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Abstract

The classical single-factor model is parametrized as a graphical Gaussian model.
The relationship between the classical parametrization of the single-factor model
and this alternative parametrization is derived. This relationship provides extra
insights into the single-factor model, which facilitates power calculations. The overall
power of the first step of a backward elimination model selection procedure to
detect an association structure between manifest variables compatible with a single-
factor model is investigated. The results are illustrated using a one-factor congeneric
measurement model.
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1 Introduction

Factor analysis is a classical approach to modeling multivariate data where all
variables are treated on an equal footing. Graphical Gaussian models can be
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considered an alternative approach for investigating the association structure
of multivariate normal random variables. Instead of covariances or correla-
tions between manifest variables, a graphical modeler is interested in partial
correlations.

Several authors have considered the use and importance of incorporating
latent variables in the graphical models framework, mainly concerning the
identification of factor analysis models with correlated residuals. Giudici and
Stanghellini [3] define the graphical factor analysis model as a factor model
with correlated residuals and give a sufficient condition for the identification
of a factor model with an arbitrary number of factors, to some extent gen-
eralizing Stanghellini [12]. Grzebyk et al. [4] build on the work of Vicard
[14] and propose conditions for the identification of multi-factor models with
correlated residuals. Stanghellini and Wermuth [13] consider path analysis
models with uncorrelated residuals, with one hidden (latent) variable, and
address the question of the identification of such models.

The current paper investigates the relationship between the classical single-
factor model with no correlated residuals and graphical Gaussian models.
Models are represented by undirected conditional independence graphs, and
associations between each manifest variable and the latent variable are mea-
sured by partial correlation coefficients. By relating the two parameterizations,
the paper presents results that provide extra insights into the single-factor
model, which facilitates power calculations for single-factor models. Sections 2
and 3 review single-factor models and graphical Gaussian models, respectively.
Section 4.1 demonstrates how to parameterize the single-factor model using
partial correlations. Section 4.2 further investigates the relationship between
the two parametrizations of the single-factor model. Implications for the single-
factor model with parallel measures are considered in Section 4.3. Section 5
presents formulas to estimate the power of selecting a graphical Gaussian
model consistent with a single-factor model, and illustrates their use for a
single-factor model with parallel measures. Section 6 contains a discussion.

2 The classical single-factor model

2.1 The classical parametrization

The classical single-factor model can be written as XM = λL+δ, where XM

is the vector of the p manifest variables (X1, X2, . . . , Xp), L is the factor or
latent variable, λ is a p × 1 vector of factor loadings, and δ is a vector of
p variables representing random measurement error and indicator specificity.
Variables are considered to be measured as deviations from their means, that
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is E[XM ] = 0 and E[L] = 0. The model assumes that E[Lδ] = 0, E[δ] = 0,
var[δ] is diagonal and XM and δ are multivariate normal. To avoid the basic
problem of identification the latent variable L is scaled to have unit variance.
The variance matrix for XM , with elements denoted by σij, is ΣM = λλT +Θ,
where Θ is the p× p diagonal variance matrix of δ.

Anderson and Rubin [1] gave a necessary and sufficient condition for the
identification of a single-factor model: at least three factor loadings have to
be non-zero. Thus, the elements of Θ and λ can be expressed uniquely (up
to the simultaneous sign change) as a function of the elements in ΣM . Also,
Anderson and Rubin [1, Theorem 4.2] stated that ‘a necessary and sufficient
condition that ΣM is a variance matrix of a factor analysis model with one
factor is that p(p− 1)/2− p independent tetrad conditions are satisfied and

0 ≤ σkiσij

σkj

≤ σii

for one pair (j 6= k) for each i.’ Note that throughout this paper different
letters denote distinct indices, which range from 1 to p. The p(p − 1)/2 − p
tetrad conditions to be satisfied are of the type σkiσlj−σliσkj = 0, for all i, j, k
and l. When p = 3 no additional conditions have to be satisfied, whereas when
p = 4 the two tetrad conditions are given by σ12σ34−σ14σ23 = 0 and σ13σ24−
σ14σ23 = 0.

Alternatively, if the population correlation matrix, denoted by P with ele-
ments ρij, is used, the following results hold, provided the tetrad conditions
ρkiρlj − ρliρkj = 0, for all i, j, k and l hold:

ρij = λiλj and λ2
i =

ρijρik

ρjk

;

θii≥ 0 ⇒ λ2
i ≤ 1 and

ρijρik

ρjk

≤ 1; (1)

λ2
i ≥ 0 ⇒ ρijρik

ρjk

≥ 0.

2.2 Parallel measures

Tests of parallelism and parallel measures are particularly important in psy-
chology. Parallel measures have equal true score variances and equal error
variances. If the single-factor model is thought of as a one-factor congeneric
measurement model, the observed measures X1, X2, . . . , Xp are parallel mea-
sures if λ1 = λ2 = · · · = λp and θ11 = θ22 = · · · = θpp. The implications of
parallelism in terms of partial correlations between observed measures will be
considered in Section 4.3.
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3 Graphical Gaussian models

Graphical Gaussian models are parametric statistical models for multivariate
normal random variables. A graphical Gaussian model is specified by set-
ting one or more elements of the inverse covariance matrix to zero. The test
of whether an element in the inverse covariance matrix is zero is equivalent
to the test of conditional independence between the corresponding variables,
given the remaining variables. The independence structure of the variables is
displayed using a mathematical graph, the conditional independence graph.
Each variable is represented by a vertex (node), associations between variables
being represented by edges: either lines or arrows. The interpretation of the
association structure among the variables can be directly read from the graph,
using the Markov properties. In brief: two vertices are connected if there is an
association between them; two vertices are not connected if the correspond-
ing variables are conditionally independent. A complete independence graph
represents a model with no conditional independencies between variables. For
an introduction to graphical Gaussian models see, for example, Edwards [2],
Lauritzen [5] or Whittaker [15].

3.1 Notation and definitions

For the vector of random variables X, of dimension q, the corresponding set of
vertices is given by V = {1, 2, . . . , q}. An undirected graph is the conditional
independence graph for X if there is no edge between Xi and Xj when Xi and
Xj are conditionally independent given the remaining q− 2 variables, that is,

Xi⊥⊥Xj |XV\(i,j) ⇔ (i, j) 6∈ E ,

where E is the edge set. Directed independence graphs allow for the represen-
tation of the lack of symmetry in the roles played by the variables. Markov
properties relate the conditional independence structure of the random vec-
tor to the structure of a graph, and may differ for directed and undirected
graphs. Figure 1 displays two Markov equivalent graphs: a directed acyclic
graph (DAG), in panel a), and an undirected conditional independence graph,
in panel b). Both graphs state that variables X1, X2 and X3 are conditionally
independent, given variable X4.

The edge set of the complete graph is given by {(i, j) : i, j ∈ V , i < j} and
has q(q − 1)/2 elements. The scaled (to have ones on the diagonal) inverse
variance matrix of the underlying multivariate normal distribution is denoted
by sc(Σ−1). This matrix has diagonal elements equal to unity. The off-diagonal
element (i, j) equals the negative of the partial correlation between variables
i and j, after conditioning on the remaining variables, XV\(i,j) (“the rest”),
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Fig. 1. Two Markov equivalent graphs: a DAG (panel a) and an undirected graph
(panel b).

ρij.R. It is well known that Xi⊥⊥Xj |XV\(i,j) ⇔ ρij.R = 0; (see, for example,
Whittaker [15, p. 143]).

3.2 Edge exclusion tests

When searching for a well-fitting graphical model it is usual first to test for
exclusion of each edge, in turn, from the saturated model, i.e., to perform the
first step of a backward elimination model selection procedure. Traditionally
the likelihood ratio test has been used, although the Wald or the efficient score
test can be used. Closed-form expressions for the test statistics for single-edge
exclusion from the saturated graphical Gaussian model were derived by Smith
and Whittaker [11]. Under the null hypothesis that variables i and j are con-
ditionally independent given the remaining variables in the model, i.e., the
edge between i and j is absent from the independence graph, the non-signed
versions of the three test statistics for single-edge exclusion have asymptoti-
cally a χ2

1 distribution and the signed square-root versions have asymptotically
a N(0, 1) distribution.

Salgueiro et al. [8] studied the distributions of the Wald, the score and the
likelihood ratio test statistics under the alternative hypothesis that the satu-
rated model holds and proposed asymptotic normal approximations. Formulas
for the means, variances and covariances of the test statistics, in the asymp-
totic distribution, are presented in detail there. The authors concluded that,
at small distances from the null, the approximations for the signed square-
root test statistics perform better than those for the non-signed test statistics.
They also concluded that there was no difference in performance of the three
test statistics. Therefore, for simplicity, in this paper attention is restricted
to the signed square-root score test statistic Sij = n1/2 ρ̂ij.R, where the hat
denotes the maximum likelihood estimate.

Formulas for the expectations, variances and covariances of the signed square-
root version of the score test statistic, in the asymptotic distribution, based
on a sample of size n, are (Salgueiro et al. [8, Table 2])
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E(Sij) = n1/2 ρij.R

var(Sij) = (1− ρ2
ij.R)2 (2)

cov(Sij, Skl) =
1

4
Cρ (ρij.Rρkl.R)−1, where

Cρ = 4 ρij.Rρik.Rρjl.Rρkl.R + 4 ρij.Rρil.Rρjk.Rρkl.R + 4 ρ2
ij.Rρik.Rρil.Rρkl.R

+4 ρ2
ij.Rρjk.Rρjl.Rρkl.R + 4 ρij.Rρik.Rρjk.Rρ2

kl.R + 4 ρij.Rρil.Rρjl.Rρ2
kl.R

+2 ρ2
ij.Rρ2

jl.Rρ2
kl.R + 2 ρ2

ij.Rρ2
jk.Rρ2

kl.R + 2 ρ2
ij.Rρ2

il.Rρ2
kl.R + 2 ρ2

ij.Rρ2
kl.Rρ2

ik.R.

4 The relationship between the classical and the graphical Gaus-
sian parametrization

4.1 Parameterizing the single-factor graphical Gaussian model

The single-factor model is often represented by a directed acyclic graph. How-
ever, due to Markov equivalence of the two graphs presented in Figure 1, it
is possible to represent the single-factor graphical Gaussian model using an
undirected conditional independence graph. Indeed, if in Figure 1, panel b),
variable X4 is not manifest but latent, the conditional independence graph
represents a single-factor model with three manifest random variables, X1, X2

and X3 and a single latent variable L.

Partition X as
[
XM

T L

]T

, with positive definite scaled inverse variance

matrix T partitioned as

T =




I TML

TLM 1


 , (3)

where I is a p× p identity matrix since the single-factor model assumes that
the manifest variables are conditionally independent, given the latent variable.
The p × 1 vector TML = TLM

T contains the non-zero elements −τiL.R, the
negative of the partial correlation between manifest variable Xi and latent
variable L, where R denotes the remaining p−1 variables in X, after removing
Xi and L.

Salgueiro et al. [10, Result 2] have shown that marginalizing the single-factor
graphical Gaussian model over the latent variable L yields a joint distribution
for the manifest variables with no conditional independencies, that is, with
no zero entries in the scaled inverse variance matrix of the manifest variables.
Consequently, the corresponding independence graph is a complete graph, with
all edges present. One should note that, in the three manifest variables case,

6



when no tetrad conditions have to be satisfied, the resulting model for the
manifest variables is the saturated model. When there are four or more mani-
fest variables, the tetrad conditions have to be satisfied, imposing a structure
on the partial correlations among manifest variables, and therefore the model
obtained has a complete graph, but is not necessarily the saturated model.

For the scaled inverse variance matrix of the manifest variables to be positive
definite all variances 1 − τ 2

iL.R have to be positive, implying that 0 < τ 2
iL.R <

1. Note that whereas in the classical factor model the factor loadings λ2
i ∈

[0, 1] (since positive semidefinite matrices are allowed), in the current paper
τ 2
iL.R ∈ (0, 1), since only positive definite matrices are considered. The partial

correlations between manifest variables can be written as a function of the τs
(Salgueiro et al. [10, Result 3])

ρij.R =
τiL.R τjL.R

{(1− τ 2
iL.R)(1− τ 2

jL.R)}1/2
, i 6= j ∈ {1, 2, . . . , p}. (4)

4.2 The relationship between the two parametrizations

From Section 2.1, using the classical parametrization of the single-factor model,
given the latent variable L, the manifest variables are normally distributed
with mean vector λL and variance matrix Θ. If L has variance one, the vec-
tor of factor loadings is λ = ΣML, the p × 1 vector of covariances between
the manifest variables and the latent variable. The diagonal matrix with the
variances of the measurement error terms is Θ = diag {ΣM −ΣMLΣML

T}.
From Equation 3, the inverse of T is given by

T−1 =




I TML

TLM 1




−1

=




(I − TMLTLM )−1 −(I − TMLTLM )−1TML

−TLM (I − TMLTLM )−1 (1− TLMTML)−1


 .

(5)
By noting that, up to scaling, ΣML is the upper right submatrix of T−1, it
follows from Equation 5 when

λ∗ = −(I − TMLTLM )−1TML (6)

is a vector of factor loadings, var(L) = (1− TLMTML)−1, and

Θ∗ = diag {ΣM − var(L)λλT} (7)

is the corresponding diagonal matrix with the variances of the error terms.

Consequently, each λ∗i can be written as a function of the τs as

λ∗i =
τiL.R

1−∑p
k=1 τ 2

kL.R

. (8)
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The proof follows. From Rao [7, p. 33]

(I − TMLTLM )−1 = I + TMLTLM/(1− TLMTML).

Since TLMTML is a scalar and equals
∑p

k=1 τ 2
kL.R,

λ∗ = − 1

1−∑p
k=1 τ 2

kL.R

TML and λ∗i =
τiL.R

1−∑p
k=1 τ 2

kL.R

.

Because the denominator is always positive, λ∗i has the same sign as the cor-
responding τiL.R.

Also, the diagonal elements in Θ∗ can be written as a function of the τs as

θ∗ii =
1−∑

v τ 2
vL.R

1−∑p
k=1 τ 2

kL.R

− τ 2
iL.R

(1−∑p
k=1 τ 2

kL.R)3
, (9)

with v = 1, . . . , p and v 6= i.

The “classical standardized solution” for the factor loadings is obtained by di-
viding each λ∗i by the square root of the diagonal elements of T−1 correspond-
ing to manifest variable Xi and latent variable L. Let λsc denote the vector of
factor loadings in the “classical standardized solution”. The variance matrix in
the “classical standardized solution” is given by Θsc = diag {I − λsc(λsc)T}.

The derived relationships between the classical parametrization of the single-
factor model and the parametrization of the single-factor graphical Gaussian
model hold theoretically (for the population parameters), for the general p
manifest variables case once the tetrad conditions are fulfilled.

4.3 Implications of parallel measures on the structure of partial correlations

In a single-factor model the observed measures X1, X2, . . . , Xp are parallel
measures if they have equal factor loadings (λ) and equal error variances (θ).
Consequently, the variance matrix ΣM has diagonal elements λ2 + θ and off-

diagonal elements λ2. Its inverse, ΣM
−1, has diagonal elements (p−1)λ2+θ

θ(pλ2+θ)
and

off-diagonal elements −λ2

θ(pλ2+θ)
. The scaled (to have ones on the diagonal) in-

verse variance matrix of the manifest variables has off-diagonal elements of the
type −λ2

(p−1)λ2+θ
. Therefore, all partial correlations between manifest variables

are equal, and of the form

ρij.R =
λ2

(p− 1)λ2 + θ
.

In order to obtain the positive definiteness constraint for the scaled inverse
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variance matrix of p manifest variables in the case of equal partial correlations,
let E be an equicorrelation matrix (see Mardia et al. [6, p. 461]). It is a
p × p matrix of the type (1 − ρ)I + ρJ , with ones on the main diagonal and
off-diagonal elements equal to the correlation coefficient ρ. J denotes a p× p
matrix of ones. The eigenvalues of E are λ1 = 1+(p−1)ρ, λ2 = . . . = λp = 1−ρ
and E is positive definite when all eigenvalues are positive, that is, when
ρ ∈

(
−1
p−1

, 1
)
.

Because the focus of this paper is on partial correlations, existing results for an
equicorrelation matrix have to be adapted. Indeed, the scaled inverse variance
matrix, with ones on the main diagonal and off-diagonal elements being minus
the partial correlation coefficients, can be written as

Esc = sc(E−1) = (1 + ρij.R)I − ρij.RJ . (10)

The eigenvalues of Esc are λ1 = 1 − (p − 1)ρij.R, λ2 = . . . = λp = 1 + ρij.R

and Esc is positive definite when 1 + ρij.R > 0 and 1 − ρij.R(p − 1) > 0.
Because ρij.R ∈ (−1 , 1), 1 + ρij.R is always positive and [1 − ρij.R(p − 1)]
is strictly positive if ρij.R < 1

p−1
. In other words, the positive definiteness

constraint in the scaled inverse variance matrix with p variables, when all
partial correlations ρij.R are equal, is that ρij.R ∈

(
−1 , 1

p−1

)
.

If the partial correlations arise from marginalizing the single-factor model
over the latent variable, the additional constraint that the product of any
three partial correlations has to be positive has to be imposed, and therefore
ρij.R ∈

(
0 , 1

p−1

)
. From Equation 4, all ρij.R equal implies all τiL.R equal and

of the form

τ 2
iL.R =

ρij.R

1 + ρij.R

.

The constraint imposed on the partials implies τ 2
iL.R < 1/p with τiL.R 6= 0, re-

stricting considerably the parameter space for the τs as the number of manifest
variables increases.

5 Power

From Salgueiro et al. [10, Result 2] it follows that marginalizing the single-
factor graphical Gaussian model over the latent variable induces an indepen-
dence graph for the manifest variables that is complete, hence none of the
population partial correlations should be zero. Taking into account sampling
variability, it is of interest to test if all observed partial correlations are “large
enough”, in absolute value. In practice the data analyst can perform the first
step of a backward elimination model selection procedure, and test for a set of
null hypotheses of zero partial correlations (i.e., conditional independencies).
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Rejecting all of them implies favoring a model where all edges between man-
ifest variables are present, hence providing support for a single-factor model.
On the other hand, the data analyst wants to have adequate power to conclude
that if an edge is absent, then the manifest variables could not have arisen
from a single-factor model. The current section addresses power issues.

5.1 Theoretical power of selecting a model with a complete graph

Power for single edge exclusion from a saturated graphical Gaussian model
has been investigated by Salgueiro et al. [8]. For a two-sided test of size α,
the null hypothesis that ρij.R equals zero is rejected if the absolute value of
the signed square-root test statistic is greater than z1−α/2, where z1−α is the
upper α quantile of the standard normal distribution. Hence, the power for
the two-sided signed square-root score test of excluding edge (i, j) from the
saturated graphical Gaussian model can be approximated by

P
[
|Sij| > z1−α/2 |ρij.R

]
' P


Z <

zα/2 − E(Sij)√
var(Sij)


 + P


Z >

z1−α/2 − E(Sij)√
var(Sij)


 .

(11)
The power for a one-sided test of size α/2 is approximated by either the first
or the second term on the right-hand side of Equation 11, depending on the
direction of the alternative hypothesis.

5.2 Illustration of power calculations

This section illustrates power calculations in the particular case of all partial
correlations equal. Theoretical results presented in Section 5.1 are used for the
signed square-root score test statistic.

Recall that the positive definiteness constraint on the scaled inverse vari-
ance matrix of the manifest variables when all ρij.R are equal implies that

ρij.R ∈
(
−1 , 1

p−1

)
. Additionally, the fact that the association structure be-

tween manifest variables arises from marginalizing the single-factor model over
the latent factor further requires that ρij.R > 0.

For all ρij.R equal, from Equation 2, the formula for the asymptotic covari-
ance of the signed square-root score test statistics simplifies to cov(Sij, Skl) =
2ρ2

ij.R (1 + ρij.R)2 . Since the ρij.R are positive, one-sided tests are considered.
Figure 2 presents the estimated overall power curves for association structures
between manifest variables with all ρij.R equal, from 0 to 1

p−1
. The three, four

and five manifest variables cases are considered, with four different sample

10



sizes: 50, 100, 200 and 500.
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Fig. 2. Overall theoretical power curves for association structures between manifest
variables with all ρij.R equal, from 0 to 1/(p − 1). p = 3, 4 and 5, respectively in
panels a), b) and c). Sample sizes of 50 (squares), 100 (circles), 200 (triangles) and
500 (solid line). The horizontal dotted lines correspond to power values of 0 and 1.

Some conclusions can be drawn from Figure 2:

(1) power increases as partial correlations departure from zero, faster for
larger sample sizes;

(2) for n = 50, the probability of selecting the saturated model for the three
manifest variables (when ρij.R = 0.25) equals 0.23. This probability goes
up to 0.6 for n = 100, reaching 0.94 for n = 200;

(3) as the number of variables p increases, the probability of selecting a model
with a complete graph tends to decrease, for a given sample size.

6 Discussion

The investigation into the relationship between the classical single-factor model
with no correlated residuals and graphical Gaussian models has provided some
useful results for the practitioner. Inspection of sample partial correlations be-
tween manifest variables can provide evidence for and against a single-factor
model. Salgueiro et al. [10, Result 2] states that population partial correlations
between manifest variables in a single-factor model should be non-zero. There-
fore, provided there is adequate overall power, sample partial correlations not
significantly different from zero rule out a single-factor model. A further check
on the compatibility of the association structure of the manifest variables with
a single-factor model can be made by inspecting the pattern of signs in the
partial correlation matrix (Salgueiro et al. [10, Result 5]). Hence, provided the
data analyst has concluded that all partials are significantly different from
zero, this result can also be used to assess compatibility. In the parallel mea-
sures case, this result implies that all partial correlations must be positive.
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Hence, a single significant negative sample partial correlation would rule out
a single-factor model. However, if overall power is small, a single-factor model
should still be considered, even if there are non-significant sample partial cor-
relations.

It may be possible to extend some of the results presented in this paper to
latent class models by using the results in Salgueiro et al. [9].
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