Physical constraints on phytoplankton in estuaries and shallow coastal waters

Lauria, Mary Louise (1998) Physical constraints on phytoplankton in estuaries and shallow coastal waters. University of Southampton, Faculty of Science, School of Ocean and Earth Science, Doctoral Thesis , 211pp.


Download (37Mb)


Highly dynamic aquatic systems have often been reported to support actively growing populations of
phytoplankton. The partially-mixed, macrotidal, temperate estuary Southampton Water is no exception,
with reports of frequent temporal patterns of spring and summer maxima in algal biomass. During this
study, the close coupling between the estuarine hydrology and the phytoplankton community was
confirmed by the results from an intensive sampling strategy, spanning various temporal scales. Using
high frequency data, collected from acoustic Doppler current profilers (ADCP) and CTDs, the physical
mixing processes within the estuary were determined and combined with high resolution phytoplankton
species data to assess the physical pressures on the microalgal community. Initial surveys were
conducted to provide snapshots of the estuary during productive periods, followed by more intensive,
longer term monitoring to observe population growth and succession.
Through seasonal investigations, the aggregation of algal biomass (quantified by chlorophyll a
concentration) at differing vertical heights in the water column was realised. On closer examination
using microscopic identification, the different vertical profiles were shown to be due to phytoplankton
succession from the spring to the summer months. Diatoms (Rhizosolenia delicatula) proliferated in the
spring, where the population was localised in the near-bottom layers, whilst the summer bloom was
dominated by autotrophic dinoflagellates (Prorocentrum micans and Peridifiium trochoideum),
manifesting in a sub-surface chlorophyll a maximum. The vertical position of diatom species, both
pelagic and benthic, suggested no dependence on incident irradiance, but seemed solely governed by
current velocities, shear and wind mixing events. Other passive constituents of the water column, such
as suspended particulate matter, were also closely coupled with boundary shear and followed regular
patterns of re-suspension similar to those shown by the diatom community. In the summer, apparent
active vertical migration was observed for several species of dinoflagellate. Whilst this apparent
migration was closely linked to the incident irradiance, the extent and timing of migration was highly
dependent on the tidal state and the water column stability.
During one 25 hour Eulerian investigation, apparent positive vertical migration was observed in
several dinoflagellate species, where the controlling factor was incident irradiance. Dinoflagellates
were observed to descend during the dark periods when the water column was stable. However, the
vertical distribution of the autotrophic ciliate Mesodinium rubrum suggested that migrations into the
surface waters were linked with periods of water column stability and not triggered by surface
The unique tidal regime that governs the physical mixing processes in Southampton Water translates
into periods of stability separated in time by intermittent turbulence. This periodic stability within the
water column during reduced tidal forcings permitted the surface aggregation of dinoflagellates, which
became homogeneously distributed when turbulence intensified during the ebb and flood currents.
Diatoms, conversely, relied on vertical mixing to enter the surface layers of the water column, and
aggregated in the lower layers during times of water column stability. Data from the. seasonal surveys
suggested that diatoms and dinoflagellates were able to co-exist during the summer by utilising
contrasting properties of tidal mixing to develop and reside within this partially mixed environment.
The segregation of these two phytoplankton groups was not apparent from the chlorophyll
concentrations alone, and was only made evident through the high resolution phytoplankton sampling
through both time and space.
The close coupling between the phytoplankton community and physical forcings were also
investigated in the usually well-mixed southern North Sea. During a 12 hour Lagrangian survey, the
stabilising effect of the Rhine region of freshwater influence (ROFI) was recognised and provided the
temporary stability necessary for apparent dinoflagellate (Prorocentrum micans and Gonyaulax so)
migration. Associated solely with this lower salinity plume was the diatom Rhizosolenia stvliformis,
which was not detected during other times of the survey. Very small changes in total algal biomass
were detected through the use of chlorophyll a determinations (chlorophyll a < 2 mg m"3). The
intermittency of the mixing forces proved to be an important physical characteristic which defines the
species and distribution of the phytoplankton community.

Item Type: Thesis (Doctoral)
Additional Information: Digitized via the E-THOS exercise.
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions : University Structure - Pre August 2011 > School of Ocean & Earth Science (SOC/SOES)
ePrint ID: 42128
Accepted Date and Publication Date:
September 1998Made publicly available
Date Deposited: 22 Nov 2006
Last Modified: 27 Mar 2014 18:27

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics