynamics, any other production

model, e.g. classical Schaefer and Fox, can be used instead. This can be useful for

comparison among production models and using other fitting methods. However, the

Shepherd model has the advantage of using difference equations which treat growth,

mortality and recruitment explicitly, i.e. as biologically meaningful parameters.

In practice, I encountered unexpected difficulty in deciding on the weighting ratio

(the relative weights on process and observation errors). Moreover the results were

very sensitive to this ratio, with a strong tendency to switch between observation

error type and process error type results, for small changes of the weight ratio.

The simulation results were sensitive to the various levels of exploitation and levels

of noise applied to the population. The use of simulated fishery data proved to be a

useful method for testing the POEEM in a range of situations. It was found that the

parameter confidence interval estimations were coherent for different scenarios and
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a suitable complementary estimation. However, high levels of noise exacerbated the

switch between observation error type and process error type. As a result of this,

it was not possible to use the intended fitting procedure, i.e. fitting catchability and

terminal biomass automatically, and explaining the parameters space by mapping the

minimised sum of squares surface with respect to other parameters such as resilience

and pristine biomass, with adequate confidence in the results.

It is known from previews studies (Polacheck et al., 1993, Punt and Hilborn, 1997,

Patterson et al., 2001, Punt, 2003) that finding reliable interpretations of the lim-

ited data sets characteristically available for stock production modelling is difficult.

Contrary to expectations, the additional realism of the model used here, allowing for

both of the known major sources of errors explicitly, and allowing for non-equilibrium

nature of the data sets, has not made the problem more tractable.

The method limitation in terms of number of estimated parameters can be overcome

by the space mapping of more parameters, especially pristine biomass and resilience.

This evaluations proved to be always necessary and must not be neglected.

6.2 Future Directions

The use of simulated data revealed an unexpected and still unexplained difficulty in

balancing between observation and process errors. When an equal amount of each

error was introduced in the simulated data series, the amount of observation noise

was expect to be similar to the amount of process noise in the fitted results. However,

for all simulation scenarios and all five analysed species, it was found that when the

weight ratio (W) was equal to one, i.e. observation and process error had the same

weight, the estimated sum of observation errors squared was much bigger than the

sum of process error squared. Further investigation should be conducted to identify

the reason of this, and so find a reliable way to set the ratio between observation and

process error.
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Although difficulties were encountered, the present outcome trend for king weakfish

and Jamaican weakfish should be considered as indicative of state of the stock since

they are confirmed by other biological evidences.

King weakfish appears to be a collapsed stock caused mainly by recruitment and

spawning stock overfishing. The decrease in the size at first reproduction corroborates

this diagnoses.

The Jamaican weakfish stock appears to be around its maximum sustainable yield

which is corroborated by other population dynamics aspects. Management actions

related to the previous two species will have a positive effect on this species as well

since they have similar life strategies.

High levels of uncertainty seems to be responsible for unreliable results of the other

two species. Whitemouth croaker due to the lack of more comprehensive CPUE data

and the grey triggerfish because of discarding and fleet dynamics.

Whitemouth croaker stock could not be properly analysed due to the high level of

noise in the data. Further catch and effort data from all fleets catching this species

are necessary. Genetical population determination might help to determine the pop-

ulation boundaries and improve population assessment results.

The grey triggerfish stock is apparently collapsed according to the analysis with

POEEM. However, this result is not backed up by other population dynamics aspects.

A lot more studies on the population dynamics must be conducted to elucidate key is-

sues in life cycle of triggerfish. Measures to protect the species should comprise catch

prohibition during summer, i.e. their reproduction season, since triggerfish spawning

takes place at outer part of the continental shelf.

Constant monitoring management measures and stock biomass changes are essential

for the success of management plans. Improvements in the catch must be traced

along a few generations, in order to be considered an effect of the measures instead

of environmental natural variation.
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The conceptual problem of incorporating process and observation uncertainties in the

model fitting proved to be more difficult and time consuming than expected. The

results are therefore, not as comprehensive as originally expected. Although, the

method still looks promising, it needs further evaluations and development with both

simulated data and real and reliable data sets such as that analysed by Polacheck

et al. (1993).
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Zar, J. 1996. Biostatistical Analysis. Upper Saddle River : Prentice Hall, New

Jersey, 3rd edition.

Zavala Camin, L. A. and Lemos, I. C. 1997. Epipelagic occurrence of balistidae

(teleostei) juveniles and fish biology aspects of balistes capriscus in the southern

and southeastern brazil. Atlantica 19:183–195.

147


