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IMPLEMENTATION OF A METHOD TO DETERMINE SUB-
NANOMOLAR CONCENTRATIONS OF IRON IN SEAWATER AND 

ITS APPLICATION TO THE STUDY OF MARINE IRON 
BIOGEOCHEMISTRY AT THE OCEAN-SHELF INTERFACE 

By Florence Nédélec 

The aim of this study was to improve our understanding of the marine iron cycle using a 
newly implemented technique to measure dissolved iron in seawater. 
  The setting up of a flow-injection analyser with chemiluminescence detection (FIA-
CL) for Fe(II) proved to be non-trivial. Extensive work was undertaken to solve 
problems relating to our limited level of understanding of the CL reaction, and the 
variable behaviour of the resins prepared to preconcentrate iron. An analyser for 
Fe(II)+(III) was optimised, and careful assessment of data demonstrated the high quality 
of the information interpreted in this study, from the Celtic Sea shelf edge (Northeast 
Atlantic), and from the North Scotia Ridge (Southern Ocean). 
  The distribution of iron at the Celtic Sea shelf edge was examined, and was used to 
provide a conceptual framework for future studies. Dissolved Fe (< 0.4 µm) 
concentrations were measured in samples from nine vertical profiles taken across the 
continental slope (160 – 2950 m water depth). Dissolved iron concentrations varied 
between 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range 
of processes influencing the iron distributions. The presence of elevated levels of 
dissolved Fe near the seafloor was consistent with release of Fe from in situ particulate 
organic matter remineralisation at two upper slope stations, and possibly of pore water 
release upon resuspension on shelf. Lateral transport of dissolved iron was evident in an 
intermediate nepheloid layer and its advection along an isopycnal. Surface waters at the 
shelf break also showed evidence of vertical mixing of deeper iron-rich waters. The data 
also suggest some degree of stabilisation of relatively high concentrations of iron, 
presumably through ligand association or as colloids. The possibility of iron limitation 
of phytoplankton at the shelf edge was not ruled out despite obvious depletion of nitrate. 
This study supports the view that export of dissolved iron laterally to the ocean’s 
interior from shelf and coastal zones may have important implications for the global 
budget of oceanic iron. 
  A set of surface samples collected on a survey between the Falkland Islands and South 
Georgia were analysed for total dissolvable iron. Results suggested a source of benthic 
iron near South Georgia. A shift in photo-physiology of phytoplankton towards South 
Georgia was probably influenced by the transition from iron-limited to iron-replete 
populations. These results therefore strongly support the hypothesis that South Georgia 
may be a "pulse-point" of iron to high-nutrient low-chlorophyll waters. 
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I.1. Overview 

Iron is the fourth most abundant element in the Earth’s crust and is essential for all 

known living organisms. However, because of its high reactivity and very low solubility 

in the oxidised form, dissolved Fe (defined here as the fraction < 0.4 µm) remains at 

nanomolar or sub-nanomolar concentrations in surface waters for most of the open 

ocean (Johnson et al., 1997). Some very iron-poor waters do not exhibit the high marine 

primary productivity expected for waters with elevated conventional nutrients. These 

areas of the open ocean are generally called “High-Nutrient, Low-Chlorophyll” (HNLC) 

regions, and represent about 40% of the world's ocean. They include the sub-arctic 

Pacific, the equatorial Pacific, and the Southern Ocean (Watson, 2001). More than 15 

years ago, John Martin (1988) postulated that iron is one limiting factor for new 

production in these HNLC waters. The “iron hypothesis” has been validated as a result 

of several major iron fertilisation experiments: in the equatorial Pacific (IronEx-I 

(October 1993) (Martin et al., 1994), IronEx-II (May-June 1995) (Coale et al., 1996b)), 

in the Southern Ocean (SOIREE (February 1999) (Boyd et al., 2000), and more recently 

in the sub-arctic Pacific (SEEDS (July-August 2001) (Takeda and Tsuda, 2005), and 

SERIES (July 2002) (Boyd et al., 2004)) and again in the Southern Ocean (EISENEX 

(November 2000) (Gervais et al., 2002) ; and SOFeX (January - February 2002) (Coale 

et al., 2004)). All these experiments showed a significant increase in biological activity 

after the addition of dissolved Fe. Iron is therefore indirectly linked to the carbon cycle 

through this limitation of primary production, and potentially plays an important role in 

the uptake and production of gases associated with climate change such as carbon 

dioxide and dimethylsulphide (Martin et al., 1990; Zhuang et al., 1992). Martin and co-

workers suggested that it might be possible to perform an artificial iron-fertilisation of 

the Southern Ocean and stimulate its absorption of carbon dioxide, thus reducing the 

“green-house” effect (Martin, 1990). However fertilisation experiments showed that the 

carbon export to the deep ocean due to enhanced photosynthesis and subsequent sinking 

of dead organisms was less important than initially thought (Dalton, 2002; Buesseler et 

al., 2004). The possibility of fertilising the oceans with iron for ocean farming 

(Schueller, 1999), and to reduce carbon dioxide in the atmosphere is still under debate, 

and involves both economic considerations, and issues of environmental preservation 

(Chisholm et al., 2001; Johnson and Karl, 2002; Buesseler and Boyd, 2003; 

Schiermeier, 2003; Zeebe and Archer, 2005). To fully understand the implications for 

carbon drawdown, it is therefore crucial to understand the iron cycle in the oceans in 
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order to determine the environmental effect and efficiency of artificial iron fertilisation 

of the ocean. 

 

 

 

 

Figure I.1: SeaWiFS derived surface 
chlorophyll a concentrations around 

the Crozet Plateau in October / 
November and December / January of 

1997 – 1999. Also shown are the 
stream-function lines defining the 

Circumpolar Current, as derived by 
Pollard and Read (2001). 

 

 

 
 
 
Knowledge of the iron biogeochemical cycle is important when, for example, trying to 

understand algae blooms such as those that develop each year in the Crozet basin 

(Figure I.1), around Kerguelen (Blain et al., 2001), and South Georgia (Korb et al., 

2004) in the Southern Ocean. These islands are located in HNLC areas south of the 

Sub-Antarctic Front (SAF) in the Indian (Read et al., 2000) and Atlantic (Arhan et al., 

2002) sector of the Southern Ocean, respectively. A natural bloom develops during the 

austral Spring and lasts for up to two months in the Crozet Basin, and up to 4-5 months 

around South Georgia (Atkinson et al., 2001). Understanding why these blooms occur is 

important in terms of our global comprehension of the oceans but also environmentally 

as these events have a significant influence on local ecosystems (Atkinson et al., 2001). 

Atmospheric deposition is thought to be very low in the Southern Ocean (Duce et al., 

1991). It is hypothesised that the iron released from particulate Fe resuspended from 

sediments from the Crozet Plateau during winter mixing induces the plankton bloom 

observed in satellite images in the Crozet Basin during the austral Spring when light is 

not limiting (P. Statham, 2001, personal communication). This bloom is thus thought to 

result from the release of Fe from benthic sources in a similar way to the bloom 

observed 1,000 km away around the Kerguelen islands (Blain et al., 2001; Bucciarelli et 

al., 2001), and also likely around South Georgia (Holeton et al., 2005). The study of 

these blooms involves many aspects of the iron cycle that are not fully understood such 

as the inputs of Fe to the upper ocean, and the processes leading to its bioavailability. 
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I.2. Overview of the current knowledge of the iron cycle in the ocean 

The ocean distributions and biogeochemical behaviour of dissolved (< 0.4 µm) and 

particulate Fe (> 0.4 µm) are controlled by complex interactions including input, 

internal cycling, and removal processes coupled with physical transport (de Baar and de 

Jong, 2001) (Figure I.2). Interactions between iron and these processes in remote open 

ocean areas where inputs are low result in a nutrient-like distribution of dissolved iron 

closely correlated with that of nitrate and phosphate (Johnson et al., 1997). As with 

major nutrients, much of the dissolved iron is taken up by phytoplankton in surface 

waters and is then recycled below. The cycle is completed when iron is returned to the 

euphotic zone through transport processes (i.e. advection, and vertical mixing, Figure 

I.2). The resulting dissolved iron profile is characterised by very low concentrations (< 

0.3 nM) in surface waters, increasing to 0.4 to 1.5 nM in deeper waters (Johnson et al., 

1997; Ussher et al., 2004). However, the distribution of dissolved iron can be 

considerably modified in regions affected by internal and/or external sources of iron but 

fluxes are still not well quantified (de Baar and de Jong, 2001; Ussher et al., 2004) 

(Figure I.2). Residence times of dissolved iron are known only to an order of 

magnitude, at best, ranging from days in surface waters to a few years in deeper waters, 

well below the inter-oceanic mixing time of ~1000 years (de Baar and de Jong, 2001; 

Sarthou et al., 2003; Croot et al., 2004b; Statham and Hart, 2005). A single ocean 

residence time for the global ocean is thus not a viable concept for iron, as opposed to 

the major nutrients (Johnson et al., 1997). It is therefore essential to determine the 

importance of the sources, removal, transport, and recycling of iron, and, if possible, its 

speciation in the environment in order to properly understand the dissolved iron 

distribution. 

 

I.2.1. Sources of dissolved iron to the ocean 

Iron may be supplied by external sources: laterally by rivers (coastal and shelf waters), 

from above via atmospheric deposition (coastal, shelf and open ocean), and/or melting 

sea-ice (polar waters); and by internal sources: from below through reductive benthic 

fluxes (coastal and shelf), and potentially at deep ocean ridges by hydrothermal venting 

(ridges and hot spots) (de Baar and de Jong, 2001; Ussher et al., 2004) (Figure I.2). 

Source terms are briefly presented below in order of increasing importance, as some of 

the sources listed above are very small and may affect only restricted areas of the ocean. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.2: Diagram representing the global iron biogeochemical cycle. Purple arrows indicate sources and orange arrows show removal of dissolved iron. Estimates 
of main fluxes (in Gmol.y-1) are indicated. Atmospheric fluxes include both wet and dry deposition. The first number of fluxes for removal by biological uptake (55; 

240) and through sinking particles (5.5; 61) is given for open ocean, and the second number for coastal waters. See text for references.5
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Inputs of dissolved iron released from particles in melting sea-ice, including icebergs, 

are likely to be very small, and localised (no estimation of flux available). Sea-ice is 

mostly formed and lost every year so that the release of dissolved iron, and thus 

phytoplankton blooms, will depend on the dynamics of the pack ice melting. Only a few 

studies have been carried out on the importance of melting sea ice in the fertilisation of 

polar waters (Loscher et al., 1997; Sedwick and DiTullio, 1997; Measures, 1999; Grotti 

et al., 2001; Croot et al., 2004a), and little is known about the mechanisms releasing 

dissolved iron from particles trapped in the ice. 

 
Hydrothermal activity can be found between hundreds of meters below the surface (e.g. 

Manus Island, western Pacific (Mackey et al., 2002)) and as deep as 3000 m on the 

Mid-Atlantic Ridge (German et al., 1991; Fouquet et al., 1994). The global flux of 

dissolved iron from hydrothermal activity is estimated between 18 – 180 Gmol.y-1 in 

plumes (Ussher et al., 2004). However upon cooling of the metal-rich (milli-molar 

concentrations of iron) hydrothermal fluid either within the seafloor or by admixture of 

colder ambient seawater, most dissolved iron rapidly precipitates out (≥ 95%) in various 

mineral forms, mostly as oxy-hydroxides (German et al., 1991; Field and Sherrell, 

2000). Export of dissolved iron in deep waters is therefore thought to be very small and 

negligible compared with other sources (de Baar and de Jong, 2001; Statham and Hart, 

2005). Additionally the deep hydrothermal plume will be sufficiently buoyant to rise 

through the weakly stratified deep waters, but may not be able to penetrate the 

thermocline so that only deep waters may be enriched in dissolved iron if any remains 

in solution (Mackey et al., 2002). However, a small component of the total 

hydrothermal flux may be preserved (Field and Sherrell, 2000), and would still 

represent a significant source of dissolved iron to the deep ocean that may be at a later 

stage transported to surface waters, but this implies that dissolved iron is stabilised in 

seawater (Statham et al., 2005).  

 
Riverine inputs of iron to coastal waters are relatively important (estimated flux = 2.6 

Gmol.y-1 (de Baar and de Jong, 2001; Ussher et al., 2004)) despite intense removal 

during estuarine mixing between river and sea waters. Most of the iron colloids present 

in river waters flocculate and settle as soon as the salinity increase (between salinities of 

0 and 10) so that about 70 – 95% of riverine iron is removed from solution (Boyle et al., 

1977; Sholkovitz, 1978; Sholkovitz et al., 1978). Fine particulate iron may be 

transported through the salinity gradient to shelf waters where desorption may release 

some dissolved iron in coastal waters (Turner and Millward, 2000; Sokolowski et al., 
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2001). However, little is known about the possible flux of riverine iron into open ocean 

waters (Ussher et al., 2004). 

 
Atmospheric deposition of continental aerosols is thought to be the largest source of 

iron to the oceans even though it is highly episodic and spatially unevenly distributed 

(Swap et al., 1996; Jickells and Spokes, 2001; Prospero and Lamb, 2003; Statham and 

Hart, 2005; Baker et al., 2006). The largest sources for atmospheric mineral particles 

are in arid or semi-arid regions on the continents (e.g. central Asia, North Africa, India, 

and the Arabian peninsula) (Duce and Tindale, 1991). Atmospheric deposition is the 

only source of dissolved iron in several areas of the open ocean. However, dissolution 

rates of iron from dry aerosols are very low (< 2%) in seawater, and depend on many 

factors including the aerosol source (i.e. natural or anthropogenic) and particle 

concentration (Bonnet and Guieu, 2004; Mackie et al., 2005; Baker et al., 2006), pH-

dependent adsorption-desorption processes (Mackie et al., 2005; Baker et al., 2006), 

photoreductive dissolution (Sulzberger and Laubscher, 1995), and the presence of 

organic species (Borer et al., 2005). Iron may be more soluble in rainwater by reaction 

with sulphur and light, and lower pH, which may lead to significant dissolved Fe(II) 

levels (Kieber et al., 2001; Kieber et al., 2003). Atmospheric deposition in iron-depleted 

regions of the ocean may be important enough to fulfil the requirements of the biota and 

relieve temporarily iron limitation of primary production (Blain et al., 2004). The total 

flux of iron in dust was estimated at 250-630 Gmol.y-1 of which 70% is dry deposition 

(assuming 2% Fe solubility, flux = 3.5-9 Gmol.y-1), and 30% is wet (assuming 14% Fe 

solubility, flux = 10.5-26 Gmol.y-1) (Jickells and Spokes, 2001). Wet deposition of iron 

is of particularly important in the Inter-Tropical Convergence Zone where precipitation 

can be as high as 2 m.y-1 (Bowie et al., 2002b; Sarthou et al., 2003). 

 
In coastal and shelf waters, the major source of dissolved iron is likely to be 

mobilisation of iron from marine sediments. This source is clearly observed from the 

large increasing concentration gradients of both dissolved and particulate Fe (and Al) in 

surface waters towards the continental margin (Wu and Luther III, 1996; Croot and 

Hunter, 1998; Bowie et al., 2002b; Boye et al., 2003). The main processes potentially 

releasing dissolved iron are remineralisation from particulate organic matter exported 

from the euphotic zone (Berelson et al., 2003; Elrod et al., 2004), and diffusion or 

resuspension of Fe(II)-rich pore water (Hong and Kester, 1986; Canfield, 1989). It was 

recently suggested that benthic sources might have been under-estimated in the global 

iron budget (Elrod et al., 2004). An estimate of the flux of dissolved iron from 
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continental shelves based on remineralisation of organic matter gave 89 Gmol.y-1 (Elrod 

et al., 2004), which is far greater than the estimated dissolved iron input from 

atmospheric deposition (see above). However, little is known about the quantity of this 

flux reaching the euphotic zone in coastal/shelf waters. 

 
In summary, sources of dissolved iron to the ocean are multiple and are highly variable, 

both spatially and temporally. Levels of dissolved iron however remain low in seawater 

due to its chemical reactivity and speciation, and as a result of removal processes. 

 

I.2.2. The dissolved iron pool 

The chemistry of iron in seawater is complex. Iron exists in two redox states, Fe(II) and 

Fe(III), within a variety of soluble coordination complexes with organic or inorganic 

ligands, or in a variety of colloidal and/or particulate forms (Ussher et al., 2004) (see 

also Chapter II.2.1). In oxygenated seawater, iron is found primarily as the 

thermodynamically stable form, Fe(III), which is highly reactive with respect to 

hydrolysis, adsorption, and complex formation (Ussher et al., 2004). 

 
There are several reductive processes responsible for maintaining measurable Fe(II) 

concentrations in oxic surface waters, which is the most bio-available form of iron. 

These mechanisms are the retardation of Fe(II) oxidation rates by formation of Fe(II) 

organic complexes, direct or indirect photo-reduction (Kieber et al., 2001; Moffett, 

2001), bio-reduction at cell surfaces (Maldonado and Price, 2000), and chemical or 

microbial reduction in reducing macro-environments (anoxic basins and sediments) and 

micro-environments (e.g. faecal pellets) (Sunda, 2001; Ussher et al., 2004). 

 
It has been shown that dissolved Fe is highly complexed (> 99%) with dissolved 

organic ligands in open ocean waters (Rue and Bruland, 1995; van den Berg, 1995; Wu 

and Luther III, 1995). The total concentration of Fe-binding ligands is generally in 

excess of ambient dissolved iron concentrations (Rue and Bruland, 1997; Boye et al., 

2001; Boye et al., 2003). Little is known about the sources, sinks and role of these 

organic ligands, but their stability constants are comparable to those of natural organic 

compounds released by micro-organisms (e.g. siderophores (Macrellis et al., 2001), 

porphyrins (Hutchins et al., 1999) and domoic acid (Rue and Bruland, 2001)) (Ussher et 

al., 2004). 
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Measurements of iron in seawater are typically made in size-fractionated samples (see 

Chapter II.2.1). The previously defined "dissolved iron" (< 0.4 µm) may thus include a 

higher fraction of iron colloids which are operationally defined by filtration (~ 0.01 – ~ 

1 µm), than was previously thought (Moran et al., 1996; Nishioka et al., 2001; Wu et 

al., 2001). Given that dissolved iron is highly complexed by organic ligands, colloidal 

iron is likely to be mostly organically complexed (Kuma et al., 1998) but may also 

include inorganic colloidal iron complexes. 

 
The determination of dissolved iron speciation in seawater is therefore essential to 

understanding the dynamics of iron in the water column. However, the origin, nature, 

role of organic complexes and colloids, and their interaction with other processes 

remain poorly understood. Additionally these iron species are likely to be important in 

stabilising iron in solution and in the mechanisms of iron uptake by primary production. 

 

I.2.3. Removal of dissolved iron from seawater 

Removal of dissolved iron occurs through biological (i.e. uptake) and physical (i.e. 

precipitation and adsorption) processes, which are expected to operate simultaneously 

with inputs and result in the observed dissolved iron concentrations. 

 
Iron is known to play a major role in key metabolic processes in most living organisms, 

and in the detoxification of reactive oxygen species (Price et al., 1991; Sunda and 

Huntsman, 1995). The minimum growth requirements of marine phytoplankton 

significantly differs between species (Sunda and Huntsman, 1995; Berman-Franck et 

al., 2001; Ho et al., 2003; Price, 2005). Because of the low levels of iron in seawater, 

the biological pool develop different strategies to acquire iron according to their growth 

requirements (Whitfield, 2001), in competition with other species (Hutchins et al., 

1999). The currently known iron uptake mechanisms are: membrane bound porter sites 

(Hudson and Morel, 1990); release of Fe-binding ligands (Granger and Price, 1999; 

Hutchins et al., 1999; Barbeau et al., 2001; Rue and Bruland, 2001); ingestion (Nodwell 

and Price, 2001), digestion (Barbeau et al., 1996); ligand exchange at cell surfaces 

(Chen et al., 2003) of iron colloids; and extra-cellular reduction of organically bound Fe 

(Maldonado and Price, 2000) (Sunda, 2001; Ussher et al., 2004). Uptake by primary 

production is a major removal mechanism for iron in coastal and open ocean waters 

(estimated fluxes = 240 Gmol.y-1 and 55 Gmol.y-1, respectively (de Baar and de Jong, 

2001)). The bioavailability of iron is therefore an important factor to consider in the 
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study of its role in the biological loop, and reciprocally the influence of primary 

production on the speciation of iron by the release of organic ligands. However, several 

aspects of the interaction between iron and the biology remain unclear including the 

form of iron taken up. 

 
Physical removal of iron and its export from the euphotic zone through sinking particles 

is also a major sink for iron in coastal and open ocean waters (estimated flux = 61 

Gmol.y-1 and 5.5 Gmol.y-1, respectively (de Baar and de Jong, 2001)). This flux of 

detritus includes undissolved mineral particles and precipitated iron, iron adsorbed onto 

particles, and intra-cellular iron within biogenic particles (e.g. settling plankton, skeletal 

material, faecal pellets). Precipitation of free iron(III) occurs within seconds after 

addition to oxygenated seawater, and its solubility is very low (< pM) when Fe(III) 

hydroxides age (Rose and Waite, 2003a). Additionally dissolved iron adsorbs onto 

particles by electrostatic attraction to sinking particle surfaces due to their small net 

negative charge at the pH of seawater. However, despite these important removal 

mechanisms, a small fraction of dissolved iron remains in seawater, is recycled and may 

be supplied to the euphotic zone through transport processes. 

 

I.2.4. Recycling and transport of dissolved iron 

Iron is recycled at all depths in the water column. In the euphotic zone, iron is recycled 

by biological processes such as grazing, excretion, viral lysis, and bacterial 

remineralisation (Hutchins et al., 1993). Below the euphotic zone, a significant portion 

(> 90%) of sinking biogenic particles is consumed by respiration of heterotrophic 

bacteria. The oxidation of particulate organic matter thus results in the remineralisation 

of macronutrients as well as biogenic iron. This process also occurs at the seafloor so 

that elevated dissolved iron concentrations may be observed (Elrod et al., 2004) (see 

Chapter V). These iron-enriched bottom waters may then be advected vertically in 

waters affected by wind-driven upwelling (Johnson et al., 1999), and in shelf waters by 

mixing caused by local currents. 

 
Wind-driven upwelling processes are found in HNLC regions (Watson, 2001), and in 

specific coastal areas such as those off the Californian and off Peruvian coast lines. 

These systems provide an effective transport route for high levels of iron released from 

sediments to surface waters in association with macronutrients (Hong and Kester, 1986; 

Johnson et al., 1999) (estimated flux of benthic iron upwelled to surface = 2.2 Gmol.y-1 
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(Elrod et al., 2004)), and lead to enhanced primary production (Martin and Gordon, 

1988). However the supply of iron is limited by the discontinuity of these upwelling 

events (Coale et al., 1996a; Fitzwater et al., 2003) and by the width of the continental 

margin (Bruland et al., 2001; Bruland et al., 2005; Chase et al., 2005), which leads to 

different degrees of iron limitation or stress (Hutchins and Bruland, 1998; Hutchins et 

al., 1998; Hutchins et al., 2002; Firme et al., 2003). This limitation is particularly valid 

in HNLC regions of the Southern Ocean where upwelled waters are poor in iron due to 

the lack of an adjacent shelf (de Baar et al., 1999), except in the vicinity of islands (e.g. 

Kerguelen (Bucciarelli et al., 2001), Crozet (Pollard, 2004) and South Georgia (Korb 

and Whitehouse, 2004) islands). 

 
Additionally a few studies have reported increased iron concentrations in open ocean 

waters of the Equatorial Pacific, North Atlantic, and Southern Ocean, which possibly 

originated from continental margins (Coale et al., 1996a; Wu and Luther III, 1996; 

Gordon et al., 1997; Laes et al., 2003; Croot et al., 2004a). Recently, another 

mechanism for the horizontal transport of these iron-enriched bottom waters was found 

in eddy formation (Johnson et al., 2005). The possibility for dissolved iron transport to 

the ocean's interior from shelves may therefore be non-negligible and may be important, 

particularly at shelf edges. 

 
In summary, the biogeochemical cycle of iron in the ocean is complex as it includes 

many processes involving its chemistry and physico-chemistry in seawater, its 

interaction with living organisms, and hydrography. Many aspects of these processes 

remain unclear, as the study of the iron biogeochemistry has been hindered by analytical 

limitations until recently. One of the major problems encountered when measuring sub-

nanomolar concentrations of iron is contamination, since Fe is ubiquitous, especially on 

ships. New sampling and analytical techniques have since been developed with a better 

appreciation of the sources of contamination, and of its high reactivity in seawater.  

 

I.3. Objectives 

The initial aim of this study was to improve our understanding of the marine iron cycle 

by investigating the processes influencing the dissolved iron distribution in two 

different environments where samples were collected as part of this project: the Celtic 

Sea shelf edge, and the open Atlantic Ocean. However some of the open ocean samples 

from an Atlantic Meridional Transect (AMT-12) cruise were found to be contaminated 
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for iron (see Chapter IV). The focus of this project was therefore limited to the study of 

processes (i.e. sources, removal and transport) influencing dissolved iron distribution at 

the Celtic Sea shelf edge with the aim of giving a conceptual framework for future 

studies in highly dynamic environments of this sort. 

 

An appropriate analytical tool was needed that would overcome problems due to the 

ultra-low Fe concentrations expected, risks of contamination, and high reactivity of 

iron. The first objective was to develop a working and compact analyser which would 

have an appropriate limit of detection (pico-molar), requiring very little sample handling 

to minimise risks of contamination, and allowing close to real-time measurements. The 

chosen technique was a flow-injection analyser with chemiluminescence detection 

(FIA-CL) which currently exists in two versions to determine: i) Fe(II), and Fe(II+III) 

by reducing Fe(III) to Fe(II) (Fe(II) technique); and ii) both Fe(II) and Fe(III) directly 

(Fe(II)+(III) technique), in seawater. 

 

In Chapter II, a literature review is presented to give the principles of both versions of 

the FIA-CL. The chosen version, the Fe(II) technique, was based on an existing method 

(Bowie et al., 1998) to allow the determination of dissolved iron(II) in seawater or 

dissolved Fe(II+III) after a reduction step. This technique was relatively easy to 

mechanically set up with the collaboration of Dr. Matt Mowlem from the Ocean 

Engineering Division (OED, NOCS), but its operation was found more difficult than at 

first thought. Full descriptions of the analyser are given in Appendices 1 and 3 to 5. The 

developmental stages are explained and an overview of the analytical problems and 

experiments carried out to solve them is presented. However, given the difficulty of 

obtaining a reliable calibration curve, it was decided to move on to the alternative 

method. 

 

The FIA-CL analyser was modified to the Fe(II)+(III) technique since only a few 

modifications in instrumentation were required and descriptions are presented in 

Appendices 6 and 7. Despite some difficulties, this version of the Fe(II)+(III) based on 

the design of Obata et al. (1993) and de Jong et al. (1998), was successfully developed. 

The development of the technique and the solutions found for the problems experienced 

as well as a full description of the working analyser in its final stage are described in 

Chapter III. 
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The analyser was then used to determine dissolved iron in the samples collected. A 

rigorous data quality check was carried out on both the analysis and the integrity of the 

samples, to ensure the quality of these data. The quality of the analysis was checked 

based on its accuracy, precision, blank level, and limit of detection. At this stage, some 

samples were discarded from the data set due to suspicion of contamination. 

Investigations were carried out in order to determine its source(s). Criteria are given for 

the evaluation of the quality of the analysis and samples. A full description of this 

procedure is presented in Chapter IV. 

 

The second objective was to examine the dissolved iron data in order to investigate 

processes influencing its distribution, using associated data obtained simultaneously. 

This study was carried out on samples collected at the Celtic Sea shelf edge during the 

summer of 2003 and is described in Chapter V. Oceanographic data at each station are 

presented in Appendix 9. Several processes were examined: i) sources of dissolved iron 

in near-seafloor waters; ii) removal and stabilisation of dissolved iron near the seafloor; 

iii) transport of dissolved iron both horizontally and vertically; and iv) the influence of 

primary production on the dissolved iron distribution in the euphotic zone, and the 

possibility for iron limitation at the Celtic Sea shelf edge was considered. Part of this 

work (i.e. sources and transport of dissolved iron) has been submitted to Marine 

Chemistry, and a copy of the first draft of the manuscript is included as Appendix 10. 

 

An additional sample set collected during a transect along the North Scotia Ridge 

between the Falkland Islands and South Georgia not carried out within this project, was 

analysed for total dissolvable iron (leachable at pH ~ 2). These iron data were used to 

investigate primary production limitation in these polar waters (see Chapter V). A paper 

has already been published using the results presented here. Claire Holeton et al. (2005) 

examined variations in physiological state of phytoplankton communities in the 

Southwest Atlantic sector of the Southern Ocean using fast repetition rate fluorometry. 

The article had already been submitted once when the samples collected for iron were 

analysed, using the newly developed technique presented here. These iron data were 

used to support the data already presented in the paper. As Claire Holeton carried out 

the majority of the work towards this paper, a copy was not included in the main body 

of the thesis. 
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VERY LOW CONCENTRATIONS OF 
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II.1. Analytical challenges 

It was as early as the 1930s that the potential role of iron as a limitation to marine 

primary production was first suggested (Gran, 1931). This idea was however not 

investigated further until the 1980s owing to the low data quality when attempting to 

measure nanomolar seawater concentrations of iron, as a result of sample contamination 

and not sufficiently low analytical limits of detection. Since then, new analytical 

techniques have been developed with a better appreciation of the sources of 

contamination. Ultra-clean sampling procedures (e.g. (Bruland et al., 1979)) are now 

used, including careful washing of the sampling bottles; working in clean rooms; using 

high purity reagents (Moody and Lindstrom, 1977). Such procedures now permits the 

measurement of picomolar concentrations of iron in open ocean waters (Moody, 1982; 

Achterberg et al., 2001). The methods used to determine iron concentrations in natural 

waters can be divided into two groups (Table II.1). 

 

Iron measured Technique used Detection 
limit (pM) Reference 

LAND-BASED TECHNIQUES 
Chelex-100 + GF-AAS 50 (2s) (Landing and Bruland, 1987) 

8-HQ + ICP-MS 640 (Sohrin et al., 1998) Fe(II+III) 
Isotope dilution ICP-MS 50 (Wu and Boyle, 1998) 

SHIPBOARD TECHNIQUES 

Fe(II) FIA + Ferrozine + 
spectrophotometry 100 (Blain and Treguer, 1995) 

Fe(II), or 
Fe(II+III) 

FIA + phenanthroline + 
spectrophotometry 42 (Adams and Powell, 2001) 

Fe(II+III) FIA + DPD + 
spectrophotometry 16 (Weeks and Bruland, 2002) 

80 (Gledhill and van den Berg, 1995) 
~ 10 (Rue and Bruland, 1995) 
100 (Croot and Johansson, 2000) 

Total Fe, 
Fe(III), or 

organically 
complexed Fe 

AdCSV 

13 (Obata and van den Berg, 2001) 
Fe(III), or 
Fe(II+III) 

FIA-CL luminol + H2O2 
50 
10 

(Obata et al., 1993) 
(Obata et al., 1997) 

Fe(II) or 
Fe(II+III) FIA-CL luminol 8-12 (Bowie et al., 2002a) 

 

Table II.1: Figures of merit of some of the most recent techniques used to determine iron in 
seawater. Analytical limit of detection = 3 times the standard deviation of the blank (3s), unless 

specified otherwise. 
 

1) Land-based techniques, i.e. graphite furnace atomic absorption spectrometry (GF-

AAS), or inductively coupled plasma mass spectrometry (ICP-MS). These methods are 

not used at sea because of the size, weight, and fragility of the instruments, in addition 

to the costs involved. Low detection limits are obtained using solvent extraction as a 
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preconcentration step, but resins (e.g. Chelex-100 or 8-hydroxyquinoline (8-HQ)) are 

nowadays generally preferred as sample handling and pre-treatment are minimised 

(Table II.1). However, these techniques do not allow measurement of redox or 

organically complexed iron (Achterberg et al., 2001). 

 

2) Shipboard techniques commonly require compact, portable, robust, and relatively 

low-cost instrumentation. The adsorptive cathodic stripping voltammetry (AdCSV) 

method has a relatively good sensitivity, and allows inorganic and organic iron 

speciation determination (Table II.1). However, its limit of detection is not always 

sufficient for measurements in iron limited regions, and analysis requires a long 

deposition time (up to 10 minutes) to achieve a sufficiently high sensitivity. Such long 

deposition could be disrupted by the ship’s vibrations (Achterberg et al., 2001). A 

recent development of the AdCSV method has significantly lowered its limit of 

detection and shortened the analysis time using 2,3-dihydroxynaphthalene (DHN) as 

ligand and the calatytic effect of the Fe(II)/Fe(III) redox couple on the reduction of 

bromate (Obata and van den Berg, 2001), resulting in a method adapted to work in iron-

poor waters. 

 

Most of the current shipboard techniques involve the use of flow-injection analysis 

(FIA) with in-line preconcentration. These methods consume small amounts of reagents 

and simplify sample handling (thus reducing contamination risks) and increase 

throughput. Different types of detectors can be used including spectrophotometric 

methods using ferrozine to determine Fe(II) (King et al., 1991; Blain and Treguer, 

1995); or 1,10-phenanthroline (Adams and Powell, 2001); or N,N-dimethyl-p-

phenylenediamine (DPD) to determine Fe(II+III) (Measures et al., 1995; Weeks and 

Bruland, 2002)) (Table II.1). However, ferrozine may shift the iron redox speciation 

reducing Fe(III) to Fe(II) (Hong and Kester, 1986), and may not be sensitive enough for 

open ocean surface waters in iron-depleted regions, whereas the DPD method is 

sensitive enough but does not allow measurements of the iron redox speciation 

(Achterberg et al., 2001). 

 

The most commonly used technique to determine iron in HNLC regions is flow-

injection analysis with chemiluminescence detection (FIA-CL) using luminol (5-amino-

2,3-dihydro-1,4-phthalazinedione) (Bowie et al., 1998). This method has a flow-

injection system coupled to a photo-multiplier tube (PMT) to detect the light produced 
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by the chemiluminescence reaction of luminol induced by iron (see Chapter II.2.3). This 

technique has been chosen for the current work because it potentially allows close to 

real-time measurements (3-10 minutes), it requires relatively low-cost, compact and 

portable instrumentation, it has very good sensitivity (pico-molar), and potentially 

allows direct Fe(II) determination. 

 

II.2. Principle 

Two versions of the FIA-CL with luminol currently exist: the Fe(II) FIA-CL designed 

to measure dissolved Fe(II) concentrations or total iron after reduction of Fe(II) in 

seawater based on the method of Bowie et al. (1998) (Fe(II) technique) and the FIA-CL 

to measure dissolved Fe(II) and Fe(III) developed by Obata et al. (1993) and de Jong et 

al. (1998) (Fe(II)+(III) technique). Both techniques involve three major analytical steps: 

i) sample pre-treatment to determine which size fraction and oxidation state of iron is 

analysed; ii) a pre-concentration step to collect Fe(III) or Fe(II)+Fe(III), to remove 

interfering trace-metals as well as sea-salts and to lower the limit of detection; and iii) 

the detection step using the chemiluminescence reaction with luminol. 

 

II.2.1. Pre-treatment of samples 

The first pre-treatment step is sample filtration. This procedure depends mainly on 

which form of iron is to be studied. The speciation of iron is complex as its two 

oxidation states (Fe(II) and Fe(III)) are involved in the formation of soluble inorganic 

and organic complexes, colloidal phases and particulate forms (Figure II.1).  

 

 

 

 

 

 

 

 
Figure II.1: The size distribution of iron species in seawater. Diagram modified from (Bruland 

and Rue, 2001) 
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The particulate phase of iron was initially operationally defined as that fraction retained 

on a 0.4 µm filter, and thus defining the fraction less than 0.4 µm as dissolved iron. 

However, it has been shown that this dissolved phase may contain an important fraction 

of iron colloids (80 – 90% in near-surface waters and 30 – 70% in deep waters (Wells 

and Goldberg, 1991; Nishioka et al., 2001; Wu et al., 2001)), which may be available to 

some organisms (Barbeau et al., 1996; Nodwell and Price, 2001; Chen et al., 2003). As 

shown in Figure II.1, boundaries between the different phases are not clearly defined, 

but generally the particulate phase is considered as the fraction over 0.4 µm, the 

colloidal fraction is between 0.1 or 0.2 µm to 0.4 µm, and the soluble fraction is below 

0.1 or 0.2 µm. Recently the soluble fraction has also been divided into two phases: the 

soluble iron (below 200 kDa or 0.03 µm) and the small colloidal fraction (between 200 

kDa or 0.03 µm to 0.1 or 0.2 µm) (Nishioka et al., 2001; Wu et al., 2001). This 

distinction between the different fractions in the dissolved phase is important in 

understanding the dynamics of iron in seawater; therefore the choice of filter pore size is 

critical in defining the form of iron studied. More recently, 0.2-µm pore size filters were 

used as the norm to define the dissolved fraction, in order to eliminate bacteria. 

 

The second pre-treatment step is the sample acidification. Iron is a highly reactive 

element in seawater as Fe(III) is the thermodynamically stable form at seawater pH but 

is highly insoluble through the formation of oxy-hydroxides, and Fe(II) is rapidly 

oxidised to Fe(III) in oxygenated waters (Waite, 2001). However, Fe(II) has been found 

at measurable concentrations (up to 37% of total dissolved iron (Bowie et al., 2002a)) 

thanks to photo-reduction processes and recycling from organic matter in surface waters 

(O'Sullivan et al., 1991; Gledhill and van den Berg, 1995), and anaerobic sediment 

inputs (Hong and Kester, 1986). The kinetics of Fe(II) oxidation depends on several 

factors such as the pH (the rate decreases as it is lowered), temperature and dissolved 

oxygen concentration (the rate increases as these parameters are highered) (Millero, 

1989; Croot and Laan, 2002). The use of an underway-sampling system is an important 

way to determine Fe(II) concentration as it rapidly brings surface water to the analyser, 

thus minimising any temperature and dissolved O2 change in the sample (de Jong et al., 

1998; Vink et al., 2000; Croot and Laan, 2002). When this underway system is not 

used, acidification keeps Fe(II) stabilised for analysis on the time scale of hours to days 

but this will change other aspects of speciation (e.g. organic complexation) (Weeks and 

Bruland, 2002). When the sample is stored for a long period of time (weeks to years), 

this procedure limits iron loss from solution by adsorption onto the walls of the 
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container (Moody, 1982), and Fe(II) oxidises to Fe(III) so that only total dissolved iron 

can be determined. 

 

A third optional pre-treatment step is the reduction of Fe(III) to measurable Fe(II). 

This procedure is necessary for the measurement of total (Fe(II+III)) dissolved iron with 

the Fe(II) FIA-CL technique only. Excluding biological processes, the two major routes 

to reduce iron that have been found to occur in seawater are chemical reduction (Behra 

and Sigg, 1990; Millero et al., 1995a), and photo-reduction (Voelker and Sedlak, 1995; 

Barbeau et al., 2001). The reduction of nanomolar concentrations of Fe(III) with 

sulphite has been studied in seawater by Millero et al. (1995a). It was found that the rate 

constant for this first order reaction with respect to Fe(III) and S(IV) is a strong function 

of pH and solution composition (Millero et al., 1995a). At pH 2 with [Fe(III)] = 100 nM 

and [S(IV)] = 100µM, the rate constant was 4.08 ± 0.03 M-1 min-1 in seawater (Millero 

et al., 1995a). In the case of an analysis by chemiluminescence (CL) detection, sodium 

sulphite was identified as a reducing agent which does not interfere with the CL reaction 

(O'Sullivan et al., 1995). This reagent was added to acidified samples and allowed to 

react for several hours (> 4h) for the reaction to be complete with the Fe(II) FIA-CL to 

determine total Fe(II+III) (O'Sullivan et al., 1995; Powell et al., 1995; Bowie et al., 

1998). 

Many experiments have also shown the importance of light in reducing Fe(III) to 

Fe(II) (photo-reduction reaction) (O'Sullivan et al., 1991; Zhu et al., 1993), and that the 

reaction is more efficient at low pH (Behra and Sigg, 1990; King et al., 1993). Both 

chemical and photo-reduction reactions were found to occur in cloud droplets leading to 

measurable concentrations of dissolved Fe(II) (Behra and Sigg, 1990; Sedlak and 

Hoigne, 1994). It may thus be possible to combine these two processes (i.e. chemical 

reduction with sodium sulphite and UV irradiation) together to allow effective in-line 

determination of total dissolved iron. This process is suggested here and may be 

effected by positioning an UV-light source in the centre of a quartz coil where samples 

with sodium sulphite added flow past, following the UV digestion design of Achterberg 

et al. (2001a) for cobalt determination. 

 

II.2.2. Preconcentration 

The second critical step during the analysis of iron in seawater with both Fe(II) and 

Fe(II)+(III) techniques, is the preconcentration procedure. This stage of the analysis is 
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important in that: i) it allows separation of iron from some of the interfering metal 

cations for the CL reaction, with quantitative recovery of the element; ii) it permits a 

large enrichment factor, thus lowering the limit of detection with a high sample 

throughput; and iii) it removes the sea-salt matrix which, at higher pH, may lead to 

precipitates in the manifold. 

 

Conventional Chelex-100 resin, which has often been used to separate metals from 

solutions, is not appropriate in FIA-CL systems because of the swelling and contraction 

of the resin itself when the pH changes (Obata et al., 1993). Chelating resins containing 

8-hydroxyquinoline (8-HQ) have been made, which is a well-characterised reagent that 

reacts with over 60 metal ions to form stable complexes, and can be immobilised on a 

support matrix. In early studies 8-HQ was immobilised onto silica gel, which has a good 

mechanical strength, resistance to swelling and rapid overall exchange kinetics in 

column application (Sturgeon et al., 1981). It was however found unstable at high pH (> 

9), the chelating group potentially “bleeding” by hydrolysis and subsequently 

potentially showed contamination for iron from the newly exposed silica surface 

(Sturgeon et al., 1981). Therefore in later systems the silica substrate was replaced by a 

polymer such as Fractogel TSK which is a highly porous, mechanically and chemically 

stable hydrophilic organic gel more stable at high pH (Landing et al., 1986). However, 

this synthesis was time-consuming (> 20 h) and sometimes failed for unknown reasons. 

A new single- or double-step protocol (depending on the starting chemical) was found 

to link 8-HQ to the TSK polymer via an amino link instead of an ester linkage, which 

reduced the “bleeding” of 8-HQ from the resin (Dierssen et al., 2001). Later studies 

suggested that TSK resins may leach colour (8-HQ bleeding) when eluted with a 

concentration of hydrochloric acid higher than 0.1 M as used with the Fe(II)+(III) 

technique, making the determination of Fe(III) at low concentrations impossible due to 

the masking effect of the leached functional group (Obata et al., 1993; Weeks and 

Bruland, 2002). The choice of the resin therefore depends on the technique used and the 

compromise made between loading capacity, elution profiles and stability to acids 

(Obata et al., 1993; Weeks and Bruland, 2002). 

 

The seawater matrix is complex and may potentially create interferences during the 

detection step. Sea-salt ions such as Mg2+, Ca2+ and Cl- tend to significantly suppress 

(for cations) or increase (for halides) the chemiluminescence signal (Chang and 

Patterson, 1980; Bowie et al., 1998). These ions may also precipitate (e.g. to Mg(OH)2) 
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after mixing with basic luminol solution at a pH > 10 and clog the detector (de Jong et 

al., 1998). A rinsing step with ultra pure water after passing the sample through the 

column is therefore necessary to remove sea-salts still present in the dead volume of the 

column. According to the results of Obata et al. (1993) and de Jong et al. (1998), Fe(III) 

was quantitatively collected at a pH between pH 2.6 and 4, and Fe(II) was completely 

recovered at pH 5 and above. Using a basic pH (> 8) may lead to the formation of iron 

colloids so that iron was not fully recovered from the sample stream and may even 

precipitate (Weeks and Bruland, 2002). Chromium(III), Co(II), Cu(II), and Mn(II) are 

the few elements susceptible of interfering with the chemiluminescence reaction (see 

below), however only Co(II) and Cu(II) are collected onto the resin at a pH of 5 – 5.5 

(Obata et al., 1993; de Jong et al., 1998; Weeks and Bruland, 2002). Both Fe(II) and 

Fe(III) can thus be selected from some of the interfering trace metals by carefully 

buffering the pH to 5.5 (Bowie et al., 2002a; Weeks and Bruland, 2002). At this pH, 

Fe(II) is susceptible of oxidising to Fe(III) on the order of few minutes, but this reaction 

can be minimised by adding the buffer just prior loading the sample onto the 8-HQ 

resin, when using the Fe(II) technique (see below). 

 

The preconcentration column is therefore important for separating iron from many 

trace-metals, lowering the limit of detection, and removing sea-salts. A limitation may 

be that, while the reagent blank could be made negligible, there still might be a column 

blank that may be non-negligible when measuring sub-nanomolar iron levels (Weeks 

and Bruland, 2002). Additionally several factors can impact on the chelating efficiency 

onto the 8-HQ resin, such as the pH of the buffered sample, the loading flow rate, the 

eluent concentration, the column preconditioning, the column size, and the organic 

speciation of iron in the sample (Bowie et al., 2003; Bowie et al., 2004). Factors such as 

the particle size, porosity, and texture of the resin will also have an impact on the 

extraction efficiency from the 8-HQ resin (Bowie et al., 2003). It was also recently 

shown that the presence of organic ligands in seawater samples modify the quantity of 

iron collected onto preconcentration resins (Ndung'u et al., 2003; Ussher et al., 2005). 

In order to ensure that all Fe complexes are destroyed and dissolved iron is loaded onto 

the resin, micro-wave treatment (Weeks and Bruland, 2002) or UV-digestion (Guéguen 

et al., 1999; Ndung'u et al., 2003) of the acidified sample prior analysis have been 

recommended. Alternatively, it has been suggested that stored samples should not be 

analysed before a minimum of 6-months after collection to allow complete release of 

iron from organic complexes and colloids (Bowie et al., 2004). 
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II.2.3. Chemiluminescence reaction of luminol 

The chemiluminescence (CL) reaction of luminol is widely used in analytical 

procedures because of its greater analytical performance detecting trace concentration 

levels of metal ions compared to other spectroscopic methods. Since it was used with 

both Fe(II) and Fe(II)+(III) techniques within this project, current knowledge of both 

mechanisms, Fe(II)/O2/luminol and Fe(II)+(III)/H2O2/luminol, is presented here. 

 

In the system Fe(II)/O2, Fe(II) is quickly oxidised by O2 producing the hydroxyl radical 

OH, H2O2 and superoxide O2
- (Reactions 1 – 4) (King et al., 1995). Due to the rapid 

Fe(II) oxidation rate at pH > 9, its reaction is kinetically favoured relative to other metal 

ions (Xiao et al., 2002). At pH ~10.5 the Fe(II) oxidation by O2 is insensitive to low 

concentrations of H2O2 as Fe(II) is oxidised too quickly to allow free H2O2 to slowly 

form the complex Fe(II)-H2O2 or to decompose (Rose and Waite, 2001) (see below). 

However, if the concentration of H2O2 is increased, the complex will form sufficiently 

rapidly to produce some hydroxyl-like radicals and therefore increase the CL signal 

(Reaction 3) (Rose and Waite, 2001). 

 

(1) Fe(II) + O2 → Fe(III) + O2
- 

(2) Fe(II) + O2
- + 2H+ → Fe(III) + H2O2 

(3) Fe(II) + H2O2 → Fe(III) + OH + OH- 

(4) Fe(II) + OH → Fe(III) + OH- 

 

When H2O2 is present in excess, its decomposition is catalysed by free transition metal 

ions or their complexes through two possible mechanisms: i) a radical chain reaction 

catalysed by any cation having at least two oxidation states available such as Cu, Fe, 

Co, Ni, Cr and Mn (Reactions 5 – 7); or ii) a two-electron oxidation where H2O2 first 

reacts with free metal species to form an intermediate complex Mn+-H2O2, which can 

either react with organic compounds such as luminol, or decompose into O2 and the 

original metal species (Reaction 7) (Xiao et al., 2000). In the system Fe(II)+(III)/ H2O2, 

Reactions 5 and 6 lead to the production of the hydroxyl radical OH which initiates the 

chemiluminescence reaction.  
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(5) Mn+ + H2O2 → M(n-1)+ + OOH + H+ 

(6) M(n-1)+ + H2O2 → Mn+ + OH + OH- 

(7) 2 OOH → O2 + H2O2 

 

Experiments with or without triethylenetetramine (TETA) proved that the CL reaction 

can significantly be enhanced when TETA is present (Obata et al., 1993). This was due 

to the decomposition of hydrogen peroxide being more efficient when adding TETA 

(Wang, 1955). The splitting mechanism of the O=O bound in H2O2 by the reaction with 

the complex (TETA)Fe(OH2)+ is energically more favourable (6.6 kcal) than the free 

radical mechanism (see above, 35 kcal) involving isolated H2O2 molecules (Wang, 

1955). Among trace metals, only Fe(III) and Mn(II) showed the highest catalytic 

activity with TETA (Wang, 1955), thus ensuring the specificity of the reaction. 

Therefore TETA was added to the luminol reagent in the Fe(II)+Fe(III) FIA-CL in order 

to enhance the decomposition of H2O2 ,  and thus of the CL reaction. 

 

Despite being extensively studied, the detailed mechanism of the chemiluminescence 

reaction remains unclear. For both systems (Fe(II)/O2 and Fe(II)+(III)/H2O2), the CL-

generating mechanism for luminol oxidation is thought to occur in three steps: 1) 

oxidation of luminol to the luminol radical (Reaction 8); 2) oxidation of the luminol 

radical to luminol α-hydroperoxide, the key intermediate (Reaction 9); and 3) 

decomposition of luminol α-hydroperoxide resulting in emission of blue light at 425 nm 

wavelength under alkaline conditions (Reaction 10) (Figure II.2) (Lind et al., 1983). 

The luminol radical is produced by reaction of luminol with the hydroxyl radical (•OH) 

formed by radiolysis of water and Reactions 3 and 6, or the carbonate radical (•CO3
-) 

when carbonate is present in the system (Xiao et al., 2000; Rose and Waite, 2001). It 

was also suggested that the superoxide radical ( O2
-) produced from oxygen may initiate 

the CL reaction (Lan and Mottola, 1996).  

 

(8) Luminol + •OH (or •CO3
-) → luminol radical + other products 

(9) Luminol radical + HOO- → luminol α-hydroperoxide 

(10) Luminol α-hydroperoxide → aminophthalate + N2 + hν 

(11) 2 luminol radicals → luminol + diazaquinone 

(12) Diazaquinone + •O2
- → luminol α-hydroperoxide 
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Figure II.2: Chemical structure of luminol and derivatives involved in the chemiluminescence 

reaction. 
 

The decomposition of luminol α-hydroperoxide depends only upon the pH of the 

solution once it has been formed, resulting in an increase of the CL efficiency around 

pH 10.5 and a decrease over pH 11 corresponding to a decrease in the fluorescence 

quantum yield of aminophthalate (Lind et al., 1983; O'Sullivan et al., 1995; Rose and 

Waite, 2001). The luminol radical may also undergo self-recombination producing 

luminol and diazaquinone (Reaction 11) which can react with the superoxide radical 
•O2

- if it is present in the system to form luminol α-hydroperoxide (Reaction 12) (Xiao 

et al., 2000). The Fe(II) CL yield depends upon the solution pH once the luminol α-

hydroperoxide is formed (Rose and Waite, 2001) so that the optimum CL pH is 10.5 as 

this corresponds to its increased formation (O'Sullivan et al., 1995). 

 

Considering the kinetics of the CL reaction, the rate-limiting step is the production of 

hydroxyl-like radicals by oxidation of Fe(II) by O2 or by decomposition of H2O2 

catalysed by cations such as Fe(II) and Fe(III) depending on the system used (Xiao et 

al., 2000). In the Fe(II)/O2/luminol system, the oxidation of Fe(II), and therefore the 

production of hydroxyl radicals, occurs within a few hundreds of milliseconds, which 

makes the reaction easy to use in-line and allows rapid determinations (Seitz and 

Hercules, 1972). In the Fe(II)+(III)/H2O2/luminol system, decomposition of H2O2 is the 

rate-limiting step and therefore requires an initiation time which can be obtained using a 

reaction loop of optimised length (Xiao et al., 2000). It is also generally observed that 
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increasing the temperature favours the decomposition of H2O2 with or without metal 

catalysts (Xiao et al., 2000). 

 

Recent studies showed that the presence of carbonate greatly enhances the CL signal 

(Xiao et al., 2000; Xiao et al., 2002). This effect is likely due to the reaction of sodium 

carbonate, used to buffer the luminol reagent, and hydrochloric acid, used to elute iron 

from the preconcentration column, which produces gaseous carbon dioxide (CO2(g)) 

(Lan and Mottola, 1996). Enhancement of the CL reaction by CO2(g) bubbling has been 

previously studied (Lan and Mottola, 1996; Xiao et al., 2002), and showed great 

increases in the CL signal. One mechanism may be that hydroxyl radicals produced by 

the oxidation of Fe(II) or decomposition of H2O2 catalysed by transition metal ions, 

may react with dissolved carbonate to form a carbonate radical CO3
- (Reaction 13). 

Another mechanism may be that CO2(aq) produced by dissolution of CO2(g) may react 

with the superoxide radical O2
- to form the peroxycarbonate radical CO4

- (Reaction 

14). The oxidation of luminol by OH (Reaction 8) leads to the production of various 

species other than the luminol radical since OH is very reactive and attacks several 

carbon sites on the aromatic ring of luminol (Xiao et al., 2000). In contrast, CO3
- and 

CO4
- almost selectively react with luminol yielding the luminol radical, which therefore 

enhances the CL intensity by increasing the steady-state concentration of luminol 

radical (Xiao et al., 2000). The effect that ageing of the luminol reagent increases 

sensitivity mentioned by several authors (Lan and Mottola, 1996; Bowie et al., 1998; 

Xiao et al., 2000), may thus be explained by the luminol reagent equilibrating with the 

carbon dioxide in the solution freshly prepared, producing more carbonate radicals 

capable of enhancing the CL reaction when initiated. 

 
(13) OH + CO3

2- → OH- + CO3
- 

(14) CO2(aq) + O2
- → CO4

- 

 
For the Fe(II)+(III) technique, where both hydrogen peroxide (H2O2) and luminol are in 

excess, the CL emission intensity is proportional to the cation concentration over a wide 

working range and down to very low concentrations for many trace metals such as 

Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II) and Cu(II). Obata et al. (1993) showed that 

only Cr(III), Mn(II), Co(II) and Fe(II) interfered with the Fe(III) signal at natural 

seawater concentrations. However, Cr(III) and Mn(II) are not collected onto the 8-HQ 

resin at pH 5.5 (see above), and Co(II) which is as sensitive as Fe(III) in this CL 

reaction, may be masked by the aqueous ammonia forming a stable amine complex 
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(Obata et al., 1993). Therefore, both Fe(II) and Fe(III) can be detected with the H2O2 – 

luminol CL reaction as Fe(II) gives almost equal sensitivity to Fe(III) (Obata et al., 

1993). 

 

In the absence of H2O2 as used in the Fe(II) technique of Bowie et al. (1998), the CL 

reaction is selective towards Fe(II) over Fe(III), and is relatively insensitive to 

interference from other trace metals (Seitz and Hercules, 1972; Klopf and Nieman, 

1983; O'Sullivan et al., 1995; Lan and Mottola, 1996; Rose and Waite, 2001). 

Cobalt(II), Mn(II) and Cu(II) are the only elements likely to cause an interference to the 

CL reaction at natural seawater concentration levels (Seitz and Hercules, 1972; 

O'Sullivan et al., 1995; Bowie et al., 1998). At pH 10, Mn(II) and Cu(II) may oxidise 

Fe(II) to Fe(III) and then be re-oxidised back, so that they provide an alternative path 

for Fe(II) oxidation which does not induce the CL reaction (Seitz and Hercules, 1972). 

However, Mn(II) can only be collected onto the 8-HQ column at pH values greater than 

8 (Obata et al., 1993) and Cu(II) and other trace-metals did not show any interference 

when the sample is loaded onto the 8-HQ resin column at pH 5.0 (Bowie et al., 1998). 

Cobalt(II) has been shown not to exhibit any interference below concentrations of 500 

pM, which allows open-ocean water analyses where Co(II) concentrations range from 

100-300 pM (Bowie et al., 1998). However Co(II) may become a problem when 

analysing coastal samples where its concentration may be as high as 10 nM (Cannizzaro 

et al., 2000). Cobalt interference can then be minimised adding dimethylglyoxime (20 

µM) to the luminol reagent to complex it (Bowie et al., 2002a). Whilst interfering 

metals may reduce the sensitivity, nevertheless the signal observed is due to Fe(II) and 

not to other species (Seitz and Hercules, 1972; Bowie et al., 1998). Moreover, no 

interference was observed by Powell et al. (1995) when analysing natural samples. 

 

Several parameters should be optimised to maximise the CL reaction, and obtain a 

better sensitivity. Since the CL reaction is induced by Fe(II) within 100 ms in the Fe(II) 

technique, optimising the flow cell design can improve the light collection efficiency. 

As the CL reagents residence time in the flow cell is a critical step in the detection, 

reagent flow rates and concentrations and length of the PMT loop are critical to 

obtaining the best reproducibility (Seitz and Hercules, 1972). The concentration of 

luminol should be optimised to give the best compromise between signal enhancement 

and the baseline level (O'Sullivan et al., 1995; de Jong et al., 1998). The acid 

concentration of the eluent is also critical in that it must be high enough to fully elute 
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iron from the resin but low enough to minimise production of CO2(g) bubbles in the 

stream after mixing with luminol buffered with carbonate. For the Fe(II)+(III) 

technique, careful optimisation of the reaction coil length and temperature is crucial to 

ensure sufficient time and efficiency for H2O2 to decompose before entering the flow 

cell without generating too many bubbles in the liquid stream (Xiao et al., 2000). 

Finally, as the CL reaction is highly pH dependant, this parameter should also be 

carefully optimised. For the Fe(II) technique, the maximum CL intensity (pH 10.5) is 

achieved by adjusting the luminol reagent pH with sodium hydroxide (Seitz and 

Hercules, 1972; Klopf and Nieman, 1983; O'Sullivan et al., 1995; Bowie et al., 1998). 

For the Fe(II)+(III) technique, the optimum CL reaction (pH 9.5) is obtained by 

adjusting the ammonia concentration (Obata et al., 1993). 

 

Despite the apparent desire of researchers to fit a straight line to calibration data (Seitz 

and Hercules, 1972; Klopf and Nieman, 1983), calibration curves are frequently non-

linear (Rose and Waite, 2001). This is due to variations between experimental 

conditions and to the presence of radicals in the reagents. Hydrogen peroxide produces 

hydroxyl radicals OH depending on light conditions and concentration of impurities, 

which can both potentially enhance the CL reaction (Xiao et al., 2002). Exposure of the 

H2O2 reagent to light should be therefore minimised in order to limit increases in radical 

concentrations. Luminol is also very photosensitive and its exposure to light is likely to 

produce luminol radicals by photo-oxidation, producing a low level of CL background 

that varies in response to light conditions in the laboratory (Rose and Waite, 2001). The 

luminol stock and reagent solutions and the luminol reagent tubing should thus be kept 

in the dark as much as possible to minimise this effect. It is necessary to perform a 

calibration for each batch of reagents and attempting to linearise the curve may 

introduce additional errors into the technique (Rose and Waite, 2001). 

 

II.3. Development of a flow injection analyser with chemiluminescence 
detection (FIA-CL) to detect Fe(II) in seawater 

 
The Fe(II) technique of Bowie et al. (1998) was chosen here as it allows near real-time 

determination of dissolved Fe(II) as well as total dissolved Fe(II+III) after a reduction 

step, which potentially can be done in-line. It also requires less reagents for the CL 

reaction and is slightly faster than the Fe(II)+(III) technique, due to the kinetics of the 

elution of Fe(II) from the resin and of the CL reaction. 
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The development of the Fe(II) technique was achieved through three major stages: a 

simple manifold to detect Fe(II) in de-ionised water, then a manually controlled 

analyser to detect Fe(II) in seawater, which was subsequently modified to be automated. 

Xiao et al. (2000) suggested that optimum conditions found by one laboratory (reagent 

pH and concentration, sample and reagent mixing ratio, detector design) may not be 

ideal for others with very similar setups. Each stage of the technique was firstly set up 

as suggested in the literature before being modified through optimisation. An overview 

of the extensive work carried out to develop the Fe(II) technique is given below. 

 

II.3.1. Manual FIA-CL system to detect Fe(II) in de-ionised water 

Initially, a simple analyser to measure Fe(II) in de-ionised water based on the method of 

King et al. (1995) was built in order to test the response from the photomultiplier tube 

and learn about the chemistry of the CL reaction. This first work on the analyser was 

undertaken in an open laboratory space without any particular precautions to avoid 

contamination, and used relatively high concentrations of iron.  

 

This system was divided into two parts: i) the flow injection system including a 

peristaltic pump (PP), an injection valve (IV) and an injection loop (IL); and ii) the 

detection system including a flow cell (FC), a photomultiplier tube (PMT), two power 

supplies (PS), and a chart recorder (CR) (Figure II.3). Details about instrumentation, 

reagent preparation, and the analytical sequence are given in Appendix 1. 

 

Analyses were done using a new low-voltage photomultiplier tube (PMT) (Hamamatsu 

Photonics). This PMT was powered and the signal acquired through an electronic board 

designed by Dr. Matt Mowlem (OED, NOCS). The PMT showed very good sensitivity 

to the CL reaction but also to ambient light. The high baseline due to stray light entering 

the flow cell via the tubes and detected by the PMT was reduced using black tubing to 

shield the PTFE tubing going to and from the flow cell. 
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Figure II.3: Diagram of the Fe(II) FIA-CL analyser according to King et al. (1995). Thick grey 
lines represent PTFE or PVC tubing. 

 

Enhancement of the CL signal was observed when a carbonate buffer was used instead 

of the borate buffer (7-fold increase in sensitivity with Fe(II) standards of 12 and 25nM 

in 0.7 M NaCl and 10 µM luminol reagent), a trend previously shown by Klopf and 

Nieman (1983). A broad optimum pH of the CL reaction in de-ionised water was also 

found at around 10.2 (Figure II.4), as suggested in the literature (Seitz and Hercules, 

1972; O'Sullivan et al., 1995). 

 

 
 

 

 

 

 

 
Figure II.4: Effect of CL pH on Fe(II) peak 
height. [Fe(II)] = 100 nM in 0.7 M NaCl 

acidified with 0.2 M Q-HCl. 
 

Figure II.5: Calibration curve performed 
with the Fe(II) FIA-CL according to King 
et al. (1995) with a polynomial trend line 
(2nd degree). Standards prepared in 0.7M 

NaCl acidified with 0.2M Q-HCl.
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A calibration curve was produced for the range 5-100 nM by standard additions to 

acidified sodium chloride (0.7 M) solutions. The signal peaks were acquired with a 

chart recorder, and calculations were made using peak heights. The curve was slightly 

non-linear, as suggested by King et al. (1995) and Rose et al. (2001), due to the 

photosensitivity of luminol, as it was not kept away from light during storage at this 

time (Figure II.5). Precision ranged between 1.0% and 2.1% (n = 6) for a 5nM and 10 

nM Fe(II) standard respectively. The limit of detection (= 3sd of the blank) was 

estimated at 500 pM with a blank value of 1 nM, which was satisfactory at this stage of 

the development. 

 

II.3.2. Manual FIA-CL system to detect Fe(II) in seawater 

The next critical stage was to develop an iron analyser allowing dissolved Fe(II) (and 

Fe(II+III) after a reduction step) measurements at sub-nanomolar concentrations in 

seawater. The main objective in the system development was thus to include a 

preconcentration column and adapt the chemistry in order to reach a limit of detection 

of about 40 pM using the analyser design of Bowie et al. (1998). The use of a 

preconcentration column in the manifold led to the addition of ammonium acetate 

(NH4OAc) buffer to the sample prior to loading onto the column to collect iron, and to 

the introduction of an eluent stream to release it from the resin and carry it to the 

detection flow cell. The addition of these two components to the system required careful 

pH adjustment of the standard/buffer mixture (loading pH) and eluent/luminol reagent 

(CL pH) to optimise the loading of iron onto the column at circa 5.5 and the CL 

reaction at 10.5 respectively, as suggested by the literature (see Chapter II.2). 

 

II.3.2.1. Preconcentration resin and column 

A resin for the preconcentration of iron in a seawater matrix was prepared. As the 

protocol of Landing et al. (1986) was time-consuming (> 20 h) and sometimes failed for 

unknown reasons (Dierssen et al., 2001), the preparation of the 8-hydroxyquinoline (8-

HQ) resin following the procedure described by Dierssen et al. (2001) was chosen. This 

new protocol included only two reaction steps (2 h and 6 h) (Dierssen et al., 2001). The 

8-HQ resin was prepared using Toyopearl HW-65F (fine, 30-60-µm, Anachem) as the 

polymeric support. The 8-HQ resin obtained was homogeneously dark brown when 

freshly prepared, indicating that 8-HQ was efficiently bound to the resin since the 
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darker colour is due to the amount of 8-HQ (Weeks and Bruland, 2002). Details 

concerning reagent preparations, protocols, and the resin complexing capacity 

experiments performed to test the resin are described in Appendix 2. 

 

The complexing capacity of the 8-HQ resin prepared (100.1 ± 9.7 µmol Cu/g of resin (n 

= 4), Appendix 2) was in agreement with the value reported by Dierssen et al. (2001). 

Bowie et al. (1998) reported that there was 54.7 mg of dried fine 8-HQ resin in the 

volume (45 µL) of their column. In this study, the volume of 8-HQ resin (of similar 

pore size as that of Bowie et al. (1998)) in the column was varying between 

approximately 38 and 50 µL depending whether the column was completely filled or 

not. As copper shows a similar behaviour as iron as regards the 8-hydroxyquinoline, the 

complexing capacity of the resin would be 4.5 to 6.1 µmol of Fe for the quantity of resin 

packed in the preconcentration column. Given the results obtained with copper, the 8-

HQ resin prepared should allow determination of iron in most marine environments 

where it is found at nano- to pico-molar concentrations. 

 

The development of the column to hold the 8-HQ resin was time consuming as the 

design of Bowie et al. (1998) was judged unsatisfactory due to backpressure problems 

and leaks (A. Bowie, 2001, personal communication) (Figure II.6). The column used in 

the present system was thus made of clear Perspex (polymethylmethacrylate), and the 

resin was kept inside the column by two polyethylene frits at either end (Figure II.6). 

Packing the 8-HQ resin in the columns was carried out very carefully in order to 

minimise the presence of the finest particles, blockage, and backpressure problems. To 

this end, the 8-HQ resin was suspended in water and allowed to settle for a few minutes 

and the supernatant removed. This procedure maximised the selection of the biggest 

particles, as fine ones may clog the frits. 

 

 

 
Figure II.6: Preconcentration 

columns designed by Bowie et 
al. (1998) and as used in this 

project (PMT = photo-
multiplier tube). 
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II.3.2.2. Description and optimisation of the manual system 

Prior to a computer control system being available, the analyser was controlled 

manually (Figure II.7). A manual valve was placed before the pump to switch between 

the buffered sample and the Milli-Q water to rinse the column. The injection valve was 

manually controlled by a two-position switching valve. The injection loop was changed 

for a 8-HQ preconcentration column as described above. Details on the instrumentation, 

reagent preparation, and analytical sequence (4 minutes) are described in Appendix 3. 

 

 

 

 
 

 

 

 

 

 

 

Figure II.7: Diagram of the Fe(II) manual FIA-CL with preconcentration step based on the 
design of Bowie et al. (1998). Thick grey lines represent PTFE or PVC tubing. 

 

During the first tests with a preconcentration step, high double peaks were observed 

when the rinsing step was not included in the sequence. This high signal was likely due 

to sea-salts, as halides tend to increase the CL signal (Bowie et al., 1998). A rinsing step 

with Milli-Q water was therefore added. In addition, a small negative peak was seen 

before the positive CL peak (Obata et al., 1993; Bowie et al., 1998). This was produced 

by the pH change of the elution solution sent into the flow cell as a small amount of 

rinsing Milli-Q water remained in the void volume of the extraction column and was 

sent prior to the acidic eluent. 
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Several experiments were carried out to optimise the loading pH by changing the pH of 

the 0.4 M ammonium acetate (NH4OAc) buffer added to 100 nM Fe(II) standards. 

According to the literature, Fe(III) is collected by 8-HQ from pH 2.6 and Fe(II) at pH > 

5 (Obata et al., 1993; de Jong et al., 1998). However results gave maximum signal for a 

pH of about 3.5 for this batch of resin (Figure II.8). One possible explanation for these 

unexpected results would be that Fe(II) was not collected, as the highest pH obtained 

was 4.9 at which Fe(II) may not yet be collected. The decrease in signal between pH 3.5 

and about 5 might be due to precipitation of iron since the buffer was added off-line to 

the system, but it was highly improbable to have almost complete precipitation of 100 

nM iron so rapidly. 

 

 

 

 

Figure II.8: PMT response for two 
loading pH optimisation experiments to 

collect Fe(II). 
 

 

 

 
 

The hypotheses given above do not however explain why a CL signal was monitored 

when the loading pH would only allow collection of Fe(III) according to the literature. 

If most of Fe(II) was oxidised to Fe(III) and Fe(III) collected onto the resin at pH 3.5, 

hardly any signal should have been recorded due to the specificity of the CL reaction to 

Fe(II) without hydrogen peroxide (see Section II.2.3). This would only be possible if 

Fe(II) was oxidised to Fe(III) before collection onto the resin, and Fe(III) was 

subsequently photo-reduced to Fe(II) after elution and before entering the detection 

flow cell. However, photo-reduction was highly improbable as the distance was kept to 

a minimum between the column and the detection cell, and the tube covering that 

distance was protected from sunlight with black tubing. There was thus no obvious 

reason why the resin behaved as observed, but it was clear that the response was not that 

expected. The possibility of a problem with the behaviour of this batch of 8-HQ resin 

was also considered given that experiences in other laboratories showed that the first 
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batch of resin prepared can sometimes fail for unknown reasons (S. Ussher, 2003, 

personal communication, and (Dierssen et al., 2001)). 

 

Despite the unexpected results for the optimisation of the loading pH, this system was 

useful in developing and adapting the chemistry. This was not a viable system for long-

term use, as either the injection valve or the manual valve had to be manually switched 

at precisely 60 second intervals to give reproducible data, which is difficult to achieve 

over long periods of time. Additionally the problems encountered trying to determine 

the optimum loading pH may have been caused by the addition, off-line of the buffer to 

the standard, which may have promoted the precipitation of a significant fraction of iron 

before analysis. These results would imply that solutions should be buffered in-line to 

minimise this effect, which can only be done with an automated method. It was 

therefore subsequently modified to be computer controlled and further optimisation was 

carried out with a new batch of resin prepared as described in Appendix 2, in order to 

determine whether the resin may have been partly responsible for the unexpected results 

obtained for the loading pH. 

 

II.3.3. Development of an automated FIA-CL system to detect Fe(II) in 
seawater 

II.3.3.1. Description of the system 

The system was subsequently modified to be computer controlled (Figure II.9). Low 

voltage pumps (B and C), switching valves (V1, V2 and C3), and other components 

were chosen to simplify control circuits, to allow safe operation of the system, and were 

set up as described by Bowie et al. (1998). 

Instrument control was performed using a National Instruments 12-bit 

multifunction input/output (I/O) DAQPad-6020E card, and the signal acquisition using 

a National Instruments 96-bit Digital I/O DAQPad-6507. The power supply and 

amplifier to control peristaltic pumps, valves and photomultiplier tube were designed 

and made in the laboratory by Drs. Matt Mowlem and Ralf Prien (OED, NOCS). The 

sensitivity (or gain) of the PMT could be changed on a scale from 1 to 10 using the 

instrument control software. Data acquisition and processing were performed using 

software written in LabVIEW 6.1 (National Instruments) on a Toshiba Satellite Pro 

laptop. Details about instrumentation, reagent preparation, and analytical sequence are 

described in Appendix 4. Information about the programme LabView used for the data 
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acquisition and processing, together with diagrams of the electronic control, are given in 

Appendix 5. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure II.9: Diagram of the Fe(II) automated FIA-CL with preconcentration step based on the 
design of Bowie et al. (1998). Thick grey lines represent PTFE or PVC tubing. 

 

During initial tests the baseline was high and unstable to allow detection of low-iron 

concentrations, presumably because of low levels of iron contamination of the reagents. 

It became clear that all reagents needed further purification. The luminol reagent was 

purified through about 10 g of Chelex-100 resin. It was observed later that the baseline 

level could be lowered further by passage through 8-HQ resin to remove iron and other 

trace metals. Furthermore, the noise and stability of the baseline could be further 

improved by preparing the luminol reagent 24 h in advance as suggested by Bowie et al. 

(1998), and protecting the solution from light. The working buffer was purified through 

an off-line 8-HQ resin column and further purified in-line with an additional 8-HQ resin 

column in the FIA-CL system. 

A reducing reagent (sodium sulphite, approximately 40 mM) was prepared to 

convert Fe(III) to Fe(II) in samples for Fe(II+III) determination. This reagent was also 

purified through a 8-HQ resin column to minimise its contribution to the blank. In order 

to achieve a concentration of 100 µM of sulphite in the sample, 2.5 µL of reducing 
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reagent were added per mL of acidified seawater as suggested by Bowie et al. (1998). 

The reducing reagent was left to react for a minimum of 8 h before analysis. Iron stock 

solutions were kept in a fridge to slow down the oxidation of Fe(II). 

 

Calibrations were carried out by standard additions to seawater collected in the open 

Atlantic Ocean during the AMT-12 cruise. A 10 µM Fe(II) stock solution was prepared 

by dilution of a 10 mM Fe(II) stock solution where 0.3921 g ammonium ferrous 

sulphate (Fisher) was dissolved in 0.1 M quartz distilled hydrochloric acid (Q-HCl). A 

500 nM Fe(II) working standard was prepared in 0.01 M Q-HCl (similar to the acid 

strength in acidified samples) by diluting the 10 µM Fe(II) stock solution. Calibration 

standards were prepared daily by adding the required quantity of 500 nM Fe(II) working 

standard to acidified seawater (ASW) and adjusting volumes with diluted acid (0.01 M 

Q-HCl) in order to achieve the same total volume for all standards (e.g. Table II.2). 

 

 Volume 
ASW (mL) 

Volume 500nM 
Fe(II) standard (µL) 

Volume 0.01M 
Q-HCl (µL) 

Total volume 
(mL) 

Blank 
(0.01 M Q-HCl) 0 0 20 mL 20 

ASW 20 0 200 20.2 
ASW + 0.5 nM 20 20 180 20.2 
ASW + 1 nM 20 40 160 20.2 
ASW + 2 nM 20 80 120 20.2 
ASW + 5 nM 20 200 0 20.2 

 
Table II.2: Example of standards preparation for a calibration in the range 0 to 5nM Fe(II). 

ASW = Acidified seawater.  
 

It was observed by experience that slight variations occurred in the peak shape between 

replicate peaks (data not shown). Peak areas were thus used for measurements in order 

to better define peaks. 

 

The mechanical development of the automated Fe(II) analyser was relatively simple 

with Dr. Matt Mowlem’s help, and therefore the main work was to optimise and 

calibrate it. Given the time and equipment constraints, the unoptimised technique was 

taken onboard ship during the AMT-12 (6 weeks) and JR98 (3 weeks) cruises, in a clean 

trace-metal container to minimise contamination, in order to progress its development. 

Sampling was done so measurements were possible later in the laboratory if needed. 
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II.3.3.2. Analytical challenges 

In addition to significant complications encountered including backpressure, 

contamination from the Milli-Q water onboard, and problems with the available pH-

meter during the first cruise, attempts to calibrate the system highlighted three major 

problems: a) poor reproducibility between replicate peaks; b) poor precision when 

switching between solutions; and c) poor sensitivity and negative curvature of the 

calibration curve. 

 

Major progress in the understanding of the technique was achieved through the 

extensive work carried out to optimise the system. Experiments were undertaken to 

improve performance of the system focussing on precision and the calibration curvature. 

However, due to persistent poor calibrations and precision of the system, it was decided 

to seek help from the University of Plymouth where the Fe(II) FIA-CL was originally 

developed. Major improvements on precision were then made although the calibration 

remained poor. A significant number of experiments were carried out to try and solve 

problems as they arose. In order to limit the length of the material presented here and 

for clarity, these results are presented classified relative to the problems encountered 

rather than chronologically. An overview of the main findings is given below. 

 

II.3.3.2.1. The resin : Loading pH and problems of backpressure 

As the first batch of 8-HQ resin did not show the highest recovery of Fe(II) at the 

expected pH (> 5) using the manual Fe(II) technique for unknown reasons (see Section 

II.3.2.2), a new batch of fine 8-HQ resin was prepared following the same protocol and 

with the same resin bead size (see Appendix 2). 

 

A simple loading pH experiment showed that the signal increased between pH 3.2 and 

5.2 (Figure II.10), a trend suggesting that Fe(II) was collected at pHs > 5, as suggested 

by the literature (see Section II.2.2). However this fine 8-HQ resin was found to induce 

backpressure because of packing with time. This packing effect resulted in a reduced 

bed volume, and when flows were reversed, in the formation of channels in the column, 

which could provide an alternative flow path to the buffered sample solution other than 

through the 8-HQ resin, and affect the precision. Several time consuming attempts 

where made to limit this packing effect. 



Chapter II. Implementing a FIA-CL system to determine dissolved Fe(II) in seawater 

 38

 

 

 

 

Figure II.10: Loading pH 
experiment with the new 8-HQ 

resin. [Fe(II)] = 20 nM prepared in 
Milli-Q water. 

 

 

 

 

In order to avoid backpressure problems, a new 8-HQ resin with a coarser particle size 

(HW-40C, 75 µm) was subsequently prepared following the protocol of Dierssen et al. 

(2001) (see Appendix 2). The 8-HQ (HW-40C) resin obtained was homogeneously 

black, and no backpressure problems were encountered with its use with a half-full 

column. This new resin showed optimum uptake of iron at pHs > 5 for filtered seawater 

containing sulphite and spiked to 20 nM Fe(II). The new coarser resin was therefore 

more adapted to the configuration of this version of the FIA-CL relative to a finer resin. 

 

II.3.3.2.2. Problem a: Poor reproducibility 

All the following experiments were carried out using surface seawater collected along 

the track of the AMT-12 cruise, filtered through 0.4 µm pore size filters, acidified with 1 

µL Q-HCl per mL seawater stored in polycarbonate bottles, and allowed to react with 

the reducing reagent (sodium sulphite, 2.5 µL per mL seawater) for more than 10h in 

polycarbonate bottles. The iron concentration of this seawater was estimated at about 1 

nM. 

 

The problem of reproducibility was identified when several experiments showed that 

after a gradual increase in peak height, the CL signal for acidified filtered seawater with 

sulphite seemed to stabilise, but with relatively reproducibility (e.g. Figure II.11, 

precision = 12.3% rsd (n = 16) in this example). Several components and parameters of 

the system may influence reproducibility and were thus tested (Table II.3), and their 

influence on precision was reported when possible. 
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Figure II.11: Reproducibility 
experiment of 20 analytical 
cycles with acidified filtered 
seawater with sulphite (PMT 
gain = 6). Atlantic surface 

water with [Fe(II)] ~ 1 nM, 
[S(IV)] = 100 µM. 

 

 

 

Experiments Precision (% rsd) 
i) Performance of the equipment 
Change valves 14.4% (n =  11) 
Change PMT and flow cell 13.1% (n = 14) 
Change low-voltage pumps 9.6% (n = 9) 
ii) Effect of flow rates and eluent strength 
Flow rates 9 – 18% (n = 5-7) 
Increased eluent concentration poor 
iii) Effect of the flow cell design 
Change design flow cell poor 
iv) Other factors: Changes in pH 
No change in CL pH monitored  

 
Table II.3: Summary of the experiments performed to improve reproducibility. 

 

i) Performance of the equipment 

Almost all mechanical components of the system were tested to check for variations in 

their repetitive functioning. Air bubbles were observed in the standard/sample line on 

using the switching valve (V2), and this and one other valve (V3) were removed from 

the system (Figure II.9), but did not result in any obvious amelioration in precision 

(14.4% (n = 11)). In order to test other components of the system, the photomultiplier 

tube, flow cell, and switching valve (V1) were all exchanged with spares, but these 

modifications did not appear to improve the precision (13.1% (n = 15) before and 

13.0% (n = 14) after changing components). 

 

Variability in the standard/sample flow rate would change the quantity of iron loaded 

onto the resin. Relatively high pulsing was observed with the lab-made low-voltage 

pumps initially used, due to their slow rotating speed. These pumps were therefore 

Number of scans (10scans/sec)

0 5000 10000 15000 20000 25000 30000 35000

PM
T 

si
gn

al
 (V

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6



Chapter II. Implementing a FIA-CL system to determine dissolved Fe(II) in seawater 

 40

exchanged with Ismatec pumps which showed much less pulsing as their rotation speed 

was much faster. Variations in the volume delivered by the pump with time were 

monitored and the volume of solution delivered was found to only decrease by about 

1.7% over 40 analytical cycles (data not shown). Peristaltic pump tubing was changed 

regularly to minimise this effect. Precision was thus slightly improved (9.6% (n = 9)). 

 

ii) Effect of flow rates 

Variability in the elution efficiency was tested by changing reagent flow rates. 

Decreasing flow rates of the luminol reagent and eluent changed the peaks shape and 

intensity as the residence time in the flow cell varied, but did not seem to improve 

reproducibility significantly (Figure II.12). Moreover, if the elution was not complete 

during the elution step, a carry over effect would be expected between peaks. However, 

increasing the eluent strength and elution time did not change peak area (data not 

shown), suggesting that the strength of the eluent and elution time used previously were 

close to optimum. 

 

 

 

Figure II.12: Experiments 
where luminol reagent and 

eluent flow rates were 
changed by ± 25%. Flow 
rates (mL.min-1) and the 

precision (% rsd) for each of 
the tests are indicated. 

Atlantic surface water 
with [Fe(II)] ~ 1 nM, 
[S(IV)] = 100 µM. 

 

 

iii) Effect of flow cell design 

As the CL light emitting reaction is very rapid (~ 100 ms), signal loss is possible if the 

mixing of reagents occurs away from the PMT. Thus another design for the flow cell 

was tested (Figure II.13). Instead of having the luminol reagent and eluent mixing just 

before entering the flow cell, the reagents mixed in front of the PMT window as the 

critical factor is the time for mixing of reagents in front of the PMT window. Peak 
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shape was similar with both designs but the response was weaker with the new design 

which may be due to a modification in the mixing efficiency. The first design was 

therefore retained in subsequent experiments. 

 

 

 

Figure II.13: 
Experiment 

comparing two flow 
cell designs with 
acidified filtered 

seawater. Atlantic 
surface water with 
[Fe(II)] ~ 1 nM, 

[S(IV)] = 100 µM. 
 

iv) Other factors: Changes in pH 

 

Variability in the CL pH in the flow cell would change the efficiency of the CL 

reaction. However, measurements of the pH in waste showed that there was no variation 

in the CL pH between replicate peaks during the detection step. 

 

Given that most of the above experiments showed little improvement on precision, it 

was hypothesised that poor reproducibility was due to the 8-HQ resin, which seemed to 

require several cycles before stabilising when starting a new experiment. This problem 

was investigated further with the help of S. Ussher from the University of Plymouth 

(see Section II.3.3.4). 

 

II.3.3.2.3. Problem b: Poor precision on changing solutions 

In addition to the poor reproducibility, a problem with the precision during calibrations 

was identified as a carry-over effect was observed on the first replicate peak of a new 

solution contributing to the poor precision of the system during calibrations. This 

feature can be minimised when adjusting the loading time for the first replicate peak (S. 

Ussher, 2003, personal communication). A sequence of four analytical cycles was set up 

to be able to change the loading time of the first peak of four replicates (Table II.4). 
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Sequence Loading  Rinsing Eluting Rinsing 
Valve 1 ON OFF OFF OFF 
Pump B ON OFF OFF OFF 
Pump C OFF ON ON ON 

IV Position A Position A Position B Position A 
Cycle 1 60s 30s 60s 30s 
Cycle 2 60s 30s 60s 30s 
Cycle 3 60s 30s 60s 30s 
Cycle 4 60s 30s 60s 30s 

 
Table II.4:  Description of the timing sequence for the automated analyser. 

The time in bold was modified between each experiment. 
(See Figure II.9 for definition of Valve 1, Pump B, Pump C and IV) 

 

Loading times of 120, 105 and 90 seconds were used to find the optimum precision 

during calibrations in the range 0.5 to 5 nM. The best precision was obtained for 105 

seconds loading time (Table II.5). Within a calibration, however, precision was poorer 

for the highest standards suggesting that adjusting the timing was not sufficient to 

minimise the carry-over effect on the first replicate peak. The problem was then 

approached in a different way. 

 

Experiment Loading time 
cycle 1 

Precision 
(average, n = 4) 

Analytical 
sequence 

120 s 11 – 49% (26%) 

105 s 4 – 27% (18%) 

A 
Increasing 

first loading 
time 90 s 15 – 25% (20%) 

Table II.4 

6 – 12% (9%) 
3 – 19% (11%) 
4 – 15% (9%) 

B 
Addition of 
switching 

valve  

60 s 

6 – 12% (9%) 

Table II.6 

 
Table II.5: Precision of calibrations carried out by standard additions to acidified filtered 

seawater (Atlantic surface water with [Fe(II)] ~ 1 nM, [S(IV)] = 100 µM) in the range 0.5 
to 5 nM. 

 

A carry-over effect between standards was evident where a lower (or higher) first peak 

was caused by previous solution remaining in the tubing between the container and the 

adjacent valve (V1), which had a lower (or higher) concentration than the new standard 

(Figure II.9). To minimise this carry-over effect, an extra switching valve (V2) was 

added before V1 to reduce the dead volume in the flow system (Figure II.14). 
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Figure II.14: Diagram of the automated Fe(II) FIA-CL after addition of V2 to improve the 
precision. Thick grey lines are PTFE or PVC tubing. 

 

Additional experiments were carried out to determine the time needed for the new 

solution to reach the added valve (V2). Results (data not shown) showed that the rinsing 

time of the last cycle should be increased from 30s to 55s. The new analytical sequence 

is shown in Table II.6. 

 

Sequence Loading  Rinsing Eluting Rinsing 
Valve 1 ON OFF OFF OFF 
Valve 2 OFF OFF OFF ON 
Pump B ON OFF OFF ON 
Pump C OFF ON ON ON 

IV Position A Position A Position B Position A 
Cycle 1 60s 30s 60s 30s 
Cycle 2 60s 30s 60s 30s 
Cycle 3 60s 30s 60s 30s 
Cycle 4 60s 30s 60s 55s 

 
Table II.6: Description of an analytical sequence after addition of valve (V2). Parameters 
changed are in bold. See Figure II.14 for definition of Valve 1 & 2, Pump B & C and IV. 

 

Several calibrations with standard additions in the range 0.5 to 5 nM were then carried 

out and showed that precision was improved (average 10%) but occasionally remained 

high (up to 19%) (Table II.5B). 
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The addition of an extra valve therefore improved precision during calibrations although 

it was still occasionally high, suggesting that another factor, such as the behaviour of 

the 8-HQ resin may be responsible for the poor performance. 

 

II.3.3.2.4. Problem c: Poor calibration 

An additional problem was identified when attempting to calibrate the analyser, which 

did not seem related to the issues of reproducibility and precision. Several calibrations 

using standard additions to different batches of acidified filtered seawater containing 

sulphite (as described in Section II.3.3.2.1) were carried out in the range 0.5 or 1 to 5 or 

10 nM. The problem was that calibration curves did not show positive curvature as 

expected (see Section II.2.3), but had negative curvature (e.g. Figure II.15). In almost all 

cases and even after adding the extra valve, which improved precision (see Section 

II.3.3.2.3), calibrations showed that the most concentrated standards typically gave a 

lower signal than expected, resulting in a negative curvature. 

 

Figure II.15: Calibration curve using 
standard additions of Fe(II) to acidified 

filtered surface seawater from the Atlantic 
Ocean ([Fe] = 1.6 nM) and containing 100 
µM sulphite. CL pH = 10.4 and Loading 

pH = 4.9. Values not blank corrected. 
Curve fitted with a second degree 

polynomial trendline. Fe(II) stock 
solutions prepared with reducing 

reagent, bubbled with nitrogen, and 
kept in a fridge. Precision ranged 

between 6 - 30% rsd (n = 5-7, average 
15% rsd). The reagent blank value 
lower than the limit of detection 

(estimated at 430pM). 
 

Subsequent work was thus focussed on identifying the factor(s) leading to poor 

calibration of the system. Working reagents (luminol, eluent, and ammonium acetate 

buffer) were not thought to be responsible for this behaviour as a new batch was used 

for each experiment with a different seawater matrix. The response of the anlyser in 

different Fe(II) concentration ranges was checked, and several parameters susceptible of 

influencing the response of the analyser during calibrations tested (see Table II.7). 
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Calibrations with ... Sensitivity with 
linear fit (average) n 

Fe(II) standards range 0.5 – 10 nM 0.1 – 43.2 (5.4) 27 
i) Concentrated standards range 1 – 200 nM 1.5 – 3.1 (2.4) 5 
iii) Reduced Fe(III) standards 1.1 – 6.3 (3.7) 7 
iv) Random calibration 1.2 – 4.6 (3.0) 3 

 
Table II.7: Summary of the experiments carried out to investigate on the poor response of the 

Fe(II) FIA-CL during calibrations. 
 

i) Calibrations with high concentration standards 

In order to test the response of the analyser at relatively high concentrations, several 

calibrations in the range 5 – 200 nM were carried out with acidified filtered seawater 

containing sulphite (as described in Section II.3.3.2.2). The CL pH and loading pH were 

checked and if needed adjusted to the optimum pHs of 10.4 and > 5.5, respectively. 

These curves were linear, with a precision for each point ranging from 3% rsd for a 10 

nM standard up to 27% rsd for seawater alone (Table II.8).  

 

I.D. Correlation for linear 
trendline 

Precision rsd (n=4) 
(average) 

Limit of 
detection (nM) 

Blank level 
(nM) (n=4) 

1 0.999 5 – 27% (13%) 3.87 8.00 
2 0.9973 3 – 10% (7%) 0.53 0.60 
3 0.9971 3 – 8% (6%) 0.96 < LoD 
4 0.9698 10 – 19% (13%) 0.81 2.68 

 
Table II.8: Figures of merit of four calibrations by standard additions in the range 5 to 200 nM 

to acidified filtered seawater collected during the AMT-12 cruise ([DFe] ~ 1 nM). 
 

The response of the analyser at high iron concentrations was satisfactory over a wide 

range of Fe(II) concentrations (0 - 200 nM) and did not show the negative curvature 

observed at lower concentrations. These results suggest that at high concentrations the 

system is responding satisfactorily, and that the problem only affects low levels of iron. 

 

ii) Stability of Fe(II) standards 

The stability of Fe(II) standards was suspected to be an issue in the calibrations. The 

Fe(II) stock solutions were initially prepared by dissolving ammonium ferrous sulphate 

in 0.1 M quartz-distilled hydrochloric acid (Q-HCl). These acidified stock solutions 

were simply stored in the fridge, as low temperature is reported to slow down the 

oxidation rate of Fe(II) (Croot and Laan, 2002). 
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A stability experiment was carried out to check on variations of Fe(II) with time (t = 0 

to 3h15min) in a freshly prepared working standard of 40 nM Fe(II) in 0.1 M Q-HCl. 

Iron(II) concentration decreased linearly to up to 2 h (R2 = 0.97), and continued 

decreasing more slowly thereafter (Figure II.16). Results showed that in weak acid 

media, the Fe(II) was 30% oxidised less than one hour after preparation of the 40 nM 

standard. Assuming that the initial signal measured corresponded to 40 nM Fe(II) as 

initially prepared, the rate of oxidation would be 0.23 nM.min-1 during the first two 

hours of the experiment. Iron(II) would have a half-life of 87 min at about pH 1 in 0.1 

M Q-HCl, which is far greater than its half-life in seawater (~ 1.5 min (Ussher et al., 

2004)) at pH 8, as expected in an acidic medium. 

 

 
 
 

Figure II.16: Standard stability 
experiment with a 40 nM Fe(II) standard 
prepared in 0.1 M Q-HCl (eluent) carried 

directly to the flow cell, without any 
preconcentration step. 

 

 

 

 

This experiment clearly showed that stability of Fe(II) standards is a major issue. 

Sodium sulphite was therefore added to the 10 mM and 10 µM Fe(II) stock solutions 

prepared in 0.1 M Q-HCl to keep iron in the reduced form as suggested by Bowie et al. 

(1998), and were stored in a fridge to lower the oxidation rate (Croot and Laan, 2002). 

These stock solutions and diluted 1 µM working solutions were prepared weekly and 

daily, respectively. The Fe(II) standard additions to seawater with sulphite were carried 

out immediately prior to analysis to minimise Fe(II) oxidation. 

 

iii) Reduced Fe(III) standards 

A test was performed to check whether the calibration was still showing the same 

feature when using reduced Fe(III) standards for the same low range of concentrations. 

A series of calibration experiments was carried out using Fe(III) standards reduced with 

sulphite for > 7 hours to ensure complete reduction of Fe(III). All seven calibrations 

performed showed negative curvature (e.g. Figure II.17). This result suggests that the 
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reduction of Fe(III) may not have been complete or the concentration of sulphite may 

have been too small to reduce all Fe(III) in the most concentrated standards, however 

sulphite was added in excess (100 µM) relative to iron, therefore all Fe(III) would be 

expected to be reduced. It may nevertheless be possible that sulphite was not as efficient 

as expected in reducing Fe(III), but this eventuality was not considered at the time. 

 

 

 

Figure II.17: Calibration curve by standard 
addition of reduced Fe(III) to acidified 

filtered surface seawater from the Atlantic 
Ocean ([Fe] = 1.5 nM) reduced for 17h with 
sulphite (100 µM). Blank = 0.4 nM and limit 

of detection = 0.2 nM 
 

 

 

 

When using Fe(II) standards, sodium sulphite is used to keep Fe(II) in the reduced form, 

and additions of Fe(II) from the 500 nM stock solution to seawater were made less than 

a minute before analysis. Therefore oxidation of Fe(II) in the standards was expected to 

be minimum, and sulphite was expected to reduce any oxidised Fe(II), suggesting that 

the negative curvature was presumably not due to oxidation in the Fe(II) standards. 

 

iv) Random calibrations 

More calibration experiments were carried out where Fe(II) or reduced Fe(III) standards 

(prepared by standard additions to acidified filtered seawater with sulphite (100 µM) as 

used before in the range 0.5 to 5 nM) were analysed in random order rather than in order 

of increasing iron concentration as performed before. The aim was to test whether the 

negative curvature of the calibration was due to a technical feature of the system, 

however all calibrations showed negative curvature. These results infer that the negative 

curvature was therefore not a feature of the system, and that this problem originated 

from a parameter likely not related to the standards. 
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II.3.3.3. Comparison with the analyser from the University of Plymouth 

Given the difficulty in isolating the factor(s) leading to the negative curvature of the 

calibration, poor precision and time constraints in the present project, it was decided to 

compare the University of Southampton (UoS) system to the one developed at the 

University of Plymouth (UoP) by Bowie and co-workers, and used at that time by S. 

Ussher and co-workers; see Table II.9 for a comparison of the systems. 

 

Differing 
components Fe(II) FIA-CL Southampton Fe(II) FIA-CL Plymouth 

Purification through 8-HQ resin Through Chelex-100 with acid 
wash each 500 mL Luminol reagent 

Protected from light No protection 
Gilson, Ismatec pumps, control unit Gilson pumps, control unit 

FIA-CL system Additional valve (V2) to avoid 
carry-over effect 

Longer first loading time or do not 
consider first peak 

Protocol Dierssen et al. (2001) Protocol Landing et al. (1986) 
Coarse bead size (HW-40C) Fine bead size (HW-75F) Preconcentration 

column Column design as in Figure II.6 Column design as Bowie et al. (2002) 
 

Table II.9: Comparison of the main differing components between Fe(II) FIA-CL systems 
developed at the University of Southampton and at the University of Plymouth. 

 

Experiments were carried out to compare the preconcentration column (PCC) and the 

luminol reagent (LR). Conditions for the experiments (Experiments 1, 2 and 3) are 

summarized in Table II.10.  

 

 Southampton Plymouth Number 
of cycles 

Average 
peak area 

Precision 
(% rsd) 

Experiment 1 PCC & LR ------ 8 132.4 18.3% 
Experiment 2 LR PCC 9 362.8 7.1% 
Experiment 3 ------ PCC & LR 12 203.7 7.2% 

Luminol 
preparation 

10 µM luminol in 
0.1 M Na2CO3 

10 µM luminol in 
0.1 M Na2CO3 

   

Luminol pH 12.3 10.4    
CL pH 10.4 9.5    

 
Table II.10: Description and results (average peak area and precision % rsd) of the experiments 
carried out to compare the Fe(II) FIA-CL of this project response changing the preconcentration 

column (PCC) and/or the luminol reagent (LR).  
 

Results showed that the PCC and therefore the UoP resin, was about threefold more 

sensitive than the UoS one (Figure II.18 and Table II.10). The signal during Experiment 

3 was lower using the UoP LR with the Southampton system (Figure II.18 and Table 
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II.10) as the CL pH was not optimal. The UoP LR solution was prepared and purified at 

a slightly different pH than that of UoS, and any subsequent adjustment of the pH of LR 

was expected to result in an increased baseline and lower precision due to the presence 

of impurities from the added sodium hydroxide. These results also indicated that the 

resin prepared following the protocol of Dierssen et al. (2001) was not as sensitive as 

the resin prepared according to the protocol of Landing et al. (1986). 

 

Figure II.18: Signal 
obtained from the 
comparison of the 

preconcentration column 
and luminol reagent used 

at the University of 
Southampton and at the 
University of Plymouth. 
Experiment carried out 
with acidified filtered 

surface seawater from the 
Atlantic Ocean ([DFe] = 

1.5 nM) with sulphite (100 
µM). 

 

 

As it was clear the UoP resin was behaving better that UoS resin, it was decided to use 

the 8-HQ resin from the University of Plymouth in the subsequent experiments at 

Southampton (courtesy of S. Ussher, University of Plymouth). 

 

II.3.3.4. Comparison of the 8-hydroxyquinoline resins 

In Southampton, a qualitative experiment to test the cation breakthrough of the resins 

(i.e. uptake and elution) was performed with HW-65F and HW-40C 8-HQ resins 

prepared at UoS with the protocol of Dierssen et al. (2001) ("Dierssen 8-HQ resins"), 

and HW-75F 8-HQ resin from UoP prepared following the protocol of Landing et al. 

(1986) ("Landing 8-HQ resins"). The configuration of the manifold was simplified and 

included a peristaltic pump for the luminol reagent and the Fe(II) standard/eluent, a 

preconcentration column on the standard/eluent line, a PMT flow cell where the luminol 

reagent and the standard/eluent mixed, and the signal was detected using a PMT. The 

luminol reagent was continuously flowing directly to the PMT flow cell. The procedure 

consisted of two steps: 1) a 1 µM Fe(II) standard (in 0.08 M Q-HCl containing sulphite) 
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was pre-concentrated onto the resin until the signal stabilised to its maximum value, 

indicating that the resin iron binding sites were saturated with iron; and 2) the loaded 

Fe(II) was eluted with the acid eluent (0.08 M HCl). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure II.19: Breakthrough experiments performed with three 8-HQ resins prepared with 
different protocols. Figures show 3 (a - c) or 5 (d) loading/elution cycles of a 1 µM Fe(II) 

standard. Quantity of resin packed in columns is indicated. Resins HW = Hydrophilic Water-
compatible polymeric base resins; F = Fine; C = Coarse. HW-75F = 30-60 µm particle size, > 
1000 Å pore size; HW-65F = 30-60 µm particle size, 1000 Å pore size; HW-40C = 50-100 µm 

particle size, 50 Å pore size. 
 

The PMT signal given by the 1 µM Fe(II) standard without a preconcentration column 

was circa 3.5 V (n = 3, Figure II.19a). The PMT signal showed that, at first, the resin 

bounded Fe(II) until reaching its maximum capacity leading to the PMT signal to 

increase and stabilise (Figure II.19b, c and d). The eluent was then pumped and Fe(II) 

eluted so that the PMT signal decreased and stabilised at its background level. Results 

showed that while the “Landing 8-HQ resin” retained all the iron passing through and 

fully released it during the elution, the “Dierssen 8-HQ resins” both tended to slowly 

take up and only gradually release iron. Weeks et al. (2002) reported that the 8-HQ TSK 

resin prepared by attaching 8-HQ to the commercial epoxy resin (Dierssen protocol) 

tended not to fully release the loaded copper, as observed here for iron. It is 

hypothesised that the “Dierssen 8-HQ resins” may have two types of binding sites: 
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some easily available sites which would quickly complex and then release Fe during the 

elution; and some sites less easily accessed in the resin matrix which would only 

gradually complex Fe, but difficult to release Fe by the eluent. This feature of the 

“Dierssen 8-HQ resins” used in all the previous experiments carried out during the 

development was thought to play a major role in the problems encountered with the 

Fe(II) technique, especially with the reproducibility of the CL signal. In particular it 

may explain why a gradual increase in the signal was observed during replicate 

measurements in earlier experiments (see above). The “Landing 8-HQ resin” was 

therefore used subsequently, and there was a significant improvement in the precision; 

e.g. typically 5% rsd for standards in the 0.5 to 5 nM Fe(II) concentration range. 

 

II.3.3.5. Subsequent calibrations with the new 8-HQ resin from Plymouth 

Despite using the improved resin, a series of nine calibration experiments in the range 

0.5 to 5 nM frequently showed non linear calibrations. The last calibration in the range 

0.5 – 5 nM was performed without sulphite additions, to reproduce the conditions of the 

calibration experiments carried out during the comparison exercise at the University of 

Plymouth. Results showed a negative curvature as in previous experiments with 

precisions ranging from 2% to 5% (average 2.9%, n = 5), the blank and limit of 

detection were estimated at 460 pM and 220 pM, respectively, using a second-degree 

polynomial fitting curve (Figure II.20). 

 
 

 

Figure II.20: Calibration curve by 
standard additions without sulphite to 
acidified filtered seawater collected in 

the Celtic Sea ([DFe] ~ 1.5 nM). 
 

 
 
 
 
 

This last calibration showed that, at this stage, the system was still not reliable and did 

not allow sample analysis. The only element of the system not changed or modified in 

the Fe(II) technique was the luminol in the chemiluminescence reaction. Since this 

product was used as received, and was ordered from the same company as Bowie et al. 
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(1998), there was no reason to doubt its quality, and no comments about variability of 

quality of this reagent had been presented in the literature. Degradation or poor quality 

luminol could explain the problems encountered with calibrations, however this 

possibility had not yet been considered at this stage. Because of time constraints in the 

project, it was decided at this point to move on to the alternative version of the FIA-CL 

system for total dissolved Fe. 

 

Subsequently, a comparison of calibrations obtained with the luminol used above and a 

new luminol were compared to investigate on the role of luminol in the negative 

curvature often observed in calibrations. 

 

II.3.3.6. Comparison of calibrations with old and new luminol 

Before the end of this project, two experiments were carried out to investigate the effect 

that the quality of the luminol reagent may have had on calibrations, to determine 

whether it may have been responsible for the negative curvature of calibrations with the 

Fe(II) technique. Reagents and standards were prepared for the Fe(II) technique as it 

was set up in its last stage of development (see Chapter II.3.3 and Appendix 4). Two 

luminol reagents were prepared: one with the luminol ("old luminol") used in earlier 

experiments, and one with a newly bought luminol ("new luminol"). All conditions (i.e. 

reagents concentration, ageing, pHs, flow rates) were kept as similar as possible 

between experiments, which were both performed in a single day. 

 

Calibration curves were slightly different as the curve with "old luminol" was linear 

whereas the "new luminol" calibration had a clear positive curvature (Figure II.21). The 

signal for non-spiked and + 0.5 nM seawater were similar for both experiments and then 

differed for additions ≥ 1 nM. Additionally the peak area for the NASS-5 certified 

seawater measured after each calibration increased by 17% between the two 

experiments. These results are unlikely to be due to the 8-HQ resin since both 

experiments were carried out with the same resin column and standards. 

The difference between calibrations may be related to the response of the system 

to additions of Fe(II). From 0 to + 2 nM the sensitivity was 0.5 V/nM using peak 

heights with the "old luminol", and the peak height of + 3.5 nM and + 5.0 nM standards 

were lower than expected from this trend (-11% and -14% of the peak area, 
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respectively). These results are similar but less pronounced than those obtained earlier 

with the Fe(II) technique with the "old luminol" (see Section II.3.3.2.). 

 
 

 

Figure II.21: Comparison of 
calibrations carried out with the "old" 
or "new" commercial luminol. "New 

luminol" calibration fitted with a 
second-degree polynomial regression. 

 

 
 
 
 
 

The "new luminol" calibration was carried out after the "old luminol" therefore Fe(II) 

could have been significantly oxidised between the two experiments. However sulphite 

was added to the standards to keep Fe(II) in solution and therefore oxidation of Fe(II) 

should have been very limited. The calibration with the "new luminol" did not have a 

linear regression however the curvature was positive. Values obtained for the certified 

seawater NASS-5 were within the 95% confidence level for the "old luminol" 

calibration, and significantly higher for "new luminol" (Table II.11). This latter result 

may be due to the poor precision on the NASS-5 measurement or to the lower signal 

obtained with the standards with the "new luminol" experiment. 

 

Calibration with CL pH Precision 
(average) (n = 3-4) Blank (nM) NASS-5 ± 1sd 

(3.71 ± 0.63nM) 
"Old luminol" 10.43 2.3-6.6% (4.8%) < LoD 4.33 ± 0.12 nM 
"New luminol" 10.46 0.01-7.9% (4.3%) < LoD 5.81 ±1.84 nM 

 
Table II.11: Figures of merit of the Fe(II) technique using the "old" or "new" commercial 

luminol. CL = chemiluminescence; LoD = Limit of Detection 
 

Due to time constraints, the role of luminol quality in the problems encountered during 

calibration of the Fe(II) technique could not be investigated further. 

 

II.4. Summary 
The Fe(II) technique was chosen because it could give information on iron speciation, 

and the technique seemed simple and quick. The method had the potential to allow near 
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real-time measurement of transient Fe(II) in seawater, which is the most available form 

of iron to the biota, as well as total iron (Fe(II+III)), after a reduction step. This 

reduction was planned to be integrated in an in-line system combining the action of 

light and sulphite. However, the development of the system proved difficult. The 

principal problems were with the critical steps of preconcentration, and the 

chemiluminescence reaction. 

 
The preconcentration step was found to be difficult to control using the laboratory 

prepared resin. The preparation of the first batch of resin failed for unknown reasons, 

and the resin created backpressure problems owing to packing. About 90 experiments 

were designed and carried out in order to improve the precision when using the resins 

prepared following the protocol of Dierssen et al. (2001). Best results were obtained 

when calculating peak area, the loading pH was adjusted to pH 5.5 instead of 5.0, and 

after adding an extra valve to minimise the carry-over effect between analyses. It was 

later found that the resin obtained from Plymouth (“Landing resin”) was more efficient 

in loading and fully releasing iron than the “Dierssen resins” prepared in the current 

work. It was suggested that the “Dierssen resins” contained two types of 8-HQ binding 

sites, one of them being less available to Fe complexation than the other one. The resin 

used at the University of Plymouth was used subsequently; its finer resin bead size did 

not induce backpressure, and precision was significantly improved. 

 
The second critical step, the chemiluminescence reaction, was found to be complex. 

Calibration curves were found to be mostly linear for concentrated standards (0 to 200 

nM). However, most calibrations performed up to 10 nM showed a negative curvature. 

Previous studies ((King et al., 1995; Rose and Waite, 2001)) have shown that 

calibrations were slightly curved mainly as a result of the photosensitivity of luminol 

and impurities (see Section II.2.3); however none suggested that the curvature could be 

negative. Experiments comparing the "old" and "new" luminol were not conclusive that 

luminol was directly responsible for this problem. 

 
As the aim of this project was to analyse samples collected during the AMT-12 and 

JR98 cruises, given time constraints of the present project, and continuing problems 

with the Fe(II) method, it was decided to move on to an alternative method more widely 

used, the Fe(II)+(III) FIA-CL technique. It was hoped that modifying the Fe(II) 

technique to the Fe(II)+(III) system would help to identify the problem with the former 

method since these two techniques are quite similar. 



 

 

 

 

 

 

CHAPTER III. 

 

IMPLEMENTATION OF A FLOW INJECTION 
ANALYSER WITH CHEMILUMINESCENCE 

DETECTION (FIA-CL) TO 
SIMULTANEOUSLY DETECT Fe(II) AND 

Fe(III) IN SEAWATER 
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III.1. Introduction 
Whilst the Fe(II) FIA-CL technique (with preconcentration) has been only developed 

and used in two laboratories (University of Plymouth (UK) (Ussher et al., 2005), and 

Old Dominion University (USA) (Powell and Donat, 2001)), the Fe(II)+(III) technique 

based on the method of Obata et al. (1993) has much more widespread use suggesting 

that its optimisation may be easier. The Fe(II)+(III) technique is based on the three 

critical steps described in Chapter II. The main difference between the two systems is 

the addition of hydrogen peroxide (H2O2) in the CL reaction, which makes possible the 

simultaneous determination of Fe(II) and Fe(III). Therefore Fe(III) does not need to be 

reduced to Fe(II). However, the CL reaction with H2O2 is kinetically slower, and 

requires a long reaction coil and heating to enhance the reaction. An overview of the 

optimisation and calibration of the Fe(II)+(III) technique, and a full description of the 

optimised analyser are given below. 

 

III.2. Description of the Fe(II)+(III) analyser 
The Fe(II)+(III) technique developed was based on the methods of Obata et al. (1993) 

and de Jong et al. (1998), and modified to take advantage of the experience gained from 

the work on the Fe(II) technique. Main modifications to the Fe(II) technique were: 

• Addition of hydrogen peroxide for the CL reaction; 

• Ammonia solution added to buffer the CL reagents mixture to pH 9.5; 

• Standards were prepared from a single element AAS stock solution for iron 

(1000ppm) and thus included Fe(III) even though Fe(II) could be formed by photo-

reduction in the standard. 

• 5-way junction added to mix the CL reagents (luminol reagent, ammonia, hydrogen 

peroxide, and eluent); 

• Laboratory made thermostated heating system to increase the temperature, and thus 

the sensitivity of the CL reaction; 

• 8-HQ resin used was that provided by the University of Plymouth; 

• The ammonium acetate buffer was purified through two 8-HQ resin columns in 

series and further purified in-line with an additional 8-HQ resin column; 

• Flow cell was a 0.8 mm internal diameter PTFE tubing coil mounted on the PMT 

window and backed with aluminium foil to optimise light reflection; 

• A complete analytical cycle of loading, rinsing, eluting and rinsing was performed 

in circa 5 minutes for a 60 seconds preconcentration time. 
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The PMT and electronics in the detection system were identical to the Fe(II) technique. 

The modified system configuration is shown in Figure III.1, and details of 

instrumentation, reagent preparation, and analytical sequence are given in Appendix 6.  

 

 

 

 

 
 

 

 

 

 
 

 

 

 

Figure III.1: Diagram of the Fe(II+III) FIA-CL analyser, based on the methods of Obata et al. 
(1993) and de Jong et al. (1998). Thick grey lines represent PTFE or PVC tubing. 

 

This Fe(II)+(III) analyser was relatively easy to set up mechanically because it was very 

similar to the Fe(II) instrument. The main work thus focussed on the optimisation of the 

chemistry of the system to allow determination of Fe(II) and Fe(III), and on the 

calibration. 

 

III.3. Optimisation of the analyser 

III.3.1. Reaction coil length 

The reaction coil length was optimised in order to ensure that the CL reaction 

commenced in the PMT flow cell and finished before exiting it. With the heater set to 

27oC (Xiao et al., 2000), the signal increased with length of tubing, and reached a 

plateau at about 1810mm (Figure III.2). This value is close to the 1.9 m reaction coil 

used by Obata et al. (1993). 
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Figure III.2: Optimisation of the reaction 
coil length at 27oC with acidified (pH ~ 2) 
filtered (< 0.4 µm) surface seawater from 

the Atlantic Ocean ([DFe] = 1.4 nM). 
 

 

 

III.3.2. Reaction temperature 

The influence of reaction coil temperature on the CL signal was then tested between 

21oC and 38oC. A linear relationship (R2 = 0.995) was found between temperature and 

peak area (Figure III.3). This result is consistent with observations that higher 

temperature favours the decomposition of H2O2, which therefore enhances the CL 

reaction (Xiao et al., 2000). The temperature was set at 28oC as a compromise between 

signal enhancement and minimising bubble generation as more bubbles were formed as 

temperature increased. 

 

 

 

Figure III.3: Relationship between the 
reaction coil temperature and the CL signal 
with acidified (pH ~ 2) filtered (< 0.4 µm) 
surface seawater from the Atlantic Ocean 

([DFe] = 1.4 nM). 
 

 
 

III.3.3. Loading and CL reaction pHs 

Ammonia solutions of different concentrations were added to the CL reagents to find 

the optimum CL pH. A pH of circa pH 9.5 gave the highest signal as reported in the 

literature (Obata et al., 1993) (Figure III.4a). The optimal CL pH was obtained using 0.6 

M NH4OH. 

To find the optimal loading pH, a series of ammonium acetate buffers, giving a 

range of sample pHs, was used. Results (Figure III.4b) showed that the optimal pH for 
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collecting Fe(III) from an iron standard for atomic absorption spectrometry and any 

eventual Fe(II) reduced in this standard, was pH > 5 as suggested in the literature (see 

Chapter II). 

 
 

 

 

 

 

 

 

Figure III.4: pH optimisation of a) the CL pH and b) the loading pH, with acidified (pH ~ 2) 
filtered (< 0.4 µm) surface seawater from the Atlantic Ocean ([DFe] = 1.4 nM). 

 

III.3.4. Luminol concentration 

The luminol concentration was optimised by measuring the signal of acidified open 

ocean seawater the following concentrations: 750 µM (as used by Obata et al. (1993)), 

100 µM (de Jong et al., 1998), 50 µM and 10 µM (Bowie et al., 1998). Results showed 

that there was a significant increase in the signal up to 100 µM, and the signal was little 

enhanced at 750 µM with a higher baseline (Figure III.5). The luminol reagent was 

prepared at a concentration of 100 µM as suggested by de Jong et al. (1998), as it 

showed the best compromise between signal enhancement and baseline level. 

 

 

 
Figure III.5: Optimisation of the luminol 
concentration in the luminol reagent with 

acidified (pH ~ 2) filtered (< 0.4 µm) 
surface seawater from the Atlantic Ocean 

([DFe] = 1.4 nM). 
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Luminol was found to be difficult to dissolve in 0.04 M sodium carbonate, even after 

sonicating for 30 min, resulting in a “cloudy” solution. Incomplete dissolution of 

luminol may lower sensitivity and particles may cause increased noise, and potentially 

blockage of tubes if particles aggregate. It was noted that whilst luminol is insoluble in 

water it is very soluble in alkaline solutions. The 0.04 M sodium carbonate buffer may 

not be alkaline enough to completely dissolve the reagent. Therefore, a 0.01 M stock 

solution of luminol was prepared using a stronger 0.1 M sodium carbonate solution and 

luminol seemed to be completely dissolved overnight as the solution looked clear.  

 

A comparison between luminol/0.04 M Na2CO3/TETA (Test 1) and luminol/0.1 M 

Na2CO3/TETA (Test 2) reagents showed that the CL signal was greatly enhanced in 

Test 2, but the baseline and peaks were very noisy (Figure III.6). A large number of 

micro-bubbles were observed in the tubing shortly after the acidic eluent mixed with 

luminol/0.1 M Na2CO3/TETA presumably due to CO2(g) bubbles produced on mixing of 

acid eluent and luminol reagent, as suggested by Xiao et al. (2000) (see Chapter II). 

 

 
Figure III.6: 

Comparison of 
signals obtained with 

luminol reagents 
prepared in 0.04 M 
(Test 1) or 0.1 M 
sodium carbonate 

(Test 2) with 
acidified (pH ~ 2) 
filtered (< 0.4 µm) 

surface seawater from 
the Atlantic Ocean 

([DFe] = 1.4 nM). CL 
pH = 9.5 in both 

cases. 
 
 

In order to avoid excessive production of bubbles in the manifold, the luminol stock 

solution was prepared in 0.1 M sodium carbonate to promote its dissolution, whilst the 

working luminol reagent was prepared in 0.04 M sodium carbonate. 
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III.3.5. Hydrogen peroxide concentration 

The concentration of hydrogen peroxide was changed in the range 0.05 M - 0.8 M 

H2O2, and signals measured. Results (Figure III.7) showed a plateau starting at about 

0.4 M H2O2, which was intermediate between the concentration used by de Jong et al. 

(1998) (0.1 M), and Obata et al. (1993) (0.7 M). The hydrogen peroxide concentration 

used was therefore adjusted to 0.4 M, as a compromise between sensitivity and saving 

reagents. 

 

 

Figure III.7: Optimisation of the hydrogen 
peroxide concentration with acidified (pH 
~ 2) filtered (< 0.4 µm) surface seawater 

from the Atlantic Ocean ([DFe] = 1.4 nM). 
 

 

 
 

III.3.6. CL reagents flow rate 

The flow rate of the CL reagents was optimised to give maximum signal in the PMT 

flow cell. The relationship between the CL signal and the flow rate in the flow cell after 

all CL reagents mixed was linear (r2 = 0.992) in the range tested (3.3 – 5.0 mL.min-1) 

with highest signal at lowest flow rate (Figure III.8). This result suggests that the 

reaction may not be finished at high flow rate when the mixture left the PMT flow cell 

resulting in loss of signal. Flow rates of 3.3 mL.min-1 were thus used subsequently for 

the CL reagents. 

 

 

Figure III.8: Optimisation of CL 
reagents flow rates in the flow cell with 
acidified (pH ~ 2) filtered (< 0.4 µm) 

surface seawater from the Atlantic 
Ocean ([DFe] = 1.4 nM). 
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After optimisation of the reaction coil length and temperature, loading and CL pHs, 

luminol and hydrogen peroxide concentrations and CL reagents flow rate, the system 

was ready to be tested for its response during calibrations. 

 

III.4. Calibration of the analyser 

A calibration experiment was performed with standard additions in the range 0.5 – 5 nM 

to acidified filtered open ocean seawater. The CL pH was checked at 9.5 and loading 

pH at 5.2. The curve was linear (R2 = 0.991) with a precision ranging from 3% to 11% 

rsd (n = 4) (average 6% rsd) (Figure III.9). Accuracy was checked using a NASS-5 

certified seawater standard (from the National Research Council of Canada, certified 

value: 3.71 ± 0.63 nM), the value obtained was 3.68 ± 0.24 nM (1sd). The blank defined 

as the signal given by a 0.01 M Q-HCl solution used to prepare the standards was 

estimated at 1.05 nM and the limit of detection (3 sd) was 580 pM.  

 

 

 

Figure III.9: Calibration curve by standard 
additions to acidified (pH ~ 2) filtered (< 0.4 

µm) surface seawater from the Atlantic 
Ocean ([DFe] = 1.4 nM). 

 

 

 
 

This first calibration was not negatively curved as obtained with the Fe(II) technique, 

precision was kept below 10% rsd, and the NASS-5 concentration was close to the 

certified value. However, more work was necessary to try and lower the blank value and 

more calibration experiments were needed to conclude that the technique was reliable. 
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A series of experiments was carried out to identify the source of the blank signal as 
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each of the component of the blank. Using such a high gain prevented from performing 

a calibration to quantitatively determine these blank values as peaks for the usual 

standards used were saturating. However a calibration was carried out on the previous 

day using the same CL reagents with a gain of 7. By experience, it was noted that the 

signal decreased 3-fold when switching from a gain of 10 down to 7. The relative iron 

concentration of the blank for each of the experiment presented below could therefore 

be estimated, assuming similar reaction of the luminol reagent. 

 

 Contribution of Loading Rinsing Eluting Rinsing 
Experiment 1 CL reagents + PCC   180 s  
Experiment 2 CL reagents + PCC + RW  30 s 180 s 30 s 
Experiment 3 CL reagents + PCC + RW + Buffer 60 s 30 s 180 s 30 s 

Experiment 4 CL reagents + PCC + RW + Buffer 
+ 0.01M Q-HCl 60 s 30 s 180 s 30 s 

 
Table III.1: Description of the experiments performed to determine the sources of the blank. 

PCC = preconcentration column; RW = rinsing water 
 

Experiment 1: The CL signal was recorded for several cycles with the eluent going 

through or not through the column, which gave information on the contribution of the 

CL reagents and preconcentration column (PCC) to the blank signal. Results (Figure 

III.10) showed that the contribution of the preconcentration column was small 

(estimated at 0.09 nM). 

 

Experiment 2: The signal was recorded for several cycles including the rinsing step with 

Milli-Q water as rinsing water (RW). The contribution of Milli-Q water passing through 

the preconcentration column could be important at some occasions (here estimated at 

0.13 nM (total [Fe] = 0.22 nM); Figure III.10). This was observed even when adding up 

to two in-line 8-HQ resin columns in the rinsing water stream. 

 

Experiment 3: The ammonium acetate buffer used to buffer the sample to circa pH 5.5 

was added to the sequence. Results (Figure III.10) showed that the contribution of the 

sample buffer to the blank signal was equivalent to the Milli-Q water at this occasion 

(estimated at 0.11 nM (total [Fe] = 0.33 nM)). 

 

Experiment 4: Instead of a standard, a 0.01 M Q-HCl solution used to prepare the iron 

standards was loaded onto the column. Results (Figure III.10) showed that the diluted 

acid contributed significantly to the blank (estimated at 0.33 nM (total [Fe] = 0.66 nM)). 
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It was noticed that the blank was sometimes higher than the Fe signal for samples. The 

blank may be over-estimated when using diluted acid as a matrix; therefore the 

definition of the blank was reviewed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.10: Experiments to determine the sources of the blank. Experiment 1: CL reagents & 
preconcentration column (PCC). Experiment 2: CL reagents & PCC & rinsing water (RW). 

Experiment 3: CL reagents & PCC & RW & buffer. Experiment 4: CL reagents & PCC & RW 
& buffer & 0.01 M Q-HCl solution. PMT gain = 10 (maximum). 

 

It was decided that the blank value would be defined as the signal obtained during a 

cycle with the ammonium acetate buffer only being loaded onto the column for the 

length of time used to analyse samples, as used by Bowie et al. (1998). The blank value 

included the contribution of the CL reagents, the preconcentration column, the rinsing 

water, and the sample buffer. Furthermore, the buffer was subsequently purified through 

two 8-HQ resin columns in series off-line in addition to the in-line 8-HQ column, and 

the rinsing water was taken freshly from the Milli-Q water system after leaving it to 

flush, and was stored in a Teflon bottle. 
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III.4.2. Calibration of the system 

Several calibration experiments by standard additions in the range 0.5 – 5 nM were 

subsequently carried out in order to check on improvements in the blank, limit of 

detection values, and sensitivity. Figures of merit of these six calibrations are 

summarised as ranges in Table III.2.  

 

Correlation 
(mean) 

Slope 
(mean) 

Precision 
(mean) 

Blank (nM) 
(mean) 

LoD (nM) 
(mean) 

NASS-5 ± 1sd 
(mean) 

0.9635 – 0.9969 
(0.9800) 

44 – 137 
(74) 

1 – 15% 
(7%) 

< LoD – 1.53 
(1.18) 

0.12 – 0.46 
(0.27) 

4.11 ± 0.36 - 
4.83 ± 0.69 

(4.51) 
 
Table III.2: Ranges of figures of merit of six calibration curves. Calibrations were fitted with a 
linear trendline. rsd = relative standard deviation (n = 4). Limit of detection (LoD) defined as 

three times the standard deviation of the blank. Certified value of NASS-5 for Fe : 3.71 ± 
0.63nM. 

 

Three of these calibrations had a poorer correlation due to the lower signal obtained for 

the two most concentrated standards, whereas the other three showed good linear or 

positive curvature as in the first calibration (see Figure III.9). The sensitivity and 

curvature fluctuated most probably because of changes in analytical conditions such as 

the small variations in the ageing of the luminol reagent. Values of the blank, limit of 

detection, and NASS-5 certified seawater material values were often high, and may 

have been over-estimated because of poorer calibrations, poorer quality of Milli-Q 

water, and/or baseline instability. These results suggest that there still was a problem 

with the calibration even with this version of the FIA-CL analyser. 

 

Since the only component in the Fe(II) system not tested was luminol, a new batch was 

ordered from a different supplier (Fisher). The old and new batches of luminol had 

different colours: the new batch was pale-yellow and the old batch was greenish. An 

initial calibration using the new batch of luminol was linear (R2 = 0.994, Curve 7, Table 

III.3), and several subsequent calibrations gave slightly non-linear curves but always 

with positive curvature. Figures of merit of these calibrations are summarised in Table 

III.3. The value for NASS-5 certified seawater standard was generally close to the 

certified value but was occasionally higher and often with fluctuating precision (2 – 

27% rsd, average 12.5% rsd). 
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 Correlation 
Range Slope 

Precision rsd 
(n=4-6) 

(average rsd) 
Blank 
(nM) 

Limit of 
detection 
LoD (nM)

NASS-5 ± sd 
(nM) 

3.71 (± 0.63) 

Samples 
analysed

7 0.9937 
0.5-5nM 

138 
(linear) 

2.9 – 7.6% 
(5%) 0.43 0.24 

(n=5) 4.08 ± 0.41  

8 0.9956 
0.5-5nM 7x2 + 55x 3.7 – 21.7% 

(10.1%) < LoD 0.21 
(n=9) 4.80 ± 0.43 JR98/N8 

9 0.996 
0.5-7.5nM 

11x2 + 
74x 

6.7 – 16.7% 
(13.5%) 1.23 0.32 

(n=4) 5.58 ± 0.48 JR98/N7 

10 0.9982 
1-8nM 4x2 + 80x 3.4 – 11.8% 

(5.8%) 0.47 0.27 
(n=9) 4.20 ± 0.41 JR98/N6 

11 0.9925 
0.5-5nM 8x2 + 7x 2.7 – 13.2% 

(7.6%) 1.20 0.75 
(n=4) 4.50 ± 0.69  

12 0.9958 
2-8nM 3x2 + 47x 1.7 – 11.9% 

(6.2%) 0.86 0.64 
(n=5) 4.52 ± 0.54 JR98/N1

&N2 

13 0.998 
2-8nM 1x2 + 35x 3.5 – 8.4% 

(4.9%) 1.19 0.72 
(n=5) 4.42 ± 0.77 JR98/N3

&N4 

14 0.9993 
1-6nM 5x2 + 8x 3.8 – 13.1% 

(7.9%) 1.25 0.17 
(n=5) 3.26 ± 0.53 JR98/N5 

15 0.9999 
0.5-5nM 

11x2 + 
49x 

2.4 – 29.7% 
(8.8%) < LoD 0.53 

(n=5) 3.90 ± 0.67 
JR98/N9 
AMT12/
CTD69 

16 0.992 
0.5-5nM 

112 
(linear) 

4.7 – 8.5% 
(7.6%) 0.72 0.14 

(n=5) 2.90 ± 0.80 AMT12/
CTD69 

17 0.9973 
0.5-4nM 9x2 + 36x 4.0 – 8.5% 

(5.9%) 1.18 0.20 
(n=8) 3.35 ± 0.21 AMT12/

CTD68 

18 0.9969 
0.25-4nM 

11x2 + 
70x 

1.6 – 5.8% 
(3.8%) 1.01 0.26 

(n=4) 3.48 ± 0.08 AMT12/
surface 

 
Table III.3: Figures of merit of calibration curves performed with a new batch of luminol. Limit 
of detection = 3sd of the blank. Trend lines are 2nd -degree polynomial unless stated otherwise. 

All the samples from the profiles listed in the table were analysed using the Obata method. 
 

Following Curve 10 (Table III.3), there was an episode of contamination of the acid 

used to prepare the eluent reagent, leading to a very high and unstable baseline. The 

problem was solved by changing the stock Q-HCl solution. The system was also 

regularly washed with an acid wash mixture of 0.1 M ascorbic acid and 1 M 

hydrochloric acid, and rinsed with Milli-Q water subsequently. The presence of ascorbic 

acid should enhance the washing as it reduces Fe(III) to Fe(II), which is more soluble in 

water (Obata et al., 1997). 

 

The sensitivity was fluctuating and was on average similar to calibrations performed 

with the old batch of luminol. Variations in sensitivity and in the degree of curvature 

between experiments may be attributed to the changing degree of exposure of the photo-

sensitive reagents to light, which may have increased the concentration of radicals in 

solution by decomposition of hydrogen peroxide and luminol (see Chapter II). It was 

also noted that there was occasionally an increase in the sensitivity of the signal over a 
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full day of analyses with increasing temperature in the laboratory. One standard was 

thus measured regularly during a day of analysis to monitor possible changes in 

sensitivity, and was subsequently used to eventually correct the calibration accordingly 

to ensure accuracy of the data (see Chapter IV). Bubbles were observed throughout the 

calibration and analysis procedures, and were evident as spikes in signal on the baseline. 

The bubbles generally did not significantly affect the peak area of measurements, 

however when they did, an additional replicate was measured to ensure quality of the 

data (see Chapter IV). 

 

Blank and limit of detection values were improved using "fresh" Milli-Q water, but 

were still variable possibly due to the varying quality of that water and instability of the 

baseline. Uncertainty in blank estimation may increase because of shifts in the baseline 

between non-elution/elution stages. These shifts were due to changes of pH (data not 

shown) because of backpressure as the eluent was flowing through the preconcentration 

column. Furthermore double peaks observed when measuring the reagent blanks (data 

not shown) may be due to iron in the rinsing water, and made the blank determination 

difficult. Finally for unknown reasons, chronic instability of the baseline was observed 

especially at the end of the calibration (see below). It badly affected peak determination, 

and therefore analysis was ceased, and all data rejected. 

 

It was very likely that the quality of luminol had been a major problem in obtaining a 

good calibration. However, whilst sample analyses were possible (see Table III.3), two 

problems remained which made the analysis and the determination of the blank value 

difficult: i) double peaks were often observed when measuring the reagent blank; and ii) 

the poor stability of the baseline with periodic shifts. 

 

III.4.3. System improvements 

III.4.3.1. Eliminating double peaks 

Double peaks observed when measuring the reagent blanks may be due to: i) a pulse in 

the reagent flow when the injection valve was switched and the eluent passed through 

the resin in a reversed direction; or ii) the Milli-Q water remaining in the 

preconcentration column after the rinsing step, which passed to the flow cell. In the 

experiments to determine the sources of the blank described in Table III.1, peaks were 

much smaller during Experiment 1 (Figure III.10) or were often absent (data not 
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shown), suggesting that the first part of the double peak was not due to a pulse in the 

reagents flow. However the peak attributed to the Milli-Q water contribution during 

Experiment 2 of the experiment on the blank (Table III.1) appeared at the same timing 

as the first part of the double peak (Figure III.10). These results suggest that the Milli-Q 

rinsing water remaining in the void volume of the column was responsible for the first 

part of the double peak of the reagent blank due to its iron content or due to a chronic 

change in CL pH. 

 

In order to minimise the aliquot of Milli-Q water remaining in the preconcentration 

column, a new configuration of the analyser was tested, based on the design of Johnson 

et al. (2003). These modifications involved adding a 6-port injection valve (IV2) with 

an elution loop in series with the existing 6-port valve (IV1) (Figure III.11) and both 

injection valves could be replaced by a 10-way injection valve for a more permanent 

change later on. Therefore after rinsing with Milli-Q water, iron was eluted from the 8-

HQ resin column by the acid eluent and collected in the elution loop.  

 

 
 

 

 

 

 

 

 

 

Figure III.11: Diagram of the Fe(II+III) FIA-CL analyser, based on the methods of Obata et al. 
(1993) and de Jong et al. (1998) after modification based on the method of Johnson et al. 

(2003). Thick grey lines represent PTFE or PVC tubing. PUMP 1 and PUMP 2 = low-voltage 
pumps; PUMP 3 = Gilson Minipuls peristaltic pump; V1 and V2 = Switching valves; IV-1 and 

IV-2 = Injection valves; PCC = Preconcentration column;  FC = flow cell; PMT = 
photomultiplier tube; PS = Power supply; NI cards = National Instruments control cards. 

 

Timing and elution loop length (optimum 0.5 m) were accurately determined by 

measuring peak area with different loop lengths and time (data not shown) so that most 

of the Milli-Q water was sent to waste without losing any of the eluted iron solution. 
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When IV2 was switched, the eluted iron solution was carried by the eluent to the PMT 

flow cell. This configuration lowered the blanks and also removed any steps in the 

baseline previously seen due to slowing of eluent through the column. The timing 

sequence of the new configuration (Table III.4) was complete in 262 s with a 60 sec 

loading step. 

 

Sequence Loading  Rinsing Eluting Detection & Rinsing 
Valve 1 ON OFF OFF OFF OFF 
Valve 2 OFF OFF OFF OFF ON 
Pump B ON OFF OFF OFF ON 
Pump C OFF ON ON ON ON 

IV1 Position A Position A Position B Position B Position A 
IV2 Position A Position A Position A Position B Position B 

Timing 60s 30s 22s 120s 30s 
 

Table III.4: Timing sequence with the configuration based on the method of Johnson et al. 
(2003). 

 

III.4.3.2. Stabilisation of baseline 

Baseline noise and shifts were not expected to be caused by the electronics (e.g. light 

entering the PMT) since peak heights remained the same for replicate peaks despite 

baseline changes. 

 

Changes in room temperature were unlikely to have caused the problem as such 

variations were slow relative to the often rapid baseline shifts. Additionally, the small 

shifts in temperature in the reaction coil heating system due to the thermostat did not 

correspond to observed baseline changes. 

 

It was also unlikely that CL reagents would change their concentration with time, 

potentially changing the CL pH, and tubing flow rates were regularly checked. Build up 

of backpressure in the system and its rapid release may lead to a pH change if it 

occurred before CL reagents mixed and before the baseline shifts. However the problem 

remained despite checking the whole manifold for kinks or tubing obstructions, and 

changing the 5-way junction piece for three individual tee-pieces. 

 

Further possibilities were that iron contamination from components or particles in 

solutions may create these periodic shifts and baseline instability. Unfortunately, 

nothing could be done concerning contamination from components except checking 
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them regularly and ensuring rigorous cleaning. To test if particles in the luminol reagent 

were responsible for the baseline instability, the luminol reagent was filtered in-line 

using an acid washed 0.4 µm polycarbonate filter unit fitted immediately after the 

Gilson pump. When the baseline shifted and became unstable, on filtering the luminol 

reagent the baseline slowly came back to its original level and stability (Figure III.12), 

indicating that the baseline problems were presumably due to small particles in the 

luminol reagent. These particles may be re-precipitated luminol, formed after dilution of 

the 0.1 M sodium carbonate stock solution to 0.04 M used in the final luminol reagent. 

 

 

 

Figure III.12: Test 
for the effect of in-
line filtration of the 

luminol reagent. 
Dashed line 

underlines the 
background baseline 

level (gain = 6). 
 

 

 

III.4.3.3. Purity of water used to prepare reagents 

At the beginning of the Fe(II) technique development, it appeared that using sub-boiled 

distilled (SBD) water to prepare reagents significantly lowered and stabilised the 

baseline compared to Milli-Q water stored in an aspirator. However if Milli-Q water 

was freshly taken, the baseline slightly increased and got noisier relative to when SBD 

water was used (Figure III.13), but remained reasonably low and stable compared to 

Milli-Q water stored in an aspirator. This may be either due to Milli-Q water slowly 

releasing contamination from the container walls or to the slow absorption of CO2(aq) 

with storage time which enhanced the CL reaction and thus the CL baseline. This 

experiment therefore showed that freshly taken Milli-Q water could be used instead of 

SBD water for the CL reagents, which was important for shipboard measurements, as 

significant quantities of water are used for each batch of reagents and SBD water is 

difficult to produce at sea. 
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Figure III.13: 

Baseline level and 
stability using Milli-
Q water instead of 
sub-boiled distilled 
water (SBDW) to 

prepare the reagents 
(Gain = 6). Dashed 
line indicates the 

underlying baseline 
level. 

 

 
 

III.4.4. Comparison of data obtained using the Obata and Johnson 
configurations 

Using the optimised system in the Johnson configuration, two linear (R2 > 0.99) 

calibrations by standard additions gave NASS-5 values in the certified range (4.21 ± 

0.07 nM and 3.76 ± 0.05 nM), and precision ranged from 0.4 to 7% rsd (average 3.1% 

rsd). Blank values were 125 and 20 pM with a limit of detection of 89 and 27 pM, 

respectively. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
Figure III.14: Fe(II+III) concentration (nM) measured with the Obata system (closed circles) 
and with the new system configuration (open circles) for a sample of each profile previously 

analysed. 
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In order to test and validate earlier measurements obtained with the Fe(II)+(III) system 

in the Obata configuration, one sample from each profile previously quantified for iron 

with good precision (< 5% rsd), were re-analysed (Table III.3). The majority of the data 

in the two sets were different (Figure III.14). The new data were often lower than the 

previous data, inferring that contamination of samples during handling was not an issue. 

The values for NASS-5 obtained with the Obata configuration were often high with 

relatively poor precision (see Table III.3). These results suggest that there may have 

been a problem during earlier measurements with the Obata configuration, which may 

be due to the difficulty in estimating the blank when double peaks were observed. 

 

As it was difficult and time-consuming at the time to determine what went wrong 

during earlier analyses, and since new data were obtained with a good NASS-5 value on 

this analysis event, it was decided to re-analyse all the samples using the optimised 

Fe(II)+(III) technique with the Johnson configuration, and the quality of the new data 

carefully checked (see Chapter IV). A full description of the optimised Fe(II)+(III) 

analyser is given in Appendix 7. 

 

III.5. Figures of merit of the Fe(II)+(III) analyser 

At this final stage of the development, the working Fe(II)+(III) analyser showed linear 

calibrations to up to 5 nM using standard additions of iron to acidified (pH ~ 2) filtered 

(< 0.4 µm) surface seawater collected in the Atlantic Ocean. Precision of measurements 

of standards ranged from 0.3% to 16.4% rsd (relative standard deviation, average 3.9% 

rsd) with a minimum of three replicate peaks. Blank values ranged from 20 pM up to 

2.26 nM (average 490 pM), and the limit of detection from 27 pM to 474 pM (average 

109 pM).  

 

III.6. Summary 

The Fe(II)+(III) FIA-CL technique set up here is based on the system of Obata et al. 

(1993) and de Jong et al. (1998). Given the extensive experience gained through 

working on the Fe(II) technique, the development and optimisation of this modified 

version to determine Fe(II) and Fe(III) in seawater was relatively rapid. However due to 

continuing problems with the baseline stability and blank level, the configuration of the 
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manifold was modified following the approach of Johnson et al. (2003) with the 

introduction of an elution loop. Modifications resulted in a lower blank value, which 

depended mainly on the quality of the Milli-Q water, and in significantly stabilising the 

baseline. The final Fe(II)+(III) FI-CL analyser gave linear calibrations tested to up to 6 

nM, with good precision (< 5% rsd) using a 8-hydroxyquinoline resin prepared 

following the protocol of Landing et al. (1986) (courtesy of S. Ussher, University of 

Plymouth), and with reasonable blanks (average 540 pM) and limits of detection 

(average 121 pM) that allowed measurements of Fe in most oceanic and coastal 

environments. 

 

The move to the Fe(II)+(III) analyser also allowed investigation of one of the problems 

encountered with the Fe(II) technique: the negative curvature of the calibration. The 

luminol was tested since it was the only component not previously changed or modified 

in the Fe(II) system. Although there had been no obvious reason to doubt the quality of 

this reagent, it appeared at this time that the luminol used was possibly degraded. It had 

a different colour compared to a new batch ordered from another company and this new 

batch had greater sensitivity with the Fe(II)+Fe(III) system, suggesting the old batch 

had been altered by light and/or oxygen contact. Several other workers using the flow-

injection analyser with chemiluminescence detection shared this concern about the 

reliability of commercial luminol reagents (from P. Statham, 2005, personal 

communication). The question of to what extent the luminol was actually responsible 

for the problem with the calibration for the Fe(II) analyser has been addressed (see 

Chapter II); however results were not clear and due to time constraints further 

investigation was not possible. 

 

The Fe(II)+(III) FIA-CL system was subsequently used to analyse samples collected in 

at the Celtic Sea edge. It was felt to be very important with this newly developed 

technique to demonstrate the precision, accuracy, and overall validity of the method. In 

the next Chapter, a rigorous assessment of data quality is carried out at two levels: the 

quality of the analyses and data of a certified seawater standard, and the quality of the 

data relative to high quality published data from similar marine waters. 



 

 

 

 

 

 

CHAPTER IV. 

 

DATA QUALITY 

 



Chapter IV. Data Quality 
 

 75

IV.1. Introduction 

A major challenge in the development of a technique to determine dissolved iron at low 

concentrations in seawater is to demonstrate the quality of the data obtained with the 

method. Iron is a ubiquitous element and its analysis may be affected by contamination 

from many sources. Additionally the chemistry involved in the FIA-CL system is 

subject to small variations between batches, which may slightly change the response of 

the analyser so that quality of the analysis should be discussed for each new batch of 

reagent (Rose and Waite, 2001). 

 

 

 

Figure IV.1: Diagram showing the 
procedure used to assess data 

quality. 
 

 

 
A very rigorous data-quality check was carried out (Figure IV.1): 1) an initial data 

evaluation was made by determining an approach to identify and assess the validity of 

outliers in the raw data, and by examining the figures of merit for the analyser and its 

variability; 2) analytical accuracy was then considered using certified and internal 

seawater standards; and 3) the quality of samples was discussed regarding problems of 

contamination during sampling and storage by comparing high quality data published in 

the literature and evaluating its oceanographic consistency. These checks were felt to be 

essential to ensure confidence in the data finally produced. 

 

IV.2. Initial data evaluation 

IV.2.1. Outliers 

The first step in calculating the data was the determination of peak area. Occasionally, 

bubbles gave anomalous peaks raising the issue of identifying those peaks and deciding 
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whether they were valid. Gas bubbles were observed at the exit of the reaction coil 

where all the CL reagents met, which may be carbon dioxide formed by reaction of 

sodium carbonate (in the luminol reagent) with hydrochloric acid (eluent). It was shown 

that carbon dioxide significantly enhances the CL reaction (Xiao et al., 2002) (see 

Chapter II). The gas may have been diffusing into adjacent segments of solution, locally 

enhancing the signal, which may explain why those peaks were much higher than 

replicates (see for example Figure IV.2). It was also observed that the larger the peak 

the larger the increase in the peak associated with bubbles. 

 

 

 
Figure IV.2: An 
example of the 

influence of gas bubbles 
in the liquid stream on 
replicate peaks. Peaks 

1, 2 and 4 were 
reproducible whereas a 
shoulder was observed 
on Peak 3 as well as a 

bubble in the waste line. 
Baseline between peaks 

is shortened. [DFe] = 
1.27 ± 0.05 nM 

excluding Peak 3. 
 

Peaks affected by these bubbles could be recognised when processing the data, as their 

shape changed, with a “shoulder” in the peak (Peak 3, Figure IV.2), which increased the 

overall peak area. However, it was noted by experience that when bubbles appeared 

whilst the peak was decreasing (Peak 2, Figure IV.2) a drop in signal was observed 

before the shoulder so that the overall peak area was not changed. It was therefore 

decided that peaks showing a shoulder only whilst the signal was increasing (such as 

Peak 3) should be discarded provided that simultaneous bubbles were observed in the 

waste line. When a peak appeared to be affected by bubbles, an additional replicate was 

carried out to ensure the reproducibility of the signal without bubbles. 

 

Anomalous lower peaks relative to replicates were also observed when no sample 

solution was pumped to the PMT because the tubing was not properly immersed into 

solution or all the solution had been consumed. Additional replicates were analysed 

after solving the problem. 
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Outliers may also be created during transcription of the data from the processing 

programme to the programme used for further calculations. However, in the LabView 

programme used for processing, peak area results were stored in a table that could be 

directly imported for calculation in another programme, therefore avoiding this type of 

error. Additionally all calculated data in spreadsheets were carefully checked before 

interpretation. 

 

IV.2.2. Figures of merit for the analyser 

The behaviour of the system during a long analytical sequence may change with time, 

due, for instance, to: i) increasing temperature in the laboratory which may enhance the 

sensitivity and induce more bubbles in the reagents stream; ii) potential contamination 

of the system after analysing a contaminated sample; iii) peristaltic tubing wear. 

 

All calibrations were performed by standard additions of iron to low-iron seawater 

(LISW) to up to 6 nM following the procedure described in Chapter II.2, using a 1000 

mg.L-1 Fe AAS stock solution (Z-Tek). The figures of merit of the analyser were 

compiled after obvious problem data were removed (see Section IV.2.1). The Fe 

(II)+(III) FIA-CL system gave linear curves in this range with varying sensitivity (Table 

IV.1), depending on the loading time, and ageing of the luminol reagent. The loading 

time was modified (30s to up to 120s) in order to increase the sensitivity when low 

concentrations were expected for some profiles. Precision of measurements of standards 

ranged from 0.3% to 16.4% relative standard deviation (rsd), averaging 3.9% rsd (n = 

85) with a minimum of three replicate peaks per standard (Table IV.1). Precision 

averaged 6.2% rsd for a total of 227 samples analysed (minimum n = 3, 0.2 to 49.4% 

rsd range). Precision of measurements was therefore satisfactory for all the analyses 

performed. 

 

The main contribution to the blank was possibly from the rinsing water for the 

preconcentration column or from the components of the system (see Chapter III). The 

blank signal was relatively high on analysis events 11 to 14 and 16 (Table IV.1), which 

was found to be due to the poorer (17.8 – 18.0 MΩ.cm) quality of the Milli-Q water 

used for rinsing. Blank values ranged from 20 pM up to 2.26 nM (average 496 pM), and 

the limit of detection from 27 pM to 225 pM (average 90 pM). Blanks and limits of 
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detection could thus be improved in the future to achieve better performance of the 

system by using better quality rinsing water. 

 

 R2 
Range Slope 

Precision 
rsd (n=3-6) 

(average rsd)

Blank 
(pM) 

Limit of 
detection 

(pM) 

NASS-5 ± sd 
(nM) 

(3.71 ± 0.63) 

Samples 
analysed 

1 0.997 
0.5-5nM 221 0.4 – 5.4% 

(2.5%) 20 27 
(n=4) 3.76 ± 0.05  

2 0.9994 
0.5-5nM 120 2.4 – 8.4% 

(4.5%) 295 72 
(n=7) 4.44 ± 0.14 AMT12/CTD 

24/1-12 

3 0.9988 
0.25-4nM 212 1.2 – 3.8% 

(2.7%) 321 58 
(n=5) 4.77 ± 0.03 AMT12/CTD 

24/13-24 

4 0.996 
0.25-4nM 247 0.7 – 4.6% 

(2.5%) 110 28 
(n=8)  

AMT12/CTD 
24/0.1µm-

filtered 

5 0.9979 
0.25-4nM 314 1.4 – 5.6% 

(3.1%) 568 154 
(n=6)  AMT12/CTD 

39 

6 0.9979 
0.25-4nM 278 1.7 – 12.8% 

(5.2%) 143 76 
(n=5)  

AMT12/CTD 
39/0.1µm-

filtered 

7 0.996 
0.25-4nM 316 2.4 – 3.9% 

(2.9%) 179 63 
(n=8)  AMT12/CTD 

50 

8 0.9996 
0.25-4nM 475 1.3 – 6.5% 

(3.5%) 162 62 
(n=10) 5.46 ± 0.01 

AMT12/CTD 
50/0.1µm-

filtered 

9 0.9985 
0.25-4nM 450 1.5 – 3.4% 

(2.6%) 62 31 
(n=8) 4.75 ± 0.04 AMT12/surf. 

samples 

10 0.9955 
0.5-5nM 263 1.3 – 5.3% 

(3.4%) 400 83 
(n=6) 4.95 ± 0.02 JR80/surf. 

samples 

11 0.9981 
0.5-5nM 264 3.1 – 5.2% 

(4.1%) 746 128 
(n=6) 4.70 ± 0.06 AMT12/CTD 

68 

12 0.9994 
0.5-5nM 287 1.1 – 5.3% 

(3.0%) 848 73 
(n=3) 5.17 ± 0.12 JR98/N8 & 

N9 

13 0.9919 
0.5-6nM 156 0.5 – 4.5% 

(2.5%) 679 225 
(n=8) 6.66 ± 0.32 JR98/N7 

14 0.997 
1-6nM 203 1.0 – 16.4% 

(8.1%) 2260 130 
(n=3) 5.41 ± 0.20 JR98/N1 

15 0.9942 
1-6nM 139 0.6 – 8.1% 

(5.0%) 177 32 
(n=3) 5.03 ± 0.06 JR98/N6 

16 0.9911 
1-5nM 232 1.9 – 11.8% 

(5.7%) 1022 133 
(n=5) 3.53 ± 0.09 JR98/N4 

17 0.9994 
0.5-5nM 286 0.3 – 8.4% 

(4.8%) 447 163 
(n=4) 3.63 ± 0.14 JR98/N5 & 

N2 & N3 
 

Table IV.1: Provisional figures of merit of calibration curves used to determine sample 
concentrations for each analysis event (first column). Precision is based on 3 to 4 replicate peaks 

of the standards and is one standard deviation. Limit of detection is defined as three times the 
standard deviation of the blank. No NASS-5 was available on analysis events 4 to 7. 

 

Three data points were removed from the JR98 data set from Stations N3 (2 m-depth 

and 15 m) and N5 (20 m) since the iron concentrations in these samples were below 

detection limit. Figures of merit were adequate to use the method in many marine 

environments where concentrations fall within the analyser. 
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IV.3. Analytical accuracy 

IV.3.1. NASS-5 certified reference material 

The certified reference material used in this project was North Atlantic Surface 

Seawater (NASS-5, from the National Research Council of Canada) with an iron 

concentration of 3.71 ± 0.63 nM (95% of individual sub-sample concentrations fell 

within this range) certified after analysis by many laboratories worldwide using 

different techniques. When the iron value measured fell in this range, the analysis 

performed was considered as accurate, such as on analysis events 1, 16 and 17 where 

values were 3.76 ± 0.05 nM, 3.49 ± 0.08 nM and 3.63 ± 0.14 nM (± 1sd) respectively 

(Table IV.1 and Figure IV.3). However when the iron value did not fall in the range, the 

quality of the analysis was questionable unless a valid argument was given for the 

difference. The average iron concentration for all the NASS-5 analyses was 4.80 nM (n 

= 53) which corresponded to a mean enrichment of 1.1 nM relative to the certified 

value. The cause for these high iron values of the NASS-5 was therefore investigated. 

 

 
Figure IV.3: NASS-5 

iron concentration (nM) 
determined during each 

analysis event (in 
chronological order). 

The dashed line 
represents the certified 

value (3.71 nM) and the 
dotted lines represent 

the lower (3.08 nM) and 
top (4.34 nM) limits of 

the 95% confidence 
range of the certified 

value. 
 

 
 

The NASS-5 concentration is certified for 10 years, and it had been stored heavily 

acidified with nitric acid for at least 6 years at the time of analysis; therefore the 

concentration is not expected to have significantly changed from the certified value. 

Moreover, high values were still obtained even though a new bottle of NASS-5 

seawater was used from analysis event 8, suggesting that it was not due to internal 

contamination (Figure IV.3). As the NASS-5 is highly acidified (pH ~ 1.6), it was found 

that the loading pH was often lower than for standards and samples (pH ~ 2). However, 
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this would only provide an explanation for low values if not all the iron was being 

loaded onto the resin, and does not explain the high values observed. Additionally, the 

preconcentration and detection steps are independent; the chemiluminescence reaction 

is therefore not influenced by a change in the loading pH. The 8-hydroxyquinoline resin 

used was provided by the team at the University of Plymouth, and was therefore 

considered as reliable, and did not generate an obvious blank (see Chapter III). Whilst 

blank values varied significantly between analysis events, the blank measurements 

made at the beginning and end of the analysis events showed that the blank value did 

not change through that particular analysis event (e.g. Table IV.2). 

 

Analysis 
event 

Blank value 
before calibration 

Blank value 
after samples 

5 0.58 ± 0.06 nM 0.57 ± 0.05 nM 
8 0.16 ± 0.02 nM 0.21 ± 0.01 nM 

17 0.45 ± 0.05 nM 0.47 ± 0.01 nM 
 

Table IV.2: Examples of the blank value before the calibration and after all samples for three 
analysis events as presented in Table IV.1. Precision is 1 standard deviation. 

 

One possible explanation for the high NASS-5 values is that the calibration slope was 

too low. However, it was very unlikely that the 1000 mg.L-1 iron stock solution was 

diluted, and any evaporation or contamination of the Fe stock solution would give a 

NASS-5 iron value lower than expected, not higher as observed. Based on the 

assumption that the sensitivity of the analyser is increasing linearly with 

preconcentration time, calibration slopes were normalised at 1 min loading time. No 

relationship was found between the NASS-5 iron concentration and the normalised 

calibration slopes (data not shown), suggesting that high NASS-5 values were not due 

to changes in the response of the analyser. Moreover, the NASS-5 iron concentration 

remained high on analysis event 15 even though a brand new 1000 mg.L-1 Fe stock 

solution was used (Figure IV.3). 

 

The last hypothesis for these high values was external contamination. The NASS-5 

seawater may have been subject to low levels of contamination while being poured in 

the sterile polystyrene tubes used for analyses or the tubes may have had residual 

contamination for iron. The heavily acidified NASS-5 seawater may also have released 

some iron from the manifold Teflon tubes internal wall or from the peristaltic pump 

PVC tubing. This assumption is based on the observation that 1 M HCl solutions were 
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used to acid wash the system overnight and were efficient to remove iron from the 

manifold as blanks were significantly lower after such a procedure.  

 

Despite its high iron concentration, the NASS-5 is generally useful to demonstrate the 

accuracy of an analyser. However, its high acidity raises questions about occasional 

external contamination during handling, leaching from the manifold tubing and/or 

containers. It was therefore important to have an alternative way of evaluating the 

reliability of the response of the analyser. 

 

IV.3.2. Low-iron seawater internal standard 

An internal low-iron seawater standard (LISW-IS) was used to monitor changes in 

sensitivity of the analyser as well as giving another indicator of the reliability of the 

system. This LISW-IS was unfiltered surface seawater collected in the Northeast Pacific 

Ocean, and stored unacidified in a cubitener. It was acidified by adding 1 mL of Q-HCl 

per litre of seawater before use. This internal standard had the double advantage of: i) 

being acidified to the same degree as standards and samples, minimising changes in the 

loading pH; and ii) of having a lower concentration than NASS-5 seawater. The LISW-

IS was generally analysed on four occasions during each day of analysis: after the 

blank, after the NASS-5 seawater, between and after samples (see procedure in 

Appendix 9). 

 

Measurements showed that the signal was relatively reproducible during a single 

analysis event, suggesting no change in the sensitivity except on event 10, and on 

analysis event 13 where LISW-IS iron values were higher than previous events (Figure 

IV.4). There may thus have been a continuous increase in sensitivity on event 10, and a 

shift in the data on analysis event 13. Omitting values on analysis events 10 and 13, 

total dissolvable iron concentrations measured for the LISW-IS averaged 0.98 ± 0.17 

nM (17% rsd, n = 49) (Figure IV.4). 

 

Whilst the NASS-5 iron concentration was higher than the certified value except on 

analysis events 1, 16 and 17 (Figure IV.3), the internal standard did not show any 

significant difference in the signal on analysis events 16 and 17 compared to previous 

days (Figure IV.4). Moreover, no simple relationship was found between LISW-IS and 

NASS-5 measured iron concentrations (data not shown) suggesting that the factor 
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causing higher NASS-5 values was not impacting upton the LISW-IS values. Values 

outside the range of the relative standard deviation (i.e. 17%) were analysed on analysis 

events 10 and 13 (Figure IV.4). Reproducible inter-batch measurements of the LISW-IS 

gave confidence in the reliability of the response of the analyser despite over the range 

values for the NASS-5 seawater. 

 
 

Figure IV.4: Total 
dissolvable iron 

concentrations (nM) of 
the low-iron seawater 
internal standard (3-4 
replicates) with time. 
Lines represent: ― ― 
― mean value (0.98 

nM); − − − 1 standard 
deviation (± 0.17 nM); 

········· 2 standard 
deviations (± 0.34 nM). 

Suspect values on 
analysis events 10 and 
13 are shown as open 

diamonds. 
 
 

The way in which to process data from analysis events 10 and 13 was addressed. 

On analysis event 10, the peak area for LISW-IS measured 4 times during the day 

increased linearly (R2 = 0.986) with time (Figure IV.5), suggesting that all the data 

would be affected by this change in sensitivity. Data could thus be corrected using the 

equation given by the increasing LISW-IS signal with time. However, the NASS-5 

value remained high despite correction (4.76 ± 0.02 nM) suggesting that increasing 

sensitivity was not responsible for the high NASS-5 value obtained on that event. 

 

 

 

 
Figure IV.5: Blank corrected peak area 
of low iron seawater internal standard 
(LISW-IS, 0.99 ± 0.17 nM) with time 
(0 – 8h20) during analysis event 10. 
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On analysis event 13, all LISW-IS concentrations (average 1.7 ± 0.10 nM (1sd)) 

were on average 0.7 nM higher than the mean value (0.98 ± 0.17 nM). The NASS-5 

value was unusually high on analysis event 13 (Figure IV.3). These results indicate a 

shift in the data, which could eventually be associated with a problem with the standards 

on that day. All data analysed on analysis event 13 was thus normalised (= 

concentration x 0.98 / 1.70) to the LISW-IS mean value (0.98 ± 0.17 nM). 

 

At this stage, it was decided to correct data from analysis event 10 for the change in 

sensitivity with time. Data from analysis event 13 were normalised to the value 

expected for the internal standard and re-analysis another day indicated that this data 

was then acceptable (see below). 

 

IV.3.3. Re-analysis of some samples from the Celtic Sea and Atlantic Ocean 

An additional means of assessing the analyser reliability was to perform an inter-batch 

sample determination, where a selection of previously analysed samples were re-

analysed on different analysis events. Data from three such sets of samples are shown 

here: a) the JR98 cruise samples were collected during a transect across the Celtic Sea 

shelf edge (Northeast Atlantic) from N1 the most inner-shelf station to N9 the most off-

shelf profile (see Chapter V); b) a set of surface samples were collected between the 

Falkland Islands and South Georgia (Southern Ocean) using a pole sampler during the 

cruise JR80 (see Chapter V); and c) five profiles were also analysed from the AMT-12 

transect (Atlantic Ocean) as well as surface samples between the Equator up to 40oN 

(see below). The procedure was carried out on several occasions, and data are shown in 

detail in Appendix 8. 

 

Results are presented in Figure IV.6 as the difference between measurements of a same 

sample during two analytical events as a percentage of the mean of the two values (P%). 

Precision on individual measurements was very satisfactory when below 5% however 

precision may become poorer (to up to 10%) with lower concentrations or when more 

bubbles are created in the flow stream. The evaluation criteria were thus as follows: 

measurements with P% < 20% are reproducible, however the reproducibility is poor 

when P% > 20%. Values shown with open symbols in Figure IV.6 included a 

determination during analysis events 10 or 13 where data needed correcting for drift or 

offset. Overall, these results showed that there were small variations between analysis 



Chapter IV. Data Quality 
 

 84

events but data was reproducible. Inter-batch results thus gave further support that data 

were affected by a shift on analysis event 13.  

 
 

Figure IV.6: Difference 
between measurements of 
a same sample during two 

analytical events as a 
percentage of the mean of 
the two values (P%). Data 
analysed on event 10 was 
corrected for the change 

in sensitivity and on event 
13 (see Table IV.1), the 

concentration was 
normalised to the low-
iron seawater internal 
standard mean value 

(open symbols). 
Samples label = 

Cruise/Station/ CTD 
Bottle(/0.1µm filtered). 

 

 

The inter-batch data check showed that after normalisation of the data on analysis event 

13, most of the selected sample data showed satisfactory inter-batch agreement. A 

further check was the oceanographic consistency of the data from event 13 (see below). 

Samples from the AMT-12 cruise were often found to have unexpectedly high 

concentrations. Since the analytical quality of the data appeared good, as demonstrated 

in this Section, the integrity of these samples was called into question. 

 

IV.4. Integrity of AMT-12 samples and oceanographic consistency 

IV.4.1. Contamination potential during sampling 

One of the challenges in measuring iron in seawater is to avoid contamination before 

analysis. It is therefore crucial to be aware of all potential sources and risks of 

contamination in order to be able to prevent as well as isolate them. All the cleaning, 

sampling, and handling procedures within this project were carried out following 

procedures that had been previously used at the National Oceanography Centre, 

Southampton (see below). A review of the sampling and pre-treatment techniques 

allowed identification of potential sources of contamination, which was useful in the 

attempt to explain the unexpected results obtained with the AMT-12 samples. 
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IV.4.1.1. Sampling for iron 

During sampling, contamination risks may vary depending on the device used to collect 

seawater, and the main source of contamination is without doubt the ship itself. A CTD 

rosette was built to minimise trace-metal contamination and was made from Titanium 

and plastic, with the sensors all being housed in titanium cases without any zinc 

sacrificial electrodes. Even though the CTD cable was made of steel, it was assumed 

that any contribution of the cable would be highly diluted by the surrounding currents. 

Additionally even stainless steel CTD systems have been used to collect good samples 

for iron (Statham et al., 2005). The 10L Teflon coated Ocean Technology Equipment 

(OTE) Niskin style bottles were adapted to minimise metallic components and potential 

contamination. They were acid-washed before use at sea and thoroughly rinsed with 

ambient seawater before collecting samples for analysis. Between casts, the Titanium 

CTD rosette was protected from particles generated from the ship with a plastic cover. 

The OTE bottles were carried to the clean container laboratory wearing latex powder-

free gloves and without touching the Teflon taps. 

 

An alternative sampling device allowed collection of surface seawater samples. A “pole 

sampler” (Sherrell and Boyle, 1988) was used during the JR80 cruise where a bottle was 

employed to collect unfiltered samples which were then poured directly into storage 

bottles. However as the “pole sampler” was not available during the AMT-12 cruise, a 

“dipper” was built onboard by Richard Phipps (UKORS), using a plastic tube that held a 

500mL bottle, with weights at the bottom isolated in plastic bags (Figure IV.7). 

 

 

 

 

Figure IV.7: a) The "dipper" 
with a 0.5 L LDPE bottle (18 

cm-height); and b) The 
"dipper" seen from above. 

 

 

 

 

 
 

a) b) 
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The “dipper” was thrown over board as the ship was slowing down when arriving on 

station. The bottle was rinsed two times with seawater before taking the sample. 

Samples were then filtered using an acid-washed polysulfone filtration unit. It was 

found during the ulterior CROZEX cruise that surrounding surface waters around the 

ship could be contaminated by iron while on station, and that operations such as 

washing the anchor may also result in the release of iron into surface waters. It is 

therefore crucial to plan the surface water sampling carefully considering the ship’s 

operations. 

 

IV.4.1.2. Sample processing 

Risks of contamination are also high during sample handling and pre-treatment. 

Scientists going to sea to study trace metals in seawater nowadays have a separate 

working environment, a trace-metal clean container where the air is filtered as in a clean 

room. The walls are coved and lined with plastic, and exposed metallic components are 

minimised through choice of materials and appropriate coatings. Contamination 

problems may then be reduced during sample handling even though “accidents” may 

still occur such as the contamination of the quartz distilled acid used to acidify samples 

or whilst pouring the sample into a container for analysis. It is therefore important to 

minimise these handling steps, which can partially be achieved through use of flow-

injection techniques coupled to an in-line sampling device such as an underway Fish 

sampler (Vink et al., 2000; Bowie et al., 2002a; Croot and Laan, 2002). 

 

 

 
 

Figure IV.8: a) OTE 
bottles set up for 

filtration; b) Detail 
showing in-line filtration 

of sample. 
 

 

 
 

a) b)
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Sample filtration may also potentially be a source of contamination. In the container the 

OTE bottles were held on a rack, a Teflon external frame was used to clamp top and 

bottom valves shut, and the bottles were pressurised using a filtered compressed 

nitrogen to about 0.9 atmospheres (Figure V.8a). Samples were filtered in-line using 

acid-washed silicone rubber tubing with Teflon connections and acid-washed Teflon 

filter holders and were directly poured in the storage bottle after rinsing with ample 

seawater (Figure V.8b). 

 

All filters were acid-washed in a 10% quartz-distilled hydrochloric acid bath for several 

hours and then thoroughly rinsed with sub-boiled distilled water before use. During the 

AMT-12 cruise, half of the filters used were Cyclopore® filters (Fisher Scientific) and 

half were PVP-free Poretics® filters (Poretics Ltd.). It was found during the cruise that 

the PVP-free Poretics® filters were actually hydrophobic, and had therefore to be wetted 

with few micro-litres of absolute 99% ethanol. When those filters were used, an 

additional rinsing step was carried out in order to ensure that all the ethanol was 

eliminated. During the JR98 cruise, all filters were hydrophilic Cyclopore® (Fisher) to 

minimise potential risks of contamination during filtration. 

 

IV.4.2. Storage of samples 

Since it did not prove possible to analyse all samples directly on-board ship, they had to 

be preserved which raised the question of risks of contamination during the storage 

period. Samples for trace-metal analysis were stored in acid-washed low-density 

polyethylene (LDPE) bottles (Nalgene®, Fisher Scientific UK), which are low in trace 

metals and resistant to strong acids, and therefore can be thoroughly acid-washed to 

allow storage of open ocean waters (Moody and Lindstrom, 1977). 

 

The standard procedure for acid washing the bottles was used (Moody and Lindstrom, 

1977; Achterberg et al., 2001). Low-density polyethylene bottles were first rinsed with 

reverse osmosis water and left three days in a 10% Micro® bath to dissolve greases that 

may remain after manufacture. They were then thoroughly rinsed with Milli-Q water 

and left for three days in a 50% hydrochloric acid bath. They were then rinsed again 

three times with Milli-Q water and left for three days in a 50% nitric bath. They were 

finally rinsed three times with Milli-Q water and then two more times with sub-boiled 

distilled water in a clean room, were left to dry and then were double zip-bagged. This 
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procedure was followed for all the new LDPE bottles received from the manufacture. 

As a large number of bottles had to be washed in a short period of time, the times for 

the acid-wash procedure normally used at the NOCS were reduced to three days in each 

bath instead of a week. 

 

Most samples used for trace-metal analysis are acidified at pH ~ 2 in order to keep them 

in solution and avoid losses by adsorption onto the internal walls of the storage bottle 

(Moody, 1982). It is generally assumed that this procedure should not change the 

sample concentration in trace-metals for long-term storage. During this project, several 

LDPE bottles, which contained acidified samples collected during previous cruises, 

were recycled to store new samples collected during the AMT-12 cruise. These bottles 

were emptied then thoroughly rinsed with Milli-Q water before going into the 50% 

hydrochloric acid bath as described above. It should be noted that “new” bottles and 

“recycled” bottles were kept separate during the procedure and had a different shape, so 

that they could be clearly identified. 

 

More than a year after collection, a set of samples was analysed for dissolved iron. 

However some of the samples stored in “recycled” bottles showed abnormally high 

dissolved iron concentrations (Section IV.4.3). Despite uncertainties in some aspects of 

the quality of the analysis (Section IV.2 and IV.3), analytical problems were unlikely 

solely responsible for these unexpected results, therefore the quality of these stored 

samples was called into question, addressing an issue not in the literature regarding the 

“memory” of storage bottles. Given suspicion about some of the samples, some criteria 

were needed to evaluate whether samples were clearly contaminated or not. This was 

achieved by comparing the data obtained to high quality data and checking their 

oceanographic consistency. 

 

IV.4.3. Oceanographic consistency of the AMT-12 data 

The first AMT-12 profile to be analysed was collected in the South Atlantic gyre (CTD 

24, 20.5oS, 25oW; Figure IV.9). This region was assumed to be very low in dissolved 

iron as it is not supplied by any major dust storm and is far from any land (Duce and 

Tindale, 1991). Samples filtered through 0.4 µm membranes were stored in 1 L 

“recycled” LDPE bottles and 0.1 µm filtered samples were stored in 500 mL “recycled” 

LDPE bottles. 
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Figure IV.9: Location of profiles collected during 

the Atlantic Meridional Transect (AMT-12) 
cruise in May-June 2003 that were analysed for 

total dissolved iron. 
 

 

 

 

 

 

During analysis of samples from CTD24, the signal detected saturated the PMT, and 

was estimated at more than 10 nM for 7 samples (Figure IV.10a). These levels of 

dissolved (DFe, < 0.4 µm) iron can be found in coastal waters where the major source 

of iron is sediment re-suspension (Hong and Kester, 1986; Bucciarelli et al., 2001), but 

are highly unlikely in open ocean waters far from any land influence. In deep waters of 

open ocean profiles, total dissolved iron concentrations were reported to be 0.6 – 0.7 

nM (Johnson et al., 1997). However most of the deep samples here contained high 

dissolved Fe (≥ 1.5 nM) except at 3500 m and 3300 m depths where concentrations 

were plausible for both size fractions (Figure IV.10a). These results therefore suggest 

that these samples were contaminated for iron, and also for aluminium (Mahmoud, 

2005, personal communication). 

 

Contamination from OTE sampling bottles was unlikely since, for example, the 400 m 

and 1900 m depth samples were highly contaminated in iron in the < 0.4 µm fraction 

but not in the < 0.1 µm fraction whereas both size fractions were sampled from the 

same OTE bottle. The filters or filter holders may have been contaminated during the 

samples filtration. One Teflon® filter holder was used for the 0.4 µm filters and the 

other for 0.1 µm filters, as this latter filtration was much slower. Frits in the filter 

holders were checked for particles each time filters were changed in the laminar flow 

hood. Samples were filtered from the deepest to the shallowest, and filters were not 

always changed for each sample. However there was no sign in the data of 

contamination building up or of transfer of contamination from one sample to the other. 
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Figure IV.10: Dissolved iron (nM) concentration in < 0.4 µm (filled circles) and < 0.1 µm (open 
circles) size fractions in seawater samples collected at a) CTD24 (20.5oS, 25oW) in the South 
Atlantic Gyre (concentrations ≥ 3 nM are shown at 3 nM); and b) CTD69 (48oN, 12oW) in the 

Northeast Atlantic Ocean during the AMT-12 cruise. The dotted lines (0.7 nM) indicate the 
average dissolved iron concentration found in deep waters of the open ocean (Johnson et al., 

1997). 
 

The next step in sample processing was the sample acidification, which was carried out 

after all samples were filtered “on the assembly line”. It was therefore unlikely that 

contamination occurred during this stage of the sample pre-treatment as it would be 

expected to affect all samples to the same degree, and not to be random if the acid was 

contaminated. Additionally samples from 3500 to 1300 m depth were analysed twice 

and showed both times that same samples were highly contaminated suggesting that 

contamination did not occur during analytical handling steps. At this stage, the only 

logical explanation was therefore that contamination of the samples occurred during 

storage in “recycled” bottles. 

 

The profile from CTD69 was analysed earlier in the project (Figure IV.10b), using the 

Fe(II+III) FIA-CL system with the Obata et al. (1993) configuration (Appendix 6). This 

profile was not re-analysed using the finalised version of the analyser as it was already 

suspected of being contaminated because of the high variability of the data and elevated 

values of 0.9 nM to 3.4 nM (Figure IV.10b). The CTD69 profile was collected offshore 

and was therefore not under direct influence of the continental shelf system. In general, 

the reported DFe distribution in open ocean waters was found to be nutrient-like with a 

minimum at the chlorophyll a max, a sub-maximum of up to 1.4 nM at the oxygen 

minimum, stabilising to an average of about 0.7 nM in deep waters (Johnson et al., 

1997). The CTD69 DFe distribution did not show this pattern and concentrations were 

higher, although the distribution of dissolved aluminium did not appear subject to 
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contamination (Mahmoud, 2005, personal communication). Despite a small increase on 

beam attenuation between 320 and 730 m, the variability in DFe could not be correlated 

to any of the other oceanographic parameters (i.e. temperature, salinity, dissolved 

oxygen, fluorescence). These samples were stored in 500 mL “recycled” LDPE bottles, 

and were thus suspected of random contamination for iron from the storage bottles, 

although these bottles appeared significantly less contaminated than the 1 L bottles used 

to store samples from CTD24. 

 

Three more profiles (CTD39, CTD50 and CTD68) from the AMT-12 cruise that were 

stored in “recycled” LDPE bottles were analysed, as well as surface samples between 

the Equator and 40oN (see Figure IV.9). The DFe (< 0.4 µm and/or < 0.1 µm fractions) 

distributions for each of these profiles are shown in Figure IV.11, and the transect of 

surface samples is shown in Figure IV.12. 

 

Profile CTD39 (6oN 28.5oW) was collected in the Equatorial Atlantic during the AMT-

12 cruise. It was located in the inter-tropical convergence zone well known for its 

intense rain events (as high as 2 m.yr-1), which significantly influence the trace metal 

budget and chemistry of surface waters (Helmers and Schrems, 1995; Sarthou et al., 

2003). Profile CTD50 (22oN, 35oW) was collected in the Oligotrophic North Atlantic 

Gyre during the AMT-12 cruise, in a region affected by episodic Sahara dust storms 

(Duce and Tindale, 1991). Reported data in the literature show that iron concentrations 

significantly increase when subject to such events (Bowie et al., 2002b; Sarthou et al., 

2003). 

 

 

 

 

 

 

Figure IV.11: Dissolved iron (nM) distribution in the Equatorial Atlantic (CTD39, 6oN 28.5oW), 
the North Atlantic Gyre (CTD50, 22oN 35oW), Northeast Atlantic (CTD68, 47.7oN 12.7oW). 
Filled circles are < 0.4 µm fraction and open circles are < 0.1 µm fraction. Brackets indicate 

samples contaminated for iron. 
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Each of the profiles analysed was compared to the few high quality data published 

(Table IV.2). Bowie et al. (2002) suggested that in low-Suspended Particulate Material 

(SPM) waters, total dissolvable (TDFe) iron values were not significantly different from 

dissolved (< 0.2 µm) values. However, in high-SPM waters, TDFe concentrations could 

be much higher than that of the "dissolved" (< 0.2 µm) fraction (Bowie et al., 2002b). 

Since published data included iron concentrations in different fractions, this information 

was used to facilitate the interpretation. 

 

 

Figure IV.12: Dissolved iron 
(< 0.4 µm, nM) distribution in 
North Atlantic surface (2m) 

waters (0 to 40oN). Open 
circles indicate samples 

collected with the “dipper” as 
described in Chapter IV. 

 

 

 

Variability in the iron data will also depend on which size fraction of the iron pool is 

studied (Table IV.3). In this study, the iron level in the < 0.1 µm fraction was found to 

be higher than the < 0.4 µm fraction at several depths of profiles CTD39 and CTD50 

suggesting that these samples were subject to low levels of contamination (see Figure 

IV.11). In both profiles, the < 0.1 µm fraction iron signal seemed to follow the same 

trend as the < 0.4 µm fraction, representing respectively on average 90% and 70% of the 

< 0.4 µm fraction for CTD39 and CTD50 respectively, when contaminated samples 

were excluded, which is consistent with recent published results (Wu et al., 2001). 

Additionally, recent analyses suggested that these samples were not subject to 

contamination for Al (Mahmoud, 2005, personal communication). Even though the < 

0.4 µm data fell in the range of other reported data (see Table IV.3), it was difficult to 

confirm the overall quality of this data at this stage, as some samples from CTD24 

stored in "recycled" bottles were clearly subject to random contamination for iron, as 

shown above. 
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Station Name 
Location 

Size 
fraction Depth (m) [Fe] range 

(mean) (nM) Reference 

CTD39,  
6oN, 28.5oW 

< 0.4 µm 
< 0.1 µm 2 – 300 0.6 – 2.7 (1.6) 

0.9 – 2.6 (1.5) This study 

8oN, 45oW < 0.4 µm 0 – 400 0.5 – 3.1 (1.8) (de Baar and de 
Jong, 2001) 

5oN, 24oW Dissolvable 7 – 200 0.3 – 1.5 (0.6) (Bowie et al., 
2002b) 

CTD50 
22oN, 35oW 

< 0.4 µm 
< 0.1 µm 2 – 300 0.9 – 1.9 (1.2) 

0.7 – 1.8 (1.0) This study 

20oN, 20oW Dissolvable 7 – 200 0.3 – 3.5 (1.5) (Bowie et al., 
2002b) 

CTD68 
48oN, 13oW < 0.4 µm 2 – 300 0.7 – 1.4 (1.0) 

excluding 6nM data 
This study 

47oN, 20oW < 0.4 µm 20 – 100 
150 – 2900 

0.07 – 0.2 (0.16) 
0.3 – 0.6 (0.5) 

(de Baar and de 
Jong, 2001) 

45oN, 14oW Dissolvable 7 – 100 
250 – 1000 

0.7 – 1.3 (0.9) 
0.5 – 0.9 (0.8) 

(Bowie et al., 
2002b) 

0 – 40oN < 0.4 µm 0.5 – 2 1.0 – 4.9 (1.9) This study 

Off Africa 0 – 30oN Dissolvable 0.5 – 1 0.5 – 10 (4.0) (Powell et al., 
1995) 

Off Africa 52oS – 50oN Dissolvable 7 0.3 – 2.5 (1.0) (Bowie et al., 
2002b) 

Off Africa 15oS – 50oN Dissolvable 7 0.4 – 2.2 (1.0) (Bowie et al., 
2002b) 

16oS – 5oN < 0.2 µm 1 0.4 – 1.4 (0.7) (Vink and 
Measures, 2001) 

0 – 5oN < 0.2 µm 1 0.3 – 0.7 (0.55) (Powell and 
Donat, 2001) 

Off Africa 5oN – 27oN < 0.2 µm 1 0.2 – 1.1 (0.4) (Sarthou et al., 
2003) 

 
Table IV.3: Comparison of published iron concentrations with the AMT-12 data from this study. 

Surface samples collected Off Africa (last part of Table) were taken close to the African 
continent. 

 

Profile CTD68 (48oN, 13oW) was also collected in the Northeast Atlantic Ocean during 

the AMT-12 cruise. The dissolved iron distribution was relatively homogeneous at circa 

1 nM, except a spike of 6 nM at 175 m (Figure IV.11). This data was not significantly 

different from other published data (Table IV.3), and was consistent with low iron 

uptake in surface waters given that the biology was rather limited by macronutrients at 

that time of the year (M. Moore, 2004, personal communication). The spike 

corresponded to a SPM feature on the transmissometry plot, suggesting it may be real; 

however these samples were also stored in "recycled" bottles, so that contamination 

could not be ruled out. 

 
The AMT-12 surface seawater data between the Equator and 40oN also fell in the range 

of published data (Table IV.3). However high iron concentrations were all measured in 

samples collected with the “dipper” (Figure IV.12). Even though relatively low values 
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could also be obtained from samples collected with the “dipper” (Figure IV.12), this 

sampling technique was potentially more subject to contamination due to the additional 

handling steps. Only three of all surface samples were stored in "new" bottles, and their 

dissolved iron concentrations were found within the range of data of samples stored in 

"recycled" bottles. 

 
In summary, there was a strong case for contamination for iron and aluminium of the 

CTD24 samples, and for iron only, to a lower extent, of CTD69 samples. However the 

majority of the DFe and DAl data appeared oceanographically consistent at other 

stations with only occasional contamination for iron. These results suggest that 

contamination for iron from the storage bottles probably depended on the origin of the 

samples previously stored in these bottles. The set of "recycled" bottles used for storage 

of CTD24 samples may have previously contained samples from waters affected by 

strong inputs of Al and Fe possibly originating from sediments. Additionally 

contamination may have also resulted from insufficient washing of the bottles as these 

had to soak in acid baths for three days instead of a week. Consequently, most of the 

AMT-12 samples may well be of good enough quality to be used for trace metal 

analysis, including iron, after the rigorous evaluation discussed here. 

 
Different sets of samples were then analysed and checked for their oceanographic 

consistency before interpretation using the criteria given above. This also allowed 

checking that the trace metal-clean techniques used were not contaminating the samples, 

as most of the following samples were stored in “new” LDPE bottles and those that 

were not could be clearly identified to the shape of the bottles.  

 

IV.5. Evaluation of other data sets 

IV.5.1. Data set from the JR98 cruise 

Samples were collected and stored in "new" bottles (except for one sample with a high 

DFe value) during the JR98 cruise in the Celtic Sea, where a transect of 9 CTD stations 

was carried out across the continental shelf break (Chapter V). Results were compared 

with the few published data available and checked for their oceanographic consistency, 

and the integrity of samples was evaluated using criteria given above. 

 
As discussed above, a shift in the data on analysis event 13 was suspected, when 

samples from station N7 were analysed. Figure IV.11a displays data obtained with the 
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FIA-CL system with the Obata et al. (1993) configuration (Appendix 5) and with the 

finalised version of the analyser (Appendix 7). Results showed that data obtained with 

the two configurations (filled circles and inverted triangles) were very similar up to 900 

m depth and above this depth new data (filled circles) was slightly higher (Figure 

IV.13a). Most of the samples from other profiles re-analysed gave concentrations about 

1.5 nM on average lower than with the "Obata" configuration in the whole transect 

except at N7 (data not shown), suggesting that data was higher on analysis event 13. 

Moreover, DFe concentrations at N7 were on average 0.8 nM higher than at the 

surrounding stations (N6 and N8) without any other oceanographic data suggesting that 

dissolved iron could be higher at N7. However, after normalisation, background DFe 

concentrations at N7 were similar to those found at N6 and N8 (Figure IV.13b). 

 

 

 

 

 

 

 

 

 

 

Figure IV.13: Dissolved (nM, < 0.4 µm) iron concentration distribution a) at N7 (48.4oN, 
10.2oW) showing data obtained with the "Obata" configuration of the FIA-CL system (inverted 
triangles), data obtained with "Johnson" configuration not normalised (filled circles), and when 

normalised (open circles); and b) at Stations N6 (filled circles), N7 (open circles), and N8 
(inverted triangles) in the Northeast Atlantic Ocean from a transect at the Celtic Sea shelf break. 
 

It was thus decided that data from station N7 (analysis event 13) should be normalised 

to the LISW-IS mean value, given the evidences that: i) the NASS-5 value was 

exceptionally higher than other analysis events; ii) the LISW-IS values were also higher 

than the mean value; iii) concentrations between inter-batch measurements were 

generally found higher than during other analysis events and correlated better after 

normalisation; iv) prior to normalising, background concentrations at stations N7 were 
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higher than at surrounding stations without any obvious correlation with other 

oceanographic data; and v) this shift in the N7 data (0.8 nM) relative to adjacent stations 

was equivalent to the one observed of the LISW-IS value (0.7 nM) relative to the mean 

value. Despite the fact that normalisation of data is usually not suitable, and given that 

time did not allow re-analysis of this profile, this approach was felt well adapted to the 

situation. 

 
Looking at the oceanographic consistency of the normalised data at Station N7, two 

surface data points (4 and 54 m depth) in the N7 profile were found to be much higher 

than expected (Figure IV.13a and b). The DFe concentration at 4 m depth was very high 

(7.93 ± 0.31 nM) for a surface sample, and was strongly suspected of contamination, as 

this sample was the only one stored in a "recycled" bottle (see Section IV.4.3). The 

concentration measured at 54 m (3.28 ± 0.12 nM) was also suspect as this depth 

corresponded to the chlorophyll a maximum where a significant fraction of dissolved 

iron is expected to be taken up by the biota resulting in a decrease in DFe concentrations 

down to sub-nanomolar levels as found at other stations of the transect (see Chapter V). 

Additionally, the DFe value was found to be significantly higher than when analysed 

initially with the "Obata" configuration (Figure IV.13a). These observations suggest that 

this sample was contaminated during analytical handling the first time it was analysed, 

and was therefore excluded from the data set as well as the surface sample at Station 

N7. 

 
Additionally, elevated dissolved iron (4.90 ± 0.10 nM) was measured at 800 m depth at 

Station N8 (Figure IV.13b), with no particular feature in other parameters (e.g. 

enhanced SPM and nutrients) associated (data not shown). Dissolved iron (< 0.2 µm) 

was found at about 0.74 nM in waters at similar depths upstream in the Bay of Biscay 

(Laes et al., 2003), which would likely still be significantly lower if that measurement 

was made in the < 0.4 µm fraction than the concentration measured here. These results 

therefore rule out the possibility for transport of iron-rich waters and for enhanced 

remineralisation, and imply that this sample may have been contaminated for iron. This 

sample was therefore excluded from the data set. 

 

An additional sample from Station N1 at about 80 m depth was removed from the data 

set as it was suspected of contamination, since elevated dissolved iron (4.56 ± 0.19 nM) 

could not be explained oceanographically. 
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Station Name 
Location 

Size 
fraction 

Seafloor 
depth (m) 

Depth 
(m) 

[DFe] range 
(mean) (nM) Reference 

N1 
48.6oN, 9.1oW < 0.4 µm 157 2 – 145 0.6 – 5.4 (2.6) This study 

N2 
48.6oN, 9.3oW < 0.4 µm 165 2 – 157 0.2 – 0.7 (0.4) This study 

N3 
48.5oN, 9.5oW < 0.4 µm 250 35 – 236 0.2 – 0.7 (0.4) This study 

N4 
48.5oN, 9.55oW < 0.4 µm 365 2 – 345 0.6 – 1.7 (1.0) This study 

N5 
48.5oN, 9.6oW < 0.4 µm 542 2 – 520 0.3 – 2.5 (0.9) This study 

N6 
48.45oN, 9.7oW < 0.4 µm 1238 2 – 1227 0.9 – 4.4 (1.9) This study 

N7 
48.4oN, 9.9oW < 0.4 µm 1893 50 – 1887 1.2 – 3.0 (1.6) This study 

N8 
48.35oN, 10.0oW < 0.4 µm 2411 2 – 2390 0.7 – 4.9 (1.9) This study 

N9 
48.3oN, 10.2oW < 0.4 µm 2953 2 – 200 0.46 – 0.74 (0.6) This study 

52oN, 11-12oW < 0.4 µm  0 – 800 < 1 – 4 (Muller et al., 1994)
48 – 50.5oN < 0.2 µm  2 0.7 – 1.9 (Boye et al., 2003) 

 
Table IV.4: Comparison of published iron concentrations with the JR98 data from this study. 
Dissolved iron (nM) concentrations were normalised to the mean LISW-IS valued for profile 

N7 (see text). 
 

After normalisation of Station N7 data and exclusion of samples at 4 and 54 m depth 

(N7), 800 m (N8), and 80 m (N1), all the data fell in the range of published data (Table 

IV.4), and showed consistency with other parameters such as temperature, salinity, 

chlorophyll a, transmission, and macro-nutrients concentration (see Chapter V). 

 

IV.5.2. Data set from the JR80 cruise 

An additional set of unfiltered samples were collected using a "pole sampler" during the 

JR80 cruise in the Atlantic Sector of the Southern Ocean between the Falkland Islands 

and South Georgia (see Chapter V). The quality of the analysis carried out on day 10 

was satisfactory (Table IV.1), even though the sensitivity was found to increase with 

time during analysis and the NASS-5 value was high (see above). Correcting the data 

using the slope given by the increasing peak area for the LISW-IS with time proved to 

give relatively good agreement with inter-batch data. The data was also consistent with 

total dissolvable iron measurements in open ocean and shelf waters published in the 

literature (Chapter V). 
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IV.6. Identification of high quality data 

Given that the quality of data obtained for the JR98 cruise was satisfactory in terms of 

the quality of the analysis and samples, these results also show that the sampling and 

handling procedures used at the National Oceanography Centre, Southampton allowed 

collection of good quality samples and confirmed that storage of samples in "recycled" 

bottles was potentially a source of random contamination for iron. 

 

The "recycled" storage bottles were used previously for samples from a wide variety of 

locations varying from the open ocean to possibly metal-laden Black Sea waters, and 

hydrothermal vents. Results shown here have significant implications for carry-over of 

samples in plastic bottles. Fluctuations in the amount of contamination may therefore 

depend on the origin of the sample previously stored in these bottles. Iron is known to 

diffuse out of the bottle walls using acid washes since this is how storage bottles are 

cleaned before use; however, acidification of samples was thought to prevent trace-

metal diffusion into bottle walls. Presumably iron (and possibly aluminium) also 

diffuses out of plastic therefore potentially influencing the sample concentration. It is 

therefore important to know the metal content of the previous sample before recycling 

storage bottles. Moreover, in the future only new bottles will be used for storage of open 

ocean samples, after rigorous cleaning and long-term leaching of internal walls with 

acidified Milli-Q solutions. 

 

IV.7. Summary 

Independent data checks showed that the Fe(II)+(III) FIA-CL system developed in this 

project was able to accurately determine inorganic Fe(II) plus Fe(III) at sub-nanomolar 

concentrations in samples stored acidified for a long time (> 1 year). It gave linear 

calibrations to up to 6 nM with good precision (often < 5%). The blank and limit of 

detection were fluctuating due to the quality of the rinsing water used (Milli-Q water) 

and should thus be improved in the future. However these figures of merit were 

adequate for the analysis of samples collected in the Atlantic Ocean (AMT-12 cruise), at 

the Celtic Sea shelf break (JR98 cruise), and between the Falkland Islands and South 

Georgia (JR80 cruise). 

 

The NASS-5 iron value was found to be significantly higher than the certified value 

during most of the analyses. The most likely reason was random contamination either 
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during handling or by leaching iron from the system itself caused by the lower pH of 

this solution relative to other samples and standards. The frequent analysis of low-iron 

seawater (mean concentration of 0.98 ± 0.17 nM) acidified to the same extent as the 

collected samples, allowed its use as an internal standard. The response of the system to 

this internal standard was relatively reproducible except on one day when the sensitivity 

increased with time and on another day when a shift in all the data was observed. No 

relationship was found between the NASS-5 values and the LISW-IS values which 

supported the hypothesis that there was pH-linked random contamination of the NASS-

5 seawater. Reproducibility of inter-batch measurements was satisfactory after 

correction of the data when sensitivity or a shift in the response of the analyser was 

observed. The ability of the analyser to give reproducible values for samples, the 

reproducibility in the LISW-IS value, and the NASS-5 typically in line with those 

expected at the beginning and towards the end of the development phase, demonstrated 

the reliability and accuracy of the response of the technique. 

 

After a detailed assessment of sources of contamination, there was a clear suspicion of 

variable and random contamination of samples during storage in “recycled” LDPE 

bottles. After comparison with published data and checking oceanographic consistency, 

it was concluded that some of the AMT-12 data analysed was subject to random 

contamination for iron during storage from the bottles. However trace metals including 

iron could be determined in a significant number of the AMT-12 samples stored in 

"recycled" bottles providing rigorous filtering of the data as applied here. Despite use of 

all the usual procedures for trace metal work at the National Oceanography Centre, 

Southampton, there was evidence of significant contamination of samples from storage 

bottles. Only new acid-cleaned LDPE bottles should therefore be used to store open 

ocean samples when working on iron. 

 

Whilst the performance of the analysis was not optimal throughout, the data set 

produced for the JR98 samples from the Celtic Sea continental margin and for the JR80 

samples from the North Scotia Ridge is of adequate quality to allow the study of 

processes such as benthic inputs of dissolved iron to the water column, and the 

influence of transport and of the water column biota on its distribution (see Chapter V). 

Those samples below the limit of detection have been excluded from the discussion 

other than giving a maximum possible concentration for these samples. 



 

 

 

 

 

CHAPTER V. 

 

PROCESSES INFLUENCING DISSOLVED 
IRON DISTRIBUTIONS                               

AT THE OCEAN – SHELF INTERFACE: 
CELTIC SEA SHELF BREAK (NORTHEAST 

ATLANTIC) AND SOUTH GEORGIA 
(SOUTHERN OCEAN) 
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V.1. Introduction 

The distribution of dissolved iron in the water column is influenced by inputs, removal, 

and recycling processes. In remote areas of the oceans where inputs are low, dissolved 

iron distributions are reported to be nutrient-like as they are strongly influenced by 

biological uptake in the surface mixed layer, and iron is recycled deeper (Johnson et al., 

1997). However the metal's distribution can be strongly modified by major inputs such 

as that from the atmosphere (Jickells and Spokes, 2001; Guieu et al., 2002; Statham and 

Hart, 2005), and sediments in coastal shelf regions (Hong and Kester, 1986; Martin and 

Gordon, 1988; Muller et al., 1994; Wu and Luther III, 1996; Croot and Hunter, 1998; 

Johnson et al., 1999; Bucciarelli et al., 2001; Bowie et al., 2002b). 

 

A multitude of sources, removal, and transport processes have been identified for 

dissolved iron in shelf environments (Santschi et al., 1990). However little is known 

concerning the details of these mechanisms, and their relative contribution to iron 

biogeochemistry (de Baar and de Jong, 2001). The different processes influencing iron 

in coastal / shelf waters are shown in Figure V.1. 

Dissolved iron may be released into near-bottom waters by: i) oxidation of 

particulate organic matter (Berelson et al., 2003; Elrod et al., 2004); and ii) pore water 

diffusion or advection by bio-irrigation (Santschi et al., 1990; Elrod et al., 2004). 

Episodic resuspension events may enhance release of iron-rich pore waters close to the 

sediment-water interface into overlying waters (Santschi et al., 1990). The question as 

to whether iron may be released by dissolution from lithogenic material resuspended 

from sediments in seawater is as yet unaddressed but it is thought to be 

thermodynamically unlikely (Kuma et al., 1992). In surface waters, dissolved iron may 

be released from particulate phases through biological processes (Hutchins et al., 1993; 

Bowie et al., 2001), and by dissolution of aerosols into seawater (Zhuang et al., 1990; 

Jickells and Spokes, 2001; Bonnet and Guieu, 2004). 

Removal of dissolved Fe may occur by: i) adsorption onto particles (Wells and 

Goldberg, 1993; Johnson et al., 1997); ii) precipitation (Elrod et al., 2004); and iii) 

uptake by the biota (Geider, 1999). Thus in productive shelf systems with high particle 

concentrations, there are a complex range of processes influencing sources and removal 

of dissolved iron. 

Waters at the ocean – shelf interface are highly dynamic environments as regards 

water mass movement; therefore transport mechanisms also complicate iron 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure V.1: Conceptual model of the iron cycle in shelf waters. Dashed arrows show uncertainty in the occurrence of processes. White arrows represent 

physicochemical processes; Green arrows, biologically driven processes; Red arrows, inputs of dissolved iron. Litho-SPM = lithogenic suspended particulate 
material; Bio-SPM = biogenic suspended particulate material; POM = particulate organic matter. 
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distributions. These processes include: i) wind-stress thickening the mixed-layer 

(Huthnance et al., 2001); ii) diapycnal mixing by internal tides and "meddies" (Arhan 

and King, 1995; Huthnance et al., 2001); iii) advection along isopycnals (Arhan and 

King, 1995; McCave et al., 2001); and iv) in specific regions wind-driven upwelling 

(Johnson et al., 1999). The distribution of dissolved iron in these systems is therefore 

difficult to study since it is a reflection of all the different processes occurring at that 

time, most of which are not well known and are variable in space and time (Wu and 

Luther III, 1996; Elrod et al., 2004). 

 

Shelf breaks have generally been considered as sinks for dissolved iron as the element is 

mainly lost from solution by adsorption onto particles (Hong and Kester, 1986; Muller 

et al., 1994), which are abundant in these environments (McCave et al., 2001; 

Weinstein and Moran, 2004). However, enrichment in dissolved iron in open ocean 

deep water masses, where atmospheric deposition was not likely to generate the 

observed concentrations, gave evidence that export of dissolved iron off-shelf is 

possible (Coale et al., 1996a; Wu and Luther III, 1996; Gordon et al., 1997; Mackey et 

al., 2002; Laes et al., 2003; Croot et al., 2004a). At the European shelf break region, 

major re-suspension of particulate material from the sediments and lateral transport 

along isopycnals as intermediate nepheloid layers (INLs) have been observed (Dickson 

and McCave, 1986; Thorpe and White, 1988; McCave et al., 2001). High dissolved iron 

concentrations (5 – 9 nM) have been measured in such INLs where dissolved oxygen 

concentrations exceeded 100 µM (Martin and Gordon, 1988), suggesting that dissolved 

iron may be exported off-shelf in such features. However, little is known about the 

mechanisms sustaining high dissolved iron concentrations in these INLs including the 

possibility of stabilisation of iron in colloids (Moran et al., 1996). 

 

Biological interactions are also important in influencing dissolved iron concentrations in 

the upper ocean. In summer, nutrients are generally low in surface waters due to intense 

uptake by the biota during the spring bloom and one or more may become limiting 

when supply is not sufficient to sustain high biological activity. Iron (co-) limitation or 

stress was reported from other shelf environments due to low Fe inputs by upwelling 

(e.g. (Bruland et al., 2001; Bruland et al., 2005), and from open ocean regions 

episodically supplied by atmospheric inputs (e.g. (Blain et al., 2004; Mills et al., 2004), 

but the potential for Fe limitation at the Celtic Sea shelf break has not as yet been 

investigated. 
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In the present study dissolved iron was determined in samples collected during a 

transect across the Northwest European continental margin. The European margin is 

characterised by a broad continental shelf (the Celtic Sea), and is limited westward by a 

steep slope down to 4000 m. European shelf waters are highly dynamic environments 

where wind-, tide- and wave-forced currents, and the topography of the shelf edge 

promote diapycnal mixing between water masses (van Aken, 2000), and potentially 

vertical transport of nutrients (Pingree et al., 1986). Studies on iron in European coastal 

environments have mainly focussed on its behaviour on the shelf (e.g. (Dehairs et al., 

1989; Millward et al., 1998). A few transects have been carried out across the Celtic Sea 

shelf edge (Kremling, 1983; Muller et al., 1994; Boye et al., 2003), including work in 

the OMEX programme (Le Gall et al., 1999; Cotté-Krief et al., 2002). The work 

presented here describes dissolved iron concentrations in the most detailed two-

dimensional transect down to the deep seafloor across shelf break presently available, 

and the data are used to investigate processes affecting dissolved iron distribution in the 

whole water column. This study therefore additionally helps to provide a conceptual 

framework for discussing these processes and other iron data for such systems. 

 
A consequence of effective iron supply from benthic sources in shallow waters may be 

the relief of iron-limitation for phytoplankton growth in waters surrounding islands in 

HNLC areas; an outcome also called the “island mass effect”. This hypothesis has been 

proposed around South Georgia in the Atlantic sector of the Southern Ocean, where a 

persistent phytoplankton bloom is annually observed in satellite images taken during the 

austral spring to the northwest of the island, whereas surrounding HNLC waters do not 

show any enhanced primary production (Korb et al., 2004) (see also Chapter I). To help 

understanding the contrast between these productive and non-productive waters, 

variations in phytoplankton photo-physiology and total dissolvable iron concentrations 

in seawater were examined across a transect between the Falkland Islands and South 

Georgia. 

 

V.2. Sampling and analysis 

V.2.1. Sampling 

Samples were collected during the RRS James Clark Ross cruise JR98, July-August 

2003, during an offshore transect across the Celtic Sea shelf break (Figure V.2). Nine 

stations (N1 – N9) were occupied across the continental slope and samples collected for 
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iron determination. Profiles extended from a few metres above the seafloor up to the 

surface except at Station N9, which extended down to only 200 m (Table V.1). 

 

 

 

Figure V.2: Bathymetric maps of the study 
area showing stations referred to in the text. 
In the inset, the location of section occupied 

in the OMEX program is shown. 
 

 

 

 

 

 

 

 

 
 

 

Sampling was carried out using a titanium CTD-rosette system fitted with trace metal 

clean sampling bottles, with filtration and acidification carried out as described in 

Chapter IV, in a trace-metal clean container laboratory. Samples were acidified with 1 

µL of quartz distilled hydrochloric acid per mL of sample in a laminar flow hood, and 

double zip-bagged (polythene) for storage. 

 

 Latitude 
(oN) 

Longitude 
(oW) 

Bottom 
depth (m) 

Distance from bottom of 
deepest sample (m) 

Distance between 
stations (km) 

N1 48.638 9.112 157 10  
N2 48.580 9.292 165 11 12.8 
N3 48.520 9.493 250 12 12.0 
N4 48.502 9.550 365 18 3.8 
N5 48.485 9.600 542 19 3.7 
N6 48.448 9.715 1238 5 8.5 
N7 48.397 9.883 1903 6 11.5 
N8 48.355 10.027 2411 9 10.5 
N9 48.283 10.217 2953 Only down to 200 m 13.3 

CS2 48.532 9.463 198 12  
 

Table V.1: Stations sampled during the transect across the Celtic Sea shelf edge.  
Total distance between N1 and N9 = 74 km. 

Station CS2 was not sampled as part of the transect. 
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Temperature, salinity, and dissolved oxygen data were logged from the Seabird 911 

CTD sensors. The beam attenuation signal derived from transmission obtained with the 

CTD ALPHAtracka transmissometer was used as an indicator of SPM concentrations 

since they are linearly correlated, and as a calibration was not available (Chelsea 

Technologies Group) (McCave et al., 2001). Samples for nutrients and chlorophyll a 

measurements were collected from duplicate sampling bottles closed at each Fe bottle 

sampling depth. 

 

V.2.2. Analysis 
Analyses were performed in a class-100 clean room in the Southampton laboratory, and 

critical steps were performed in a laminar flow hood. Samples were stored acidified for 

more than one year after collection, an approach that is reported to lead to measurement 

of all dissolved (< 0.4 µm) forms of iron (i.e. dissolved iron (DFe)) (Bowie et al., 2004). 

 
Dissolved iron was determined using a flow-injection analyser with chemiluminescence 

detection using luminol to detect Fe(II) and Fe(III) in seawater, after preconcentration 

(Obata et al., 1997; Johnson et al., 2003) (Chapter III). Data presented here went 

through a rigorous data quality check (Chapter IV). In the absence of a reliable 

calibration for one set of samples, data from profile N7 were normalised to the well 

characterised internal standard value (Chapter IV). Four outlier data points, one 

collected at the surface (8.01 ± 0.31 nM DFe), one in the chlorophyll a maximum (54 

m-depth, 3.31 ± 0.12 nM DFe) at Station N7, one at Station N1 (80 m, 4.56 ± 0.19 nM), 

and one at Station N8 (800 m, 4.90 ± 0.10 nM DFe) were excluded from the data set as 

they were strongly suspected of contamination (Chapter IV). Additionally three data 

points were below the limit of detection (Station N3: 2 and 15 m depth, and Station N5: 

20 m). These were the only data excluded for contamination out of a total of 80 values. 

 
Nutrients were measured by Dr. David Hydes (National Oceanography Centre, 

Southampton) using a Skalar autoanalyser for nitrate plus nitrite (N), phosphate (P) and 

dissolved silicon (DSi). Total chlorophyll a measurements in acetone extractions were 

made using the fluorometric method of Welschmeyer (1994) after filtration onto 

Whatman GF/F (pore-size 0.7 µm) filters. Size-fractionated chlorophyll a measurements 

were carried out following the size categories of Sieburth et al. (1979) as < 5 µm and > 

5 µm, after filtration onto 5 µm polycarbonate filters (Poretics), and were made using a 

fluorometer. Finally pigments of chlorophyll a were analysed following the method of 
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Barlow et al. (1993) by High Performance Liquid Chromatography (HPLC) after 

filtration on Whatman GF/F filters. These analyses were carried out by Pr. Patrick 

Holligan and Young-Nam Kim (NOCS) (Kim, In preparation). 

 

V.3. Results 

V.3.1. Horizontal distribution of dissolved iron across the shelf edge 
The range of surface (~ 3 m depth) dissolved iron concentrations varied from a value 

below the limit of detection (< 0.16 nM) to 0.91 ± 0.15 nM at Stations N3 and N6 

respectively, and did not show any clear trend of increasing concentrations from oceanic 

waters (Station N9) to shelf waters (Station N1) (Figure V.3). Highest DFe 

concentrations were found at Stations N4, N5, and N6 on the upper slope (500 – 1250 

m) and lowest DFe levels were measured at the shelf break (Stations N2 and N3). 

 

 

 
Figure V.3: Surface dissolved 
iron (nM) at circa 3 m-depth 

across the Celtic Sea shelf 
break. Stations number and 

seafloor depths are indicated 
as well as the approximate 
position of the shelf break. 
Error bars are ± 1 standard 

deviation. [DFe] at Station N3 
below detection limit (< 0.16 

nM). 
 

 

Dissolved iron concentrations along this transect were comparable to published surface 

data from near the Porcupine Seabight (~ 51oN), and at about 48oN at the Celtic Sea 

shelf edge (Muller et al., 1994; Boye et al., 2003). Reported dissolved iron (< 0.4 µm) 

concentrations measured at 51oN increased from < 1 nM to > 3 nM in August 1984 

(Muller et al., 1994). In March 1998 at 48oN, DFe (< 0.2 µm) increased from about 0.7 

nM in open ocean waters to about 1.1 nM at the shelf break (Boye et al., 2003). 

Dissolved iron concentrations measured in the present study thus were slightly lower 

than those reported at 51oN, and were in the range found at 48oN even though the size 

fraction measured here was larger, and sampling was carried out in a different season, 

which can have a significant impact on DFe levels. 
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Figure V.4: Vertical distribution of dissolved iron (DFe) across the Celtic Sea shelf edge. Error bars are ± 1 standard deviation. Hatched boxes show bottom depth at 

each station except N9 (2953m-depth), which was sampled only down to 200m. 
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V.3.2. Vertical distribution of dissolved iron across the shelf edge 

The distribution of dissolved iron across the Celtic Sea shelf edge did not present a clear 

trend of uniform increasing concentrations from oceanic to coastal waters, but had 

distinct spikes of high DFe at specific depths (Figure V.4). The presence of sub-

nanomolar DFe at the shelf break (Stations N2, N3, N4 and N5) were surprising in that 

DFe concentrations have been reported to increase to up to several tens of nanomolar in 

shelf systems (Muller et al., 1994; Wu and Luther III, 1996). High DFe concentrations 

(5.37 ± 0.49 nM (n = 3)) were measured near the seafloor at the shallowest Station N1 

(Figure V.4). At the other stations, dissolved iron concentrations slowly increased with 

depth below 50 m, and were relatively homogeneous down to the seabed at Stations N2 

and N3. This distribution is consistent with the relatively weak water column 

stratification at these stations relative to Station N1 (see Appendix 9 for CTD data). 

From Stations N4 to N8, DFe distributions in the water column were significantly 

perturbed by layers of high-DFe water at specific depths (Figure V.4). These spikes 

were not thought to be due to sample contamination as they corresponded to features in 

the water column (see Section V.4.2). No general increase in DFe concentration with 

proximity to the seafloor water was observed, and this feature was found at Stations N1, 

and N4 – N7 (Figure V.4). 

 

V.4. Discussion 

Dissolved iron and associated data (temperature, salinity, beam attenuation from the 

transmissometer, dissolved oxygen, macronutrients concentration, chlorophyll a, and 

pigments) were used to study three aspects of the iron cycle at the Celtic Sea shelf edge 

environment (see model, Figure V.1). Firstly an attempt was made to try and identify 

the sources of dissolved iron in near-bottom waters across the transect. The DFe 

distribution was then examined in the aphotic zone, focussing on mid- and upper water 

column transport. Finally, dissolved iron distributions were examined in the photic zone 

in relation to the biology. 

 

V.4.1. Dissolved iron near the seafloor 

The sediment-water interface is a highly dynamic environment, especially on 

continental margins. Modification of biogeochemical fluxes in bottom waters mainly 

depends on the nature of sediments, the degree of diagenetic reactions, and turbulence 
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leading to resuspension events (Aller, 2004). These processes affect directly the benthic 

nepheloid layer (BNL), the near bottom seawater showing higher SPM concentrations 

than clearer waters above due to resuspension. In this section, dissolved iron, oxygen, 

and nutrient data were used to help distinguish between the different potential benthic 

sources of iron at the seafloor. Also, the mechanisms by which DFe is removed and may 

be stabilised in the water column are considered. 

 

V.4.1.1. Overview of benthic processes as potential dissolved iron sources 

At the seafloor, iron in particulate phases can be found incorporated in biogenic detritus, 

within clay minerals or crystal lattices, adsorbed at particle surfaces, and as 

hydrogenous precipitates (de Baar and de Jong, 2001). Three main processes may 

release dissolved iron from these particles in seawater, and may be enhanced by 

episodic resuspension events: i) dissolution from lithogenic particles; ii) regeneration by 

POM oxidation at the seafloor; and iii) diffusion from pore waters through the 

sediment-water interface (see model Figure V.1) (Santschi et al., 1990). However, other 

processes are expected to be operating to remove iron from solution and so the observed 

dissolved iron concentrations at any particular instant will be a balance of inputs and 

removal. 

 
The surface sediments were studied at the Goban Spur near the sampling area (see 

Figure V.2), showing a marked change in composition and grain size, from 

predominantly terrigenous sandy shelf sediments on shelf to hemipelagic clayey silts on 

the abyssal plain (van Weering et al., 1998). At the shelf edge, sediments presented a 

mixture of lithogenic and biogenic material, mostly of terrigenous origin (van Weering 

et al., 1998). The average iron content of deep-sea clays and coastal mud are 6% and 

6.5%, respectively (Chester, 1990). However iron contained within clays and more 

refractory oxide phases is not readily dissolved due to thermodynamic stability, and 

slow kinetics (Rich and Morel, 1990; Millero et al., 1995b; Sulzberger and Laubscher, 

1995). 

Previous studies on the solubility of refractory alumino-silicates (clays) focussed 

on those deposited from the atmosphere. Incubation experiments showed that the 

solubility of alumino-silicates originating from Saharan dust was very low (0.001 to 

1.6%), increasing with residence time in seawater and decreasing with particle load 

(Bonnet and Guieu, 2004). In the BNL clay and sand particles are expected to re-settle 
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shortly after resuspension due to their high settling velocity (Thomsen and van Weering, 

1998; Huthnance et al., 2002). If DFe were released, it is likely that it would be readily 

removed from seawater by adsorption and/or precipitation, unless it was released as 

colloids or quickly organically complexed. 

Studies on the solubility of Fe oxy-hydroxides showed that the most refractory 

forms (hematite and goethite) were least soluble (Sulzberger and Laubscher, 1995), and 

that freshly precipitated iron (akageneite and ferrihydrite) were most soluble (Millero et 

al., 1995b; Rose and Waite, 2003a). However, at seawater pH, if iron were released as 

Fe(II) it would quickly be oxidised to Fe(III) (Rose and Waite, 2002) unless stabilised 

by organic ligands, and Fe(III) is limited by its solubility to pico-molar levels (Millero 

et al., 1995b; Rose and Waite, 2003a). Thus little, if any, iron is thermodynamically 

likely to be released from oxy-hydroxides in seawater, and it is expected to precipitate 

rapidly after release at seawater pH in oxic conditions. Dissolution of iron from 

lithogenic particles may be possible only if changes in pH and pE (i.e. lower pH 

increases iron solubility as in sediments (Canfield, 1989)), and light conditions (i.e. 

photo-reduction as in the photic zone, (Sulzberger and Laubscher, 1995; Borer et al., 

2005)) occur or if DFe is stabilised (Rose and Waite, 2003b). 

 
An additional potential source of dissolved iron to bottom waters is its release from 

particulate organic matter (POM). In open ocean waters, most (> 95%) biogenic SPM 

(or POM) is slowly remineralised whilst sinking from surface waters so that very little 

reaches the seafloor (Wollast and Chou, 2001). However, in shallow shelf waters more 

POM reaches the sediments due to generally higher production in surface waters, and 

shorter time before arrival at the seabed (van Weering et al., 2001), so that rates of 

benthic POM remineralisation significantly decrease ocean-ward (Jahnke et al., 1990). 

Increased amounts of organic matter at the seafloor may promote DFe release from 

POM oxidation on shelf relative to deeper waters, as observed in the North Pacific 

Ocean (Berelson et al., 2003; Elrod et al., 2004). 

According to the Redfield-Richards equation of respiration in oxic waters, POM 

remineralisation consumes oxygen and releases phosphate, carbon dioxide, sulphate, 

and ammonium which is quickly oxidised to nitrate, following the ratio C:O2:N:P of 

106:138:16:1 (Redfield et al., 1963). Several studies have been carried out to determine 

the iron requirement for growth for a range of phytoplankton species from both coastal 

and oceanic environments (Sunda and Huntsman, 1995, 1997; Ho et al., 2003; Price, 

2005). These experiments showed that the Fe:C ratio varied between about 10 to 50 
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µmol/mol for coastal species and that the ratio increased with iron availability (Sunda 

and Huntsman, 1995; Ho et al., 2003; Price, 2005). This particulate iron is also expected 

to be largely released on oxidation of the POM. Concentrations of dissolved oxygen, 

macro-nutrients, and DFe thus have the potential to be used to investigate the 

importance of POM remineralisation as a source of dissolved iron in the BNL. 

 
Finally, POM respiration at the sediment-water interface and within sediments 

consumes oxygen and may create sub-oxic reducing zones. In oxygen under-saturated 

conditions, reductive dissolution of iron from marine sediments takes place by reaction 

of Fe oxides with dissolved sulphide, or iron oxides are used as electron acceptors in 

POM respiration by bacteria in anaerobic conditions (Canfield, 1989; Santschi et al., 

1990). Dissolved iron concentrations in pore water can be as high as several tens of 

micro-molar (Elrod et al., 2004), and are found mainly as Fe(II) in these reducing 

conditions (Canfield, 1989; Lohse et al., 1998; Berelson et al., 2003). As the redox 

boundary gets shallower in the sediments due to intense oxygen consumption during 

POM oxidation, diffusion of iron(II)-rich pore waters may lead to increased dissolved 

iron concentrations in overlying bottom waters (Dehairs et al., 1989). When oxic 

conditions are restored in bottom waters, dissolved iron(II) in pore waters diffusing 

upward precipitates at the redox boundary (Dehairs et al., 1989). Diffusion of iron-rich 

pore waters may only be possible in shallow waters, where the redox boundary may be 

shallower within the sediments due to increased fluxes of POM to the seafloor. Any 

diffusive flux of dissolved iron in pore water would however be expected to be limited 

to on-shelf stations, and if any, it would also be expected to be rapidly removed. The 

only way diffusion of pore water may be significant as a source of DFe under oxic 

conditions, is if iron is in colloidal or organically complexed forms. Bio-turbation and 

bio-irrigation are other mechanisms that may increase fluxes of dissolved iron into 

bottom waters and vary seasonally and spatially (Lohse et al., 1998; Berelson et al., 

2003; Elrod et al., 2004). Major resuspension events may also inject any surface 

sediment pore water DFe into the overlying waters, and lead to high dissolved iron 

concentrations in bottom waters, if fluxes of POM to the seafloor are high, and iron is 

stabilised. 

 

V.4.1.2. Sediment resuspension across the Celtic Sea shelf edge 

The beam attenuation signal was used as an indicator of SPM concentrations without 

giving information on the nature (i.e. biogenic, lithogenic, inorganic precipitates) of  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.5: a) Beam attenuation (m-1) profiles from 80 m depth to bottom depth across the Celtic Sea shelf edge (N1 to N8). For clarity the upper 80 m are shown 
separately in b) for information, because of the high signal due to biological activity. Hatched rectangles show bottom depth and dashed horizontal lines the 
estimated upper limit of the benthic boundary nepheloid layer (BNL). The beam attenuation signal is linearly proportional to the SPM concentration and the 

attenuation in pure water is 0.364 m-1 (manufacturer Chelsea Technologies Group). 
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these particles. All beam attenuation profiles showed very high SPM concentrations in 

the mixed layer (< 80 m) due to biological activity (Section V.4.2.1). For clarity, the 

upper 80 m were shown in Figure V.5b to allow a suitable x-axis range to observe 

changes in the deeper waters in Figure V.5a. 

 

To demarcate the zone influenced by benthic resuspension, the depth range of the BNL 

was estimated from beam attenuation data, where SPM increased towards the seafloor 

(Figure V.5). The highest near-bottom SPM (= highest beam attenuation) concentrations 

were observed at Station N6. This result may reflect the CTD at this station approaching 

closer to the seafloor than at Stations N1 to N5 (see Table V.1), where the core of the 

BNL may have been missed. Lower SPM at the deepest station (N8) is consistent with 

findings that the concentration of SPM in the BNL tends to decrease with increasing 

water column depth (McCave et al., 2001; van Weering et al., 2001). 

 
Stations could be classified into four categories based on their beam attenuation signal: 

1) high SPM, and sharp features near bottom (Station N1); 2) homogeneous beam 

attenuation, and a few features (Stations N2, N3, N4 and N5) likely due to weaker water 

column stratification (Section V.4.2.2); 3) similar beam attenuation as the most off-

slope stations just below the mixed layer, with very high SPM concentrations below 300 

m (Station N6); and 4) low beam attenuation signal, slightly increasing towards the 

seafloor with a few features (Stations N7 and N8) (Figure V.5). These results suggest 

that resuspension events were very localised, and are likely to be episodic as reported at 

Goban Spur (McCave et al., 2001). The transect was carried out at neap tide when 

currents are generally weaker (J. Sharples, personal communication), which may 
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explain the observed low SPM at the upper slope stations (N3 to N5), as the heaviest 

particles may already have settled back to the seafloor (Jago et al., 2002). Given the 

spatial and temporal variability of resuspension across the shelf, the relative importance 

of potential sources, and resulting inputs of dissolved iron to bottom waters, may thus 

significantly vary between stations. 

 

V.4.1.3. Identification of benthic sources of dissolved iron near the seafloor 

Elrod et al. (2004) suggested that POM oxidation from sediments is likely to be 

the major benthic source of dissolved iron on shelves. During the OMEX programme, 

fluxes of POM at the Goban Spur were of similar magnitude during spring and summer, 

with a difference in composition as fluxes were dominated by opal containing material 

in spring relative to summer (Antia et al., 2001). Additionally it was estimated that 37 

to 60% of carbon fixed by photosynthesis in the euphotic zone was not remineralised in 

the surface mixed layer (Joint et al., 2001), and more than 90% of organic carbon 

mineralisation at the sediment-water interface was driven by oxygen (van Weering et 

al., 1998). Finally, it was demonstrated that, at present, the North West European 

continental margin is not a carbon depocenter with a carbon burial efficiency of only 0.8 

to 2.3% suggesting that most POM that was deposited yearly was remineralised (Lohse 

et al., 1998; Wollast and Chou, 2001). These earlier studies therefore suggest that 

highly degradable POM is expected at the seafloor at the time of the cruise, and thus 

will provide a reservoir of biogenic iron that can be remineralised. 

 
Waters below the euphotic zone are generally under-saturated with dissolved oxygen as 

it is consumed by mid-water column POM oxidation by heterotrophic bacteria. The 

observed apparent oxygen utilisation (AOU) concentration along a shelf/slope system 

will therefore be the result of mixing with waters with preformed AOU, and in situ 

oxygen consumption. Additionally, major resuspension events of anoxic/suboxic 

sediments may eventually decrease slightly dissolved oxygen concentrations in near-

bottom waters of productive stations. The relationship between the AOU and the beam 

attenuation signal in the BNL at each station was thus examined in order to investigate 

the presence of oxygen consuming processes associated with resuspended particulate 

matter near the seafloor.  

The data show three types of behaviour (Figure V.6): i) shallow stations 

influenced by water column mixing (N1, N2, and N3), showing low to moderately high 
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AOU with increasing SPM towards the seafloor; ii) stations showing possible in situ 

remineralisation of POM (N4 and N5) with a linear (R2 = 0.95) relationship between 

beam attenuation and AOU; and iii) stations where any in situ AOU signal was diluted 

by the strong preformed AOU in adjacent water masses (N6, N7, and N8), and there 

was high AOU with increasing SPM towards the seafloor. 

 

 

 

 

Figure V.6: Apparent oxygen 
utilisation (AOU, µM) vs. 

beam attenuation (m-1) in the 
benthic nepheloid layer across 

the Celtic Sea shelf edge.  
 

 

 

 

 

The most on-shelf station (N1) had a higher AOU than Stations N2 and N3 

(Figure V.6), suggesting that at N1 there had been more POM remineralisation. The 

observed AOU signals in deeper waters at these stations therefore presumably reflect 

remineralisation of POM during the early part of the year. 

The relationship of increasing AOU with increasing SPM near bottom at Stations 

N4 and N5 (Figure V.6), suggests that the high SPM was influencing AOU and was 

probably a recent feature. Sediments were found to be slightly sub-oxic, but not anoxic 

down to the redox boundary, which deepened from 1 cm at 210 m water column depth, 

to 2.5 cm at 1000 m, down to 5 cm at 2200 m across the shelf at Goban Spur during the 

OMEX programme (Lohse et al., 1998). A resuspension event would thus have to be 

very important to induce such an increase in AOU (+ 7.3 µM at N4 and + 10.4 µM at 

N5 between the top and bottom of the BNL; Table V.2), which is not obvious from the 

beam attenuation profiles (Figure V.5). It was therefore most likely that the AOU 

reflected in situ remineralisation of the POM fraction within the resuspended material. 

Despite high particle concentrations at Station N6 (Figure V.5), the AOU did not 

increase with increasing SPM in the BNL (~ 1200 m depth) (Figure V.6). Detecting a 

small AOU signal here is difficult because any in situ AOU signal would be diluted by 

the strong influence of low-oxygen waters at about 1000 m depth (Appendix 9). The 

Beam attenuation (m-1)

0.58 0.60 0.62 0.64 0.66 0.68 0.70

A
O

U
 ( µ

M
)

0

10

20

30

40

50

60

70

80

N1
N2
N3
N4
N5
N6
N7
N8

increasing SPM concentration



Chapter V. Processes Influencing DFe Distributions at the Ocean – Shelf Interface 
 

 117

deep Stations N7 and N8 were also influenced by oceanic water masses (see Section 

V.4.2.3) with their own significant AOU signatures. The observed AOU signal at 

Stations N6, N7, and N8 was therefore dominated by the preformed AOU signals in the 

water masses that had accumulated during their transport. 

 

The amount of dissolved iron released from POM oxidation in the BNL at each station 

can be estimated based on AOU values, and assuming that the Redfield-Richards ratio 

can be applied in these waters, and values for algal Fe:C ratio are known (Section 

V.4.1.1). The consumption of carbon was estimated from the difference in AOU 

between the top and bottom of the BNL, and using the Redfield-Richards ratio (C:AOU 

= 106:138). At Station N1, the estimated amount of carbon consumed was small (2.8 

µM) and would only result in a maximum release of 0.14 nM DFe (Table V.2), with the 

maximum Fe:C ratio of 50 µmol/mol suggested in the literature (see above). The 

increase in DFe near the seafloor (Figure V.4) therefore cannot be explained by POM 

oxidation only, implying a contribution from an additional source (e.g. pore water 

diffusion or mixing through bio-turbation or resuspension). 

 

Station Depth (m) AOU 
(µM)

∆AOU 
(µM) 

∆C 
(µM) 

Estimated ∆DFe 
(nM) 

∆DFe measured 
(nM) 

127 (top BNL) 47.8 N1 147 (bottom) 51.5 3.7 2.8 0.03 – 0.14 2.84 

302 (top BNL) 26.8 N4 347 (bottom) 34.1 7.3 5.6 0.06 – 0.28 0.63 

402 (top BNL) 33.5 
524 (bottom) 43.9 10.4 8.0 0.08 – 0.40 

452 (mid-BNL) 40.7 N5 

524 (bottom) 43.9 3.2 2.4 0.02 – 0.12 
0.19 

 
Table V.2: Estimation of carbon consumption and release of dissolved iron relative to 

measurements at Stations N1, N4, and N5 across the Celtic Sea shelf edge. 
AOU = Apparent Oxygen Utilisation; ∆ = difference between two values. ∆C calculated using 
the Redfield ratio (C:AOU = 106:138). Estimated ∆DFe calculated using published Fe:C ratios 

= 10 to 50 µmol/mol. 
 

At Stations N4 and N5, the release of dissolved iron was estimated from carbon 

consumption as for Station N1 (see above). Much carbon was estimated to be 

remineralised at Stations N4 and N5 than at N1 (5.6 µM and 8.0 µM, respectively), and 

these values corresponded to a maximum release of 0.28 and 0.40 nM DFe, respectively 

(Table V.2). These estimates were not significantly different from the released DFe 

present in excess of background values at these stations (0.63 and 0.19 nM, 
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respectively). Whilst these calculations were based on assumptions of the carbon 

consumed and DFe released using the Redfield-Richard ratios, and that some removal 

may have been occurring simultaneously, these results are nonetheless consistent with 

the DFe being released from POM oxidation at Stations N4 and N5. 

In contrast to Stations N1, N4, and N5, concentrations of dissolved iron were low 

at Stations N2 and N3, varying from 0.68 ± 0.03 nM at the top of the BNL and 

decreasing to 0.35 ± 0.02 nM in the bottom sample (Figure V.4). These generally low 

DFe, AOU, and SPM concentrations in the water column relative to N1 suggest that 

inputs of POM and DFe to bottom waters at these stations were less than at the other 

stations sampled. Decreasing DFe concentrations near the seafloor suggest that removal 

processes were more important than inputs at these stations, resulting in a significant 

loss (~ 40%) in DFe relative to background values, presumably as a result of adsorption 

onto particles. 

 
Using the available data, it was thus possible to infer that in situ POM remineralisation 

was likely the major process releasing dissolved iron in the BNL at two upper-slope 

stations. It was also clear that dissolved iron was released in the BNL from other 

sources in addition to POM oxidation at the most on-shelf station; iron-rich pore water 

was the most likely based on our current knowledge of benthic processes. Removal 

processes were likely occurring in the BNL at all stations, and particularly at Stations 

N2 and N3. Mechanisms of DFe removal from seawater and DFe stabilisation in 

seawater are considered below. 

 

V.4.1.4. Removal / stabilisation of dissolved iron in seawater near the seafloor 

Dissolved iron is limited by its solubility to about 0.1-0.2 nM in seawater at pH 8.1 (Wu 

et al., 2001). Excess dissolved iron should therefore precipitate quickly in oxic seawater 

(Rose and Waite, 2003a). Release processes of free iron (Fe(II) or Fe(III)) should 

therefore be quickly balanced by removal through precipitation or adsorption onto 

particles. However a significant fraction of DFe remains in solution despite 

thermodynamics constraints, and this may be due to organic complexation (Johnson et 

al., 1997; Rose and Waite, 2003b), formation of colloidal species included in the 

measured "dissolved" (conventionally < 0.4-µm) fraction, or possibly kinetics 

constraints. Measured DFe concentrations therefore reflect the balance of 

input/removal/stabilisation processes at each station (Parekh et al., 2004), and are 

dependent on the time since DFe release. 
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Precipitation of dissolved inorganic iron at the pH of oxic seawater is fast (Rose and 

Waite, 2003b), and therefore precipitation of pore water Fe(II) after oxidation to Fe(III) 

upon mixing with oxic seawater, is expected to take place before even reaching the 

sediment-water interface, unless it is stabilised (see below). The scavenging of 

dissolved iron onto particles is likely proportional to DFe and SPM concentrations (SFe 

= k [DFe] x [SPM], with k the scavenging rate constant) (de Baar and de Jong, 2001). 

Adsorption of dissolved iron onto particles will therefore be greater for waters with high 

SPM and high DFe, and if this were the only removal process, a linear relationship of 

decreasing dissolved iron with increasing SPM concentrations would be expected in the 

BNL. 

 

Results (Figure V.7) reflected the complexity of the system as only a weak (r2 = 0.38) 

relationship was found between DFe and beam attenuation for the upper shelf stations 

(N2 to N5), and DFe concentrations were similar at Stations N6 to N8 over a wide range 

of SPM levels. Very high DFe, associated with high SPM at Station N1 (Figure V.7) 

may result from resuspension of sediments containing DFe-rich pore waters or their 

advection or diffusion into overlying waters, where DFe may be organically complexed, 

or without time for the material to re-settle, and limited dissolved iron removal at the 

time of sampling. This result may be due to the efficiency of scavenging, which may 

vary with particle size. Small particles with a high surface area to volume ratio will also 

have a longer residence time that bigger particles, however particle size cannot be 

distinguished in the beam attenuation measurements. Temporal variability in inputs and 

removal and particle characteristics were thus likely controlling the measured DFe 

concentrations and stabilisation processes likely "buffered" the removal of DFe. 

 

 

 

 
Figure V.7: Dissolved iron (nM) vs. 
beam attenuation (m-1) in the benthic 
nepheloid layer across the Celtic Sea 

shelf edge. 
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Stabilisation of dissolved iron present in shelf waters may therefore be an important 

process that may allow iron export into the ocean (Mackey et al., 2002; Laes et al., 

2003). The solubility of Fe(III) hydroxides in seawater depends on temperature, salinity, 

pH and organic ligands concentration (Liu and Millero, 2002). Solubility of Fe(III) 

hydroxides in seawater was calculated at all stations across the Celtic Sea shelf edge 

using the equation determined by Liu et al. (2002) which is valid for seawater with 

about 0.4 – 0.5 nM of unknown organic ligands: 

 

 
with temperature T in Kelvin, and the ionic strength I = 19.922S/(1000-1.005S) with the 

salinity S. Using this equation, the average Fe(III) hydroxides solubility across the 

transect was calculated to be 0.38 ± 0.01 nM (n = 80), which was generally lower than 

measured DFe concentrations (see Figure V.4). Liu et al. (2002) mentioned that changes 

in organic ligand concentrations will change the absolute value of iron solubility, and 

Boye et al. (2003) measured approximately 2 to 3 nM of iron complexing organic 

ligands in surface waters at the European continental slope. These concentrations of 

ligands are high enough to complex most of the iron measured in this study. One 

possible explanation to the increased concentrations of dissolved iron is therefore that 

organic ligands stabilised released DFe from benthic processes described above. 

 

Dissolved (< 0.2 µm) iron, Fe(II) and iron-binding organic ligands were found to 

linearly increase in surface waters across the Celtic Sea shelf edge, indicating a common 

source (Boye et al., 2003). Release of these ligands as a biological response to iron 

inputs by vertical mixing was considered unlikely due to the low cell numbers in these 

waters (Boye et al., 2003). The authors therefore suggested that the ligands source must 

have been from admixed bottom waters implying that DFe was organically complexed 

before reaching surface waters (Boye et al., 2003). Experiments performed with 

terrestrial natural organic matter (NOM) showed that iron formed FeIII-NOM complexes 

as strong as the iron binding ligands produced by the biota in the open ocean (Rose and 

Waite, 2003b). Organic complexation between Fe and terrigenous NOM may therefore 

have an important effect on iron solubility in coastal waters (Rose and Waite, 2003b), 

and allow DFe transport to adjacent waters. However, export of DFe complexed to 

NOM far off-shelf would be limited when diluted in oceanic waters as these complexes 

would be thermodynamically less stable than oxy-hydroxides, with a half-life of several 

hours (Rose and Waite, 2003b). 
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Sediments are potentially an important source of Fe(II) to bottom waters depending on 

their redox conditions (Hong and Kester, 1986), and are also a source of dissolved 

organic carbon to bottom waters at Goban Spur (Otto and Balzer, 1998). Furthermore 

fluxes of copper-complexing ligands from estuarine sediments in excess by 3 to 40-fold 

to the dissolved copper concentration were reported (Skrabal et al., 2000). Soluble 

species of Fe3+ complexed by natural organic ligands have recently been detected in 

coastal marine sediments (Carey and Taillefert, 2005). The possibility for the diffusion / 

advection of these iron organic complexes out of sediments has not yet been thoroughly 

investigated. Elderfield (1981) showed that 80% of iron was associated with colloidal 

organic matter of in situ origin, and likely of humic nature in pore waters from upper 

anoxic sediments. Whilst his calculations on diffusive transport of complexed dissolved 

iron indicated such sources would be negligible, advection due to bio-turbation might be 

significant (Elderfield, 1981). Further studies are clearly needed in order to determine 

whether sediments may be able to supply organic ligands, and organically complexed 

Fe(II) to bottom waters in oxic or sub-oxic conditions. 

 

Recent studies on the speciation of iron in seawater showed that the operationally 

defined "dissolved" fraction (< 0.4 – 0.45 µm) included a substantial fraction of iron in 

the colloidal range (~ 0.01 to ~ 1.0 µm) (Moran et al., 1996; Nishioka et al., 2001; Wu 

et al., 2001). Since more than 99% of dissolved iron is organically complexed (Gledhill 

and van den Berg, 1995), most of the colloidal iron is thus likely to be bound to organic 

ligands (Wu et al., 2001). Sources of colloidal matter are numerous, and include 

sediment resuspension (Wells and Goldberg, 1994), although the release of colloidal 

iron from sediments has not yet been studied. 

 

In summary, near-seafloor data were interpreted in terms of sources, removal, and 

stabilisation of dissolved iron across the shelf break. The main benthic source of 

dissolved iron appeared to be through remineralisation of POM at two upper slope, and 

possibly pore water release in bottom waters at the shallowest station. Release of 

dissolved iron near the seafloor will in part be balanced by removal; however a 

significant fraction of DFe remained in bottom seawater possibly as a result of organic 

complexation. Transport of dissolved iron to adjacent waters may thus be possible; 

therefore the influence of hydrodynamics at the shelf break on its distribution was 

examined. 
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V.4.2. Dissolved iron below the euphotic zone 

The distribution of dissolved iron will also be influenced by the circulation (i.e. water 

masses and currents) at shelf break environments. Intermediate waters of the Northeast 

Atlantic Ocean near the European continental margin include three main water masses, 

which are flowing in opposite directions. Additionally, a permanent current is flowing 

pole-ward along slope (Pingree and Le Cann, 1989), and may promote resuspension 

events and horizontal transport along-shelf. In this section, iron data are used in 

association with physical parameters to investigate the role of circulation in promoting 

the transport of dissolved iron into the ocean's interior and towards surface waters. 

 

V.4.2.1. Hydrography 
The transect at the continental margin was examined in three-dimensions since the 

water masses and currents may influence the distribution of dissolved iron in all 

directions. The hydrography in the Northeast Atlantic is well characterised regarding 

water masses and their respective temperature, salinity, and preformed nutrient 

signatures (Tsuchiya et al., 1992; Perez et al., 1993; Pollard et al., 1996; van Aken, 

2000), and was thus interpreted accordingly with additional help (J. Read, 2005, 

personal communication). Surface waters are delimited by the seasonal thermocline (~ 

50 – 100 m). Beneath, there is the Eastern North Atlantic Central Water (ENACW) 

originating from the advection of the sub-polar mode water formed by winter deep 

convection in the northern North Atlantic (Pollard et al., 1996). ENACW is 

characterised by saline (~ 35.63) waters in its upper part (~ 100 to 300 m depth, ~ 27.00 

< σt, kg/m3 < 27.15), and a small salinity minimum (~ 35.53) in its lower part (300 to 

600 m, ~ 27.15 < σt, kg/m3 < 27.30) likely due to the influence of Sub-Arctic 

Intermediate Water (Figure V.8). ENACW overlies the saline Mediterranean Outflow 

Water (MOW) that flows northward along the continental slope from the Strait of 

Gibraltar (Arhan and King, 1995). It is found between about 600 m and 1300 m (27.30 

< σt, kg/m3 < 27.74) with its saline core at ~ 1000 m (Figure V.8). Beneath the MOW is 

the fresher and colder North East Atlantic Deep Water (NEADW, σt > 27.81 kg/m3) 

(Figure V.8). NEADW results from the mixing of Iceland-Scotland Overflow Water, 

Labrador Sea Water (LSW) which is formed by deep convection in winter in the 

Labrador Sea (Paillet et al., 1998), MOW, and the underlying Lower Deep Water 

influenced by Antarctic Bottom Water (van Aken, 2000). Diapycnal mixing is 

particularly strong along the continental slope and thus lead to a stronger modification 
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of the NEADW (van Aken, 2000). A small minimum in salinity at about 1800 m depth 

can be found in the eastern North Atlantic due to the LSW flowing south-eastwards 

(Talley and McCartney, 1982; Paillet et al., 1998). However the LSW signature was not 

obvious here, presumably because of the close proximity of the stations to the shelf 

(Paillet et al., 1998). 

 

 

Figure V.8: T/S plot of Stations N6, N7, 
and N8 at the Celtic Sea shelf break, 

Northeast Atlantic. Main isopycnals (σt) 
are indicated. ENACW = Eastern North 

Atlantic Central Water; MOW = 
Mediterranean Outflow Water; NEADW 

= North East Atlantic Deep Water. 
 

 

 

Macro-nutrient concentrations below 100 m (Stations N6 to N8) were similar to those 

reported in early summer at Goban Spur during the OMEX programme (Cotté-Krief et 

al., 2002) (Table V.3). Nutrient levels were slightly lower in surface waters showing a 

more advanced state of depletion in August relative to values in June (Cotté-Krief et al., 

2002). Below the photic zone, little variation was observed between the data sets, as 

noted by Hydes et al. (2001). Dissolved silicon concentrations were high below 2000 m 

likely because of the stronger influence of Antarctic bottom water than during the 

OMEX programme (D. Hydes, personal communication). 

 

 Surface 
< 100 m 

ENACW 
101-500 m 

MOW 
501-1250 m 

NEADW 
1251-3000 m 

n 7 
27 

5 
18 

14 
30 

10 
22 

Nitrate (µM) 1.7 ± 2.0 
4.1 ± 3.4  

10.8 ± 1.5 
11.1 ± 1.6 

17.5 ± 1.3 
16.9 ± 1.4 

19.1 ± 0.6 
18.7 ± 1.1  

Phosphate 
(µM) 

0.15 ± 0.11 
0.20 ± 0.13  

0.66 ± 0.10 
0.52 ± 0.10 

1.09 ± 0.12 
0.88 ± 0.14 

1.29 ± 0.05 
1.03 ± 0.10 

Dissolved 
Silicon (µM) 

0.7 ± 0.6 
1.1 ± 0.9 

4.1 ± 1.1 
4.1 ± 0.9 

10.9 ± 1.9 
9.1 ± 1.8 

21.7 ± 4.8 
18.1 ± 7.9 

 
Table V.3: Macro-nutrient concentrations in the main water masses at the Celtic Sea shelf break 

(Stations N6 to N8) compared with data from Goban Spur in early summer (in italic) (Cotté-
Krief et al., 2002). ENACW = Eastern North Atlantic Central Water; MOW = Mediterranean 

Outflow Water; NEADW = North East Atlantic Deep Water. 
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A pole-ward current flowing along-slope at about 500 m depth was reported at the 

eastern North Atlantic boundary (Pingree and Le Cann, 1989; Pingree et al., 1999; 

Souza et al., 2001). It was observed here along the transect using geostrophic velocity 

calculated from the density gradients of temperature and salinity by the software Ocean 

Data View (reference at 2400 m depth) (Schlitzer, 2002). The main flow of this density-

driven current was northwards with a small westwards component at N4, N5, N6 and 

N7 (Figure V.9). Geostrophic velocity was greatest between N5 and N6 with a down-

slope component extending to about 1500 m between N6 and N7. The geostrophic flow 

sharpening in its core speed and its component offshore towards N7 possibly originated 

from mixing caused by internal tides which steepened the local gradients of the 

isopycnals (J. Sharples, 2004, personal communication), as also suggested by Pingree et 

al. (1989). The frictional stress at the benthic boundary layer by the slope current is 

likely of importance in that it will tend to induce a down-slope component of the flow 

with potential transport of benthic material down- and along-slope (Souza et al., 2001; 

Huthnance et al., 2002). 

 

 

 

 

 

 

 

 

 
Figure V.9: Geostrophic velocity (cm/s) and contour lines along the transect at the Celtic Sea 

shelf break. Calculated from hydrographic data using the software Ocean Data View at the 
reference level 2400 m (Schlitzer, 2002). Bathymetry obtained from ship data and stations 

location, are indicated. 
 

V.4.2.2. Lateral transport of dissolved iron 

One approach to determining the influence of water circulation on the transport of shelf 

material at continental margins is to examine the distribution of particulate matter in the 

water column. Three types of nepheloid layers may be found at shelf breaks: i) surface 

nepheloid layers (SNL), mainly composed of biogenic material; ii) benthic nepheloid 

layers (BNL), formed by resuspension of sediments including a mixture of coarse, and 
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fine biogenic and lithogenic material; and iii) intermediate nepheloid layers (INL), 

defined as turbid waters distinct from the BNL by a layer of less turbid waters and 

likely composed of relatively fine biogenic, and lithogenic material (Dickson and 

McCave, 1986; McCave et al., 2001). 

 

The distribution of SPM across the shelf edge showed that all types of nepheloid layers 

were present at the time of the JR98 cruise (Figure V.10). An intense BNL developed 

between Stations N5 and N7, and was most intense at Station N6 (Figure V.10), which 

also corresponded well to the zone of influence of the pole-ward flowing current (Figure 

V.9) (Pingree et al., 1999). The likely sources of this major resuspension event on the 

upper slope were either the internal tide generating strong near-bead currents 

(Heathershaw et al., 1987), or the friction due to the down-slope component of the pole-

ward current (Souza et al., 2001; Huthnance et al., 2002). 

 

The lowest beam attenuation values (lowest SPM) were found within the ENACW and 

MOW (Figure V.10) indicating that these water masses did not transport significant 

SPM in their core. Higher SPM concentrations were present below 1500 m depth 

(Figure V.10). 

 

 

 

 

 

 

 

 

Figure V.10: Full depth beam attenuation signal (m-1) across the Celtic Sea shelf edge. 
Bathymetry was obtained from the ship and main water masses are indicated. ENACW = 

Eastern North Atlantic Central Water, MOW = Mediterranean Outflow Water, NEADW = 
North East Atlantic Deep Water. 

 

Two distinct INLs were detected at Stations N6 and N7 between 400 and 700 m depth 

(INL1, core at 600 m), and between 1000 and 1500 m (INL2, core at about 1300 m). 

These INLs could be formed from accumulation on density surfaces of biogenic 

particles settling from surface waters, or by detachment of an intense BNL (Dickson and 
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McCave, 1986). Given the strong SPM concentration in the BNL at Station N6, and that 

this feature followed the same isopycnals, BNL detachment was the most likely source. 

The beam attenuation signal was stronger in the well-defined INL1 than in the 

broad INL2 at Station N7 (Figure V.10 and V.11). It was difficult to determine whether 

this difference in the intensity of those INLs was due to a variation in the magnitude of 

the resuspension event or in the time at which they were observed since creation, given 

that it was not possible to determine when those INLs were formed, and the 

transmissometer did not allow any distinction between particle sizes. 

The INLs closely corresponded to the main water mass boundaries (Figure V.10), 

and their cores propagated along isopycnals at 27.30 kg/m3 and 27.70 kg/m3 for INL1 

and INL2, respectively (Figure V.11), indicating the SPM advected along density 

surfaces between water masses. The beam attenuation signal of these INLs was 

relatively low at Station N8 (Figure V.10) suggesting that they may not propagate much 

further than Station N8, 22 km from Station N6, although along slope transport is also 

possible (Thorpe and White, 1988). 

 

 

 

 

 

 

 

 

 

 

 
Figure V.11: Beam attenuation (m-1) and dissolved iron (nM) distributions along density 

surfaces (σt kg/m3) below the mixed layer at the deepest stations (N6 to N8) at the Celtic Sea 
shelf edge. Isopycnals separating the identified water masses (dotted lines) and INLs' zones of 
influence (grey hatched areas) are also indicated. ENACW = Eastern North Atlantic Central 
Water, MOW = Mediterranean Outflow Water, NEADW = North East Atlantic Deep Water. 

 

Several studies suggested that dissolved iron was probably transported laterally offshore 

by local currents/water masses/eddies in order to explain enhanced DFe levels in the 
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Laes et al., 2003), Equatorial Pacific (Gordon et al., 1997; Mackey et al., 2002), 

Southern Ocean (Croot et al., 2004a), and Gulf of Alaska (Johnson et al., 2005)). A 

plume of iron-rich waters was observed even at the most off-shelf stations below 

surface waters (σt > 27.0 kg/m3) (Figure V.11). These DFe levels (~ 3.2 nM) were lower 

than those (5 – 9 nmol/kg) measured in association with turbidity plumes, and enhanced 

Al, Mn and Co levels within the Monterey Canyon (Martin and Gordon, 1988). High 

DFe levels coincided relatively well with INL1, and with a plume of relatively high 

beam attenuation deeper at Station N6, despite the relatively poor sampling resolution 

which did not properly constrain the SPM plumes (Figure V.11). By contrast, no DFe 

increase was found in association with INL2 at Stations N7 and N8 (further off-shelf) 

except in the BNL at Station N6 (Figure V.11). 

High dissolved iron within INLs may originate from enhanced in situ 

remineralisation or from transport of DFe released from benthic processes within the 

BNL (see Section V.4.1). If DFe were to be remineralised in situ from POM by 

bacterial communities, elevated DFe concentrations would be associated with increased 

nitrate and phosphate and lower dissolved oxygen concentrations. However, N, P, and 

AOU were similar between Stations N6, N7, and N8 (Figure V.12), suggesting that 

enhanced in situ remineralisation was unlikely within INLs, and therefore that DFe was 

transported from its source near the seafloor. 

 

 

 

 

 

 

 

 

Figure V.12: Apparent Oxygen Utilisation (AOU), Nitrate, and Phosphate concentrations along 
density surfaces below the mixed layer at the deepest stations at the Celtic Sea shelf edge. 

Isopycnals separating main water masses are indicated by − ·· − lines. 
 

Assuming that the INL was created from a single resuspension event, and DFe 

was transported from the BNL, DFe concentrations would be expected to be higher 

within INL1 at the most inshore station (N6), before significant reduction in 
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concentrations through mixing and removal processes occur. However, no clear DFe 

gradient in concentration was observed along the transect (Figure V.11), and the data 

may reflect the three-dimensional nature of the system, with INL1 and associated 

elevated dissolved iron concentrations formed to the south of this transect . 

A further factor complicating interpretation is that intermediate nepheloid layers 

are common but intermittent events, which occur at specific depths at the Celtic Sea 

shelf edge as defined by the slope, and the amplitude of internal waves, as shown during 

the OMEX programme and in earlier studies (Dickson and McCave, 1986; Thorpe and 

White, 1988; McCave et al., 2001). High DFe (~ 3.2 nM) was observed at the most 

offshore Station N8 at the same depth as INL1 (Figure V.11 and Figure V.13), however 

it was associated with only a weak increase in beam attenuation relative to surrounding 

waters. This high DFe signal suggests decoupling of dissolved iron from particles, so 

that most particles are lost but high DFe remains, and thus some form of DFe can 

survive particle scavenging. 

No elevated DFe levels were observed within INL2 compared to within INL1 

(Figure V.11 and Figure V.13), presumably reflecting the balance between inputs 

(depending on their source and intensity), and removal processes, which depend on 

particle characteristics (e.g. size, type) and concentration in these systems. Smaller 

particles will have a longer residence time due to their low settling velocity, and thus 

have more time to scavenge DFe. 

 

 
 
 

 

 

 

 

 

 

Figure V.13: Dissolved iron (nM) distribution across the Celtic Sea shelf break. Location of 
stations and of the cores of main water masses and intermediate nepheloid layers are indicated. 

 

Mid-water column plumes of relatively high dissolved iron (about 1.8 nM) were 

observed at about 150 – 200 m at Stations N4 and N5 (Figure V.13). These features 
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were found at the depth of the ENACW, and also corresponded to the zone influenced 

by the along-slope current (see Figure V.9). Enhanced trace metal concentrations were 

found associated with the along-slope current at Goban Spur without any increase in 

beam attenuation (Le Gall et al., 1999). It was hypothesised that this enrichment could 

occur when the current changed direction, and went over the shelf by infusion of trace 

metal rich waters near seafloor (Le Gall et al., 1999). This theory may thus be valid here 

given that the current was relatively strong during the transect (see above). Finally 

dissolved iron was found to be higher (2.05 ± 0.03 nM) at 1800 m depth at Station N8 

(Figure V.13 and 15), which corresponded to the depth at which LSW flows in the 

Northeast Atlantic Ocean (Paillet et al., 1998). 

 

The dissolved iron distribution below the euphotic zone was thus interpreted in terms of 

horizontal transport with the northward flowing current and with a fraction propagating 

along isopycnals, as was suggested by Dickson et al. (1986) for SPM transport. The 

possibility of enrichment of surface waters in dissolved iron by vertical mixing was then 

examined. 

 

V.4.2.3. Vertical transport of dissolved iron 

Macro-nutrient concentrations were very low in surface waters, however increased 

chlorophyll a, dissolved iron, nitrate, and phosphate were observed at the shelf break 

front (N3, N4, N5 and N6), and were strongest at Station N4 (Figure V.14). Low 

nutrient concentrations are common during summer at the Celtic Sea shelf break as 

winter stocks are consumed during the spring bloom (Hydes et al., 2001). Surface 

dissolved silicon was not completely depleted across the shelf edge (Figure V.14), and 

was probably residual rather than regenerated (Hydes et al., 2001). 

 

The increase in dissolved iron across the shelf edge corresponded well with the trace 

metal fronts at the Celtic Sea shelf edge previously reported in the literature (Kremling, 

1983; Muller et al., 1994; Le Gall et al., 1999; Cotté-Krief et al., 2002; Boye et al., 

2003). The Northeast Atlantic Ocean is also under the influence of episodic Saharan 

dust plume events (Blain et al., 2004), and may contribute to the surface DFe measured. 

However such a localised increase in all parameters is more likely due to vertical 

mixing of waters underlying the thermocline, and nitrate and phosphate were likely 

taken up by the biota as they were supplied to surface waters. 
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Figure V.14: Dissolved iron, chlorophyll a, macro-nutrient concentrations and temperature in 
surface waters (3 – 4 m) across the Celtic Sea shelf break. Shaded area highlights the location of 

the shelf break front. [DFe] in surface waters at Station N3 was below the limit of detection. 
 

Evidence for vertical mixing at the Celtic Sea shelf break was given by the presence of a 

cool thermal front during summer months (~ 1oC cooler than surrounding waters; Figure 

V.15a) (Dickson and Gurbutt, 1980; Pingree et al., 1986). Decreasing surface water 

temperatures (17.9oC to 16.9oC) showed that the front was located between Stations N3 

and N6 (Figure V.15b), and corresponded well to the area of increased dissolved iron in 

surface waters (Figure V.14). This thermal front is due to the combination of sudden 

shallowing of waters across the continental shelf, and by the change in current speed 

across the shelf, which is likely induced by tidal exchange (Pingree et al., 1986). 

 

Surface waters were thus likely supplied in nutrients from waters underlying the 

thermocline vertically mixed. Dissolved iron concentrations below the thermocline were 

similar or higher than in surface waters (see Figure V.4), and thus vertical mixing of 

these waters could be sufficient to support measured DFe in surface waters. 
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Figure V.15: Sea surface temperature at the Celtic Sea shelf edge at the end of the JR98 
cruise. a) Satellite picture provided by the Remote Sensing Group, Plymouth Marine 

Laboratory; and b) data from the ship's underway sampling system. 
 

In summary, transport of dissolved iron by advection both horizontally and vertically 

was evident at the Celtic Sea shelf edge. Vertical mixing will thus have a significant 

impact on the primary production in surface waters, and since dissolved iron is an 

essential micro-nutrient to living organisms, its distribution in surface waters was 

examined in relation to the biology. 

 

V.4.3. Dissolved iron in the euphotic zone 

Shelf break systems mark the boundary between the biologically productive shelf 

waters and less productive oceanic waters. Changes of stratification across the shelf 

edge, and consequent vertical advection of nutrient-rich waters are likely to influence 

the biota but vertical mixing did not occur at all stations across the transect (see above). 

Given that iron is essential for phytoplankton development, biota are likely to influence 

dissolved iron distributions in surface waters. Here available data on the biology at the 

time of the cruise (courtesy of Y.-N. Kim) are firstly examined to give a biological 

context to this study. Then the distribution of nitrate and dissolved iron are studied in 

relation to the biomass in order to determine the degree of nutrient uptake. Finally the 

possibility of iron limitation of phytoplankton is investigated. 

 

V.4.3.1. Biology in the euphotic zone across the transect 

Data from Station CS2 (see Table V.1 for coordinates, sampled 8 days prior the transect 

during the cruise) was used to give information about the biology at the shelf break as 
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this station was very close to the position of Station N3 (Figure V.2), and detailed 

biological data was otherwise available only at Stations N1 and N9 across the transect. 

 

Chlorophyll a concentrations were low (< 1 µg/L) at all stations across the shelf edge 

(including CS2; see Figure V.14) as expected during summer after winter nutrient 

stocks were used during the Spring bloom, and as supply of nutrients to surface waters 

was likely episodic (Hydes et al., 2001; Cotté-Krief et al., 2002). A sub-surface 

chlorophyll a maximum between 20 to 30 m depth was also observed (see Appendix 9), 

as reported previously at the Celtic Sea shelf (Sharples et al., 2001). As nutrients 

become depleted in surface waters during summer, phytoplankton develops where 

nutrients are more available, i.e. at the base of the thermocline (Kremling, 1983; 

Sharples et al., 2001). 

At Stations N1 and CS2, chlorophyll a size fractions (< 5 µm and > 5 µm) were 

similar (~50% of chlorophyll a (chla)) at the chlorophyll a maximum depth whereas 

Station N9 had slightly more (~60% chla) small cells (Y.-N. Kim, 2005, personal 

communication). 

 

 
 

 

 
 
 

 

 

 

Figure V.16: Marker pigment concentrations at three stations across the Celtic Sea shelf edge. 
While chlorophyll a is used as a convenient proxy of phytoplankton biomass, many other 

phytoplankton pigments exhibit chemotaxonomic associations, which may be exploited to map 
the oceanographic distribution and composition of phytoplankton assemblages. Pigments and 

likely group: Fucoxanthin (as for diatoms); Peridinin (as for dinoflagellates), 19'-
hexanoyloxygucoxanthin (as for Prymnesiophytes (coccolithophores)), 19'-

butanoyloxyfucoxanthin (as for Chrysophytes (small flagellates)), chlorophyll b (as for 
Chlorophytes), alloxanthin (as for Cryptophytes), and zeaxanthin (as for Cyanobacteria) 

(Wright and Jeffrey, 1987; Bjornland and Liaaen-Jensen, 1989; Wright et al., 1991; Barlow et 
al., 1993). Data from Y.-N. Kim (in preparation). 
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Pigment HPLC analyses showed that the chlorophyll a maximum at Stations N1 

and N9 were dominated (~44% chlaHPLC) by coccolithophores followed by diatoms 

(~20% and 27.5% chlaHPLC respectively), and small flagellates, which were less 

abundant at N1 (~9.5% chlaHPLC) than N9 (~24% chlaHPLC) (Figure V.16). In contrast, 

small flagellates, diatoms and coccolithophores were almost equally (~20% chlaHPLC) 

present at the shelf edge station (CS2) (Figure V.16). The stronger presence of 

coccolithophores at Stations N1 and N9 likely reflect their stronger water column 

stratification than Station CS2 (N3), which is affected by vertical mixing (see above). 

No other major difference was observed in the phytoplankton species composition. 

 

V.4.3.2. Dissolved iron distribution in the euphotic zone 

As iron is an essential nutrient for phytoplankton as well as nitrate and phosphate, a 

relationship showing the uptake of dissolved iron and macro-nutrients in response to 

increasing primary production (chlorophyll a) in the euphotic zone (< 50 m depth) 

might be expected if the system is not "saturated" with iron. 

 

The relationship between nitrate and total chlorophyll a concentrations was consistent 

with the cycle of nutrient supply - biological uptake - nutrient depletion in the euphotic 

zone (< 50 m depth) (Figure V.17a). When nutrients were supplied to surface waters 

(N4, N5, and N6), phytoplankton developed and utilised macro-nutrients (N3, N9, and 

N1), and when one or more nutrient became depleted the bloom faded (N4, N8 and 

surface samples) (see arrows on Figure V.17a). 

 

A reduction in dissolved iron in the euphotic zone (< 50 m depth) relative to deeper 

waters, presumably reflecting uptake at the chlorophyll a maximum, was observed only 

at Station N4 and likely N5 (Figure V.17b), which had the highest chlorophyll a 

concentration (Figure V.14). Reasons for the lack of correlation of DFe and total 

chlorophyll a at other stations may be that: i) samples were not always collected 

precisely at the chlorophyll maximum (e.g. Stations N1 and N6, see Appendix 9) so that 

the DFe minimum may have been missed; ii) there may be a time lag between iron input 

and biological response; iii) the biomass may have been controlled by nitrate uptake 

resulting in a restricted uptake of iron as nitrate was depleted; or iv) the phytoplankton 

species present had lower iron requirements. 
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Figure V.17: Plots of a) nitrate and b) dissolved iron vs. chlorophyll a in surface waters (left 
hand side of dashed line) and at the chlorophyll a maximum (right hand side of dashed line) (< 

50 m depth) across the transect at the Celtic Sea shelf edge. Dashed line separates data from 
surface waters (left hand side) and taken at the chlorophyll a maximum (right hand side). Plain 
arrow and dashed arrow on plot a) represents uptake and supply cycle of nitrate respectively. 

Three data points were below the detection limit (< 0.16 nM) at 2 and 15 m at N3 and at 20 m at 
N5 and are thus not shown in this figure. 

 

One result of the mesoscale iron fertilisation experiments carried out in high-

nutrient low-chlorophyll regions was that changes in algal stocks occurred a few (3 – 4) 

days after fertilisation with dissolved iron (e.g. (Martin et al., 1994; Coale et al., 1996b; 

Boyd et al., 2000)). Thus supply of dissolved iron to surface waters by vertical mixing 

may not have induced an immediate biological response (i.e. increase in chlorophyll a), 

which may give an explanation as to why no direct relationship between DFe and total 

chlorophyll a was found. 

 

Vertical mixing of nutrient-rich waters to the surface was observed at three of the 

stations (N4 to N6) (see above). However levels of dissolved iron were relatively low 

(sub-nanomolar) for shelf waters, especially at Stations N2 and N3. Since chlorophyll a 

was also found to be low across the transect, the possibility of iron limitation at the 

Celtic Sea shelf edge was examined.  

 

V.4.3.3. Iron limitation at the Celtic Sea shelf break ? 

Several iron fertilisation experiments showed that iron limitation was evident for 

phytoplankton in high-nutrient low-chlorophyll regions of the open ocean (Martin et al., 
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1994; Coale et al., 1996b; Boyd et al., 2000). Phytoplankton was also found to be iron-

stressed between supply of iron in regions affected by episodic natural iron inputs, even 

though dissolved iron concentrations were not very low, as in the Californian coastal 

upwelling (Hutchins and Bruland, 1998; Bruland et al., 2001; Fitzwater et al., 2003), or 

in waters influenced by atmospheric dust deposition (Sarthou and Jeandel, 2001; Blain 

et al., 2004; Mills et al., 2004). Shelf break regions are intermediate environments 

between generally productive shelf waters, and poorly productive oceanic waters. The 

shelf break front and geostrophic current act as barriers between these end-member 

waters. Additionally seasonal stratification acts as a barrier separating surface waters 

from deeper waters. This zonation may thus create water domains where some form of 

nutrient limitation may develop due to limited supply of dissolved iron when aeolian 

inputs are also small. 

 

Hutchins et al. (1998) demonstrated that Fe limitation can be important in regions other 

than the traditional Fe-limited oceanic regimes (HNLC areas). The authors described 

four zones in a coastal environment generally replete in macro-nutrients: 1) Fe-replete, 

with almost complete depletion of macro-nutrients after an extensive bloom of large 

diatoms; 2) Fe-stressed, where iron limits growth of large diatoms only; 3) moderately 

Fe-limited, where iron limitation controls species composition; and 4) severely Fe-

limited, where iron controls N and DSi drawdown, POC production, and limits biomass 

growth (Hutchins et al., 1998). This classification shows that the concept of iron 

limitation of primary production is complex as it depends on many factors including the 

speciation of iron (Sunda, 2001; Chen et al., 2003), the species composition and their 

iron growth requirement (Sunda and Huntsman, 1995), the supply and removal or iron 

(de Baar and de Jong, 2001), and its recycling (Hutchins and Bruland, 1994). Therefore 

new forms of iron limitation (or co-limitation) may be found in the future. 

 

The approach adopted here to investigate on the possibility of iron limitation at the 

Celtic Sea shelf break was to examine the Fe:N ratio in the seasonal thermocline waters 

(< 50 m). It was assumed that, to achieve minimum growth, phytoplankton take up at 

least 10 µmol Fe/mol C (Fe:N = 0.07 nM/µM using the Redfield-Richards ratio), which 

corresponds to the approximate minimum growth rate for non-nutrient limited coastal 

phytoplankton, and particularly diatoms (Sunda and Huntsman, 1995) (see Section 

V.4.1). Therefore, when N is not depleted, lower Fe:N ratios would indicate that 
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phytoplankton were possibly iron-stressed, eventually leading to iron limitation if Fe 

was not re-supplied. 

 

Results (Figure V.18) showed that the data could be divided into three groups. 

In Group 1, nitrate was depleted in surface waters at all stations across the transect 

and below ~ 10 m at Stations N2 and N9 (Figure V.10 and Appendix 9). In this group, 

dissolved iron concentrations ranged between 0.21 nM up to 0.91 nM suggesting that 

nitrate was depleted before iron in surface waters. 

In Group 2, both nitrate and DFe concentrations were high (Stations N4, N6 and 

N8) (Figure V.18) at the base of the thermocline, suggesting that supply of nutrients 

from below by vertical mixing recently occurred (see above). 

 

 

Figure V.18: Nitrate (µM) vs. 
dissolved iron (nM) in the seasonal 

thermocline (< 50 m) across the 
Celtic Sea shelf edge. 

 

 

 
 

Finally the third group included waters collected at the chlorophyll a maximum 

depth at Stations N1, N3, N4, N8 and N9. Stations N3 and N9 had high-nitrate and 

relatively low-iron waters, and Stations N1, N4 and N8 had relatively low nitrate and 

relatively high dissolved iron (Figure V.18). At the latter stations, the seasonal 

thermocline may have recently been supplied in nutrients, and the input of DFe may 

have supplied nitrate thus allowing faster N uptake and increasing the Fe:N ratio (0.82, 

0.22 and 1.31 nM/µM for N1, N4 and N8 respectively). Waters at Station N9 had low 

Fe:N ratios (0.26 nM/µM), and the Fe:N ratio was lowest (0.08 nM/µM) at Station N3 

(Figure V.18). Phytoplankton were thus not limited at these stations since a maximum 

in chlorophyll a was found, but they may be iron-stressed particularly at Station N3, and 

may subsequently become iron limited if nutrients are not re-supplied. 
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These results indicate no signs of iron limitation when considering nutrient 

concentrations in surface waters only, except possible Fe-stress at Station N3. However, 

according to the study of Hutchins et al. (1998), these data are not sufficient to 

determine the state of possible nutrient-stress of the bloom, and bottle incubation 

experiments should be carried out. The possibility of iron limitation at the Celtic Sea 

shelf break cannot thus be ruled out based on the present data. An additional state of 

iron limitation was recently suggested, based on the observation that iron limitation may 

not only depend on Fe concentrations in the euphotic zone, but that phytoplankton may 

become iron limited as a result of low levels of macronutrients, and nitrate particularly 

(Wang and Dei, 2001). Nitrate-starved diatoms may thus not be able to take up iron 

using their N-enriched membrane proteins for Fe acquisition, resulting in N and Fe co-

limitation (Wang and Dei, 2001). Additional studies are thus needed to investigate 

further the possibility of iron limitation of the biota at the Celtic Sea shelf edge during 

summer when waters are stratified. The role of grazers should also be considered given 

their potentially important contribution in the export or regeneration of iron in surface 

waters (Hutchins and Bruland, 1994). 

 

In summary, conditions were typical of summer time with a weak sub-surface 

chlorophyll a maximum, and low macro-nutrient concentrations in the seasonal 

thermocline. Phytoplankton was likely limited by nitrate at all stations, although the 

possibility for iron-stress or iron co-limitation could not be ruled out. From this study at 

the Celtic Sea shelf edge, it appears that in addition to vertical mixing, Fe may be 

supplied to phytoplankton in surface waters by advection of shelf waters to surrounding 

areas. The case of the bloom observed in the HNLC waters surrounding South Georgia 

in the Southern Ocean and the possibility that benthic supply of iron may naturally 

fertilise those waters is now examined. 

 

V.5. The « island mass effect » around South Georgia, Southern Ocean 

The Southern Ocean was long thought to be a biological desert. However, thanks to 

satellite SeaWiFS observations, a few “oases” have been observed. Extensive 

phytoplankton blooms are reported in the vicinity of the main islands of the Southern 

Ocean: Crozet and Kerguelen (Indian sector), and South Georgia (Atlantic sector) 

(Figure V.19). 
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It was postulated that these blooms resulted from the enrichment of HNLC waters with 

dissolved iron through the resuspension and advection/diffusion of benthic inputs in 

shallow waters surrounding the islands. This hypothesis has been recently confirmed at 

the Kerguelen island where high dissolved iron concentrations were measured in 

association with enhanced biological activity around the island (Blain et al., 2001; 

Bucciarelli et al., 2001), and is under investigation at the Crozet archipelago (CROZEX 

project 2004 - 2005), but has not yet been studied at South Georgia. 

 

 

 

 

 

 

 

 

 
Figure V.19: Satellite SeaWiFS picture of surface chlorophyll a concentrations in November 
and December 2001 in the Southern Ocean from (Pollard, 2004). The main islands and their 

associated bloom are framed in rectangles. Blue = < 0.1 µg.L-1, Green = 0.1-0.4 µg.L-1, Yellow 
~ 0.4-1.0 µg.L-1, Red > 1.0 µg.L-1. 

 

A transect along the North Scotia Ridge (53-54oS) was organised between the Falkland 

Islands and South Georgia (58-33oW) in Austral autumn 2003. The aim of this study 

was to explore the possibility that the contrast between these areas of high-chlorophyll 

and surrounding HNLC areas is associated with variations in phytoplankton photo-

physiology, and that the potential iron stress may be alleviated in phytoplankton 

populations near South Georgia (Holeton et al., 2005). The iron analyses for this work 

were done as part of the present study. A set of unfiltered surface (~ 1 m depth) 

seawater samples were collected using a “pole sampler” (see Chapter IV), and were 

analysed for total dissolvable iron using the FIA-CL developed in this project (see 

Chapter III and IV) (Holeton et al., 2005). These data were used to augment data on 

phytoplankton photo-physiology and community structure acquired at the same time. 

 

Total dissolvable iron (TDFe, including both dissolved and particulate iron leachable at 

pH 2) concentrations varied between 0.9 to 13.6 nM (Figure V.20), which compared 

favourably to dissolved (< 0.4 µm) iron levels measured in the wake of Kerguelen 
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Islands (Bucciarelli et al., 2001). The highest TDFe concentrations along the transect 

were found localised at the shallow South Georgia shelf (Figure V.20), suggesting that 

iron may have been supplied through benthic processes with subsequent transport to 

surface waters (Holeton et al., 2005). This increase in TDFe near South Georgia was 

associated with enhancement of nitrate and dissolved silicon levels, chlorophyll a, and 

dark-adapted maximum photo-chemical quantum efficiency (Fv/Fm), relative to waters 

east of 46oW (Holeton et al., 2005). Chlorophyll a pigments analyses by HPLC also 

showed a shift in species composition as the shelf waters of South Georgia contained 

the highest index of diatom-dominance (Holeton et al., 2005). 

 

 

 

 

 

 

 

 

 

Figure V.20: Total dissolvable iron concentrations in surface (~ 1 m depth) waters along the 
transect between the Falkland Islands (top left) and South Georgia (bottom right). Indications of 

the hydrography are shown: SAF = Sub-Antarctic Front; APF1 and APF2 = Antarctic Polar 
Front on the eastward (1) and westward (2) transect; PFZ = Polar Frontal Zone; AAZ = 

Antarctic Zone; E = eddy (Holeton et al., 2005). 
 

It was suggested that species composition, and particularly cell sizes, might have 

affected measurements of Fv/Fm of bulk community, however another factor was more 

likely to induce the observed shift in photo-physiology at 46oW (Holeton et al., 2005). It 

was hypothesised that currents flowing over the South Georgia shelf may naturally 

fertilise downstream waters with iron of benthic origin (Holeton et al., 2005), as 

previously proposed (Korb and Whitehouse, 2004). Additionally it was suggested that 

the contrast between photo-physiological parameters in populations east and west of 

46oW along the North Scotia Ridge represented a transition from iron-replete to iron-

limited populations (Holeton et al., 2005). The iron data included particulate iron that 

may not be bio-available, and thus dissolved iron (including small colloidal iron) may 

only represent a small fraction of the total dissolvable iron concentrations measured 

(Sunda, 2001). 
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This study therefore suggests that benthic supply of iron to surface waters potentially 

have important consequences on the phytoplankton population providing that macro-

nutrients are not depleted. These results also imply that transport of bio-available iron 

was possible showing that this process should not be underestimated in the iron 

biogeochemical cycle. Additional studies are clearly needed at South Georgia in order 

to better understand this region, which provides important fisheries stocks, and to 

explain how increased dissolved iron concentrations were measured in the Antarctic 

Circumpolar Current thousands of kilometers eastward of the island (Loscher et al., 

1997; Croot et al., 2004a). 

 

V.6. Conclusions 

The shelf break is a highly dynamic environment where oceanic and coastal waters 

meet; therefore the dissolved iron distribution was expected to be influenced by a 

multitude of processes induced by these two different environments. 

 

Results are consistent with the main source of dissolved iron near seafloor being POM 

remineralisation, but other processes including mixing and removal complicated the 

interpretation. Dissolved iron concentrations were highest (5.4 nM) on shelf, and pore 

water resuspension was likely an additional source of iron to these bottom waters. 

Transport of dissolved iron was evident. Horizontal advection of dissolved iron (~ 3.2 

nM) associated with an intermediate nepheloid layer propagating along an isopycnal 

was identified, and dissolved iron was possibly also transported within the along-slope 

pole-ward flowing current. A second weaker deeper INL did not show enhanced 

dissolved iron concentrations relative to background values (~ 1.3 nM), which may be 

due to variations in the scavenging efficiency or in the magnitude of the sources of 

dissolved iron. There was also evidence of vertical advection of nutrient-rich waters 

underlying the thermocline to the surface at the shelf break front, driven by the internal 

tide and shallowing topography. In the seasonal thermocline, the biology and nutrient 

distributions were typical of summertime in the northern hemisphere, and dissolved iron 

uptake was suggested at the chlorophyll a maximum at two stations on the upper slope. 

Nitrate appeared to be limiting phytoplankton growth in most of the seasonal 

thermocline; however, the phytoplankton population may become iron-stressed at some 

upper slope stations. Other forms of iron limitation, stress, or co-limitation were 

considered, and should be further investigated in the future. 
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Potential consequences of enrichment of shallow waters with dissolved iron were 

examined along an additional transect at the North Scotia Ridge between the Falkland 

Islands and South Georgia in the Southern Ocean. It was suggested that benthic sources 

may alleviate iron-limitation downstream of South Georgia, and lead to increased 

biological activity and photo-physiological efficiency. These results therefore support 

the theory of the “island mass effect” in HNLC waters of the Southern Ocean as already 

shown at the Kerguelen Islands (Blain et al., 2001), and is under investigation at the 

Crozet islands. 

 

Implications of these results reside in the improvement in our understanding of the iron 

cycle in shelf break environments (see model Figure V.1). Initially dissolved iron, 

nitrate, phosphate, and silicon for diatoms are taken up by phytoplankton in the nutrient-

rich surface waters during the spring bloom. Sinking POM is then partially 

remineralised below the thermocline releasing nutrients. These shallow nutrient-rich 

waters may then be advected vertically, especially at the shelf break front, and fertilise 

nutrient-depleted surface waters. This recycling likely sustains a bloom at the shelf edge 

and allows growth of larger cells. When reaching the seafloor, the remaining fraction of 

POM is remineralised releasing dissolved iron and nutrients. On shelf, POM 

remineralisation in sediments will intensify if more detritus reaches the seafloor, and 

this may lead to micro-reducing zones where iron oxides could be dissolved through 

this bacterial respiration. Resuspension of sediments or mixing through bio-turbation 

may then release dissolved iron from pore waters into bottom waters in addition to that 

released by POM oxidation. Dissolved iron is likely organically complexed or colloidal 

when released from sediments therefore stabilising it when entering oxic waters, but a 

significant portion is eventually lost from solution by precipitation and/or adsorption 

onto particles. Iron- and SPM-enriched bottom waters may then be transported laterally 

as intermediate nepheloid layers or within the along-slope current. During wintertime, 

the mixed layer deepens towards the seafloor leading to enrichment of surface waters in 

iron and macro-nutrients, which are then consumed during the spring bloom. 

 

As the aim of this work was to give a conceptual framework for discussing processes, 

several questions are raised, which could not be answered in the scope of this study 

given the limited data, but they do provide a basis for future work: 
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1. Sources of dissolved iron to bottom waters 

We clearly need a better understanding of release processes near the seafloor in order to 

determine fluxes of dissolved iron from benthic sources, and fluxes that actually reach 

surface waters, and thus allow them to be included in the global budget of oceanic iron 

(Elrod et al., 2004). Additionally, it is still unknown whether dissolved iron is 

organically complexed when released from pore waters or from POM oxidation. This 

point is important in understanding how high dissolved iron concentrations may be 

sustained in oxic shelf waters and possibly transported offshore. The source and 

stability of these organic ligands also remains unknown and could potentially be of 

biological or terrestrial origin. The importance of inorganic colloids in the dissolved 

iron fraction and their role in the iron cycle is also still largely unclear. Hong et al. 

(1986) showed that a significant fraction of iron released from sediments was Fe(II) at 

the Peru upwelling system. No additional studies were carried out in non-upwelling 

systems so that the fate of dissolved Fe(II) in oxic waters such as the Celtic Sea shelf 

edge is unknown. If dissolved Fe(II) were to be transported in oxic waters, it should be 

stabilised by organic complexation before its oxidation to Fe(III). Additionally if it were 

to reach the euphotic zone its almost immediate removal by biological uptake would be 

expected. 

 

2. Transport / export of dissolved iron 

In this study, high dissolved iron concentrations were measured only within one of the 

two observed intermediate nepheloid layers. This result implies that dissolved iron can 

survive particle scavenging in some conditions, and that it can be decoupled from 

particles, and therefore clearly needs to be investigated further. Additionally, since 

dissolved iron can potentially be transported within intermediate nepheloid layers, it 

would be interesting to determine how far offshore enhanced dissolved iron 

concentrations can be measured, as this would give an indication of removal kinetics 

within these layers providing that the velocity and mixing of these waters can be 

established. However, following an intermediate nepheloid layer may be a real 

challenge (R. Lampitt, 2005, personal communication). 

Vertical advection of dissolved iron was also observed in this study. Since this 

mixing was likely induced by internal tide propagation, it would be interesting to 

monitor dissolved iron concentrations and its speciation for several tidal cycles at 

stations with different degree of stratification. This experiment may allow determination 
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of a vertical flux of dissolved iron, and its fate, but may be difficult to study due to the 

dynamics of the system, and the work load involved. 

 

3. Biological influence on dissolved iron distribution in surface waters 

Additional studies are needed at the shelf break front to determine the potential for iron 

stress, limitation, or co-limitation of phytoplankton. Incubation experiments could be 

carried out at stations with different water column stratification (i.e. on shelf, at the 

shelf break, at the upper slope, and offshore), with iron and/or other nutrients additions 

while monitoring physiological parameters, species composition, and zooplankton 

grazing. This limitation would be expected to occur only at the end of the summer when 

recycling may not be sufficient to provide nutrients in the Fe:N ratio required for 

minimum growth of coastal species. 

The role of the zooplankton community could also be examined in terms of their 

participation in recycling or export of dissolved iron from the euphotic zone, which 

potentially can increase the iron stress for the phytoplankton population (Wang and Dei, 

2001). 
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VI.1. Initial objectives 

The aim of this project was to improve our understanding of the marine iron cycle by 

investigating the processes influencing dissolved iron distributions in different 

environments. The two major objectives were: 1) to develop an analytical method to 

determine dissolved iron in seawater at sub-nanomolar concentrations, and to ensure the 

quality of the data obtained; and 2) to use this method to determine dissolved iron in 

samples collected in different environments: the Celtic Sea shelf and shelf edge, and the 

open Atlantic Ocean. 

 

The implementation of the analytical method using recent published methods proved 

difficult, and was not a trivial exercise. Given the difficulties in optimising the initial 

method chosen (see Chapter II), an alternative technique was developed, which also 

proved difficult but was in the end successfully used (see Chapter III). The quality of 

the analyses of main samples was found satisfactory for specific samples based on 

current means of assessment (see Chapter IV). A summary of main findings during this 

analytical exercise, and comments on future work are given in Section VI.2. 

 

Two sets of samples were collected using careful trace metal techniques, as 

contamination risks are high when sampling for iron (see Chapter IV). Unfortunately 

despite all precautions, one set of samples was contaminated apparently through 

diffusion of iron from the walls of the storage bottles into some of the samples analysed 

from the AMT-12 cruise in the open Atlantic Ocean (see Chapter IV and Section VI.2). 

Despite uncertainties in the quality of the analysis, samples collected during the JR98 

cruise at the Celtic Sea shelf edge were generally of good quality (see Chapter IV), and 

the data was interpreted in terms of processes (i.e. sources, removal, and transport) 

influencing dissolved iron distribution at the Atlantic Ocean – Celtic Sea shelf edge. 

This data was used in association with ancillary information to provide a conceptual 

framework for future studies in these highly dynamic environments (see Chapter V). An 

additional set of samples from the North Scotia Ridge between the Falkland Islands and 

South Georgia (Atlantic sector of the Southern Ocean, not collected within this project) 

was analysed using the newly developed technique for total dissolvable iron (see 

Chapter V). This additional study gave insights into the importance of benthic sources 

of iron for enhancing primary production and the physiological impact on algal cells of 

the alleviation of iron-stress in regions of the ocean where atmospheric inputs are low. 
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A summary of main findings from the study of the Celtic Sea samples and Southern 

Ocean samples, and suggestions for future work are given in Section VI.3. 

 

VI.2. Objective 1: Analysis of dissolved iron; and future work 

The choice of a flow-injection (FI) system to develop was based on the criteria of using 

the technique while at sea, allowing measurements of iron in Fe-depleted open ocean 

waters, and requiring very little sample handling and rapid sample throughput for near 

real-time measurements. Two types of detection methods for FI techniques for Fe are 

currently used worldwide for the determination of iron in seawater: i) the 

chemiluminescence (CL) reaction with commercially available luminol, with two 

versions to detect Fe(II) (or Fe(II+III) after reduction), or Fe(II)+Fe(III) directly (see 

Chapter II); and ii) the catalytic spectrophotometric reaction with commercially 

available N,N-dimethyl-p-phenylenediamine (DPD) to determine Fe(II+III) after 

oxidation of Fe(II) to Fe(III) (see (Measures et al., 1995)). Initially the method chosen 

here was the Fe(II) FI-CL system based on the technique of Bowie et al. (1998), as its 

advantage over the other FI-CL and DPD methods, was to allow the direct 

determination of Fe(II) (and of Fe(II+III) after reduction). This technique thus had the 

potential of giving a direct measurement of the most bio-available form of iron in the 

ocean. 

 

VI.2.1. Implementation of an technique to determine very low 
concentrations of dissolved iron in seawater 

The Fe(II) FI-CL system was relatively simple to assemble; however problems arose 

during optimisation including mainly the lack of sensitivity and of reproducibility of 

replicate peaks, and the unreliability of the calibration. Despite designing and executing 

an extensive number of experiments to help identify and solve them, these problems 

remained, and it was decided to compare the system with the Fe(II) FI-CL technique 

developed at the University of Plymouth. Results from this comparison exercise showed 

that the resins prepared within this project were responsible for the lack of sensitivity 

and reproducibility of the signal. However problems remained with the calibration so 

that, due to project time constraints, the analyser was modified to the other version of 

the FI-CL method for Fe(II)+Fe(III) determination based on the method of Obata et al. 

(1993). After optimisation of numerous parameters, the system showed good 
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calibrations and sensitivity, and allowed analysis of a selection of samples collected 

during this project. 

 

The complications encountered during the development were thus caused by the mis-

behaviour of the preconcentration resins prepared, and also likely to the batch of 

luminol used for the chemiluminescence reaction. 

 

VI.2.1.1. Preconcentration step 

Many issues were encountered with the preconcentration step (see Chapter II): 

 
1. The preparation of the 8-hydroxiquinoline (8-HQ) immobilised on TSK-Fractogel 

resin following the protocol of Dierssen et al. (2001) did not appear immediately 

successful, and failures were also reported when using the protocol of Landing et al. 

(1986) (S. Ussher, personal communication, and (Dierssen et al., 2001)). The chemistry 

involved in the preparation of 8-HQ Fractogel resins therefore may not be fully 

understood, and factors influencing the reaction should be better constrained. 

 
2. The 8-HQ was found to significantly “bleed” from the TSK resin in the “Dierssen 

resins” prepared within this project; even though these resins were washed before use 

until “bleeding” appeared to stop. The "Landing resin" was also found to slowly 

discolour with use. Potential release of 8-HQ in the system may have consequences on 

the overall sensitivity of the system, as 8-HQ was recently found to mask the Fe(II) CL 

signal (Ussher et al., 2005). 

 
3. The fine 8-HQ resin was found to pack with time, and therefore needed changing 

regularly to avoid the formation of channels within the resin where sample solutions 

would pass through without all Fe binding the 8-HQ. Increasing the bead size of the 

resin or decreasing the amount of resin packed in the preconcentration column 

minimised this effect, and thus increased the column’s lifetime. 

 
4. The “Dierssen resins” prepared within this project had a much lower sensitivity 

towards Fe than the “Landing resin” later used (courtesy of S. Ussher). In addition to 

the lack of sensitivity, the “Dierssen resins” were thus also found responsible for the 

lack of reproducibility of replicate peaks as good reproducibility was obtained when 

using the “Landing resin”. 
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VI.2.1.2. Chemiluminescence reaction 

Obtaining reliable calibrations proved to be a major problem with the technique used as 

the sensitivity and curvature varied subsentially between batches of reagents. 

Differences between calibrations executed immediately one after the other using the 

“old” and “new” luminol were not significant. However the fact that all calibrations 

carried out using the “new” luminol with the Fe(II)+Fe(III) technique were linear or 

positively curved, whereas calibrations were often found negatively curved with the 

Fe(II) technique and “old” luminol, strongly suggests that the quality of the first batch 

of luminol used was questionable. The results obtained here suggest that there is likely 

substantial variability between commercial luminol batches that potentially give 

variable responses during the chemiluminescence reaction. Furthermore, given the 

photo-sensitivity of the product, one may wonder how the reagent will evolve/degrade 

whilst ageing. The different colours observed for the two luminol products used in this 

project suggest that the initial reagent may have degraded with time by exposure to light 

and/or oxygen. Additionally it was found by word to mouth that there may be “bad 

batches” of luminol. All of the above point to the fact that the first batch purchased was 

possibly probably of poor quality and led to many of the problems observed. 

 

In addition to the uncertainty about the quality of luminol, the chemiluminescence 

reaction was found to be very complex (see Chapter II). Previous work demonstrated 

that the chemiluminescence of luminol is a reaction indirectly related to the iron 

concentration, and that several secondary reactions occur simultaneously (Chapter II). 

The CL reaction thus does not seem to be fully understood mechanistically. 

 

In summary, FI-CL systems using luminol are difficult to optimise given the numerous 

factors influencing the response of the technique, and there are remaining uncertainties 

about the two main analytical steps involved. Moreover it seemed that the technique 

was not completely reliable as difficulties were encountered in re-optimising the system 

after moving the analyser for use at sea. However despite all the problems encountered, 

the Fe(II)+Fe(III) technique worked for a period of time during which some of the 

samples collected during this project and elsewhere were analysed. 
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VI.2.2. Quality of the data 

The quality of the analysis was assessed using a standard approach examining the 

correlation of the calibration, precision of measurements, levels of blanks and limit of 

detection, values obtained for a certified reference material or internal seawater 

standard, and inter-batch data comparisons (see Chapter IV). The quality of the data was 

then examined by comparison with published data, and by their oceanographic 

consistency. 

 
The analytical performance of the optimised analyser were generally satisfactory despite 

difficulties in keeping the blank levels low, and dissolved iron could be analysed in 

samples from most oceanic environments. A few problems were encountered when 

checking the accuracy of the technique using a certified seawater reference material 

(NASS-5), and high values were assumed to result from low-level contamination likely 

from containers due to the high acidity of the NASS-5. The use of a low-iron seawater 

sample as an internal standard gave confidence in the data, and allowed identifying data 

that were influenced by increasing sensitivity, or affected by a positive shift. Agreement 

in the inter-batch measurements and the oceanographic consistency when these data 

were normalised gave confidence in their quality. 

 
High dissolved iron concentrations (and also aluminium in one profile) in some of the 

samples from the AMT-12 cruise were ascribed to diffusion of iron from the walls of 

"recycled" storage bottles. Given the suspicion of contamination in some of the data, 

and since most of the AMT-12 samples were stored in "recycled" bottles, these data 

were not used for interpretation. Overall, only 2 profiles from the whole AMT-12 cruise 

were stored in new bottles, and may not be contaminated for iron but are not yet 

analysed due to time constraints. Most of the samples collected during the JR98 cruise 

were stored in new bottles, and their dissolved iron concentrations fell in the range of 

published data. Similarly, total dissolvable concentrations measured in the set of 

samples collected independently from this project at the North Scotia Ridge (Southern 

Ocean) fell within the range of concentrations expected for this size fraction of iron in 

open and coastal waters. 

 
The assessment of the quality of the analysis therefore showed that during that period, 

the analyser allowed obtaining relatively good quality data for samples from most 

oceanic environments. These results have implications for sample storage and for the 
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conventional wisdom that acid washes will readily clean plastic bottles, which may 

require more than the conventional 1 + 1 week to remove trace metals from "recycled" 

bottles containing samples collected in metal laden waters.  

 

VI.2.3. Future analytical work 

VI.2.3.1. Future analytical work for the determination of iron in seawater 
The problems encountered using the 8-HQ resins prepared during this project show that 

more attention should be brought to characterise this type of preconcentration resin 

given their importance in the success of the overall development of the technique. 

Additionally unexplained failures in the preparation of 8-HQ resins bring up a factor of 

“luck” in the success of the preparation, which should not be tolerated in analytical 

chemistry. 

A possible solution to these limitations may exist through the use of a new, 

commercially available resin, the Nitriloacetic Acid (NTA) Superflow resin. This resin 

showed good recovery for iron(III) (100%) and of copper (80%) at pH 1.7, and strong 

synthetic organic ligands did not show any significant effect on iron recovery (Lohan et 

al., 2005). This resin therefore presents many advantages: i) resin preparation failures 

and “bleeding” would be avoided; ii) samples can be directly preconcentrated onto the 

resin without increasing the pH with a buffer therefore potentially lowering the blank; 

and iii) at pH 1.7, iron is rapidly released from complexes thus avoiding the addition of 

an additional step (Lohan et al., 2005). However, this resin does not allow collection of 

Fe(II) at pH 1.7, as it is collected at pH > 5. Hydrogen peroxide must thus be added and 

allowed to react for 10min before preconcentration to allow determination of total 

dissolved iron in samples (Lohan et al., 2005), thus increasing the analysis time and 

potentially increasing the blank. Nevertheless the main advantages are that this 

commercial resin would avoid problems associated with the preparation of the resin, 

and can potentially allow better inter-comparison of iron data if it is used by several 

laboratories. 

 
Problems encountered with getting reliable calibrations using the Fe(II) FI-CL 

technique  were ascribed to the quality of the commercial luminol used, and thus there 

was an element of chance, depending upon which luminol was used. In the 

implementation of the analyser in this project, many parameters were tested prior the 

luminol (no reference to problems with batches of luminol was found in the literature), 



Chapter VI. Conclusions and Future Work 

 151

and resulting in significant loss of time during the project. Additionally the CL reaction 

appears to be complex and not well understood. 

The final version of the Fe(II)+Fe(III) FI-CL system worked well with good 

sensitivity and precision allowing determination of iron in seawater from most oceanic 

environments, and could be further optimised to lower the blanks and limit of detection. 

However the technique appeared not as reliable as in the laboratory when used at sea. 

The analyst may thus want to consider using an alternative analytical technique with 

similar sensitivity but with a reaction for the detection of the analyte that is better 

known and constrained. A possible choice is the catalytic spectrophotometric method of 

Measures et al. (1995) using DPD, which has been used with good sensitivity to 

determine iron in different regions of the ocean (Sedwick et al., 2000; Vink et al., 2000; 

Weeks and Bruland, 2002). This method could be used with the NTA resin presented 

above, providing an analyser that has the potential to overcome most of the analytical 

problems encountered in this project. 

 

VI.2.3.2. Future work to ensure the quality of the iron data 
During this project, problems were encountered to check the accuracy of the analysis 

when using the current certified seawater standard (NASS-5), which appeared to be 

related to its higher acidity, and relatively high concentration (3.71 ± 0.63 nM) 

compared to the levels measured in open ocean samples (< 1 nM). It would therefore be 

preferable to have a new certified seawater reference material with acidity and 

concentration similar to the samples analysed in most laboratories, as recently suggested 

by other authors (Bowie et al., 2004). 

 
Significant contamination was observed in samples stored for more than a year in acid-

washed bottles that previously contained acidified samples from different origins. This 

result suggests that LDPE storage bottles potentially have a "memory" of the samples 

previously stored despite the low acidification. It is therefore important to keep a record 

on which samples were stored in the bottles before recycling them, to prioritise the use 

of new bottles when samples are to be collected in iron deplete open ocean waters, and 

ensure the use of efficient cleaning methods. 

 

Despite the numerous analytical problems encountered during this project, two sets of 

samples were analysed for iron, and were thus interpreted to improve our understanding 

of the iron cycle at the ocean – shelf interface. 
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VI.3. Objective 2: Dissolved iron distribution at the ocean – shelf 
interface; Future work 

VI.3.1. Processes at the Celtic Sea – ocean interface 

Main findings during the interpretation of dissolved iron data at the shelf edge were: 
 
1. Near seafloor (~ 5-10 m above bottom), oxic degradation of particulate organic 

matter was likely the largest source of dissolved iron at two upper slope stations. An 

additional source likely supplied dissolved iron at the most shallow station, presumably 

by recent remobilisation of sediment pore water. The balance between inputs and 

removal processes was in favour of removal near the seafloor at two other upper slope 

stations as seen by a decrease in dissolved iron when approaching the seafloor. Residual 

dissolved iron concentrations were thought to be stabilised in seawater through 

inorganic colloidal formation or organic complexation. 

 
2. Intense resuspension occurred on the upper slope at ~ 1000 m depth where a 

component of the geostrophic current was found to flow northward. A significant 

fraction of this material was thus probably transported along shelf by this current. A 

small fraction of this material was also found to propagate in intermediate nepheloid 

layers along two isopycnals demarcating the main water masses. However enhanced 

dissolved iron concentrations were only found associated with the shallowest and 

strongest of the two intermediate nepheloid layers. This result may be explained by 

variations in the intensity of scavenging and of the source of iron. 

 
3. Vertical mixing of deeper waters induced by the internal tide was also observed 

across the transect with increased dissolved iron concentrations associated with cooler 

temperatures in surface waters. Nutrients supplied through this mechanism are likely 

rapidly utilised by primary production resulting in depletion of nitrate in surface waters 

relative to other nutrients. 
 
4. Finally little obvious uptake of dissolved iron was observed in surface waters 

relative to deeper waters, whereas nitrate was depleted at most stations in the euphotic 

zone. Low nitrate concentrations in seawater thus suggested that primary production 

was limited by this nutrient at the time of the cruise. However, given that supply of 

dissolved iron in surface waters may be limited by stratification, and that mixing 

between oceanic and coastal waters is limited by the geostrophic current, different 
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degree of iron (co-)limitation, stress for phytoplankton may potentially occur at 

different times of the year at the Celtic Sea shelf edge. 

 

VI.3.2. The "island mass effect" near South Georgia (Southern Ocean) 

The Southern Ocean is mostly an iron-limited HNLC area due to the lack of source of 

dissolved iron, however a few "oasis" were observed by satellite images around main 

islands (i.e. Crozet, Kerguelen, and South Georgia). Blooms last for months in the 

surrounding former HNLC waters around these islands that have presumably been 

naturally fertilised with iron, suggesting alleviation of iron-stress in the phytoplankton 

population. In the published study presented here, total dissolvable iron concentrations 

increased significantly near South Georgia, suggesting that the island shallow waters 

were fertilised in iron presumably by benthic sources. Additionally changes in the 

photo-physiology of algal cells were found near South Georgia, and in waters 

downstream of the island. Changes in these parameters were likely related to the supply 

of iron, which is consistent with the fact that iron is an essential element in the 

mechanism of photosynthesis. This study thus reported the first iron data supporting the 

"island mass effect" hypothesis around South Georgia. 

 

VI.3.3. Implications 
Some authors have suggested that iron may be released in surface waters by photo-

reduction of particulate iron transported from the benthic boundary layer (e.g. (Chase et 

al., 2005)). However the present work suggests that a significant fraction may actually 

be supplied in the dissolved (< 0.4 µm) form, although an important portion may be 

found as inorganic colloids or organic complexes. This source of iron therefore can 

potentially be directly available to the phytoplankton population without additional 

transformation. The release of potentially bioavailable iron supplied from benthic 

sources would have important consequences on severely iron-stressed algal cells as 

found around islands of the Southern Ocean, assuming that scavenging remains limited, 

and that transport mechanisms rapidly bring dissolved iron to the surface. 

 
Remineralisation by oxic degradation of particulate organic matter (POM) settled onto 

the seafloor appeared to be the main benthic source of dissolved iron in this shelf break 

environments. Shelf waters are generally productive areas in spring, which is followed 

by an intense export of POM that is oxidised by heterotrophic respiration during 
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summer months. Therefore POM oxidation is potentially an important source of 

dissolved iron in most of the world's shelf waters. This source term should thus be 

included in the global oceanic iron budget, providing that a significant fraction of this 

regenerated dissolved iron can be transported to surface waters, as previously suggested 

by Elrod et al. (2004). 

 
From this work, it was evident that dissolved iron was transported both horizontally and 

vertically at the ocean-shelf interface. Vertical mixing is not specific to the northwest 

European margin, and is strong in regions affected by wind-driven upwelling of deep 

waters (e.g. off Bengal, off California, Southern Ocean). However intermediate 

nepheloid layers (INLs) were only observed at the Celtic Sea margin, and the northeast 

Pacific (Dickson and McCave, 1986; Martin and Gordon, 1988; Thorpe and White, 

1988). One may wonder whether these intermittent INLs propagating into the ocean's 

interior may be a more worldwide spread phenomenon, and could therefore provide an 

additional but occasional transport mechanism for particulate and/or dissolved iron off 

shelf, as recently found with eddy propagation (Johnson et al., 2005). Even though a 

large fraction of dissolved released by benthic sources is presumably trapped at 

continental shelves, the remaining fraction may be exported off shelves; a flux that 

should be included in the estimates of the global oceanic iron budget. 

 
The concept of iron limitation of phytoplankton communities is relatively recent and 

experiments gave evidence of this limitation in the extreme HNLC environments where 

macro-nutrients are replete. The Iron Theory helped scientists to better understand the 

contrasting distribution of primary production in the world's ocean. Recent studies 

suggest that iron limitation may also occur in episodically naturally fertilised areas 

including in the open North Atlantic ocean subject to dust storm deposition (Blain et al., 

2004; Mills et al., 2004), and the California upwelling system (Firme et al., 2003). 

Hutchins et al. (1998) also recently revealed that different forms of iron limitation may 

occur in coastal environments. The concept of iron limitation should thus be revisited 

by investigating regions such as the Celtic Sea shelf edge in space and time, as sub-

nanomolar concentrations of dissolved iron were measured here in waters assumed to be 

iron-rich due to their proximity with benthic sources. Given that nitrate concentrations 

were depleted in surface waters and were very low in the seasonal thermocline, co-

limitation of nitrate and iron may be more likely during summer. 
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VI.3.4. Future work on aspects of iron biogeochemistry 

The aim of this work was to give a conceptual framework for discussing processes. 

Several aspects of the iron cycle in these systems could not be addressed in the scope of 

this study but provide a basis for future work (see details end of Chapter V). 

 

In order to better understand the "island mass effect" around Antarctic islands for 

example, good process studies are necessary to improve our understanding of the 

proposed mechanisms involved in the supply / removal / transport of dissolved iron 

from shelf waters to the ocean. New studies should focus on release processes of iron 

from sediments, and the balance of input and removal of iron. Determining the 

speciation of dissolved iron is also crucial to explain how high DFe concentrations are 

maintained in these waters that can potentially be transported offshore. Intermediate 

nepheloid layers can be a possible transport mechanism for dissolved iron to the ocean 

interior, however this process implies that, in some conditions, DFe could survive 

particle scavenging, which clearly needs investigating. A further important component 

of these systems to study is surface biology, as, apart from other factors, it is the major 

supplier of carbon to the seafloor. Monitoring the effect of vertical mixing on dissolved 

iron and nitrate distributions may thus allow the study of bloom dynamics at shelf 

breaks. Given that different degrees of iron limitation may exist even in coastal waters, 

and given the relatively low iron concentrations in surface waters observed here, the 

possibility of iron limitation or co-limitation should be investigated. Additionally the 

role of zooplankton grazing in the recycling of dissolved iron should be studied as 

stratification may not allow regular supply from deeper waters. 

 

This study of dissolved iron distributions at the Celtic Sea shelf edge therefore 

highlights our relatively poor understanding of processes governing the release, 

removal, stabilisation, transport and biological uptake of iron at oceanic-shelf interface 

environments. A non-exhaustive series of suggestions for process studies have been 

made here for future work to improve our understanding of the iron cycle in these 

generally highly productive environments, which are also important in terms of fisheries 

and as potential carbon sinks. 
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APPENDIX 1. 

DESCRIPTION OF THE FIA-CL SYSTEM TO DETECT Fe(II) 
IN DE-IONISED WATER 
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Appendix 1. FIA-CL to Detect Fe(II) in Deionised Water 
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INSTRUMENTATION 
Peristaltic Pump (PP) Gilson Minipuls 3, 8 channels (Anachem Ltd., #F155013) 

Injection Valve (IV) 
6-port Cheminert low-pressure valve model C22 with micro-electric 
2-position actuator and ¼-28 fittings switched manually (VICI Valco 
Inst. Co., Thames Restek, C22-3186EH) 

Flow Cell (FC) 1-mm i.d. transparent PVC tubing coil with aluminium foil to 
optimise light detection and mounted on the PMT window  

Photo-Multiplier Tube 
(PMT) 

End-on photo-counting head incorporating a low-noise PMT and 
internal high voltage supply, with low voltage (5Vdc) source from 
main control unit (Hamamatsu Photonics, H84443) 

Power Supplies (PS) Iso-tech laboratory dc power supply, dual tracking with 5V fixed, 
model IPS 2303DD 

Chart Recorder (CR) Servoscribe 

Tubing 0.8-mm i.d. PTFE tubing for the manifold 
Flow-rated PVC peristaltic pump tubing (Altec) 

 

REAGENTS using Milli-Q water (18.2 MΩ.cm), according to King et al. (1995) 

Luminol 
Reagent 

500µM luminol reagent (3-aminophthalhydrazide, > 98%, Fluka # 09253) 
buffered with 0.02M sodium tetraborate (Analytical grade, Sigma-Aldrich, # 
S9640) and adjusted to pH 11.5 with 2M NaOH (Analytical grade, Fisher 
Scientific, # S4920) 

Carrier 
solution 0.7M NaCl (Analytical grade, Fisher Scientific, # S3160) 

Fe(II) 
stock 
solution 

250µM standard stock solution of Fe(II) was prepared monthly by dissolving 
0.0098g of ammonium ferrous sulphate (Fisher Scientific, # A4880) in 100mL 
0.2M HCl (Fisher Scientific, # H1100) 

Fe(II) 
working 
standard 

prepared daily by serial dilution of Fe(II) stock solution, in 0.7M NaCl 

 

ANALYTICAL SEQUENCE 
The luminol reagent stream was continuously pumped during the analysis and 

went directly to the “T”-piece at the flow cell. When the injection valve was in the 

loading position (position A, see diagram above), the standard was pumped through the 

manifold, loaded in the injection loop, and excess went directly to waste. When the loop 

was filled, the valve was switched to the elution position (position B) to allow the 

standard solution in the loop to be carried by the sodium chloride carrier stream to the 

flow cell. A “T”-piece allowed the luminol reagent stream and the carrier stream to 

meet at the entrance of the flow cell. The resultant stream passed through the flow cell 

coil in front of the photo-multiplier tube to allow the reaction to be complete and 

emitted light detected; after the flow cell the solution went to waste. 



Appendix 2. Preparation of the 8-Hydroxyquinoline Resin 
 

 III

APPENDIX 2. 

PREPARATION AND TESTING 
OF THE 8-HYDROXYQUINOLINE RESIN 

 
 
REAGENTS 

The Toyopearl SEC HW-65F resin (94% between 30-60µm particle sizes, fine, 

Anachem) was washed three times with Milli-Q water and the supernatant removed to 

rinse away the preservative. The 8-hydroxyquinoline (8-HQ, 5-amino-8-

hydroxyquinoline, dihydrochloride 95%, Sigma-Aldrich) and 1-chloro-2,3-

epoxypropane (epichlorohydrin, 99+%, Fisher) were used as received. Two solutions of 

10M and 0.5M NaOH were prepared by dissolving analytical grade NaOH pellets 

(Fisher) in Milli-Q water and 1M HCl was prepared by dilution of 32%w/v analytical 

grade HCl (Fisher) with Milli-Q water. 

 

PROCEDURE 
The first step in the protocol is the epoxy-activation of the resin with 

epichlorohydrin. 25mL of 10M NaOH were diluted with 37mL Milli-Q water and 38mL 

of epichlorohydrin. 5g of dried Toyopearl HW-65F resin were then added to the mixture 

which was left to react at 50oC for 2h while stirring slowly to avoid damaging the 

particles. The epoxy-activated resin was then rinsed thoroughly with Milli-Q water 

using a vacuum filtration system whilst supported on an acid washed fine glass fibre 

filter (GF/F, Whatman). The resin was air dried and stored in a plastic vial. 

The second step in the protocol is the coupling of the 8-HQ to the epoxy-activated 

resin. As a significant loss of 8-HQ from the resin after preparation has been reported 

(S. Severmann, personal communication), therefore half the quantity of 8-HQ suggested 

in the “Dierssen protocol” was used. 2.5g of 8-HQ were thus dissolved in 25mL Milli-Q 

water and adjusted to pH 11.5-12.0 with 10M NaOH. 2.5g of epoxy-activated resin 

were then added to the mixture and was left to react at 80oC for 6h while stirring slowly. 

Using a vacuum filtration system, the resin was collected on a 0.45-µm acid washed 

cellulose nitrate filter, and the resin was rinsed with: 2 x 25mL 0.5M NaOH, 3 x 25mL 

Milli-Q water, 2 x 25mL 1M HCl and 3 x 25mL Milli-Q water. Rinses following this 

sequence were carried out until major “bleeding” of the 8-HQ from the resin was 

ceased. The 8-HQ resin was then stored under Milli-Q water. 
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DETERMINING METAL COLLECTION CAPACITY OF THE RESIN 
In order to check complexing capacity of the prepared resin, an experiment was 

performed with copper, which has a similar behaviour to iron as regards 8-HQ and this 

experiment also allowed comparison with the results reported by Dierssen et al. (2001). 

 
Reagents were prepared as follows. Ammonium acetate buffer was prepared by 

diluting 115µL glacial acetic acid (certified, Fisher) to 100mL with Milli-Q water and 

adjusted to pH 5.5 with 25% ammonia (sp. gr. 0.91, BDH chemicals). To elute copper 

from the resin, 2% HNO3 was prepared by diluting 70% HNO3 (trace analysis, sp. gr. 

1.42, Fisher) in Milli-Q water. The 3.15 µΜ Cu(II) standard solution was prepared by 

diluting 10mL of 15.7 µΜ Cu(II) (for AAS, Fisher) to 50mL with Milli-Q water and 

was adjusted to pH 5 with 25% ammonia. 

 
The experiment was carried out as follows. 100mg of dried 8-HQ resin were 

suspended in 5mL of Milli-Q water to make a slurry which was then loaded into an 

acid-washed (in 10%w/v HCl) plastic column (10 cm3). The 8-HQ resin was 

conditioned with 10mL of ammonium acetate buffer to convert it into ammonium form. 

10mL of 3.15 µM Cu(II) standard solution were then loaded. The resin was then rinsed 

with 10mL ammonium acetate buffer to remove any non-bound copper, and finally 

eluted with 10mL 2% HNO3. A blank was performed following the same procedure but 

loading 10mL of ammonium acetate buffer instead of the Cu(II) standard. The eluted 

acid solution was then analysed using a Varian Spectra AA55 atomic absorption 

spectrometer. A calibration curve was made using standards: 0 (2% HNO3 only), 15.7, 

78.7, and 157.4 µmol.L-1. 

 
Four experiments were performed which were in good agreement with the results 

given by Dierssen et al. (2001) for a batch experiment, since the blank corrected values 

obtained in this study were 100.1 ± 9.7 µmol Cu/g of resin (n = 4). 
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APPENDIX 3. 

MANUALLY CONTROLLED FIA-CL WITH PRECONCENTRATION 
STEP TO DETECT Fe(II) IN SEAWATER 
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Injection Valve (IV) 
6-port Cheminert low-pressure valve model C22 with micro-
electric 2-position actuator and ¼-28 fittings  
(VICI Valco Inst. Co., Thames Restek, C22-3186EH) 

Flow Cell (FC) 1-mm i.d. transparent PVC tubing coil with aluminium foil to 
optimise light detection and mounted on the PMT window  

Photo-Multiplier Tube 
(PMT) 

End-on photo-counting head incorporated a low-noise PMT and 
internal high voltage supply, with low voltage (5Vdc) source 
from main control unit 
(Hamamatsu Photonics, H84443) 

Power Supplies (PS) Iso-Tech Laboratory dc Power Supply, dual tracking with 5V 
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REAGENTS prepared in Milli-Q water, according to Bowie et al. (1998) 

Luminol Reagent 
10µM luminol reagent (3-aminophthalhydrazide, Fluka, # 09253) 
buffered with 0.1M sodium carbonate (Analytical Grade, Fisher 
Scientific, #S/2920/53) and adjusted to pH 12.4 with 5M NaOH 

Eluent 0.09M quartz distilled HCl (Q-HCl) in Milli-Q water 

0.4M NH4OAc 
buffer 

Dilution of 20mL of 2M NH4OAc stock solution (dilution of 90mL 6M 
ammonia and 22.2mL glacial acetic acid to 200mL with Milli-Q water) 
to 100mL with Milli-Q water adjusted to pH 5.5 with 5M acetic acid 

Fe(II) stock 
solution 

250µM standard stock solution of Fe(II) was prepared monthly by 
dilution of 2.5mM Fe(II) stock (0.0098g of ammonium ferrous sulphate 
(Fisher Scientific, # A4880) dissolved in 100mL 0.1M Q-HCl) in 
100mL 0.01M Q-HCl 

Fe(II) working 
standard prepared daily by serial dilution of the 250µM stock in 0.01M Q-HCl 

 

PROCEDURE 
The luminol reagent was continuously pumped through the analyser and was 

mixing with the eluent at the entrance of the flow cell. When the injection valve was in 

loading position (position A, see diagram above and Table below), the standard was 

first loaded onto the preconcentration column. The manual valve was then switched to 

allow the resin to be rinsed with Milli-Q water. The injection valve was then manually 

switched to the elution position (position B) to allow the eluent to go through the 

preconcentration column and elute iron which was carried to the flow cell where it 

reacted with the luminol reagent. At the end of the elution, the injection valve was 

manually switched back to position A to allow the preconcentration column to be rinsed 

with Milli-Q water to remove any remaining acid. The manual valve was then switched 

back to allow the standard to be loaded onto the column for a new cycle. 

 

Time Manual valve 
position 

Injection valve 
position Process 

60s 1 A Loading Fe(II) onto 8HQ resin 
30s 2 A Rinsing column with Milli-Q water 
60s 2 B Elution of Fe(II) from the 8-HQ resin 
30s 2 A Rinsing column with Milli-Q water 

 
Timing sequence of 4 minutes used with the manual iron analyser. 

Manual Valve: Position 1 = Sample (or standard); Position 2 = Milli-Q water 
Injection Valve: Position A = Loading; Position B = Eluting 
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APPENDIX 4. 

AUTOMATED FIA-CL WITH PRECONCENTRATION STEP 
TO DETECT Fe(II) IN SEA WATER 
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INSTRUMENTATION 
Peristaltic Pump (Pump A) Gilson Minipuls 3, 8 channels (Anachem Ltd. #F155013) 
Low-Voltage pumps 
(B&C) 

4 channels, panel mounted 12Vdc Ismatec  pumps 

Injection Valve (IV) 
6-port Cheminert valve model C22 with micro-electric 2-
position actuator and ¼-28 fittings (VICI Valco Inst. Co., 
Thames Restek UK Ltd., C22-3186EH) 

Switching valves 
(V1, V2 & V3) 

12Vdc 3-way electronic switching valves, 2-position solenoid 
valves containing PTFE wetted parts and zero dead volume 
(Cole-Parmer Inst. Company Ltd., UK# EW-01367-72) 

Flow Cell (FC) 1-mm i.d. transparent PVC tubing coil with aluminium foil to 
optimise light reflection and mounted on the PMT window  

Photo-Multiplier Tube 
(PMT) 

End-on photo-counting head incorporated a low-noise PMT 
and internal high voltage supply, with low voltage (5Vdc) 
source from main control unit (Hamamatsu Photonics UK Ltd., 
H84443) 

Power Supply (PS) Designed & constructed by Dr Matt Mowlem (OED, SOC) 

Instrument control card National Instruments DAQPad-6020E card, 16 inputs, 
100kS/s, 12-bit Multifunction input/output (I/O) card 

Signal acquisition card National Instruments DAQPad-6507, 96-bit Digital I/O for 
USB 

Laptop Toshiba satellite Pro 
“T”- piece Constructed from Perspex 
Mixing loop 0.8 mm i.d. PTFE tubing knitted coil (~0.5m) 

Tubing 0.8-mm i.d. PTFE tubing for the manifold 
Flow-rated PVC peristaltic pump tubing (Altec) 

Communication software Software written in LabVIEW 6.1 (National Instruments 
Corp.) by Dr. Matt Mowlem (OED, SOC) (see Appendix 5) 

Data processing Software written in LabVIEW 6.1 (National Instruments 
Corp.) by F. Nédélec (see Appendix 5) 

 

REAGENTS (according to Bowie et al. (1998)) 

Luminol 
Reagent 

10µM luminol reagent (3-aminophthalhydrazide, Fluka, # 09253) 
buffered with 0.1M sodium carbonate (Analytical grade, Fisher 
Scientific, S/2920/53), adjusted to pH 12.4 with 5M NaOH and purified 
through 8-HQ resin and kept in the dark for 24h before use 

Eluent 0.08M quartz distilled HCl (Q-HCl) in sub-boiled distilled (SBD) water 

0.4M NH4OAc 
buffer 

Dilution of 20mL of 2M NH4OAc stock solution (dilution of 90mL 
isothermally distilled (ITD) ammonia and 22.2mL Q-acetic acid to 
200mL with SBD water) to 100mL with SBD water, adjusted to pH 7 
with ITD-NH3 and purified off-line with a 8-HQ column 

Acid wash 0.5M Q-HCl in SBD water 

Reducing agent 
0.1g sodium sulphite (Analytical grade, Fisher Scientific, #S/6850/53) 
dissolved in 15mL Milli-Q water, 5mL of 0.4M NH4OAc buffer added 
and purified through two sequential 8-HQ columns 

Fe(II) stock 
solution 

10µM standard stock solution of Fe(II) prepared weekly by dilution of 
10mM Fe(II) stock solution (0.3921g of ammonium ferrous sulphate 
(Fisher Scientific, # A4880) in 100mL 0.1M Q-HCl with 250µL of 
reducing agent) in 100mL 0.1M Q-HCl with 250µL of reducing agent 

Fe(II) working 
standard 

500nM stock prepared daily by dilution of 10mM stock in 0.01M Q-HCl 
with reducing agent then standards prepared by serial dilution of 500nM 
Fe stock in seawater 
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PROCEDURE 
The luminol reagent was continuously pumped and was mixing with the eluent at 

the entrance of the flow cell. When the injection valve was in the loading position 

(position A, see Table below), the standard was first loaded onto the preconcentration 

column. The 8-HQ column was then rinsed with Milli-Q water to remove sea-salts. The 

injection valve was then switched to the elution position (position B) to allow the eluent 

to go through the preconcentration column and elute iron which was carried to the flow 

cell where it reacted with the luminol reagent. At the end of the elution, the injection 

valve was switched back to position A to allow the preconcentration column to be 

rinsed with Milli-Q water to remove any remaining acid. At the same time the buffered 

sample/standard solution was pumped to flush the tubing and minimise the carry-over 

or dilution effect for the first peak when analysing a new solution. An analytical cycle 

was thus performed in about 3 minutes. 

 

Valves Pumps Time V1 V2 A B C IV Procedure 

60s ON OFF ON ON OFF A Loading onto 8-HQ resin 
30s OFF OFF ON OFF ON A Rinsing of 8-HQ resin 
60s OFF OFF ON OFF ON B Elution of Fe from 8-HQ resin 
50s OFF ON ON ON ON A Rinsing of 8-HQ resin & pumping 

 

Timing sequence used with the automated Fe(II) FIA-CL system 

V1  Loading = ON & Rinsing, Washing = OFF 
V2  Pumping new buffered sample = ON & Loading = OFF 
A  Gilson Minipuls 3 pumping the luminol reagent and eluent 
B  Ismatec pump delivering buffer & sample/standard 
C  Ismatec pump delivering rinsing water 
IV  Injection Valve: Position A = Loading & Position B = Eluting 

Notes: When doing replicates, the last rinsing step is set up at 30sec but when a 
new solution is analysed it is set up at 50sec to minimise any carry-over 
/ dilution effect on the first peak. 
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APPENDIX 5. 

DATA ACQUISITION AND PROCESSING WITH LABVIEW 6.1 
AND DIAGRAMS FOR THE ELECTRONICS 
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APPENDIX 6. 

AUTOMATED FIA-CL WITH PRECONCENTRATION STEP 
TO DETECT Fe(II)+(III) IN SEAWATER 
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INSTRUMENTATION 
 
Peristaltic Pump (Pump A) Gilson Minipuls 3, 8 channels (Anachem Ltd. #F155013) 
Low-voltage pumps (B&C) 4 channels, panel mounted 12Vdc Ismatec  pumps 

Injection Valve (IV) 
6-port Cheminert low-pressure valve model C22 with micro-
electric 2-position actuator and ¼-28 fittings  
(VICI Valco Inst. Co., Thames Restek UK Ltd., C22-3186EH) 

Switching valves 
(V1 & V2) 

12Vdc 3-way electronic switching valves, 2-position direct lift 
solenoid valves containing PTFE wetted parts and zero dead 
volume (Cole-Parmer Inst. Company Ltd., UK# EW-01367-72) 

“T”- piece & 5-way piece Constructed from Perspex 
Mixing loop 0.8 mm i.d. PTFE tubing knitted coil (~0.5m) 

Tubing 0.8-mm i.d. PTFE tubing for the manifold 
Flow-rated PVC peristaltic pump tubing (Altec) 

Reaction coil 0.8 mm i.d. PTFE tubing coiled around the thermostated heating 
(~ 1.8m) 

Heating unit Laboratory-made thermostated at 28oC 

Flow Cell (FC) 1-mm i.d. transparent PVC tubing coil with aluminium foil to 
optimise light reflection and mounted on the PMT window  

Photo-Multiplier Tube 
(PMT) 

End-on photo-counting head incorporated a low-noise PMT and 
internal high voltage supply, with low voltage (5Vdc) source 
from main control unit 
(Hamamatsu Photonics UK Ltd., H84443) 

Power Supply (PS) Designed & constructed by Dr Matt Mowlem (OED, SOC) 

Instrument control card National Instruments DAQPad-6020E card, 16 inputs, 100kS/s, 
12-bit Multifunction input/output (I/O) card 

Signal acquisition card National Instruments DAQPad-6507, 96-bit Digital I/O for USB 
Laptop Toshiba satellite Pro 

Communication software Software written in LabVIEW 6.1 (National Instruments Corp.) 
by Dr. Matt Mowlem (OED, SOC) (see Appendix 5) 

Data processing Software written in LabVIEW 6.1 (National Instruments Corp.) 
by F. Nédélec (see Appendix 5) 

 

REAGENTS (according to Obata et al. (1993)) 
 
Luminol stock 
solution 0.01 M 177mg of luminol dissolved in 0.04M sodium carbonate buffer 

Luminol Reagent 
100µM 

Dilution of 10mL 0.01 M luminol stock solution in 0.04M sodium 
carbonate (Analytical grade, Fisher), with 75 µL of 60% TETA 
(triethylenetetramine, Technical grade, Sigma-Aldrich), purified 
through 8-HQ resin and kept in the dark for 24h before use 

Eluent Concentrated quartz distilled HCl (Q-HCl) diluted to 0.3 M 
Ammonia buffer 35% Primar ammonia (Fisher) diluted to 0.55 M  
Hydrogen peroxide 30%w/v Aristar H2O2 (Merk) diluted to 0.4 M 
2 M NH4OAc stock 
solution 

Dilution of 23mL Q-acetic acid (~ 17.5 M) and 22mL 35% Primar 
ammonia to 200mL with sub-boiled distilled (SBD) water 

0.2M NH4OAc 
buffer 

Dilution of 10mL of 2M NH4OAc stock solution to 100mL with SBD 
water, adjusted to pH 7 with 5 M NH3 and purified off-line with three 
8-HQ columns in series 

Fe stock solution 10µM standard stock solution of Fe(II) prepared by dilution of 
1000ppm Fe AAS standard (Z-Tek) in 0.1M Q-HCl 

Fe working standard Prepared daily by dilution of 10µM stock in 0.01M Q-HCl 
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PROCEDURE 
 

The luminol reagent was continuously pumped and was mixing with the eluent at 

the entrance of the flow cell. When the injection valve was in the loading position 

(position A, see Table below), the standard was first loaded onto the preconcentration 

column. The 8-HQ column was then rinsed with Milli-Q water to remove sea-salts. The 

injection valve was then switched to the elution position (position B) to allow the eluent 

to go through the preconcentration column and elute iron. The iron aliquot then mixed 

successively with the luminol reagent, the ammonia buffer, and hydrogen peroxide. The 

mixture was then heated to circa 30oC in an in-line reaction coil and was carried to the 

flow cell for detection. At the end of the elution, the injection valve was switched back 

to position A to allow the preconcentration column to be rinsed with Milli-Q water to 

remove any remaining acid. At the same time the buffered sample/standard solution was 

pumped to flush the tubing and avoid a carry-over or dilution effect for the first peak 

when analysing a new solution. An analytical cycle was thus performed in about 4.5 

minutes. 

 

Valves Pumps Time V1 V2 A B C IV Procedure 

60s ON OFF ON ON OFF A Loading of buffered sample onto 
8HQ resin 

30s OFF OFF ON OFF ON A Rinsing of 8HQ resin 
150s OFF OFF ON OFF ON B Elution of Fe from 8HQ resin 

30s OFF ON ON ON ON A Rinsing of 8HQ resin & pumping of 
new buffered sample 

 

Timing sequence used with the automated Fe(II) FIA-CL system 

V1  Loading = ON & Rinsing, Washing = OFF 
V2  Pumping new buffered sample = ON & Loading = OFF 
A  Gilson Minipuls 3 pumping the CL reagents 
B  Ismatec pump delivering buffer & sample/standard 
C  Ismatec pump delivering rinsing water 
IV  Injection Valve: Position A = Loading & Position B = Eluting 
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APPENDIX 7. 

AUTOMATED FIA-CL WITH JOHNSON CONFIGURATION 
TO DETECT Fe(II)+(III) IN SEAWATER 

AND INSTRUCTIONS FOR USE 
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INSTRUMENTATION 
 
Peristaltic Pump (Pump A) Gilson Minipuls 3, 8 channels (Anachem) 
Low-Voltage pumps (B & C) 4 channels, panel mounted 12 Vdc Ismatec pumps 

2 Injection Valves 
(IV1 & IV2) 

6-port Cheminert low-pressure valves model C22 with micro-
electric 2-position actuator and ¼-28 fittings  
(VICI Valco Instruments, Thames Restek) 

Switching valves 
(V1, V2 & V3) 

12 Vdc 3-way electronic switching valves, 2-position direct 
lift solenoid valves containing PTFE wetted parts and zero 
dead volume (Cole-Parmer) 

3 Tee-pieces Peek 3-way junctions 
Elution loop 0.5 m 0.8 mm i.d. PTFE tubing 
Reaction coil 1.8 m 0.8 mm i.d. PTFE tubing 
Heating unit Laboratory made thermostated heating system (at 28 ± 1oC) 

8-HQ columns (PCC) 
Made in Perspex (1.6 mm long, 2 mm i.d.) packed with HW-
75F 8-hydroxyquinoline resin prepared following the protocol 
of Landing et al. (1986) (courtesy of S. Ussher) 

Tubing 0.8 mm i.d. PTFE tubing for the manifold 
Flow-rated PVC peristaltic pump tubing (Altec) 

Flow Cell (FC) 0.8 mm i.d. PTFE tubing coil backed with aluminium foil to 
optimise light reflection and mounted on the PMT window  

Photo-Multiplier Tube (PMT) 
End-on photo-counting head incorporated a low-noise PMT 
and internal high voltage supply, with low voltage (5 Vdc) 
source from main control unit (Hamamatsu Photonics) 

Power Supply (PS) Designed & constructed by Dr Matt Mowlem (OED, NOCS) 

Instrument control card National Instruments DAQPad-6020E card, 16 inputs, 100 
kS/s, 12-bit Multifunction input/output (I/O) card 

Signal acquisition card National Instruments DAQPad-6507, 96-bit Digital I/O card 
Laptop Toshiba satellite Pro 

Communication software Software written in LabVIEW 6.1 (National Instruments 
Corp.) by Dr. Matt Mowlem (OED, NOCS) (Appendix 5) 

Data processing Software written in LabVIEW 6.1 (National Instruments 
Corp.) by F. Nédélec (Appendix 5) 

 
 
ANALYTICAL PROCEDURE 
 
Calibrations were carried out by standard additions to low-iron seawater (see Chapter II) 

and signal size was calculated using peak area (see below). 

 
The blank was defined as the signal recorded for the loading of the ammonium acetate 

buffer only, applying the same loading time as for standards and samples by blocking 

the sample/standard line at the tee-piece with an acid washed nylon screw. It therefore 

included contributions from: i) the CL reagents (i.e. luminol reagent, eluent, ammonia, 

and hydrogen peroxide); ii) the preconcentration column and any perturbation in the 

baseline caused by the injection valve switching; iii) the rinsing water (i.e. Milli-Q 

water) potentially remaining in the elution loop despite adjusting the timing to remove 
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it; iv) the ammonium acetate buffer used to buffer the sample; and v) any contamination 

from the components of the system. 

 
An analytical cycle was as follows. Buffered sample at ca. pH 5.5 first passed through 

the preconcentration column (Figure III.11). Valve (V1) then switched to allow the 

column to be rinsed with Milli-Q water to remove sea-salts. When the injection valve 

IV-1 switched, the eluent passed through the column in reverse flow direction to release 

iron and fill the elution loop. As soon as the elution loop was filled, the injection valve 

IV-2 switched to allow the acid eluent to carry the iron aliquot to meet other CL 

reagents and flow to the PMT flow cell for detection. Whilst the light from the CL 

reaction was being measured, IV-1 switched to allow Milli-Q water to remove the 

remaining eluent from the column and the new standard/sample was pumped in to flush 

out any previous solution from valve V2. An analytical cycle took 202 s plus loading 

time. 

 
A batch of reagents lasted about 18 hours, so that a new batch was used approximately 

every day of analysis. Each solution was determined using three replicates after the 

signal stabilised. The full analytical procedure was as follows: 

 
1. The system was left to stabilise for a minimum of 30 min. The baseline usually 

stabilised to its background level, and meanwhile the pH in the flow cell (CL pH) 

was checked and eventually adjusted to the optimum at pH 9.5. 

2. The blank signal was then determined with a minimum of 4 replicates after the 

signal had stabilised. 

3. The low-iron seawater (LISW) used as an internal standard (LISW-IS) (see Chapter 

IV) was then analysed for about 5 cycles. 

4. The calibration was then carried out from the lowest concentration to the highest 

using standards prepared by standard addition to LISW. 

5. The NASS-5 certified seawater standard was then analysed if the calibration range 

chosen covered its high concentration. 

6. The LISW-IS was then re-analysed in order to check that the sensitivity of the 

analyser did not change with time, and was re-analysed every 2 hours during sample 

measurements. 

7. Samples were then analysed with a minimum of 3 replicates. 

8. The LISW-IS was analysed after all samples. 

9. The analysis finished with a blank determination. 
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REAGENTS 
 

 Luminol Reagent (LR) 

• Monthly: 0.01M luminol stock Dissolve 1.06g Na2CO3 in 100mL MQW 
Dissolve 177mg luminol in 100mL 0.1M 
Na2CO3 
Good shake & let dissolve overnight in the 
dark 

• 24h in advance: 100µM luminol reagent / 0.3mM TETA in 0.04M Na2CO3 
Dissolve 425mg Na2CO3 in 1L MQW 
Let dissolve a couple of hours 
Add 75µL of 60% TETA 
Add 10mL 0.01M luminol stock solution 
Condition 8HQ resin with 10mL of 0.04M 
Na2CO3 
Rinse 8HQ resin with 10mL of luminol 
reagent (LR) 
Pass LR through 8HQ resin (~ 8h) 
Wash 8HQ resin with 0.3M HCl (6 x 
column) 
Rinse 8HQ resin with SBDW (1 x column) 
Keep LR 24h in the dark 

 

 Eluent (E) (0.3M Q-HCl) Add 60mL Q-HCl concentrated to 1.94L of 
MQW (using tube) 

Can be prepared just before analysis (2 lines of tubing in this bottle: Eluent & Eluent2) 
 

 Ammonia (NH3) (0.55M) Add 30mL Primar-NH3 (35%) to 0.97L of 
MQW (using tube) 

Should be prepared 12h in advance 
 

 Hydrogen Peroxide (H2O2) (0.4M) Add 40mL Aristar-H2O2 (~30%) to 0.96L 
MQW (using tube) 

 Should be prepared just before analysis 
 

 Ammonium Acetate buffer (Sample buffer) 

• 2M NH4OAc stock Dilute 110mL P-NH3 (35%) and 115mL Q-
acetic acid (~17.5M) to 1L with SBDW 

 (  Exothermic reaction + fumes) 
 

• 0.2M NH4OAc buffer Add 10mL 2M NH4OAc stock to 90mL of 
SBDW 

To prepare in advance Adjust pH to ~ 7.5 with 5M P-NH3 if 
necessary 
Purify through 3 in-line 8HQ columns (~ 2h), 
first 30 drops to waste ! 
Wash columns with 0.3M Q-HCl for ~ 
30min 
Rinse briefly columns with SBDW (~ 1mL) 
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 Rinsing Water (RW) SBDW water or freshly taken Milli-Q water 
if ran out (  Quality crucial to blank) 
(Let flush minimum 1L first from MilliQ system) 

 

 Iron standards 

• 10µM Fe stock solution in 0.1M Q-HCl in SBDW 
Add 200µL Q-HCl to 19.8mL of SBDW in 
a PS tube 
Add 11µL of 1000ppm Fe(III) 

• 600nM Fe stock solution in 0.01M Q-HCl in SBDW  
Add 25µL of Q-HCl to 25mL of SBDW 
Add 600µL 10µM Fe to 9.4mL of 0.01M 
Q-HCl 

• Daily: Fe addition just prior to analysis (ASW = Acidified filtered Sea 
Water) 

To prepare in Teflon pots directly, always the same for same concentration. 
If internal standard is used as a matrix, do not pipette directly from the bottle 
but first pore in a PS tube. 
Microwave 2 x 10s before adding Fe and allow to cool (at least 30min) 

 

 
 

 
SOFTWARE PREPARATION 
 

 Plug the two USB cables to the laptop (green lights appear on NI cards when ON) 

 Click on the icon “LabView7.1" then on the arrow next to the button "OPEN" and 

select the destination finishing with “Iron(III)total2.vi” 

 The LabView window opens on the “Main panel” 

 Before doing anything, click on the horizontal white arrow icon (  “run”, in the 
menu) which turns black (allows you to change parameters without modifying the 
program) 

 Click on the “Timing sequence” tab 

Solutions Teflon 
pot nb 

Volume of 
Seawater 

Vol. 600nM 
Fe(III) (µL) 

Vol. 0.01M Q-HCl 
(µL) 

ASW “blank” 13 30mL 0 200 
ASW + 0.25nM  30mL 12.5 187.5 
ASW + 0.5nM 14 30mL 25 175 
ASW + 1nM  30mL 50 150 
ASW + 2nM 15 30mL 100 100 

ASW + 2.5nM  30mL 125 75 
ASW + 4nM 16 30mL 200 0 
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The analytical sequence is set up as follows: 

 
V1  Loading = ON & Rinsing = OFF 
V2  Pumping new buffered sample = ON & Loading = OFF 
P1  Ismatec pump delivering buffer & sample/standard 
P2  Ismatec pump pumping rinsing water & eluent 
IV  Injection Valve: Position A = Green ; Position B = No 
colour 
SV  Selection Valve which is not used at the moment 

 

Time is written in milliseconds in the column on the right! Check 
number of zeros! 

Time at the end of a line is the ENDING time for the sequence 
described on the line. 

Times are ADDED between lines, if loading time is changed, all the 
values must be changed. 

 
The table should look like that (timing can change) 

              0 60000 
              0 90000 
              0 112000 
              0 232000 
              0 262000 
V1   V2 V3  P1 P2     IV1 IV2 SV Time 

 
 

 Here is an idea on how to choose the appropriate timing sequence : 

Conditions Coastal 
waters Shelf waters Shelf break Open ocean 

waters HNLC 

Range stds 1 - 10nM 0.5 - 5nM 0.25 - 3nM 0.1 - 2nM 0.05 - 1nM 

Loading time 30s 1min 2min 4min 6min 

Line 1 30000 60000 120000 240000 360000 

Line 2 60000 90000 150000 270000 390000 

Line 3 82000 112000 172000 292000 412000 

Line 4 202000 232000 292000 412000 532000 

Line 5 232000 262000 322000 442000 562000 
 

Valves Pumps Time (s) V1 V2 P1 P2 IV1 IV2 Procedure 

0-60 ON OFF ON OFF A A Load buffered sample onto 8HQ 
resin (60s) 

60-90 OFF OFF OFF ON A A Rinse of 8HQ resin to remove 
sea salts (30s) 

90-112 OFF OFF OFF ON B A Elute the 8HQ resin to fill elution 
loop (22s) 

112-232 OFF OFF OFF ON B B Elution aliquot carried to flow 
cell (120s) 

232-262 OFF ON ON ON A B End of detection, rinse 8HQ resin 
& pump buffered sample (30s) 

 ! 
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BEFORE STARTING, CHECK THAT NUMBER OF ZEROS IS 
CORRECT !!! 

 

 Still in the “Timing sequence” tab, give a name to the file recording the time 
stamp. The date and time when V1 is switched ON is saved in a separate file. This 
time corresponds at the time when the sample was taken for analysis. (compulsory 
to avoid error messages during analysis, even when time stamp not needed) 

Files will be named as: Timing_[date], e.g. Timing_1211 

 On the “Main panel”, 

1. Select the gain needed (with up/down arrows) which will remain the same 
over the whole analysis. (A gain of 6 is a good compromise, unless the 
baseline is too high, in that case reduce it to 4 but this will loose sensitivity) 

2. Click on , select the folder where the file will be saved (/CROZEX/leg1 or 
leg 2). 
For a calibration, files will be named as: 
Calib[range]_[matrix]_[Gain]_[Date] 
Ex.: A calibration from 0.5 to 5nM prepared with the internal standard (IS), 
with a gain of 6 on the 12th November, will be: Calib0.5-5nM_IS_G6_1211 

For samples, files will be named as: Samples[location]_[Gain]_[Date] 

Ex.: Samples from the transect J to M4 analysed with a gain of 6 on the 12th 
November, will be: SamplesJ-M4_G6_1211 

3. Click on  to log the data in the file (if , data is being logged) 

4. Press Ctrl + S to ensure all changes are saved 

ANALYTICAL PROCEDURE IN PRACTICE 
 

 Switch ON the white extension lead which will turn ON all the equipment 

 Switch ON the reaction coil heating unit in advance (minimum 30min) 

 Empty the waste bottle !!! 

 Switch ON the Gilson pump after putting the tension on the PVC tubing after 
checking if they got flatter, in that case change them 

 Place all PTFE tubing in their respective reagent bottle one by one in order to avoid 
any reflux into the bottles, checking that they are pumped properly, adjust one by 
one the pressure on the tubing if necessary (especially if were changed) 

 Close the reagents bottle plastic bag to avoid contamination 

 Let system to stabilise for 30min - 1h, meanwhile, check the baseline level and 
CL pH (write on analysis log sheet, see troubleshooting (p5) if baseline high (>2V, 
gain 6)) 



Appendix 7. Automated FIA-CL with Johnson Configuration 
 

 XXVII

To check the CL pH, rinse a PS tube with MQW and dry, disconnect the PMT waste 
tubing and collect the waste flow in the tube. Wait for the waste solution to cool to 
ambient temperature before reading the CL pH. 

 Prepare file name, and click on “log data” square (as explained in section above) 

 Start the analyses with a blank defined as the signal obtained for the loading time 
used of the buffer only. For this, leave the sample line to pump air (~ 10 blank 
values) (NB: the first peak may be very high & may take some time to stabilise. 
Wait to obtain 3 reproducible replicates. Blanks are considered "too high" when 
higher than 2V added to the baseline level). Click on the START button when 
ready. Prepare the standards meanwhile !! 

 Analyse the internal standard, which has been micro-waved for 2 x 10s before and 
allowed to cool ~ 30min,  until its signal is stabilised (~ 5 replicates) 

 
Solutions must be switched before the last 30sec of the analytical cycle !! 

 
 Analyse the standards (3 good replicates each) to draw the calibration curve, from 

the less concentrated to the more concentrated, additions of Fe should be made at 
the last minute if possible, and standards should be vigorously shaken. 

 Check the accuracy of the system with NASS certified seawater if appropriate to 
the range of concentrations 
 

 Check the signal for the internal standard and wait for its stabilisation. It should be 
re-analysed regularly (every ~ 2h to check for any drift of sensitivity) 
 

 Change file name as explained above, to start analysing samples. Files should not 
exceed 100,000 data points (number given at the x-axis of the charts) to limit the 
file size and avoid crashing the NI card. Therefore change the file name every 2h or 
so. 
 

 Analyse samples (2 replicates for a first analysis, unless one peak is strongly 
perturbed with bubbles. When doing final analysis of samples, 3 replications should 
be done) 

 Finish the analyses with the internal standard and blank (as above) until it 
stabilises 

 Stop the system clicking firstly on the “START” button and then on the “STOP” 
button at the end of a cycle (262s with 60s loading time sequence)! 

 If continuous analysis is made, when a batch of reagent is finished, stop the program 
and Gilson pump. Change the CL reagents bottle and start Gilson, and start the 
whole procedure again. 

End of analysis 
 Wash the whole system with 0.3M Q-HCl for minimum 5minutes. For this, put 

ALL the tubing in the acid wash bottle and run cycles as when doing analyses. 
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 Release the pressure on all the peristaltic pump tubes after removing 
the tubing from the reagent bottle 
 

 Switch off everything (Gilson, heating, white extension lead, laptop) 
 
 
 

DURING THE ANALYSIS 

1. Prepare new sample buffer (purification of 100mL takes about 2h) if more is 
prepared, wash columns after every 100mL as described in sample preparation 

2. Dissolve sodium carbonate for luminol reagent, leave to dissolve about 2h 

3. Prepare luminol reagent, purify immediately (purification of 1L takes about 8h) 

4. Prepare eluent, ammonia, hydrogen peroxide reagents (keep luminol reagent and 
hydrogen hydroxide away from light) 

 
TROUBLESHOOTING 

PROBLEM OBSERVED ACTIONS 
One (or both) National Instruments card(s) 
crashed = no green light at the front or green 
light flashing 
 
Symptoms: 
Low voltage pumps not working when due to 
Injection valves not switching when due to 
        = NI card 2 (instrument control) 
 
On software, acquisition of data stopped even 
if time in loop did not  = NI card 1 (data 
acquisition) 
 

1. Stop iron2 program 
2. Do not stop Gilson pumping CL reagents 

if crashed during analysis 
3. Close and Exit Labview 
4. Shut down both cards and switch back 

ON (switches are behind cards) 
5. Start iron2 
6. Continue analysis with new file name 
7. If crashed again, try again 1-6 with 

restarting laptop! 
8. If crashed again, switch USB 

connections at back of laptop 
9. If still crashes, leave for a while and try 

again later! 

Baseline is high (> 2V, Gain 6) 
 
(it seems that with MQW on board, signal is 
high, 3V, gain 6 anyway) 

1. Check that no CL reagents was 
contaminated by changing one by one each 
reagent. 
 
2. Check that Luminol Reagent (LR) had 
time to age 
 
3. Check that CL reagents are properly 
pumped (tubing not twisted, low pulsing …) 
 
4. Check CL pH (should be at pH 9.5) 

 If too high (9.7), add ca. 20mL of 
MQW to NH3 

 If too low (9.4), add ca. 5mL of 5M 
NH3 to NH3 (if 9.15  + 17mL 5M 
NH3 gives 9.37) 

No peak is observed at the normal time (20-
25sec after IV2 switched to B) 

1. Check that cards did not crash (see 
previous) 

2. Check that sample tubing in container is 
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pumping liquid 
3. Check that injection valves properly 

connected electronically 
4. Check loading pH 

Peaks are not as high as expected 

1. Check that heating unit is ON 
2. Check loading pH 
3. Fe added to standard ? 
4. Check for leaks in the manifold 

One peak was much higher than other 
replicates 

1. Check immediately in waste for 
abnormal number of bubbles 

2. Add a replicate to analysis 
3. Check loading pH 

If one low-voltage pump does not pump 
properly 

1. Grease junctions 
2. Change pump with spare 

 
 
 
 
 
DATA PROCESSING 
 

There are 3 categories of data files saved during analyses: Timing files, 
Calibration files and Samples files. All files generated by the LabView program are text 
files. These files can easily be imported in Excel. 

 

1. Timing files will only be used when samples will be analysed in-line the 
underway fish system. 

They give the time at which V1 was switched ON, which therefore corresponds at 
the time at which the sample was taken up for analysis from the underway sampling 
device. 

The time for the sample to arrive at V1 will have to be added to this time stamp to 
know when the sample was pumped by the fish system. It will then be possible to 
retrieve the position of the ship at that time using the GPS data from the ship. 

It will be crucial to synchronize everyday or so the time on the laptop to ship 
time !! 

 

2. Calibration and samples files will be processed the same way. Raw data files 
produced during analyses are 1-column data files, where the first column is the PMT 
signal (in Volts). Because we use a relatively high scan rate for the PMT readings (a 
lower scan rate would slow down the program), these files can be very big and 
would have to be split in several files before being imported in Excel as Excel 
spreadsheets are limited in the number of rows. We will therefore use in the first 
place another LabView software to calculate the peak area before being imported in 
Excel. 
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a. Determination of peak area 

i. Calculations 

 

 

 

 

 

 

 

 

ii. Procedure to determine peak area 

a) Open “Data processing area” from the desktop (in LabView 6.1 !) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description of the screen: 
 The chart is empty when opening this program. 
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 Bottom left of the chart are the readings of the different axes where 2nd column 
= x; 3rd column = y = PMT signal (V) : 

Red line  Baseline 
Yellow line  Peak height 
Blue line  Peak start 
Green line  Peak end 

 Under the chart is a small display of the different options : 
The cross + is to drag the axis to the position wanted 
The middle one is a zoom function 
The hand  is to go from one peak to another by dragging the chart 

 Bottom middle of the screen are: “peak length” corresponding to the number 
of scans between [peak start] and [peak end]; the instant reading of “peak 
area”; a button to “LOG PEAK” in a table when axis are placed properly on 
the chart. 

 Top right of the screen is the table where logged peaks are displayed 
 Under the table are: the button to save the table in a file (“Log To File”); and 

to stop the program when finished (“STOP”) 
 

b) Click on the white arrow on top-right of the screen ( ), a window 
opens asking which file to open, select a file, click OK, the data is 
plotted on the chart 

c) Click on the middle button of the chart options to zoom on one peak 
(only the base of the peak is needed) 

d) Click on the cross icon to be able to drag the axis. If the axis is not 
shown after zooming, call it: left-click on the cross of the axis wanted in 
the chart caption and select “bring to center” 

e) Drag the axis at their position : 

 the baseline (red) at the baseline level after the peak; 

 the peak start (blue) where the signal increases from the 
baseline level; 

 the peak end (green) where the signal comes back to the 
baseline level. 

f) The peak length should not exceed 1200 (end of detection) and it is 
preferable to avoid taking in account bubbles shown in the baseline after 
the peak and take the end of the peak before the bubble if the signal 
was already back to the baseline level. 

g) When axes are positioned, click on the “LOG PEAK” button ONCE to 
record the peak area measured in the table. The value saved is then 
shown for peak 1 in the table. 

!! There is no way but starting from the beginning or taking notes that 
peak 23 = peak 24 if the value was logged by mistake twice or if the 
wrong peak was measured !! 
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h) Click then on the “hand ” icon to drag the chart to the next peak and 
start again from point d). 

 
i) When all peaks have been logged in the table, click on the “Log To 

File” button. A window will appear asking where to save the file. The 
file should be named as: Calib[date]ToExcel for a calibration, and 
Samples[location]ToExcel for samples 

j) It is possible to open a new file afterwards, but the table needs to be 
emptied before logging new peaks otherwise new data will be logged on 
the same file. To empty the table, left-click on the table and select 
“Empty Table”. Then start logging peaks from point c). 

 
k) When finished, press the “STOP” button and close the program. 

The new file is a text file of 1 column with peak areas which can be imported in 
Excel. 

b. Plotting the calibration curve and calculating concentrations 

i. Open Excel and the file “Calib_spreadsheet.xls” or 
“UnderwaySamples_spreadsheet.xls” or “CTDSamples_spreadsheet.xls” 
(My documents/CROZEX/data/) 

ii. Open the file prepared as “Calib[date]ToExcel” or 
“Samples[location]ToExcel” (Select “All files” for “Files of Type:”). Press 
“Finish” at the Text Import Wizard. 

iii. Copy the column of data of the imported file in column A of the 
spreadsheet. 

iv. Then using the notes taken during analysis, copy and paste the peak area to 
the right solution analysed. 

v. For the calibration, also check that the standards concentrations are right and 
the calibration will be drawn automatically. 

vi. Don’t forget to save the file with a name as: Calib[range]_[sw 
matrix]_[gain]_[Date], i.e. Calib0.5-5nM_IS_G6_1211; or (Underway or 
CTD) Samples[location]_[gain]_[Date] i.e. (Underway or CTD)SamplesJ-
M4_G6_1211 

 



Determination 1 Determination 2 Sample’s label 
Cruise/CTD station/bottle number 

Location in water column 
(depth, m) Day DFe (nM) Day DFe (nM) 

JR98/N9/7 Chlorophyll a max (27m) 12 0.48 (± 0.04) 14 0.45 (± 0.01) 
JR98/N8/23 Surface (2m) 12 0.75 (± 0.09) 13 0.81*(± 0.03) 
JR80/SG/051unfiltered Surface with pole sampler (1m) 10 0.98**(± 0.02) 11 1.12 (± 0.03) 
AMT12/CTD68/7 Top water column (175m) 11 6.04 (± 0.23) 12 6.25 (± 0.15) 
AMT12/CTD68/19 Chlorophyll a max (23m) 11 1.12 (± 0.10) 13 1.05*(± 0.09) 
AMT12/CTD24/2 Deep waters (3300m) 2 0.69 (± 0.12) 6 0.73 (± 0.04) 
AMT12/CTD24/2/0.1-µm Deep waters (3300m) 6 0.79 (± 0.01) 5 0.92 (± 0.22) 
AMT12/CTD24/10 Deep waters (1700m) 2 2.09 (± 0.18) 5 2.13 (± 0.14) 
AMT12/CTD24/16 Top water column (500m) 2 1.26 (± 0.12) 5 1.04 (± 0.02) 
AMT12/CTD39/9 Top water column (150m) 7 0.77 (± 0.02) 6 0.69 (± 0.05) 
AMT12/CTD39/9/0.1-µm Top water column (150m) 6 0.96 (± 0.06) 7 0.98 (± 0.08) 
AMT12/CTD39/23 Surface (2m) 5 1.77 (± 0.20) 9 1.58 (± 0.03) 
AMT12/CTD50/15 Shallow waters (75m) 7 1.04 (± 0.07) 8 1.11 (± 0.04) 
AMT12/CTD50/23 Surface (2m) 1 1.18 (± 0.08) 7 1.14 (± 0.04) 
AMT12/CTD62/23 Surface (2m) 11 2.10 (± 0.25) 13 1.83*(± 0.10) 

 
By default, all samples were filtered through a 0.4-µm filter pore size, unless stated otherwise in the sample label. 
* Samples from analysis day 13 that were normalized using the low-iron seawater internal standard average value (see Chapter IV). 
** Samples from analysis day 10 that were corrected from a shift in sensitivity using the equation found with LISW-IS value changes with time. 
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APPENDIX 9. 

CTD, CHLOROPHYLL a AND NUTRIENT DATA AT EACH OF THE 
STATIONS OF THE TRANSECT AT THE CELTIC SEA SHELF EDGE 

(JR98 CRUISE) 
 
 
CONTENT 

Station N1, 48.638oN 9.112oW, PES depth = 157m  p. XXXV 

Station N2, 48.580oN 9.292oW, PES depth = 165m  p. XXXVI 

Station N3, 48.520oN 9.493oW, PES depth = 250m  p. XXXVII 

Station N4, 48.502oN 9.550oW, PES depth = 365m  p. XXXVIII 

Station N5, 48.485oN 9.600oW, PES depth = 542m  p. XXXIX 

Station N6, 48.448oN 9.715oW, PES depth = 1238m  p. XL 

Station N7, 48.397oN 9.883oW, PES depth = 1903m  p. XLI 

Station N8, 48.355oN 10.027oW, PES depth = 2411m  p. XLII 

Station N9, 48.283oN 10.217oW, PES depth = 2953m  p. XLIII 

Table summarising all the data     p. XLIV 

 

CAPTION                                                                            (LoD = Limit of Detection) 

Plot A  Temperature (oC) 

Salinity (psu) 

 

Plot B  Beam attenuation (m-1) 

Dissolved oxygen (µM) 

 

Plot C  Dissolved iron (nM)      

Chlorophyll a (µg/L) (measured)    

Fluorescence (µg/L) (CTD) 

 

Plot D  Nitrate (µM)    

Dissolved silicon (µM)  

Phosphate (µM)   
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Station 
(water depth) 

Depth 
(m) 

Temperature 
(oC) Salinity Chlorophyll a 

(µg/L) 
Dissolved oxygen 

(µM) 
AOU 
(µM) 

Nitrate 
(µM) 

Phosphate 
(µM) 

Dissolved silicon 
(µM) 

Dissolved iron 
(nM) 

3 17.8 35.55 0.27 246.8 -7.4 0 0.027 0.55 0.64 ± 0.06 
28 16.0 35.56 0.85 251.7 -3.7 0.87 0.092 0.56 0.71 ± 0.05 
61 12.3 35.59 0.13 228.5 39.3 8.76 0.542 3.30 1.94 ± 0.07 
81 12.0 35.58 0.05 223.2 46.4 9.24 0.571 3.63 --- 

127 12.0 35.58 0.05 221.6 48.1 9.26 0.572 3.63 2.53 ± 0.17 

N1 
(157 m) 

147 12.0 35.58 0.05 218.2 51.5 9.23 0.578 3.64 5.37 ± 0.49 
3 17.6 35.55 0.37 254.5 -14.1 0 0.042 0.34 0.21 ± 0.08 

21 17.1 35.55 0.42 257.7 -14.7 0 0.045 0.36 0.21 ± 0.15 
51 15.4 35.57 0.75 262.0 -10.7 1.53 0.136 0.74 0.37 ± 0.07 
80 12.2 35.58 0.12 240.9 27.3 8.88 0.542 3.36 0.52 ± 0.13 

111 12.0 35.58 0.05 239.6 30.1 9.36 0.576 3.65 0.68 ± 0.01 
141 12.0 35.58 0.05 239.9 29.9 9.34 0.570 3.67 0.68 ± 0.03 

N2 
(165 m) 

154 12.0 35.58 0.05 239.7 30.0 9.30 0.581 3.65 0.35 ± 0.02 
3 17.4 35.56 0.29 258.5 -16.9 0 0.046 0.28 < LoD 

16 17.9 35.56 0.50 262.6 -18.6 0.01 0.081 0.33 < LoD 
36 15.7 35.56 0.58 263.2 -13.7 2.53 0.200 1.11 0.21 ± 0.08 
51 13.7 35.58 0.23 250.1 10.0 5.71 0.365 2.15 0.29 ± 0.02 
81 12.9 35.59 0.09 248.2 16.1 7.40 0.458 2.69 0.39 ± 0.03 

151 11.9 35.59 0.03 242.8 26.9 9.34 0.567 3.52 0.64 ± 0.05 
202 11.8 35.59 0.02 244.2 26.4 9.82 0.592 3.69 0.68 ± 0.03 

N3 
(250 m) 

238 11.8 35.59 0.02 242.9 28.0 9.94 0.598 3.87 0.35 ± 0.02 
3 17.4 35.56 0.42 258.1 -16.8 0.14 0.064 0.33 0.81 ± 0.09 

16 16.3 35.56 0.71 265.3 -18.5 0.97 0.110 0.65 0.61 ± 0.07 
39 14.5 35.57 0.54 254.3 1.4 3.63 0.262 1.44 0.81 ± 0.03 
81 13.3 35.58 0.14 248.8 13.5 6.57 0.416 2.41 0.91 ± 0.04 

151 12.5 35.59 0.07 246.2 20.5 8.23 0.515 3.08 1.72 ± 0.10 
202 11.8 35.59  246.9 23.9 10.06 0.601 3.70 0.90 ± 0.08 
241 11.6 35.59  245.4 26.5 10.58 0.626 3.97 0.91 ± 0.06 

N4 
(365 m) 

302 11.6 35.59  245.3 26.8 10.90 0.648 4.14 0.87 ± 0.05 
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 347 11.3 35.58  239.8 34.1 11.78 0.738 4.76 1.50 ± 0.04 
3 17.2 35.56 0.40 260.4 -18.0 0.06 0.054 0.28 0.74 ± 0.14 

22 15.2 35.57 0.48 258.8 -6.7 3.78 0.318 1.56 < LoD 
81 12.9 35.59 0.14 248.2 15.8 6.94 0.448 2.62 0.33 ± 0.03 

202 11.9 35.59  246.2 23.5 9.14 0.563 3.45 2.53 ± 0.01 
251 11.8 35.59  244.4 26.4 9.74 0.601 3.77 ~ LoD 
302 11.7 35.59  244.5 26.8 10.78 0.675 4.37 0.38 ± 0.02 
352 11.6 35.59  243.3 28.9 10.70 0.662 4.32 0.46 ± 0.08 
402 11.3 35.58  240.4 33.5 11.89 0.723 5.02 1.77 ± 0.05 
452 11.0 35.58  234.8 40.7 11.25 0.688 4.83 0.54 ± 0.07 

N5 
(542 m) 

523 10.9 35.58  232.4 43.8 13.08 0.800 6.12 0.73 ± 0.06 
4 17.2 35.57 0.33 261.5 -19.2 0 0.053 0.33 0.91 ± 0.15 

32 14.4 35.57 0.50 256.0 0.5 4.01 0.295 1.63 0.86 ± 0.12 
152 11.9 35.62 0.03 252.8 16.9 9.35 0.600 3.28 1.22 ± 0.06 
403 11.0 35.58  236.1 39.3 12.87 0.804 5.73 1.38 ± 0.03 
704 9.9 35.62  216.0 66.6 16.88 1.052 10.01 2.69 ± 0.14 
804 9.6 35.64  213.9 70.6 17.13 1.073 10.13 3.23 ± 0.17 
905 9.3 35.63  215.9 70.6 17.44 1.085 10.74 1.55 ± 0.14 

1005 8.9 35.62  215.0 73.9 17.99 1.122 11.57 1.45 ± 0.11 
1105 8.8 35.61  216.6 73.4 18.20 1.135 12.00 4.36 ± 0.19 
1206 8.5 35.58  219.3 72.7 18.40 1.153 12.63 1.59 ± 0.30 
1221 8.4 35.58  219.6 72.8 18.30 1.149 12.75 1.81 ± 0.16 

N6 
(1238 m) 

1233 8.4 35.57  220.3 72.6 18.32 1.149 12.80 1.36 ± 0.00 
4 17.8 35.59 0.23 259.0 -19.3 0.01 0.066 0.42 --- 

53 14.6 35.60 0.50 265.7 -10.2 2.53 0.196 0.90 --- 
153 11.8 35.61 0.01 259.1 11.8 9.79 0.589 3.35 1.29 ± 0.06 
404 11.1 35.52  255.1 20.0 11.92 0.738 4.67 2.02 ± 0.08 
605 10.6 35.59  227.8 50.3 16.23 1.006 8.57 3.03 ± 0.15 
900 9.7 35.70  211.1 72.9 18.12 1.127 11.41 1.44 ± 0.04 

1206 7.9 35.53  227.0 68.9 18.67 1.176 13.11 1.51 ± 0.07 

N7 
(1893 m) 

1407 6.8 35.38  239.7 64.6 19.30 1.241 16.73 1.33 ± 0.04 
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1607 5.3 35.20  254.6 60.9 19.65 1.274 19.04 1.31 ± 0.06 
1809 4.5 35.10  263.3 58.8 20.00 1.284 21.93 1.21 ± 0.02 
1859 4.3 35.08  265.1 58.7 19.86 1.295 21.00 1.53 ± 0.14 

 

1896 4.3 35.08  265.8 58.1 20.10 1.318 23.00 1.32 ± 0.10 
5 17.5 35.56 0.25 261.4 -20.5 0 0.033 0.18 0.75 ± 0.09 

24 16.1 35.56 0.60 270.4 -22.6 0.70 0.096 0.41 0.92 ± 0.04 
43 13.7 35.61 0.37 260.2 -0.3 4.56 0.302 1.43 1.58 ± 0.08 

154 11.7 35.61 0.02 259.9 11.2 9.92 0.598 3.43 1.60 ± 0.07 
506 10.8 35.53  237.5 39.7 13.85 0.840 6.14 3.21 ± 0.12 
807 9.9 35.63  211.6 71.2 17.60 1.067 9.80 --- 

1007 9.2 35.69  212.1 75.0 18.29 1.106 11.25 1.63 ± 0.05 
1409 6.6 35.46  240.2 65.3 19.38 1.201 14.91 1.61 ± 0.04 
1810 4.5 35.09  263.5 58.8 20.09 1.264 20.38 2.05 ± 0.03 
2011 4.2 35.05  267.3 57.5 20.21 1.284 21.99 1.60 ± 0.09 
2211 4.8 35.02  268.7 59.7 20.70 1.306 26.25 1.83 ± 0.07 

N8 
(2411 m) 

2402 3.2 34.97  269.2 64.1 21.38 1.412 32.14 1.80 ± 0.06 
4 17.4 35.56 0.36 262.6 -21.3 0.01 0.034 0.12 0.46 ± 0.03 

29 15.1 35.59 0.67 266.7 -13.9 1.86 0.157 0.71 0.48 ± 0.04 
102 12.2 35.61  256.4 12.0 8.70 0.519 2.25 0.74 ± 0.05 

N9 
(2953 m) 

202 11.5 35.58  259.2 13.5 10.49 0.639 3.74 0.63 ± 0.01 
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ABSTRACT 

Shelf break systems are highly dynamic environments. However little is known about 

the influence that benthic interactions and water mass mixing may have on vertical 

distributions of iron in these systems. Dissolved Fe (< 0.4 µm) concentrations were 

measured in samples from nine vertical profiles across the upper slope (150 – 2950 m 

water depth) at the Atlantic Ocean – Celtic Sea shelf break. Dissolved iron 

concentrations varied between 0.2 and 5.4 nM, and the resulting detailed section 

showed evidence of a range of processes influencing the Fe distributions. The near sea 

floor data was interpreted in terms of release and removal processes. The concentrations 

of dissolved Fe present in near seabed waters were consistent with release of Fe from in 

situ particulate organic matter remineralisation at two upper slope stations, and possibly 

of pore water release upon resuspension on shelf. Lateral transport of dissolved iron was 

evident from elevated Fe concentrations in an intermediate nepheloid layer and its 

advection along isopycnals. Surface waters at the shelf break also showed evidence of 

vertical mixing of deeper iron-rich waters. These waters contained macronutrients that 

sustained primary productivity in these otherwise nutrient-depleted surface waters. The 

data also suggest some degree of stabilisation of relatively high concentrations of iron, 

presumably through ligand association or as colloids. This study supports the view that 

export of dissolved iron laterally to the ocean’s interior from shelf and coastal zones and 

may have important implications for the global budget of oceanic iron. 

 
KEYWORDS 

Dissolved iron; Particulate organic matter oxidation; Transport processes; Intermediate 

nepheloid layers; Vertical mixing; Northeast Atlantic; Celtic Sea shelf edge 
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1. Introduction 

Shelf waters are generally rich in iron thanks to the proximity of many terrigenous 

sources including rivers, sediments, and transport via the atmosphere. The emphasis in 

most previous studies has been mainly on the behaviour of iron in coastal and shelf 

waters (e.g. Dehairs et al., 1989; Tappin et al., 1995; Millward  et al., 1998; Chase et al., 

2002; Berelson et al., 2003; Weinstein et al., 2004), and in the open ocean (e.g. Johnson 

et al., 1997; Wu  et al., 2001). However, very few studies have examined the distribution 

of iron across the shelf break (Hong et al., 1986; Muller et al., 1994; Wu et al., 1996; 

Boye et al., 2003), or mechanisms of iron cycling and release in this zone (Elrod et al., 

2004). It is generally believed that dissolved iron is trapped on shelf by intense removal 

due to high concentrations of particles in the water column (Hong et al., 1986), making 

shelf breaks sinks for dissolved iron. Transport mechanisms of dissolved iron from the 

shelf to the ocean were recently described (e.g. wind-driven upwelling (Johnson et al., 

1999), eddy formation and transport (Johnson et al., 2005), and horizontal advection 

(Wu et al., 1996; Gordon et al., 1997; Laes et al., 2003; Croot et al., 2004)), suggesting 

that shelves may potentially act as sources of dissolved iron to the ocean (Elrod et al., 

2004). A consequence of export of dissolved iron from coastal to surrounding waters is 

the alleviation of iron-stress in phytoplankton in high-nutrient low-chlorophyll waters 

such as around Antarctic islands (e.g. Crozet (Pollard, 2004), Kerguelen (Blain et al., 

2001), and South Georgia (Holeton  et al., 2005)). In order to explain features such as 

blooms developing downstream of island systems, we clearly need a better 

understanding of processes governing dissolved iron distribution in shelf waters and 

potential mechanisms for its export into oceanic waters. 
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The nutrient-like distribution of dissolved iron in the oceanic water column can be 

strongly modified by inputs, removal, and transport processes. A multitude of these 

processes have been identified for dissolved iron in shelf environments (Santschi et al., 

1990). When far from any estuaries, particulate organic matter remineralisation and 

pore water diffusion / advection / resuspension are likely to be the main benthic sources 

(Santschi et al., 1990; Berelson et al., 2003; Elrod et al., 2004), and main removal 

processes include adsorption onto particles (Wells et al., 1993), precipitation (Rose et 

al., 2003a), and biological uptake (Geider, 1999). Sustained high dissolved iron 

concentrations in shelf waters infer that a stabilisation mechanism (e.g. inorganic 

colloids or organic complexation) must maintain iron above its solubility limit. 

However little is known about the detail of these mechanisms, and their relative 

contribution to iron biogeochemistry (de Baar et al., 2001). 

The present study was carried out at the Northwest European continental margin, 

which is characterised by a broad continental shelf (the Celtic Sea), and is limited 

westward by a steep slope down to 4000m. European shelf waters are highly dynamic 

environments where wind-, tide- and wave-forced currents, and topography at the shelf 

edge promote diapycnal mixing between water masses (van Aken, 2000), and 

potentially vertical transport of nutrients (Pingree et al., 1986). Sampling was carried 

out in proximity to Goban Spur where the OMEX (Ocean Margin EXchange) 

programme took place (Wollast et al., 2001). Some water sampling transects have been 

carried out across the Celtic Sea shelf edge (Kremling, 1983; Muller et al., 1994; Boye 

et al., 2003), including work in the OMEX programme (Le Gall et al., 1999; Cotté-Krief 

et al., 2002). These studies reported trace metal distributions across the shelf, but 
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dissolved iron distributions were restricted to surface waters or upper slope (< 800 m 

water depth) only in two of these transects. 

The work presented here describes dissolved iron concentrations in the most 

detailed two-dimensional transect down to the deep seafloor across shelf break that is 

presently available, and the data are used to investigate processes affecting dissolved 

iron distributions in the water column below the euphotic zone. Several aspects of the 

iron cycle are explored here including processes occurring in bottom waters (i.e. 

sources, removal, and stabilisation), and the lateral transport of dissolved iron, and the 

study also provides a conceptual framework for discussing processes and other iron data 

reported for such systems. 

 

2. Sampling and analysis 

2.1. Sampling 

Samples were collected during the R.R.S. James Clark Ross cruise JR98, July-

August 2003, during an offshore transect across the Celtic Sea shelf break (Figure 1). 

Nine stations (N1 – N9) were occupied across the continental slope and samples 

collected for iron determination. Profiles extended from a few metres above the seafloor 

up to the surface except at Station N9, which extended down to only 200 m (Table 1). 

Figure 1 

Table 1 

Sampling was carried out using a CTD rosette built to minimise trace-metal 

contamination, and made from titanium and plastic, with the sensors all being housed in 

titanium cases without any zinc sacrificial electrodes. The rosette was fitted with trace 
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metal clean 10 L OTE (Ocean Technology Equipment) sampling bottles with external 

springs, and modified for trace metal work. 

Filtration was performed in a trace-metal clean container laboratory. Storage 

bottle were acid cleaned following the standard procedures for trace metal work 

(Achterberg et al., 2001). The OTE bottles were held on a rack, a Teflon external frame 

was used to clamp top and bottom valves shut, and the bottles were pressurised using 

filtered compressed nitrogen at about 0.8 atmospheres. Samples were filtered in-line 

through acid-washed all-Teflon filter holders (Morley et al., 1993), fitted with acid-

washed 0.4 µm Cyclopore  polycarbonate filters directly into the sample rinsed storage 

bottle. Samples were acidified with 1 µL of quartz distilled hydrochloric acid per mL of 

sample in a laminar flow hood, and double zip-bagged (polythene) for storage. 

Temperature, salinity, and dissolved oxygen data were logged from the Seabird 

911 CTD sensors. The beam attenuation signal derived from transmission obtained with 

the CTD ALPHAtracka transmissometer was used as an indicator of SPM concentrations 

since they are linearly correlated, and as a calibration was not available (Chelsea 

Technologies Group) (McCave et al., 2001). Samples for nutrients and chlorophyll a 

measurements were collected from duplicate sampling bottles closed at each Fe bottle 

sampling depth. 

 

2.2. Analysis 

Analyses were performed in a class-100 clean room in the Southampton 

laboratory, and critical steps were performed in a laminar flow hood. Samples were 

stored acidified for more than one year after collection, an approach that is reported to 
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lead to measurement of all dissolved (< 0.4 µm) forms of iron (i.e. dissolved iron (DFe)) 

(Bowie et al., 2004). 

Dissolved iron was determined using a flow-injection analyser with 

chemiluminescence detection using luminol to detect Fe(II) and Fe(III) in seawater, 

after preconcentration (Obata et al., 1997; Johnson et al., 2003). An analytical cycle 

consisted of preconcentration of iron onto 8-hydroxyquinoline immobilised on a 

Fractogel resin (Landing et al., 1986), rinsing with Milli-Q water, elution and 

chemiluminescent detection. Calibrations by standard additions of iron to acidified 

seawater were linear, and precision on all measurements averaged approximately 5% 

rsd. Limit of detection (3sd  of the blank) values reached 32pM thus allowing 

determination of iron in most oceanic environments. Accuracy of this analysis was 

routinely checked using a low-iron seawater internal standard with a concentration 

determined at 0.99 ± 0.17 nM (i.e. inter-batch precision of 17% rsd), and with a NASS-

5 certified reference material (from the National Research Council of Canada) on 

several occasions. The NASS-5 value was found to be within the range of the certified 

value of 3.71 ± 0.63 nM. Data presented here has gone through a rigorous data quality 

check (Nédélec, submitted). Four outlier data points, one collected at the surface (8.01 ± 

0.31 nM DFe), one in the chlorophyll a  maximum (54 m depth, 3.31 ± 0.12 nM DFe) at 

Station N7, one at Station N1 (80 m, 4.56 ± 0.19 nM), and one at Station N8 (800 m, 

4.90 ± 0.10 nM DFe), were excluded from the data set as they were strongly suspected 

of contamination (Nédélec, submitted). These were the only data excluded out of a total 

of 80 values. 

Nutrients were measured using a Skalar autoanalyser for nitrate plus nitrite (N), 

phosphate (P) and dissolved silicon (DSi). Total chlorophyll a measurements in acetone 
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extractions were made using the fluorometric method of Welschmeyer (1994) after 

filtration onto Whatman GF/F (pore-size 0.7 µm) filters. 

 

3. Results and discussion 

3.1. Distribution of dissolved iron across the shelf edge 

The distribution of dissolved iron across the Celtic Sea shelf edge did not present 

a clear trend of uniform increasing concentrations from oceanic to coastal waters, but 

had distinct spikes of high DFe at specific depths (Figure 2). The presence of sub-

nanomolar DFe at the shelf break (Stations N2, N3, N4 and N5) were surprising in that 

DFe concentrations have been reported to increase to up to several tens of nanomolar in 

shelf systems (Muller et al., 1994; Wu et al., 1996; Table 2). High DFe concentrations 

(5.37 ± 0.49 nM (n  = 3)) were measured near the seafloor at the most on-shelf Station 

N1 (Figure 2). At the other stations, dissolved iron concentrations slowly increased with 

depth below 50 m, and were relatively homogeneous down to the seabed at Stations N2 

and N3. This distribution is consistent with the relatively weak water column 

stratification at these stations relative to Station N1. From Stations N4 to N8, DFe 

distributions in the water column were significantly perturbed by layers of high-DFe 

water at specific depths (Figure 2). These spikes were not thought to be due to sample 

contamination as they corresponded to features in the water column. No general 

increase in DFe concentration with proximity to the seafloor water was observed, and 

this feature was only found at Stations N1, N4 to N7 (Figure 2). 

Figure 2 

Table 2 
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The range of surface (~ 3 m depth) dissolved iron concentrations varied from 0.19 

± 0.06 nM to 0.91 ± 0.15 nM at Stations N3 and N6 respectively, and did not show any 

clear trend of increasing concentrations from oceanic waters (Station N9) to shelf waters 

(Station N1) (Figure 2). Highest DFe concentrations were found at Stations N4, N5 and 

N6 on the upper slope (500 – 1235 m water depth), and lowest DFe levels were 

measured at the shelf break (Stations N2 and N3). DFe concentrations along this 

transect were comparable to published surface data from near the Porcupine Seabight (~ 

51oN), and at about 48oN at the Celtic Sea shelf edge (Muller et al., 1994; Boye et al., 

2003). Reported dissolved iron (< 0.4 µm) concentrations measured at 51oN increased 

from < 1 nM to > 3 nM in August 1984 (Muller et al., 1994). In March 1998 at 48oN, 

DFe (< 0.2 µm) increased from about 0.7 nM in open ocean waters to about 1.1 nM at 

the shelf break (Boye et al., 2003). Dissolved iron concentrations measured in the 

present study thus were slightly lower than those reported at 51oN and were in the range 

found at 48oN even though the size fraction measured here was larger, and sampling 

was done in a different season, which can have a significant impact on DFe levels. 

 

3.2. Sources of dissolved iron near the seafloor 

Elrod et al. (2004) suggested that particulate organic matter (POM) oxidation from 

sediments is likely to be the major benthic source of dissolved iron on shelves. During 

the OMEX programme, fluxes of POM at the Goban Spur were of similar magnitude 

during Spring and Summer, with a difference in composition as fluxes were dominated 

by opal containing material in Spring relative to Summer (Antia et al., 2001). 

Additionally it was estimated that 37 to 60% of carbon fixed by photosynthesis in the 

euphotic zone was not remineralised in the surface mixed layer (Joint et al., 2001), and 
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that more than 90% of organic carbon mineralisation at the sediment-water interface is 

driven by oxygen (van Weering et al., 1998). Finally, it was demonstrated that, at 

present, the North West European continental margin is not a carbon depocenter with a 

carbon burial efficiency of only 0.8 to 2.3% suggesting that most POM that was 

deposited yearly was remineralised (Lohse et al., 1998). These earlier studies therefore 

suggest that highly degradable POM is expected at the seafloor at the time of the cruise, 

and thus will provide a reservoir of biogenic iron that can be remineralised. 

Waters below the euphotic zone in the ocean are generally under-saturated with 

dissolved oxygen as it is consumed by mid-water column POM oxidation by 

heterotrophic bacteria. The observed apparent oxygen utilisation (AOU) concentration 

along a shelf/slope system will therefore be the result of mixing of waters with 

preformed AOU, and in situ oxygen consumption. Additionally, major resuspension 

events of any anoxic/suboxic sediments may slightly decrease dissolved oxygen 

concentrations in near-bottom waters. The relationship between the AOU and the beam 

attenuation signal in the benthic nepheloid layer (BNL; waters of high suspended 

particulate matter (SPM) near the seafloor) at each station was thus examined in order to 

investigate the presence of oxygen consuming processes associated with resuspended 

particulate matter near the seafloor. 

The data show three types of behaviour (Figure 3): i) shallow stations influenced 

by water column mixing (N1, N2, and N3), showing low to moderately high AOU with 

increasing SPM towards the seafloor; ii) stations showing possible in situ 

remineralisation of POM (N4 and N5) with a linear (R2 = 0.95) relationship between 

beam attenuation and AOU; and iii) stations where any in situ AOU signal was diluted 
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by the strong preformed AOU in adjacent water masses (N6, N7, and N8), and there 

was high AOU with increasing SPM towards the seafloor. 

Figure 3 

The most on-shelf station (N1) had a higher AOU than Stations N2 and N3 

(Figure 3), suggesting that at N1, there had been more POM remineralisation. The 

observed AOU signals in deeper waters at these stations therefore presumably reflect 

remineralisation of POM during the early part of the year. 

The relationship of increasing AOU with increasing SPM near bottom at Stations 

N4 and N5 (Figure 3), suggests that the high SPM was influencing AOU and was 

probably a recent feature. Sediments were found to be slightly sub-oxic, but not anoxic, 

until the iron redox boundary was reached, which deepened from 1 cm at 210 m water 

column depth, to 2.5 cm at 1000 m, down to 5 cm at 2200 m across the shelf at Goban 

Spur during the OMEX programme (Lohse et al., 1998). A resuspension event would 

thus have to be very important to induce such an increase in AOU (+ 7.3 µM at N4 and 

+ 10.4 µM at N5 between the top and bottom of the BNL; Table 2), which is not 

obvious from the beam attenuation profiles (Section 3.3.1). It was therefore most likely 

that the AOU reflected in situ remineralisation of the POM fraction within the 

resuspended material. 

Despite high particle concentrations at Station N6 (Section 3.3.1), the AOU did 

not increase with increasing SPM in the BNL (~ 1200 m depth; Figure 3). Detecting a 

small AOU signal here is difficult because any in situ  AOU signal would be diluted by 

the strong influence of low-oxygen waters at about 1000 m depth. The deep Stations N7 

and N8 were also influenced by oceanic water masses (Section 3.3.1) with their own 

significant AOU signatures. 
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The amount of dissolved iron released from POM oxidation in the BNL at each 

station can be estimated based on AOU values, and assuming that the Redfield-Richards 

ratio can be applied in these waters, and values for algal Fe:C ratio are known (Sunda et 

al., 1995). 

The consumption of carbon was estimated from the difference in AOU between 

the top and bottom of the BNL, and using the Redfield-Richards ratio (C:AOU = 

106:138). The estimated amount of carbon consumed was small (2.8 µM) and would 

only result in a release of 0.14 nM DFe (Table 3), using the maximum Fe:C ratio of 50 

µmol/mol suggested in the literature (Sunda et al., 1995). The increase in DFe near the 

seafloor (Figure 2) therefore cannot be explained by POM oxidation only, implying a 

contribution from an additional source (e.g. pore water diffusion or mixing through bio-

turbation or resuspension). 

Table 3 

At Stations N4 and N5, the release of dissolved iron was estimated from carbon 

consumption as for Station N1. Much carbon was estimated to be remineralised at 

Stations N4 and N5 than at N1 (5.6 µM and 8.0 µM, respectively), and these values 

corresponded to a maximum release of 0.28 and 0.40 nM DFe, respectively (Table 3). 

These estimates were not significantly different from the DFe present in excess of 

background values at these stations (0.63 and 0.19 nM, respectively). Whilst these 

calculations are based on assumptions of the carbon consumed and DFe released using 

the Redfield-Richard ratios, and some removal may have been occurring 

simultaneously, these results are nonetheless consistent with DFe being released from 

POM oxidation at Stations N4 and N5. 
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In contrast to Stations N1, N4, and N5, concentrations of dissolved iron were low 

at Stations N2 and N3, varying from 0.78 ± 0.03 nM at the top of the BNL and 

decreasing to 0.45 ± 0.02 nM in the bottom sample (Figure 2). These generally low 

DFe, AOU, and SPM concentrations in the water column relative to N1 suggest that 

inputs of POM and iron to bottom waters at these stations were less than at the other 

stations sampled. Decreasing DFe concentrations near the seafloor suggest that removal 

processes were more important than inputs at these stations, resulting in a significant 

loss (~ 40%) in DFe relative to background values, presumably as a result of adsorption 

onto particles. 

 

The form of DFe present in these shelf waters will have a major impact on the 

ultimate fate of iron in solution. Dissolved iron is limited by its solubility to about 0.1-

0.2 nM in seawater at pH 8.1 (Wu et al., 2001). Release processes of excess free iron 

(Fe(II) or Fe(III)) in oxic seawater should thus be quickly balanced by removal through 

precipitation (Rose et al., 2003a), or adsorption onto particles (Johnson et al., 1997). 

However a significant fraction of DFe remains in solution despite thermodynamics 

constraints, and this may be due to organic complexation, formation of colloidal species 

conventionally included in the measured "dissolved" (< 0.4 µm) fraction, or possibly 

kinetic constraints. Dissolved (< 0.2 µm) iron, Fe(II) and iron-binding organic ligands 

in excess of Fe were found to linearly increase in surface waters across the Celtic Sea 

shelf edge, indicating a common source of these ligands (Boye et al., 2003). 

Experiments performed with terrestrial natural organic matter (NOM) showed that iron 

formed FeIII-NOM complexes as strong as the iron binding ligands produced by the 

biota in the open ocean (Rose et al., 2003b). Sediments are potentially an important 
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source of Fe(II) to bottom waters depending on their redox conditions ((Hong et al., 

1986), and S. Ussher, 2005, personal communication), and are also a source of 

dissolved organic carbon to bottom waters at Goban Spur (Otto et al., 1998), and 

soluble species of Fe3+ complexed by natural organic ligands have recently been 

detected in coastal marine sediments (Carey et al., 2005). Dissolved iron may thus 

already be organically complexed when supplied to bottom waters, providing a 

mechanism for its stabilisation in seawater, although the particle adsorption behaviour 

of these complexes is unknown. Additionally, sources of colloidal matter are numerous, 

and include sediment resuspension (Wells et al., 1994). These processes clearly need 

further investigation given their importance to explaining how DFe may be maintained 

in solution and exported from shelf environments. Measured DFe concentrations 

therefore reflect the balance of input / removal / stabilisation processes at each station, 

and are dependent on the time since any DFe release. 

 

3.3. Advection of dissolved iron 

3.3.1. Horizontal advection 

The distribution of SPM across the shelf edge showed that all types of nepheloid 

layers (i.e. surface nepheloid layer (SNL), benthic nepheloid layer (BNL), and 

intermediate nepheloid layer (INL; McCave et al., 2001) were present at the time of the 

cruise (Figure 4). An intense BNL developed between Stations N5 and N7, and was 

most intense at Stations N5 and N6 (Figure 4), which also corresponded well to the 

zone of influence of the pole-ward flowing current in this area (Pingree et al., 1999). 

The likely sources of this major resuspension event on the upper slope were either the 

internal tide generating strong near-bed currents (Heathershaw et al., 1987), or the 
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friction due to the down-slope component of the pole-ward current (Souza et al., 2001; 

Huthnance et al., 2002). 

Figure 4 

The lowest beam attenuation values (lowest SPM) were found within the Eastern 

North Atlantic Central Water (ENACW) and Mediterranean Outflow Water (MOW) 

(Figure 4) indicating that these water masses did not transport significant SPM in their 

core. Higher SPM concentrations were present below 1500 m depth (Figure 4). 

Two distinct INLs were detected at Stations N6 and N7 between 400 and 700 m 

depth (INL1, core at 600 m), and between 1000 and 1500 m (INL2, core at ca. 1300 m), 

and the beam attenuation signal was stronger in the well-defined INL1 than in the broad 

INL2 at Station N7 (Figure 4 and 5). These INLs could be formed from accumulation 

on density surfaces of biogenic particles settling from surface waters, or by detachment 

of an intense BNL (Dickson et al., 1986). Given the strong SPM concentration in the 

BNL at Station N6, and that this feature followed the same isopycnals, BNL detachment 

was the most likely source.  

The INLs closely corresponded to the main water mass boundaries (Figure 4), and 

their core propagated along isopycnals at 27.30 kg/m3 and 27.70 kg/m3 for INL1 and 

INL2 respectively (Figure 5), indicating the SPM advected along density surfaces 

between water masses. The beam attenuation signal of these INLs was relatively low at 

Station N8 (Figure 4), suggesting that they may not propagate much further than Station 

N8, 22 km from Station N6, although along slope transport is also possible (Thorpe et 

al., 1988). 

Figure 5 
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A plume of iron-rich waters was observed even at the most off-shelf stations 

below the euphotic zone (σt > 27.0 kg/m3) (Figure 5). These DFe levels (~ 3.2 nM) were 

lower than those (5 – 9 nmol/kg) measured in association with turbidity plumes, and 

enhanced Al, Mn and Co levels within the Monterey Canyon (Martin  et al., 1988). High 

DFe levels coincided relatively well with INL1, and with a plume of relatively high 

beam attenuation deeper at Station N6, despite the relatively poor sampling resolution, 

which did not properly constrain the SPM plumes (Figure 5). By contrast, no DFe 

increase was found in association with INL2 at Stations N7 and N8 (further off-shelf) 

except in the BNL at Station N6 (Figure 5). 

High dissolved iron within INLs may originate from enhanced in situ 

remineralisation or from transport of DFe released from benthic processes within the 

BNL. If DFe were to be remineralised in situ from POM by bacterial communities, 

elevated DFe concentrations would be associated with increased nitrate and phosphate 

and lower dissolved oxygen concentrations. However, N, P, and AOU were similar 

between stations, suggesting that enhanced in situ remineralisation was unlikely within 

INLs, and therefore that DFe was transported from its source near the seafloor. 

Assuming that the INL was created from a single resuspension event, and DFe 

was transported from the BNL, DFe concentrations would be expected to be higher 

within INL1 at the most inshore station (N6), before significant reduction in 

concentrations through mixing and removal processes occur. However no clear DFe 

gradient in concentration was observed along the transect (Figure 5), and the data may 

reflect the three-dimensional nature of the system, with INL1 and associated elevated 

dissolved iron concentrations formed to the south of this transect. 
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A further factor complicating interpretation is that intermediate nepheloid layers 

are common but intermittent events, which occur at specific depths at the Celtic Sea 

shelf edge as defined by the slope, and the amplitude of internal waves, as shown during 

the OMEX programme and in earlier studies (Dickson et al., 1986; Thorpe et al., 1988; 

McCave et al., 2001). High DFe (~ 3 nM) was observed at the most offshore Station N8 

at the same depth as INL1 (Figure 5), however it was associated with only a weak 

increase in beam attenuation relative to surrounding waters. This high DFe signal 

implies decoupling of dissolved iron from particles so that most particles are lost but 

high DFe remains, and thus some form of DFe can survive particle scavenging. 

No elevated DFe levels were observed within INL2 compared to within INL1 

(Figure 4 and Figure 5), presumably reflecting the balance between inputs (depending 

on their source and intensity), and removal processes, which depend on particle 

characteristics (e.g. size, type) and concentration in these systems. Smaller particles will 

have a longer residence time due to their low settling velocity, and thus have more time 

to scavenge DFe. 

 

3.3.2. Vertical advection 

Macro-nutrient concentrations were generally very low in surface waters. 

However, increased chlorophyll a, dissolved iron, nitrate, and phosphate were observed 

at the shelf break front (N3, N4, N5 and N6), and were strongest at Station N4 (Figure 

6). Low nutrient concentrations are common during Summer at the Celtic Sea shelf 

break as winter stocks are consumed during the Spring bloom (Hydes et al., 2001). 

Surface dissolved silicon was not completely depleted across the shelf edge (Figure 6) 

and was probably residual rather than regenerated (Hydes et al., 2001). 
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Figure 6 

The increase in dissolved iron across the shelf edge corresponded well with the 

trace metal fronts at the Celtic Sea shelf edge previously reported in the literature 

(Kremling, 1983; Muller et al., 1994; Le Gall et al., 1999; Cotté-Krief et al., 2002; 

Boye et al., 2003). The Northeast Atlantic Ocean is also under the influence of episodic 

Saharan dust plume events (Blain et al., 2004), and may contribute to the surface DFe 

measured. However such a localised increase in all parameters is more likely due to 

vertical mixing of waters underlying the thermocline, and nitrate and phosphate were 

likely to be taken up by the biota as they were supplied to surface waters. 

Evidence for vertical mixing at the Celtic Sea shelf break was given by the 

presence of a cool thermal front during summer months (~ 1oC cooler than surrounding 

waters) (Dickson et al., 1980; Pingree et al., 1986). Decreasing surface water 

temperatures (17.9oC to 16.9oC) showed that the front was located between Stations N3 

and N6, and corresponded well to the area of increased dissolved iron in surface waters 

(Figure 6). This thermal front is due to the combination of sudden shallowing of waters 

across the continental shelf, and by the change in current speed across the shelf, which 

is likely induced by tidal exchange (Pingree et al., 1986). 

Surface waters thus appear to be supplied in nutrients from waters underlying the 

thermocline mixed up by propagation of the internal tide. Dissolved iron concentrations 

below the thermocline were similar to or higher than those in surface waters (Figure 2), 

and thus vertical mixing of these waters could be sufficient to support measured DFe in 

surface waters. 
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4. Conclusions 

The shelf break is a highly dynamic environment where oceanic and coastal 

waters meet; therefore the dissolved iron distributions were expected to be influenced 

by a series of processes induced by these two different environments. 

Results are consistent with the main source of dissolved iron near seafloor for at 

least two stations being POM remineralisation, but other processes including mixing 

and removal complicated the interpretation. Dissolved iron concentrations were highest 

(5.4 nM DFe) on shelf, and pore water resuspension was likely an additional source of 

iron to these bottom waters. Transport of dissolved iron was evident. Horizontal 

advection of dissolved iron (~ 3.2 nM DFe) associated with an intermediate nepheloid 

layer propagating along an isopycnal was identified and dissolved iron was possibly 

also transported within the along-slope pole-ward flowing current. A second weaker 

deeper INL did not show enhanced dissolved iron concentrations relative to background 

values (~ 1.3 nM), which may be due to variations in the scavenging efficiency or in the 

magnitude of the sources of dissolved iron. There was also evidence of vertical 

advection of iron-rich waters to the surface at the shelf break front, driven by the 

internal tide and shallowing topography.  

It is clear that the behaviour of dissolved iron in this environment is very complex 

and will vary on relatively short time scales, and whilst advances in our knowledge are 

made here, there are remaining uncertainties regarding the mechanisms controlling 

dissolved iron. New studies should focus on release processes of iron from sediments, 

and the balance of input and removal of iron. Determining the speciation of dissolved 

iron is also crucial in order to explain how high DFe concentrations are maintained in 

these waters that can potentially be transported offshore. Intermediate nepheloid layers 



Nédélec et al. Dissolved iron at the Celtic Sea shelf break
  

 20 

can be a transport mechanism for dissolved iron to the ocean interior, however this 

process implies that, in some conditions, DFe could survive particle scavenging, which 

clearly needs investigating. A further important component of these systems to study is 

surface biology, as, apart from other factors, it is the major supplier of carbon to the 

seafloor. Monitoring the effect of vertical mixing on dissolved iron and nitrate 

distributions may thus allow the study of bloom dynamics at shelf breaks. Given that 

different degrees of iron limitation may exist even in coastal waters (Hutchins et al., 

1998), and given the relatively low iron concentrations in surface waters observed here, 

the possibility of iron limitation or co-limitation should be investigated. 

This study of dissolved iron distributions at the Celtic Sea shelf edge therefore 

highlights our relatively poor understanding of processes governing the release, 

removal, stabilisation, and transport of iron at oceanic-shelf interface environments, and 

underlines the need for process studies. 
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Table 1. Stations sampled during the transect across the Celtic Sea shelf edge on JR98 

cruise. Total distance between N1 and N9 = 74 km. Station CS2 was not sampled as 

part of the transect. 

 

Table 2. Data derived from the CTD sensors (in situ temperature, salinity, dissolved 

oxygen, and apparent oxygen utilisation (AOU)), and concentrations of chlorophyll a , 

nitrate, phosphate, dissolved silicon, and dissolved iron at all stations sampled across 

the Celtic Sea shelf edge. 

 

Table 3. Estimation of carbon consumption and release of dissolved iron relative to 

measurements at Stations N1, N4, and N5 across the Celtic Sea shelf edge. AOU = 

Apparent Oxygen Utilisation; ∆ = difference between two values. ∆C calculated using 

the Redfield ratio (C:AOU = 106:138). Estimated ∆DFe calculated using published 

Fe:C ratios = 10 to 50 µmol/mol. 
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Figure 1. Bathymetric maps of the study area with stations as referred to in the text. 

 

Figure 2. Vertical distribution of dissolved iron (DFe) across the Celtic Sea shelf edge. Error bars are ± 1 

standard deviation. Hatched boxes show bottom depth at each station except N9 (2953 m depth), which was 

sampled only down to 200 m. 

 

Figure 3: Apparent oxygen utilisation (AOU, µM) vs. beam attenuation (m-1) in the benthic nepheloid layer 

across the Celtic Sea shelf edge. 

 

Figure 4: Full depth beam attenuation signal (m-1) across the Celtic Sea shelf edge. Bathymetry was 

obtained from the ship and main water masses are indicated. ENACW = Eastern North Atlantic Central 

Water, MOW = Mediterranean Outflow Water, NEADW = North East Atlantic Deep Water. 

 

Figure 5: Beam attenuation (m-1) and dissolved iron (nM) distributions along density surfaces (σt kg/m3) 

below the mixed layer at the deepest stations (N6 to N8) at the Celtic Sea shelf edge. Isopycnals separating 

the identified water masses (dotted lines) and INLs' zones of influence (grey hatched areas) are also 

indicated. ENACW = Eastern North Atlantic Central Water, MOW = Mediterranean Outflow Water, 

NEADW = North East Atlantic Deep Water. 

 

Figure 6: Dissolved iron, chlorophyll a, macro-nutrient concentrations and temperature in surface waters (3 

– 4 m) across the Celtic Sea shelf break. Shaded area highlights the location of the shelf break front. 



Station Latitude 
(oN) 

Longitude 
(oW) 

Bottom 
depth (m) 

Distance from bottom 
of deepest sample (m) 

Distance between 
stations (km) 

N1 48.638 9.112 157 10  
N2 48.580 9.292 165 11 12.8 
N3 48.520 9.493 250 12 12.0 
N4 48.502 9.550 365 18 3.8 
N5 48.485 9.600 542 19 3.7 
N6 48.448 9.715 1238 5 8.5 
N7 48.397 9.883 1903 6 11.5 
N8 48.355 10.027 2411 9 10.5 
N9 48.283 10.217 2953 Only down to 200 m 13.3 

 

Table 1. Stations location



Station 
(water depth) 

Depth 
(m) 

Temp. 
(oC) Salinity Chlorophyll 

a (µg/L) 

Dissolved 
oxygen 
(µM) 

AOU 
(µM) 

Nitrate 
(µM) 

Phosphate 
(µM) 

Dissolved 
silicon 
(µM) 

Dissolved 
iron (nM) 

3 17.8 35.55 0.27 246.8 -7.4 0 0.027 0.55 0.64 ± 0.06 
28 16.0 35.56 0.85 251.7 -3.7 0.87 0.092 0.56 0.71 ± 0.05 
61 12.3 35.59 0.13 228.5 39.3 8.76 0.542 3.30 1.94 ± 0.07 
81 12.0 35.58 0.05 223.2 46.4 9.24 0.571 3.63 --- 
127 12.0 35.58 0.05 221.6 48.1 9.26 0.572 3.63 2.53 ± 0.17 

N1 
(157 m) 

147 12.0 35.58 0.05 218.2 51.5 9.23 0.578 3.64 5.37 ± 0.49 
3 17.6 35.55 0.37 254.5 -14.1 0 0.042 0.34 0.31 ± 0.08 
21 17.1 35.55 0.42 257.7 -14.7 0 0.045 0.36 0.31 ± 0.15 
51 15.4 35.57 0.75 262.0 -10.7 1.53 0.136 0.74 0.47 ± 0.07 
80 12.2 35.58 0.12 240.9 27.3 8.88 0.542 3.36 0.62 ± 0.13 
111 12.0 35.58 0.05 239.6 30.1 9.36 0.576 3.65 0.78 ± 0.01 
141 12.0 35.58 0.05 239.9 29.9 9.34 0.570 3.67 0.78 ± 0.03 

N2 
(165 m) 

154 12.0 35.58 0.05 239.7 30.0 9.30 0.581 3.65 0.45 ± 0.02 
3 17.4 35.56 0.29 258.5 -16.9 0 0.046 0.28 0.19 ± 0.06 
16 17.9 35.56 0.50 262.6 -18.6 0.01 0.081 0.33 0.14 ± 0.02 
36 15.7 35.56 0.58 263.2 -13.7 2.53 0.200 1.11 0.31 ± 0.08 
51 13.7 35.58 0.23 250.1 10.0 5.71 0.365 2.15 0.39 ± 0.02 
81 12.9 35.59 0.09 248.2 16.1 7.40 0.458 2.69 0.49 ± 0.03 
151 11.9 35.59 0.03 242.8 26.9 9.34 0.567 3.52 0.74 ± 0.05 
202 11.8 35.59 0.02 244.2 26.4 9.82 0.592 3.69 0.78 ± 0.03 

N3 
(250 m) 

238 11.8 35.59 0.02 242.9 28.0 9.94 0.598 3.87 0.45 ± 0.02 
3 17.4 35.56 0.42 258.1 -16.8 0.14 0.064 0.33 0.81 ± 0.09 
16 16.3 35.56 0.71 265.3 -18.5 0.97 0.110 0.65 0.61 ± 0.07 
39 14.5 35.57 0.54 254.3 1.4 3.63 0.262 1.44 0.81 ± 0.03 
81 13.3 35.58 0.14 248.8 13.5 6.57 0.416 2.41 0.91 ± 0.04 
151 12.5 35.59 0.07 246.2 20.5 8.23 0.515 3.08 1.72 ± 0.10 
202 11.8 35.59  246.9 23.9 10.06 0.601 3.70 0.90 ± 0.08 
241 11.6 35.59  245.4 26.5 10.58 0.626 3.97 0.91 ± 0.06 
302 11.6 35.59  245.3 26.8 10.90 0.648 4.14 0.87 ± 0.05 

N4 
(365 m) 

347 11.3 35.58  239.8 34.1 11.78 0.738 4.76 1.50 ± 0.04 
3 17.2 35.56 0.40 260.4 -18.0 0.06 0.054 0.28 0.84 ± 0.14 
22 15.2 35.57 0.48 258.8 -6.7 3.78 0.318 1.56 0.16 ± 0.00 
81 12.9 35.59 0.14 248.2 15.8 6.94 0.448 2.62 0.43 ± 0.03 
202 11.9 35.59  246.2 23.5 9.14 0.563 3.45 2.63 ± 0.01 
251 11.8 35.59  244.4 26.4 9.74 0.601 3.77 0.46 ± 0.01 
302 11.7 35.59  244.5 26.8 10.78 0.675 4.37 0.48 ± 0.02 
352 11.6 35.59  243.3 28.9 10.70 0.662 4.32 0.56 ± 0.08 
402 11.3 35.58  240.4 33.5 11.89 0.723 5.02 1.87 ± 0.05 
452 11.0 35.58  234.8 40.7 11.25 0.688 4.83 0.64 ± 0.07 

N5 
(542 m) 

523 10.9 35.58  232.4 43.8 13.08 0.800 6.12 0.83 ± 0.06 
4 17.2 35.57 0.33 261.5 -19.2 0 0.053 0.33 0.91 ± 0.15 
32 14.4 35.57 0.50 256.0 0.5 4.01 0.295 1.63 0.86 ± 0.12 
152 11.9 35.62 0.03 252.8 16.9 9.35 0.600 3.28 1.22 ± 0.06 
403 11.0 35.58  236.1 39.3 12.87 0.804 5.73 1.38 ± 0.03 
704 9.9 35.62  216.0 66.6 16.88 1.052 10.01 2.69 ± 0.14 
804 9.6 35.64  213.9 70.6 17.13 1.073 10.13 3.23 ± 0.17 
905 9.3 35.63  215.9 70.6 17.44 1.085 10.74 1.55 ± 0.14 

1005 8.9 35.62  215.0 73.9 17.99 1.122 11.57 1.45 ± 0.11 
1105 8.8 35.61  216.6 73.4 18.20 1.135 12.00 4.36 ± 0.19 
1206 8.5 35.58  219.3 72.7 18.40 1.153 12.63 1.59 ± 0.30 
1221 8.4 35.58  219.6 72.8 18.30 1.149 12.75 1.81 ± 0.16 

N6 
(1238 m) 

1233 8.4 35.57  220.3 72.6 18.32 1.149 12.80 1.36 ± 0.00 
4 17.8 35.59 0.23 259.0 -19.3 0.01 0.066 0.42 --- 
53 14.6 35.60 0.50 265.7 -10.2 2.53 0.196 0.90 --- 
153 11.8 35.61 0.01 259.1 11.8 9.79 0.589 3.35 1.30 ± 0.06 
404 11.1 35.52  255.1 20.0 11.92 0.738 4.67 2.04 ± 0.08 
605 10.6 35.59  227.8 50.3 16.23 1.006 8.57 3.07 ± 0.15 
900 9.7 35.70  211.1 72.9 18.12 1.127 11.41 1.45 ± 0.04 

1206 7.9 35.53  227.0 68.9 18.67 1.176 13.11 1.52 ± 0.07 
1407 6.8 35.38  239.7 64.6 19.30 1.241 16.73 1.35 ± 0.04 
1607 5.3 35.20  254.6 60.9 19.65 1.274 19.04 1.32 ± 0.06 
1809 4.5 35.10  263.3 58.8 20.00 1.284 21.93 1.22 ± 0.02 

N7 
(1893 m) 

1859 4.3 35.08  265.1 58.7 19.86 1.295 21.00 1.55 ± 0.14 

Table 2. All data



1896 4.3 35.08  265.8 58.1 20.10 1.318 23.00 1.33 ± 0.10 
5 17.5 35.56 0.25 261.4 -20.5 0 0.033 0.18 0.75 ± 0.09 
24 16.1 35.56 0.60 270.4 -22.6 0.70 0.096 0.41 0.92 ± 0.04 
43 13.7 35.61 0.37 260.2 -0.3 4.56 0.302 1.43 1.58 ± 0.08 
154 11.7 35.61 0.02 259.9 11.2 9.92 0.598 3.43 1.60 ± 0.07 
506 10.8 35.53  237.5 39.7 13.85 0.840 6.14 3.21 ± 0.12 
807 9.9 35.63  211.6 71.2 17.60 1.067 9.80 --- 

1007 9.2 35.69  212.1 75.0 18.29 1.106 11.25 1.63 ± 0.05 
1409 6.6 35.46  240.2 65.3 19.38 1.201 14.91 1.61 ± 0.04 
1810 4.5 35.09  263.5 58.8 20.09 1.264 20.38 2.05 ± 0.03 
2011 4.2 35.05  267.3 57.5 20.21 1.284 21.99 1.60 ± 0.09 
2211 4.8 35.02  268.7 59.7 20.70 1.306 26.25 1.83 ± 0.07 

N8 
(2411 m) 

2402 3.2 34.97  269.2 64.1 21.38 1.412 32.14 1.80 ± 0.06 
4 17.4 35.56 0.36 262.6 -21.3 0.01 0.034 0.12 0.46 ± 0.03 
29 15.1 35.59 0.67 266.7 -13.9 1.86 0.157 0.71 0.48 ± 0.04 
102 12.2 35.61  256.4 12.0 8.70 0.519 2.25 0.74 ± 0.05 

N9 
(2953 m) 

202 11.5 35.58  259.2 13.5 10.49 0.639 3.74 0.63 ± 0.01 
 



 

Station Depth (m) AOU 
(µM) 

∆AOU 
(µM) 

∆C 
(µM) 

Estimated 
∆DFe (nM) 

∆DFe 
measured (nM) 

127 (top BNL) 47.8 N1 147 (bottom) 51.5 3.7 2.8 0.03 – 0.14 2.84 

302 (top BNL) 26.8 N4 347 (bottom) 34.1 7.3 5.6 0.06 – 0.28 0.63 

402 (top BNL) 33.5 
524 (bottom) 43.9 10.4 8.0 0.08 – 0.40 

452 (mid-BNL) 40.7 N5 

524 (bottom) 43.9 3.2 2.4 0.02 – 0.12 
0.19 

 

Table 3. DFe release
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Figure 2. DFe distribution
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Figure 3. AOU vs Beam
Click here to download high resolution image
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Figure 4. Beam section
Click here to download high resolution image
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Figure 5. Beam & DFe vs SigT
Click here to download high resolution image
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