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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF SCIENCE
SCHOOL OF OCEAN AND EARTH SCIENCE
Doctor of Philosophy
POST-LARVAL DEVELOPMENT IN DEEP-SEA ECHINODERMS
Paulo Yukio Gomes Sumida

The post-larval phase is an essential period in the life history of marine invertebrates; vulnerable to high
mortality, it ultimately influences the distribution and abundance of adult populations. The post-
metamorphic ontogenesis of thirty species of deep-sea echinoderms, belonging to three classes
(Ophiuroidea, Asteroidea and Echinoidea), is described using scanning electron microscopy. The life
history of Ophiocten gracilis is also examined as a case study for future research on post-larval organisms.

The analysis of development in ophiuroids reveals that species can be identified from a very early post-
metamorphic stage, even in congeneric species, contrary to the findings of other authors. The ontogeny of
homologous structures is similar within related groups, but may give rise to different adult structures in
different taxa. The mouth papillae within the ophiurids are serially homologous, originating from the jaw,
but the fourth mouth papilla may have a different origin. In the families Ophiactidae, Ophiacanthidae and
Amphilepididae examined, the mouth papillae have different origins, as, for instance, the adoral shield
spine or tentacle scale. Data on the post-larval development of Ophiura affinis suggest that this species is
more closely related to the genus Ophiocten and a change in the generic status is proposed.

Ophiocten gracilis is a bathyal brittle star occurring on both sides of the North Atlantic and its life
history is studied in the eastern side of the North Atlantic. In this area, O. gracilis spawns in
February/March of each year producing a large number of eggs. Fecundity is estimated to be around 40,000
eggs ind”, with the population of the Hebridean Slope being able to produce probably up to 16 million eggs
m™. Post-larvae start settling in May and numbers settling reached over 3,200 post-larvae m™. The settling
speed of post-larvae in the water column is estimated to be around 500 m day™, settling faster in warmer
than colder water. Settling speeds appear to be similar for post-larvae ranging from 0.6 to 0.9 mm in disk
diameter. Size at settlement is around 0.6 mm in disk diameter and 5-6 arm segments. The settlement of
post-larval O. gracilis on the bottom of the Hebridean Slope also represented a considerable fraction of the
particulate organic carbon (POC) flux in the area, reaching over 7% of the total daily flux. This is likely to
have a considerable impact in the benthic community as competition and predation and as an additional
food source for demersal and benthic organisms. The occurrence of post-larvae of O. gracilis in sediment
traps also represented a large problem for POC flux measurements, with ophiuroids consuming part of the
flux. In future works with sediment traps, such errors must be taken into account and ophiuroids must be
included in the total POC flux.

The deep-sea juvenile asteroids of the NE Atlantic could be'distinguished to species level from a very
early stage of development. The ontogenesis of Porcellanaster ceruleus shows that this species is likely to
undergo a shift in habitat and diet during the Juvenile phase. This is evidenced by the appearance of the
epiproctal cone, the changing of the furrow and apical spines, the early development of the cribriform
organ adjacent to the madreporite and the appearance of sediment in the stomach. P. ceruleus is probably a
predator on meiofauna and small macrofaunal organisms during the early stages of life, changing to a
burrowed life style ingesting sediment particles. Most juvenile sea stars analysed during the present study
showed wider bathymetric distribution than their adult counterparts, suggesting that events occurring during
the early stages of life are important for the maintenance of the local population structure and diversity in
the deep NE Atlantic.

The post-metamorphic development of three deep-sea spatangoid echinoids is very similar, but the
morphology and formation of fascioles facilitate the distinction of the species examined. Whereas in
Hemiaster expergitus and Spatangus raschi the fascioles present in the post-larvae develop to form the
adult fascioles, in Brissopsis lyrifera post-larvae there is a Juvenile fasciole, which disappears during
ontogenesis giving way to the adult fascioles. The function of the juvenile fasciole is unknown in B.
Iyrifera. The development of the periproct in all spatangoids examined is similar to that described by other
authors, with the periproct being initially endocyclic and migrating towards the rear of the animal as
development progresses. Post-larvae of the genus Echinus could not be separated into different species,
which may be linked to the recent diversification of the genus in the North Atlantic.

The widespread settlement of echinoderm post-larvae reported in the present thesis and in other works is
thought to have been very important for the colonization of the deep-sea through the supply of stages to
deeper areas and selection of pressure adapted animals and subsequent speciation.
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P.Y.G. Sumida “Post-larval development in deep-sea echinoderms” Chapter One

Chapter One - General introduction and aims

1.1. The deep-sea

The image of the deep-sea as a huge and inaccessible environment is present ever
since scientists set out to explore that area, and probably much earlier. It is
interesting to note that, even though the deep-sea is today still a mysterious and
relatively poorly known environment, its exploration began even before the events
that marked the beginning of the science of Oceanography itself. If the
circumnavigation of the British ship H. M.S. Challenger (1872-76) marks the dawn of
Oceanography, some years before the cruises of the also British ships Lightning
(1868) and Porcupine (1869-70) (section 1.2.1) proved beyond doubt that organisms
thrived in the deep-sea. This was probably the first great event in the history of the
biological exploration of the deep-sea.

Other important events mark the 130 years of this exploration. After a first half of
the 20th century marked by the great expeditions, which collected abundant material
for a large inventory of the fauna, the early 1960’s brought the invention of the
submersible technology, allowing in situ exploration of the deep-sea bed, as well as
the possibility of experimentation (Sibuet et al., 1990). The invention of improved
sampling gear and the use of fine meshes revealed a extremely high diversity
environment, composed by a large number of small-sized specimens (Sanders et al.,
1965).

The 1970°s were marked by the discovery of the hydrothermal vents in the
volcanic active locations of the Meso-oceanic Ridges (Ballard, 1977), with an
astonishing fauna and autochtonous source of organic matter driven by geochemical
energy (Jannasch & Wirsen, 1979). Later, similar environments were discovered on
continental slope areas and called cold seeps, with production being fuelled by
hydrocarbon/methane/sulphide seeping from the sediments (Kennicutt et al., 1985).
In the beginning of the 1980’s, seasonal pulses of phytodetritus originating from the
euphotic layers were detected in deep-sea areas of the North Atlantic (Deuser &
Ross, 1980; Deuser ef al., 1981; Billett et al., 1983; Deuser, 1986). Such pulses of
food are thought to drive seasonal processes in deep-sea animals (Rokop, 1974,

1977, Tyler, 1988; Tyler er al, 1992). Before these events, the deep-sea was
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considered a tranquil environment, with constant physical variables and a continuous,
low supply of food.

Nowadays, the deep-sea is considered diverse and dynamic, with a multitude of
different environments and difficult to be considered a single unit. Slope areas with a
highly dynamic and, sometimes, unstable sediments (Jenkins & Ke;ne, 1992);
abyssal areas affected by seasonal pulses of food (Rice et al., 1986) and those food-
poor under the large oceanic gyres (Rowe, 19835); hydrothermal vents and cold
seeps, with a high productivity and biomass; and the relatively unknown oceanic

trenches form this vast domain, characterized by the crushing pressures and complete

absence of solar light.

1.1.1. The Physical Environment

As already discussed, the deep-sea environment is far from being constant, despite
the view of a ‘stable’ environment, where the physical and biological processes are
slow and unchanged over large time-scales. This is probably true for some of the
physical variables, e.g. temperature and salinity, but not for other events (see Tyler,
1995).

A series of unpredictable events occur in certain areas of the ocean bed, causing
effects in the sediment community. Benthic storms associated with the global pattern
in eddy kinetic energy are highly erosive events occurring at the bottom during few
days to weeks (Richardson et al., 1993; Kontar & Sokov, 1994) and can be important
as a disturbing factor in the local benthos (Aller, 1989, 1997). Areas such as the
HEBBLE Site (Hiéh Energy Benthic Boundary Layer Experiment) on Nova Scotia
Rise (NW Atlantic Ocean) are highly energetic, opposing sluggish currents found
elsewhere in the deep-sea (Weatherly & Kelley, 1985; Gross ef al., 1988). Other
unpredictable events include sediment slides and slumps occurring on the continental
slopes and hadal trenches, sometimes moving enormous quantities of sediment
downslope either to the continental rise and abyssal plain or to the deepest parts of
trenches. Turbidity currents may also occur on slopes and submarine canyons
carrying a mixture of sediments and water downslope (Gage & Tyler, 1991).

Although such events occur at variable time-scales and are unpredictable over

time, some episodes can be highly predictable and recurrent. ‘Seasonal’ and annual
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periodicity events, such as the pulses of organic matter arriving at the bottom may be

detected at some areas (section 1.1).

1.1.1.1. Hydrothermal Vents and Deep-Sea Cold Methane/ Sulphide Seelzi_s

Hydrothermal vent systems are unique environments associated commonly with
tectonic plate boundaries in spreading centres, subduction zones, fracture zones and
back-arc basins (German ef al., 1995). The temperature at these environments can be
as hot as 380°C close to black smokers or cooler as warm fluids (5-250°C) from
diffuse emissions from crevices in the basaltic rocks (Gage & Tyler, 1991). Despite
such high temperatures existing at vent sites, the overlying seawater temperature
remains close to that of the surrounding deep-ocean (~ 2°C).

At those sites, water percolates in the system where it acquires a variety of
different minerals, as metals and others, which together with hydrogen sulphide and
methane are expelled in the surrounding water column as a hydrothermal plume.
Some minerals are deposited near the chimneys as metalliferous sediments and Fe-
Mn crusts and the hydrogen sulphide and methane (highly toxic for life in general)
are used as a substrate (energy source) for chemosynthetic bacteria, which form the
basis of the hydrothermal vent trophic web (Tunnicliffe, 1991; Van Dover & Fry,
1994; Van Dover, 1995).

In deep-sea cold methane/sulphide seeps, physical conditions are more like non-
vent deep-sea areas, with the exception of the methane and sulphide that seeps from
inside the Earth’s crust, serving as energy source to chemosynthetic bacteria,

supporting a fauna similar to that found in hydrothermal vent systems (Hecker, 1985;

Gage & Tyler, 1991).

1.2. The North-east Atlantic
1.2.1. Historic background

The deep NE Atlantic Ocean is probably one of the best sampled deep-sea areas of
the world’s oceans. The first biological survey in the area was made by the British
ship HM.S. Lightning, which covered the region of the Hebridean Slope, Faroe
Bank, Faroe-Shetland Channel and the north of Feni Ridge. The Lightning sailed on
the summer of 1868, sampling 17 stations at depths down to 1200 m (Fig. 1.1;



Figure 1.1. Map showing the station locations of the cruise of the HMS Lightning during

the summer of 1868 in the NE Atlantic (From Thomson, 1874a).
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Thomson, 1874a). In the following summer, the British HM. Surveying-vessel
Porcupine was used for three cruises in a much more comprehensive sampling
programme. The sampling covered most of the NE Atlantic off the west and north of
the British Isles. The first cruise surveyed the area of the Rockall TroEgh, Rockall
Bank, Porcupine Bank and the north part of the Porcupine Seabight (Fig. 1.2a).
During the second cruise, the Celtic Shelf, Goban Spur and a small section of the
Porcupine Abyssal Plain were sampled (Fig. 1.2b). The third cruise comprised the
more northern part, encompassing the Hebridean Slope, Wyville-Thomson Ridge,
Faroe Shelf, Faroe-Shetland Channel and the Shetlands Shelf (Fig. 1.2¢). Those three
cruises surveyed a total of 90 stations at depths up to almost 4500 m (Thomson,
1874a).

The Porcupine would be used again during the summer of 1870, when a fourth
cruise sampled 9 stations on the south edge of the Celtic Shelf and headed
southwards to explore the west coast of the Iberian Peninsula and the southern
Mediterranean Sea (Fig. 1.2d; Thomson, 1874q).

During the years following these cruises, many ships visited the area including the
HMS. Knight-Errant (1880), HM.S. Triton (1882), Lord Bardon (1885, 1886,
1888), Flying Fox (1889), Research (1889), Fingal (1890), Harlequin (1891), the
Irish Helga and Helga Il (1901-1914) and the Michael Sars (1910) (Gage et al.,
1983; Rice et al., 1991).

More recently, the area has been studied by major sampling programmes. The
region around the Faroe Islands was sampled during the BIOFAR programme (1987-
90) at depths from 20 to 2420 m, sampling over 750 stations (Nerrevang et al.,
1994). The Rockall Trough was subjected to a long-term sampling programme by the
SMBA (Scottish Marine Biological Association - now SAMS), starting in 1973
(Gage et al., 1980) and also explored during the cruises of the French ship Jean
Charcot in 1969 (Cherbonnier & Sibuet, 1973) and 1976 (INCAL expedition; Gage,
1986). More to the south, the areas comprising the Porcupine Seabight and Porcupine
Abyssal Plain were studied by the IOS (Institute of Oceanographic Sciences - now at
the SOC) sampling programme (1977-86), also including some areas of the
Porcupine Bank and Goban Spur (Rice ef al., 1991). The Bay of Biscay was surveyed
by the French programme BIOGAS (BIOlogie GAScogne - 1972-74/1978-81)



Figure 1.2. Map showing the station locations of the four cruises (A-D) of the H.M.
Surveying-vessel Porcupine during the summers of 1869-70 in the NE
Atlantic and Mediterranean (From Thomson, 1874a).



Figure 1.2 (cont.). Cruises of the H.M. Surveying-vessel Porcupine in the NE Atlantic
and Mediterranean (From Thomson, 1874a).
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(Laubier & Monniot, 1985). Several short term sampling programmes are still being
carried out or just finished in the NE Atlantic, including the OMEX and OMEX II
(Ocean Margin EXchange - 1993-99), LOIS (Land Ocean Interaction Study - 1991-
96), BENBO (BENthic BOundary layer - 1997-99) and BENGAL (Higvh resolution

temporal and spatial study of the BENthic biology and Geochemistry of a north-east
Atlantic abyssal Locality - 1996-99).

1.2.2. Physiography and sediments

The NE Atlantic Ocean is delimited on the north-west by the Reykjanes Ridge,
Iceland on the north and the Iceland-Faroe-Scotland Ridge on the north-east. On the
east, it is limited by the European Continent (Van Aken & Becker, 1996). Next to the
Reykjanes Ridge, running from the north-east to south-west, the Iceland Basin is
present. On the southern part of the area, the Porcupine Abyssal Plain is present as
part of the West European Basin (Fig. 1.3).

Between the Iceland Basin and the British Isles Shelf, a complex bathymetry is
generated by the presence of the Rockall-Hatton Plateau, with the Rockall and Hatton
Banks. The Rockali-Hatton Plateau delimits the moderately deep Rockall Channel
(Rockall Trough) on the west-north-west. The east border of the channel is composed
by the British Isles Shelf and Slope. The entrance of the Rockall Channel is in the
south-west at depths of about 3500 m in 53° N latitude (Ellett et al., 1986). The
northern part is shallower and delimited by a series of smaller banks (Lousy, Bill
Bailey’s and Faroe Banks) and the Wyville-Thomson Ridge. The Wyville-Thomson
Ridge separates the Rockall Channel from the Faroe-Shetland Channel on the north-
east, which is connected with the Norwegian Basin (Fig. 1.3).

Inside the Rockall Channel, three major topographic features are the Hebrides
Terrace Seamount, Anthon Dohrn Seamount and Rosemary Bank (Fig. 1.3). The
slope on the west of the Rockall Channel is more gentle, with the presence of a broad
sediment drift called Feni Ridge (Roberts, 1975). On the east border, the slope is
relatively narrower and steeper, following the relatively broad continental shelf of the
British Isles (Roberts, 1975, 1979). Close to the Hebrides Terrace Seamount,
however, the slope is gentler owing to the presence of the Barra and Donegal deep-

sea fans to the north and south of the Hebrides Terrace Seamount, respectively. The
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upper slope on both sides of the Rockall Channel is composed by terrigenous
sediments (Faugeres ef al., 1981) and recent evidence suggests that a large number of
rock outcrops are present, mainly in the southern part of the channel (Tyler &
Zibrowius, 1992; Neil Kenyon, personal communication). Gage (198@) points out
that sediments collected with box core and anchor dredge in a transect in the Rockall
Trough from 200-700 m depth showed muddy sand with pebbles, cobbles and some
boulders. Below 700 m the sediment is made up of an increased proportion of

calcareous particles of pelagic origin (Gage, 1986).
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Figure 1.3. Map of the NE Atlantic showing the main topographic features.
ADS=Anton Dohrn Seamount; BBB=Bill Bailey’s Bank; EB=Edoras Bank;
ES=Eriador Seamount; FB=Faroe Bank; FBC=Faroe Bank Channel; HB=Hatton
Bank; LB=Lousy Bank; LrB=Lorien Bank; RB=Rosemary Bank; WTR=Wyville-
Thomson Ridge (Modified from Van Aken & Becker, 1996)
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Towards the south-west of the British Isles Shelf, the Porcupine Bank is present
and a large embayment in the slope adjacent to it, the Porcupine Seabight, which
leads, on the south-west, to the Porcupine Abyssal Plain (Fig. 1.3). The Porcupine
Seabight is characterized by the presence of coarse carbonate sediments and rock
outcrops (Faugeres ef al., 1981). The slopes on the west of the Porcupir:e Bank and
Porcupine Seabight are characterized by the few number of canyons, which reflect
the limited sediment supply available (Roberts, 1975; Rice et al., 1991). The
opposite is true for the eastern slope of the Porcupine Seabight and the southern part
of the Celtic Shelf slope, where there are numerous canyons and channel systems
(Rice et al., 1991). The sediments of the centre of the Seabight are a coccolith-
foraminiferan marl (Lampitt et al., 1986). Rock and mineral debris, including clinker
and drop stones, are also present (Kidd & Huggett, 1981), serving as substrata for

sessile organisms (Rice et al., 1991).

1.2.3. Water masses and circulation

The subsurface layers of the NE Atlantic are formed by the Subpolar Mode Water
(SPMW - see McCartney & Talley, 1982), which may also bear different names in
the literature (Subarctic Intermediate Water - SAIW, Bubnov, 1968; Eastern North
Atlantic Water - ENAW, Harvey, 1982; North Atlantic Water - NAW, Dooley &
Meincke, 1981; Modified North Atlantic Water - MNAW, Hansen, 1985; Rockall
Channel Mode Water - RCMW, Arhan et al., 1994) (Van Aken & Becker, 1996).
This variety of names is related to the number of modifications that the SPMW is
subjected, mainly owing to its transport and seasonal variation, with temperatures
varying from 8-12°C. Van Aken & Becker (1996) state that the SPMW forms the
bulk of ‘warm’ Atlantic water entering the Norwegian Sea between Iceland and
Scotland. The SPMW is formed by cooling and freshening of water from the North
Atlantic Current (NAC) in winter as a result of a deep convection driven by the heat
loss at the sea surface (Van Aken & Becker, 1996).

Below the SPMW, a layer of salinity minimum water is present at around 1600-
1900 m depth, comprising the Labrador Sea Water (LSW - see Talley & McCartney,
1982). In the Rockall Channel and in the Porcupine area close to the British Isles,

there is a layer of salinity maximum and low oxygen formed by the Mediterranean
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Water (MW; also Gibraltar Water - GW, Ellett & Martin, 1973; Ellett et al., 1986;
Lonsdale & Hollister, 1979) between 800-1200 m depth.

The deep layer north of the Rockall Channel and Iceland Basin is formed by
waters resulting from the overflow of Norwegian Sea Deep Water (NSDW) through
the Iceland-Faroe Ridge into the Iceland Basin and through the Wyville-Thomson
Ridge into the Rockall Channel and Faroe Bank Channel (Lee & Ellett, 1965; Ellett
& Roberts, 1973; Mauritzen, 1996). The NSDW interacts with the SPMW during the
overflow forming the Iceland-Scotland Overflow Water (ISOW; also called North-
east Atlantic Deep Water - NEAD, Ellett & Roberts, 1973). The ISOW is a saline
water mass, with temperatures around 2.5°C. The ISOW is gradually mixed with less
dense waters along its journey south on the west side of the Rockall-Hatton Plateau,
forming a modified water mass called North-east Atlantic Deep Water NEADW).

The NEADW is found in a salinity maximum at around 2600 m depth (Van Aken
& Becker, 1996). In the south of the Iceland Basin, Porcupine Abyssal Plain and
Southern Rockall Channel the NEADW is found between the LSW above and
another water mass, the Lower Deep Water (LDW), below. The LDW (<2.5°C)
occurs at depths below 3000 m in the Porcupine Abyssal Plain and at around 2500 m
in the southern part of the Rockall Channel (Van Aken & Becker, 1996).

The surface circulation pattern in the NE Atlantic shows an overall trend towards
the transport of Subpolar Mode Water north-eastwards into the Norwegian Sea (Fig.
1.4a). The SPMW is transported by the NAC from the south, passing on the west of
the Rockall-Hatton Plateau and on the east into the Rockall Channel, entering the
Norwegian Sea over the Iceland-Faroe and Wyville-Thomson Ridges (Van Aken &
Becker, 1996). More to the west, over the Iceland Basin, part of the SPMW is
diverted into the western North Atlantic over the Reykjanes Ridge (Fig. 1.4a).

The deep circulation is more complicated, with the overflow of NSDW (in the
form of ISOW) through the Iceland-Faroe Ridge flowing south-westwards on the
west-north-west part of the Iceland Basin, next to the Reykjanes Ridge (Fig. 1.4b).
The overflow through the Wyville-Thomson Ridge flows into the Rockall Channel,
with part of it being diverted into the Faroe Bank Channel, subsequently meeting the
ISOW flowing through the Iceland Basin.

11
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In the south, next to the Porcupine Bank, the LDW and NEADW flow northwards,
dividing into two branches. One follows the contours of the Porcupine Bank until the
contours change to an east-west direction. At this point, the LDW and NEADW
divert to the north-west and then to the south-west, recirculating along the South Feni
Ridge, where they meet the waters flowing from the north of the Roclzall Channel
(Fig. 1.4b). The second branch of LDW and NEADW diverts earlier in the Porcupine
Bank to the west, meeting the first branch just south of the Lorien Bank. Then, the
waters follow the contours of the south-western part of the Rockall-Hatton Plateau
until the Edoras Bank, where they divide again. One branch flows to the south, where
it either recirculates again in the eastern North Atlantic or leaves the area through the
Charles-Gibbs Fracture Zone, flowing into the western North Atlantic. The other
branch flows north-eastwards along the west part of the Rockall-Hatton Plateau and
at around 60°N it recirculates, joining the ISOW flowing south-westwards. This
branch may also recirculate or leave the eastern North Atlantic through the Charles-

Gibbs Fracture Zone (Fig. 1.4b; Van Aken & Becker, 1996).

1.2.4. Primary productivity and input of organic matter to the sediments

The NE Atlantic region is subject to the seasonal bloom of phytoplankton during
the spring and summer (Lochte ef al., 1993). This bloom dﬂves an export of carbon,
as well as other biogenic and detrital material, from the surface ocean to deeper
layers (Newton ef al., 1994). However, the arrival of this material on the bottom was
only detected relatively recently (Billett ef al., 1983; Rice et al., 1986). The amount
of the primary production that arrives on the bottom is generally around 2-4% of the
surface productivity (Turley et al., 1995) and may vary spatially and temporally
(Lampitt, 1985; Newton et al., 1994; Rice et al., 1994). The majority of the flux is in
the form of fast sinking (~60-500 m day'1 - Turley et al., 1995) aggregated particles
commonly called ‘marine snow’ (Aldredge & Silver, 1988; Lampitt et al., 19934, b).
Evidence also suggests that once on the bottom, this material may be resuspended
back to the water column (Lampitt, 1985). The phytodetritus arriving on the seabed
may serve as a food source for marine invertebrates living in the deep NE Atlantic

(Thiel et al., 1988; Campos-Creasey, 1994).
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1.2.5. Benthic community composition

The benthic fauna of the deep NE Atlantic is composed by a large number of
species, of which the echinoderms are some of the most conspicuous (Gage er al.,
1983, 1985). The zonation of the fauna in the Rockall Trough is described by Gage
(1986) and seems to be similar to that found in the Bay of Biscay ar;d Porcupine
Seabight (LeDanois, 1948; Sibuet, 1977). The fauna on the west side of the Rockall
Trough is richer in number of species than that of the east side (Gage et al., 1983),
with a large number of suspension feeders.

On the east side, the upper slope down to 700 m depth is characterized by coral
banks of Lophelia pertusa and Madrepora oculata, and the echinoderms Cidaris
cidaris, Spatangus raschi, Stichopus tremulus and Luidia sarsi. Other echinoderms
with wider bathymetric distributions also occur at these sites, such as
Gorgonocephalus caputmedusae, Pseudarchaster parelli and Ophiacantha
abyssicola (Gage, 1986).

From 700 to 1300 m depth, on the Hebrides-Donegal slope, a richer megafauna is
found composed mainly by the sea urchin Echinus acutus var. norvegicus and the
crustaceans Nematocarcinus ensifer, Pontophilus norvegicus, Geryon tridens and
Nephropsis atlantica. The echinoderms Ophiocten gracilis, Calveriosoma hystrix,
Bathyplotes natans, Laetmogone violacea, Benthogone rosea, Psilaster andromeda
and Plutonaster bifrons are also present. A number of ahermatypic corals and the
pycnogonid Collosendeis clavata also inhabit this area, as well as deeper ones (Gage,
1986).

A large number of echinoderms inhabit the zone between 1400 and 2000 m depth,
including Echinus alexandri, E. affinis, Persephonaster patagiatus, Plinthaster
dentatus, Bathybiaster vexillifer, Zoroaster fulgens, Ophiacantha bidentata,
Ophiomusium lymani, Ophiura ljungmani and Phormosoma placenta. Munidopsis
curvirostra, Polycheles sculptus, Neolithodes grimaldi, Colus jeffreysianus and
Troschelia bernicensis are among the other species that live at those depths (Gage,
1986).

In the upper abyssal, Hymenaster pellucidus, Dytaster insignis, Porcellanaster

ceruleus, Echinosigra - phiale, Ypsilothuria bitentaculata, Peniagone azorica,
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Hygrosoma petersii, Benthothuria funebris and Oneirophanta mutabilis figure
among the echinoderms present (Gage, 1986).

In the slope areas rich in rock outcrops to the western part of the Porcupine Bank,
Tyler & Zibrowius (1992) describe a rich suspension feeding fal_ma, mainly
composed by sponges, cnidarians, stalked and comatulid crinoids, and brisingid
asteroids, among others (see also Tyler & Lampitt, 1988).

The factors affecting the benthic distribution in the NE Atlantic are probably
related to the hydrography and dynamics of water masses in the area. The depth of
winter mixing is around 600 m (Ellett & Martin, 1973) and may influence the
presence of the ‘mud line’ (Gage & Tyler, 1991), where Gage (1986) reported a
maximum in rate of faunal change at around 1000 m depth (Gage ef al., 1984).

In terms of biomass and abundance, the general pattern appears to be a decrease of
both parameters with increasing depth, for both the megafauna (Laubier & Sibuet,
1979; Sibuet, 1984; Lampitt et al., 1986) and macrofauna (Flach & Heip, 1996;
Cosson et al, 1997). Lampitt et al. (1986) found that the biomass of the
megabenthos in the Porcupine Seabight is dominated by suspension feeders and
crustaceans in the upper slope, whereas in the middie and lower slope the biomass is
dominated by echinoderms. Recent observations on the Porcupine Abyssal Plain
revealed a dramatic change in the relative abundance of megafaunal species, mainly
in the elasipodid holothurian Amperima rosea (David Billett, personal
communication).

The megabenthic biomass appears to be more sensitive to changes in food input
than the macrofauna (Lampitt et al., 1986; Flach & Heip, 1996). On the other hand,
the seasonal input of organic matter appears to affect the density of the macrofauna
(Flach & Heip, 1996). The meiofauna is also affected by food pulses, with
individuals being larger in size during food-rich periods (Soltwedel ef al., 1996).

Diversity also appears to decrease with depth. Sibuet (1977) points out that
asteroid diversity decreases with increasing depth in the Bay of Biscay. Paterson &
Lambshead (1995) show that polychaetes have a parabolic distribution in species
richness, with peak at 1800 m depth in the Rockall Trough. Data collected on the

benthos of the NE Atlantic appear to be in concert with data found elsewhere (Rowe,

1983a).
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1.3. Reproduction and development in deep-sea invertebrates

Throughout history the deep-sea has being marked by untested hypotheses, most
of which were subsequently discarded. One of the most famous was the concept of an
‘azoic zone’ below 600 m depth (Forbes, 1844), which was formulated even though
the first animal to be retrieved from the deep-sea, the ophiuroid Gorg;nocephalus
caputmedusae (as Astrophyton linkii), was collected much earlier in 1818 (Tyler,
1988). During the first half of the 20th century, another important untested
hypothesis, stating that deep-sea organisms should not undergo pelagic development
was being erected (see Young, 1994).

Two works were remarkably important in consolidating those ideas on the
development of deep-sea organisms. The first was suggestion by Orton (1920) that
animals living in a temperature-stable environment, as the deep-sea and polar
regions, should breed continuously. The second was the comprehensive paper written
by Thorson (1936), which supports that deep-sea and polar animals should develop
directly, without a larval stage.

Despite the early evidence present in the literature (Prouho, 1888; Shearer et al.,
1914; Mortensen, 1921), only by the late 1960s and 1970s these ideas were found to
flawed. Rokop (1977) reported that the deep-sea brachiopod Frieleia halli and the
scaphopod Cadulus californicus reproduce seasonally and‘ that the most obvious
factor influencing breeding was probably periodicity in food supply (for F. halli).
The same was earlier put forward by Schoener (1968), who found seasonality in two
species of deep-sea ophiuroids and probably the presence of a free-living larval stage
for those species. Those findings were important not only as an evidence for pelagic
development, but that seasonality was also present in deep-sea organisms (see also
George & Menzies, 1967, 1968; and Tyler, 1988 for a review). Later on, during the
1980s, seasonal cues and events were discovered for different deep-sea areas in the
form of particulate organic material falling to the seabed (Deuser & Ross, 1980;
Deuser et al., 1981; Billett et al., 1983; Deuser, 1986).

It seems that only a minority of the deep-sea species studied so far have a seasonal
reproduction, with the presence of a planktotrophic larva. In the Rockall Trough
region (NE Atlantic, ~ 2000 m depth), where much work have been done on the

reproductive biology of echinoderms, Tyler et al. (1982¢) show that the ophiuroids

16



Chapter One

Ophiura ljungmani and Ophiocten gracilis, the seastars Plutonaster bifrons and
Dytaster grandis (formerly identified as D. insignis - Tyler et al., 1990) and the sea
urchin Echinus affinis produce seasonally a large number of small eggs, indicating
probably the presence of planktotrophic larval development (see also Tyler & Gage,
1979; Gage & Tyler, 1981a; Tyler & Pain, 1982a; Tyler et al., 1993). I;1 addition to
Echinus affinis, Tyler & Gage (1984a) note that the closer related species E.
alexandri and E.acutus var. norvegicus also possessed a planktotrophic development
based on the egg size, fecundity and the presence of larvae (Shearer ef al., 1914;
Hagstrom & Lenning, 1961; Gage et al., 1986). The same was found for the cidarid
sea urchin Cidaris cidaris (Tyler & Gage, 1984b), which already had a known larva
(Prouho, 1888, as Dorocidaris papillata). Young (1991) working in the Bahamian
continental slope found that all the 21 different species of echinoids collected
presented a long-lived planktonic larvae, with the majority being planktotrophic.
Young et al. (1989) raised larvae of the bathyal urchin Aspidodiadema jacobyi and
found that they were obligate planktotrophs, but with an extended pre-feeding
lecithotrophic stage. Unfed larvae remained alive for 80 days at 12°C and their mouth
did not open until 3 weeks after fertilization! Young & Cameron (1989) also report
planktotrophic development for Linopneustes longispinus, a bathyal irregular sea
urchin from the Bahamas. |

Other deep-sea groups also show planktotrophic development. Muirhead et al.
(1986) note that two species of Epizoanthus (E. paguriphilus and E. abyssorum) from
the deep-sea have planktotrophic development mainly owing to the specialized
commensal lifestyle, despite the latter possessing- oocytes with only one quarter of
the volume of that of E. paguriphilus (see also Tyler et al., 1985b). Van Praét (1990)
reports seasonality in the deep-sea anemone Paracalliactis stephensoni (see also Van
Praét et al., 1990 for Phelliactis). Bronsdon et al. (1993) also found reproductive
seasonality in the deep-sea epizoic anemone Amphianthus inornata. Data on deep-sea
pennatulids reveals that the development is likely to be lecithotrophic (Rice ef al.,
1992; Tyler et al., 1995b).

Data based on the embryonic and larval shells reveal that planktotrophy is present
~ amongst deep-sea gastropods (Bouchet & Warén, 1979a). Rex & Warén (1982)

found an increase in planktotrophic prosobranchs with increasing depth and
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suggested this may be linked to the ability to track patch prey. In the Rockall Trough,
Colman et al. (1986a) estimate that 43% of the 14 neogastropods examined showed
shell morphologies indicative of planktotrophic development.

Evidence cited above showed that Thorson’s Rule (named by Mileikovsky, 1971)
was not true, since planktotrophy, although not dominant, is common anzongst deep-
sea species. Moreover, the statement that direct development would be the main type
of development proved also not to be true, since direct development appears to be
rare in the deep-sea and a lecithotrophic pelagic development is probably most
common in that environment (Pearse, 1994).

Table 1.1 shows the probable mode of development for some of the deep-sea
species and higher taxa. The mode of development is inferred from egg size and
fecundity, shell morphology or cultured larvae (or information on more than one

approach). Data on the development of some hydrothermal vent and cold seep

invertebrates are also included.

Table 1.1. Modes of development in deep-sea species. Hydrothermal vents and cold
seeps section modified from Cann et al. (1994) and Copley (1998).

Taxon

Egg Diameter Development Source

‘Normal’ Deep-Sea

Cnidaria
Epizoanthus paguriphilus Upto 280 um  Planktotrophic Muirhead et al., 1986
Epizoanthus abyssorum  Upto 180 pm  Planktotrophic Muirhead et al., 1986

Kophobelemnon stelliferum  Up to 800 pm  Lecithotrophic, ‘continuous’ Rice et al., 1992

Umbellula lindahli Up to 800 um  Lecithotrophic Tyler et al., 1995b

Paracalliactis stephensoni Upto 180 um  Seasonal Van Praét, 1990

Phelliactis hertwigi Upto 180 um  Seasonal Van Praét ef al., 1990

Phelliactis robusta Upto210 um  Seasonal Van Praét et al., 1990

Amphianthus inornata Upto205um  Seasonal Bronsdon et al., 1993

Kadosactis commensalis  Upto 150 um  ‘Continuous’ Bronsdon et al., 1993
Mollusca

Gastropoda
Colus jeffreysianus Upto 170 um  Lecithotrophic, ‘continuous’ Colman et al., 1986a,b
Calliotropis ottoi 150-260 um Lecithotrophic, ‘continuous’ Colman & Tyler, 1988

Benthonella tenella Planktotrophic Bouchet & Warén, 1979a
Benthomangelia macra Planktotrophic Bouchet & Warén, 1979a
Tacita danielsseni Lecithotrophic, contained Bouchet & Warén, 19796
Tacita abyssorum Lecithotrophic Colman et al., 1986a

Mohnia mohni
Oenopota ovalis

Oenopota graphica
Anachis haliaeeti

Trophon sp.
Typhlomangelia sp.

Lecithotrophic, contained
Lecithotrophic, contained

Lecithotrophic
Planktotrophic

Lecithotrophic
Lecithotrophic

Bouchet & Warén, 19795
Bouchet & Warén, 19795,
Colman et al., 1986a
Colman et al., 1986a
Bouchet & Warén, 1979q;
Colman et al., 1986a
Colman et al., 1986a
Colman et al., 19864
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Gymnobela frielei
Gymnobela subaraneosa
Pleurotomella packardi

Pleurotomella lottae
Taranis moerchi
Lusitanops sp.A
Turridae sp.A
Belomitra quadruplex
Iphitella tuberata
Epitonium formosissimum

Bivalvia

Malletia cuneata
Ledella pustulosa
Ledella messanensis
Yoldiella jeffreysi

Scaphopoda
Cadulus californicus

Echinodermata

Ophiuroidea
Ophiura ljungmani

Ophiomusium lymani
Ophiocten gracilis
Ophiacantha bidentata

Echinoidea

Echinus affinis
Echinus alexandri
Echinus acutus var.
norvegicus

Echinus elegans
Phormosoma placenta
Calveriosoma hystrix
Araeosoma fenestratum
Sperosoma grimaldii
Hygrosoma petersii
Poriocidaris purpurata
Cidaris cidaris
Stylocidaris lineata
Pourtalesia jeffreysi
Pourtalesia miranda
Echinosigra phiale
Aspidodiadema jacobyi

Linopneustes longispinus

Asteroidea
Hymenaster pellucidus

Hymenaster gennaeus™
Brisinga endecacnemos
Brisingella coronata
Freyella spinosa
Zoroaster fulgens
Dytaster grandis

Plutonaster bifrons

Up to 240 pm
Up to 120 pm
Up to 109 um
Up to 120 pm

Up to 240 pm

Up to 110 pm

Up to 450 um

Up to 650 pm

Upto 110 pm
Upto 110 pm
Upto 110 pm

Up to 60 pm

1100-1500 pm
1100-1500 pm
1100-1500 pm
1100-1500 um
1100-1500 pm
1100-1500 pm
Up to 110 pm

Upto 225 pm
173-357 pm
250-335 um
Upto 98 um
Up to 109 pm

Up to 1100 pm

Up to 1200 pm
Up to 1250 um
Up to 1250 pm
Up to 1250 pm
Up to 950 um
Up to 120 pm

Up to 120 pm

Planktotrophic
Planktotrophic
Planktotrophic

Planktotrophic
Lecithotrophic
Planktotrophic
Planktotrophic
Lecithotrophic
Planktotrophic
Planktotrophic

Lecithotrophic, ‘continuous’

Lecithotrophic, seasonal
Lecithotrophic, seasonal
Lecithotrophic, seasonal

Lecithotrophic or direct,
seasonal

Planktotrophic, seasonal

Lecithotrophic, ‘continuous’,
but seasonality in recruitment

Planktotrophic, seasonal

Lecithotrophic, ‘continuous’

Planktotrophic, seasonal
Planktotrophic, seasonal
Planktotrophic, seasonal

Planktotrophic, seasonal

Lecithotrophic, ‘continuous’
Lecithotrophic, continuous

Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’

Planktotrophic, seasonal
Planktotrophic, seasonal
Lecithotrophic

Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’

Planktotrophic, seasonal
Planktotrophic, seasonal

Lecithotrophic, ‘continuous’

Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Direct demersal, ‘continuous’
Lecithotrophic, (seasonal?)

Planktotrophic, seasonal

Planktotrophic, seasonal

Colman et al., 1986a
Colman et al., 1986a
Bouchet & Warén, 1979q;
Colman et al., 1986a
Bouchet & Warén, 1979%a
Colman et al., 1986a
Colman et al., 1986a
Colman et o, 1986a
Colman ef al., 1986a
Bouchet & Warén, 1979
Bouchet & Warén, 1979

Tyler et al., 1992

Tyler et al., 1992

Lightfoot et al., 1979
Lightfoot et al., 1979; Tyler
etal, 1992

Rokop, 1977

Tyler & Gage, 1979, 1980;
Gage & Tyler, 19816
Gage & Tyler, 1982¢

Gage & Tyler, 1981a; Tyler
& Gage, 1982b
Tyler & Gage, 1982a

Tyler & Gage, 1984a
Tyler & Gage, 1984a
Tyler & Gage, 1984a, Gage
et al., 1986

Gage et al., 1986

Tyler & Gage, 1984b
Tyler & Gage, 19846
Tyler & Gage, 19845
Tyler & Gage, 19845
Tyler & Gage, 1984b
Tyler & Gage, 1984b
Tyler & Gage, 1984b
Young et al., 1992
Harvey & Gage, 1984
Harvey & Gage, 1984
Harvey & Gage, 1984
Young et al., 1989
Young & Cameron, 1989

Pain et al., 1982a (as H.
membranaceus)

Pain et al., 1982a

Tyler et al., 1984b

Tyler et al., 1984)

Tyler et al., 1984b

Tyler et al., 1984b

Tyler & Pain, 1982a; Tyler
etal., 1990

Tyler & Pain, 19824
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Psilaster andromeda
Benthopecten simplex
Pectinaster filholi
Pontaster tenuispinis
Bathybiaster vexillifer
Pseudarchaster parelli
Paragonaster subtilis

Holothuroidea
Ypsilothuria bitentaculata

Laetmogone violacea
Benthogone rosea
Peniagone azorica
Peniagone diaphana
Cherbonniera utriculus
Molpadia blakei
Deima validum
Oneirophanta mutabilis
Bathyplotes natans
Benthodites sordida
Psychropotes longicauda

Psychropotes depressa

Psychropotes semperiana

Brachiopoda
Frieleia halli

Hydrothermal Vents and
Cold Seeps

Crustacea
Ventiella sulfuris
Bythograea thermydron
Munidopsis sp.
Ablvinocaris lusca
Rimicaris exoculata

Polychaeta
Abvinella

Paralvinella pandorae

Paralvinella palmiformis
Paralvinella grasslei

Paralvinella sulfincola

Amphisamytha
Galapagensis

Mollusca
Gastropoda
Alvinoconcha

Bivalvia
Bathymodiolus
Thermophilus
Calyptogena magnifica

Up to 950 pm
Up to 950 um
Up to 850 pm
Up to 800 um
Up to 1000 um
Up to 900 pum
Up to0 900 um

Up to 350 pm

Up to 400 pm
Up to 750 pm
Up to 300 pm
Up to 300 um
Up to 200 pm
Up to 200 pm
Up to 700 um
Up to 950 um
Up to 280 pm
> 1000 um
Up to 4400
um

Up to 1800
pum

Up to 3000
pm

Upto 112 pm

480-540 um
2.2-2.3 mm
340-500 pm
Up to 600 pm
> 250 pm

215-275 pm

215 pm
275 pm

Up to 250 um
Large yolky
eggs

Small eggs

150-310 pm

Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Lecithotrophic, ‘continuous’
Direct, ‘continuous’

Direct, ‘continuous’

Lecithotrophic, ‘continuous’

Lecithotrophic, ‘continuous’
Direct, ‘continuous’
Lecithotrophic
Lecithotrophic
Lecithotrophic
Lecithotrophic
Lecithotrophic
Lecithotrophic
‘Continuous’

Direct

Direct

Direct

Direct

Planktotrophic, seasonal

Direct

Planktotrophic

No planktotrophic stage
Planktotrophic
Planktotrophic?, ‘continuous’

Short larval dispersal or direct
development

Short larval dispersal or direct
development (possible
offspring brooding)
Brooding?, ‘continuous’ or
semi-continuous

Direct benthic, periodic
recruitment?

Lecithotrophic, asynchronous

Short larval development
(possibly demersal)

Planktotrophic

Planktotrophic, ‘continuous’
recruitment
Short larval dispersal

Tyler & Pain, 19824
Pain et al., 1982b
Pain et al., 1982b
Pain et al., 1982b
Tyler et al., 1982a
Tyler & Pain, 19825
Tyler & Pain, 19826

Tyler & Gage, 1983 (as Y.
talismani)

Tyler et al., 1985¢
Tyler et al., 1985¢
Tyler et al., 1985a
Tyler et al., 1985a
Tyler et al., 1987
Tyler et al., 1987
Tyler et al., 1984a
Tyler et al., 1984a
Tyler et al., 19945
Tyler & Billett, 1987
Hansen, 1975; Tyler &
Billett, 1987

Tyler & Billett, 1987

Tyler & Billett, 1987

Rokop, 1977

France et al., 1992

Van Dover et al., 1985
Van Dover et al., 1985
Williams & Chace, 1982
Copley, 1998

Desbruyeres & Laubier,
1991 '

McHugh, 1989; Desbruyeres
& Laubier, 1991

McHugh, 1989

Zal et al., 1995

Copley, 1998

Zottoli, 1983; McHugh &
Tunnicliffe, 1994

Warén & Bouchet, 1993

Lutz et al., 1980, 1984

Lutz et al., 1984, 1988
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Vestimentifera

Riftia pachyptila Up to 80 pm Planktotrophic Jones & Gardiner, 1985;
Cary et al., 1989

Ridgeia piscesae Up to 90 pm Short larval dispersal? Southward, 1988;
Southward & Coates, 1989

Lamellibrachia sp. Upto 105 um  Lecithotrophic Young et al., 19965

Escarpia sp. Upto 115 um  Lecithotrophic Young et al., 1996b

Data on echinoderm egg size and gametogenic cycles from Rockall Trough show
that most asteroids, with the exception of Plutonaster bifrons and Dytaster grandis
cited above, reproduce all year round (Tyler et al., 1993) and a pelagic lecithotrophic
larva is probably present (Tyler & Pain, 1982a; Tyler et al., 1982b; Pain et al.,
1982b; Tyler et al., 1984b). The same seems to be true for holothurians (Tyler &
Gage, 1983; Tyler et al., 1984a; Tyler et al., 1985a, c; Tyler et al., 1987). Amongst
echinoids, a large number of planktotrophs are found (cited above) and many
lecithotrophs are also present (Harvey & Gage, 1984; Tyler & Gage, 1984b; Tyler et
al., 1984a; Young, 1991).

In molluscs, Lightfoot et al. (1979) reported that the deep-sea bivalves Ledella
messanensis and Yoldiella jeffreysi present a synchronous seasonal cycle in
gametogenesis, spawning in early spring and producing probably a free-swimming
lecithotrophic larva. In contrast, Malletia cuneata shows a continuous breeding cycle,
presenting also lecithotrophic development (Tyler et al., 1992). In gastropods, some
mesogastropods and all archaeogastropods are lecithotrophs, with the latter being
probably phylogenetically constrained to such development (Rex & Warén, 1982;
Bouchet & Warén, 1994). In neogastropods, Colman ef al. (1986a) calculated that
57% of the examined species presented nonplanktotrophic development based on
shell morphology (see also Colman & Tyler, 1988). For more information on the

reproduction of deep-sea benthic molluscs, see Scheltema (1994).

1.3.1. Hydrothermal Vents and Cold Seeps

Dispersal in highly isolated, ephemeral habitats is supposed to be of great
importance in maintaining community structure. Lutz (1988) argues that for the
sessile invertebrates, which make up most of the hydrothermal vent community, a
pelagic larval stage for dispersal is present (the same must be true for sessile seep

organisms) (see also Van Dover ef al., 1988). Actually, lecithotrophy is probably the

21



Chapter One

dominant kind of development in hydrothermal vents, although some species with
planktotrophic development are present (Lutz et al., 1980; Lutz et al., 1984; Berg &
Van Dover, 1987; Lutz, 1988).

Lutz et al. (1984) report that from 18 species of Mollusca, 10 limpets and 6
trochoids are probably nonplanktotrophic, with a free-swimming larval s;age and two
turrids are planktotrophic. Calyptogena magnifica has also a nonplanktotrophic stage
inferred from the egg size (see also Gustafson & Lutz, 1994).

Among the Crustacea, Lutz et al. (1984) cite two nonplanktotrophic galatheids
and two planktotrophic brachyurans. The predominance of nonplanktotrophs is
probably related to phylogenetic constraints on vent taxa than to the nature of the
vent habitat itself (Berg, 1985; Turner ef al., 1985; Van Dover ef al., 1985; Van
Dover et al., 1988).

The dispersal of larval stages is thought to occur in many different ways. Larvae
of hydrothermal vent organisms have been captured in deep-water zooplankton tows
at and near the vents (Berg & Van Dover, 1987; Wiebe et al., 1988; Mullineaux ef
al., 1996). Such larvae probably entrain into rising plumes of hydrothermal fluid,
being carried through the water column (Kim et al, 1994; Mullineaux, 1994;
Mullineaux et al., 1995). It is of interest to note that lecithotrophic larvae have been
captured in plumes (Berg & Van Dover, 1987) suggesting that this larval type can
have a high dispersal potential. Mullineaux et al. (1995) argue that the presence of
lecithotrophic larvae in the water column, at a distance of thousands of meters away
from potential source populations, support the supposition by Lutz (1988) that vent
larvae may disperse much farther than previously expected. These data together with
the occurrence of large post-metamorphic individuals in the water column (Wiebe et
al., 1988) suggests that the dispersal potential of vent organisms (and probably non-
vent deep-sea organisms) is high. Lutz et al. (1980) suggests that dispersal could also
occur in surface waters and by swimming or crawling near the bottom (by means of a
demersal planktotrophic larvae). 4

Lutz et al. (1984) argue that planktotrophy in such habitats is, maybe,
disadvantageous, since it could carry larvae away from suitable sites and that
nonplanktotrophy would allow a rapid exploitation of the resources available, owing

to the early competency and that delayed metamorphosis in cold water would be
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advantageous in a deteriorating habitat (allowing the larvae to exploit new
“healthier” sites). However, as cited above, dispersal of organisms may be high
through the entrainment into vent plumes. Perhaps such dispersal stages are likely to
colonise new vent sites, keeping the genetic flow amongst populations.

Data on deep-sea cold methane/sulphide seeps shows simiI;rities with
hydrothermal vents. Gustafson & Lutz (1994) stress that the archaeogastropods
present in those habitats are evolutionary constrained to nonplanktotrophy.

Recently, Young ef al. (1996b) cultured, for the first time, embryos and larvae of
two deep-sea cold methane/sulphide seep vestimentiferans (Lamellibrachia sp. and
Escarpia sp.), showing that they possess lecithotrophic trochophores, although the
authors argue that it is not known whether larvae will require planktonic food later in
the development. Young et al. (1996b) found that the eggs of both species were able
to float up into the water column and could disperse at least for several weeks.
Floating lecithotrophic eggs are common amongst marine invertebrates, owing to the
increased lipid content present, making them less dense than the seawater. Young &
Cameron (1987) report floating lecithotrophic eggs for the deep-sea urchin
Phormosoma placenta, with an average flotation rate of 0.42 cm s With this value,
an egg released from 800 m depth should reach the surface in only 2.2 days! The
presence of floating eggs could then increase substantially the dispersal potential of
lecithotrophic larvae in addition to other factors previously discussed (see also

Young, 1991; Cameron et al., 1988).

1.3.2. Post-larval development in deep-sea invertebrates

As already seen above, the adult and larval phases of the life history in deep-sea
invertebrates are relatively well-known. Despite being less understood than adult
biology and ecology, larval studies still encompass a number of works with deep-sea
species but it is much better understood in shallow water species. One area still

poorly examined is the post-larval development (Fig. 1.5) and it will be discussed in

chapters 3, 4 and 5.
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WELL-KNOWN BETTER KNOWN

METAMORPHOSIS

SETTLEMENT

POST-LARVA

Figure 1.5. Complex life cycle of an ophiuroid (and may be generalized for a large

number of echinoderm species), showing the relative knowledge of the different

phases of the life cycle.

1.3.3. Approaches Used to Infer Modes of Development

The inference of modes of development in deep-sea invertebrates is not easily
achieved and most studies employ indirect methods. The only direct method
available, where the development is known for sure, is the induction of spawning (or
dissection of gonads) of specimens collected from deep-sea areas (either by remotely
operated sampling gears or submersibles), in order to obtain gametes for fertilization
and further raising of embryos and larvae. Although this method is straightforward, it
has been uséd for very few species, generally larger ones (in comparison with the
huge diversity of small forms found in the deep-sea sediments) and, sometimes, very
difficult to accomplish.

Concerning indirect methods, the most widely used is probably the study of the
reproductive biology of the species through samples collected periodically from a
particular site (Tyler & Pain, 1982a; Harvey & Gage, 1984; Tyler ef al., 1985¢). The

analysis of the gametogenic cycles reveals the periodicity by which reproduction
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occurs (seasonal or continuous) and the size and number of mature eggs present,
which keep a certain relationship with the mode of development. Roughly speaking,
a large number of small eggs (< 100um) is thought to produce planktotrophic larvae,
whereas a smaller number of larger eggs is related to a lecithotrophic larval stage
(either pelagic or contained). Jaeckle (1995) emphasizes that egg siz; is a good
indicator of developmental mode for free-spawning invertebrates, but it is not
necessarily so for species with postzygotic maternal nutrient investment, e.g.
cheilostomate bryozoans and many gastropod molluscs. Whatever the species
examined, caution must be taken when interpreting data on egg size (see Jaeckle,
1995 for a comprehensive view on the characteristics of marine invertebrate eggs).

In molluscs (gastropods and bivalves), data on shell morphology are used to infer
modes of development used by different species (Thorson, 1950; Scheltema, 1994)
and much work has been done in the deep-sea (Bouchet & Warén, 1979a; Rex &
Warén, 1982; Colman ef al., 1986a; Colman & Tyler, 1988) and hydrothermal vents
and cold seeps (Lutz ef al., 1980; Lutz et al., 1984; Gustafson & Lutz, 1994). In
gastropods, the embryonic (protoconch I) and larval (protoconch II) shells are
different in planktotrophic and lecithotrophic species. Rex & Warén (1982) cite that
in prosobranch gastropods, species with planktotrophic development have shells with
high spires, numerous whorls, brown coloration and fine sculpture. The protoconch I
is present at the apex, being deposited before hatching. The protoconch II is larger,
consisting of subsequent whorls grown during the planktonic phase (and presenting a
sinusigerous lip - Scheltema, 1994). In lécathotrophs, the shell has a blunter apex,
fewer and larger initial whorls (usually just one), which comprise the whole larval
shell; coloration is similar to the adult shell (white or gray), and generally lacks
visible sculpture. There is no change between pre- and post-hatching larval shell
(absence of a sinusigerous lip - Scheltema, 1994).

In bivalves, species with a planktotrophic larva and long planktonic life bear a
small prodissoconch I (embryonic shell) (between 70-150 pm in length) and a large
prodissoconch II (larval shell), indicative of a long planktonic life. Lecithotrophic
bivalves, with short planktonic lives, possess a prpdissoconch I between 135-230 um

and a narrow prodissoconch II, indicating a brief planktonic life. In direct developers,
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without a planktonic development, the embryonic shell is large (230-500 pm)
(Scheltema, 1994).

Another confirmation of the site of development, in the case of shell data, is the
analysis of the isotopic composition of the shell carbonate (ratio of the oxygen stable
isotopes '*0 and "*0, expressed as §'%0, and of the carbon *C and 13‘C, as 613C),
which reveals whether a particular carbonate was deposited in warm or cold waters,
yielding distinct results (Killingley & Rex, 1985).

Analysis of the population structure can also give some information on the mode
of development of species. Presence of a large number of post-larvae during specific
times of the year can be indicative of seasonal recruitment of juveniles (Schoener,
1968, 1972; Lightfoot ef al., 1979; Tyler & Gage, 1980; Gage & Tyler, 1981a; Gage,
1994). Nevertheless, data on age structure must be used as an additional evidence and
is generally clearer for seasonally breeders (as in the case of Ophiura ljungmani - see
references above). For non-seasonally breeding species, the size and composition of
post-larval population remains unclear (Gage, 1994).

Finally, larvae of deep-sea animals can be collected in the water column and
cultured until metamorphosis. The post-metamorphic stages can, then, be identified

by comparing with known post-larvae (Tyler & Fenaux, 1994).

1.5. Aims of the present work

Following what was stressed in section 1.3.2, the present thesis has as its primary
aim to produce a comprehensive understanding of the general morphology and its
ontogenetic changes during the early post-metamorphic period of deep-sea
echinoderms (Ophiuroidea, Asteroidea and Echinoidea) and how they are related
among species and higher taxa. This study also intends to help in the identification of
early juvenile stages collected in the deep-sea areas to the west of the British Isles.
The study of the functional morphology of the post-larvae is explored in order to
understand the biology and ecology of the studied species. It is also intended to
explore possible phylogenetic affinities among different species based on post-larval
morphology. In chapter 6, the life cycle of Ophiocten gracilis is used as a case study,
where the aim is the study of settlement and recruitment processes, as well as the

reproductive biology of this bathyal ophiuroid.
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Chapter Two - Material and methods

2.1. Sampling Material

The echinoderm fauna collected during the present study was obtained in the areas
from the Faroe Islands to the Porcupine Abyssal Plain. Figure 2.1 shows most of the
stations and which echinoderm class was obtained. The station details are given in

the tables shown below.

. e Ophiuroidea
N ®  Echinoidea
X Asteroidea
6() —
55 —
. um X35
50 — x-,n)n( ngguggne;§eab1ght
Porcupinc X -
Abyssal ’
Plain
| |
20 15 10 5 W

Figure 2.1. Map of the NE Atlantic showing study area. Different symbols represent
the stations were the different echinoderm classes were collected during the

Biofar, SAMS and 1OS programmes.
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2.1.1. Ophiuroid post-larvae

Deep-sea ophiuroid post-larvae were sorted out from samples of two research
programs: the Biofar (Investigations on the Marine Benthic Fauna of the Faroe
Islands), organized by the Nordic Council of Marine Biology and the long-term
SAMS (Scottish Association for Marine Science, former SMBA) Progr;mme in the
Rockall Trough (NE Atlantic Ocean) (Gage ef al.,1980).

During the Biofar Programme a large number of ophiuroid species were collected,
between 1986 and 1990 (at over 700 stations), on the Faroe Shelf and Slope, Faroe
Bank and Faroe-Shetland Channel (Emson et al., 1994). Some of these stations
yielded a large number of ophiuroid post-larvae, which are described in the present
work. A total of 13 species of post-larva were found but only 11 are described. The
remaining species did not yield enough numbers to allow good descriptions.
Specimens were collected at depths between 77 and 1319 m, using several different
sampling gears. They include a modified Rothlisberg & Pearse epibenthic sampler
(Brattegard & Foss8, 1991), a detritus sledge, a scallop sledge and a heavy triangular

dredge (Table 2.1). For more information on Biofar stations, see Nerrevang et al.

(1994).

Table 2.1. List of stations where ophiuroid post-larvae were collected during the
BIOFAR Programme. RP=Modified Rothlisberg & Pearse Epibenthic Sampler;
DS=Detritus Sledge; SS=Scallop Sledge; 3S=Heavy Triangular Dredge.

Station Date Lat. "'N) Long. W) Depth (n) Gear Ophiuroid Post-larvae

10 17.07.87  62°31 05°02 430 RP  Ophiura sarsi, Ophiocten gracilis

19 18.07.87 62°12 04°25 276 DS Ophiacantha bidentata, O. abyssicola

27 18.07.87 61°54 05°03 225 RP Ophiacantha abyssicola

29  18.07.87 61°49 05°25 170 RP  Ophiura sarsi, Ophiocten gracilis, O.
affinis, Ophiopholis aculeata

32 18.07.87 61%1 05°47 354 RP Ophiura sarsi

51 19.07.87 6124 06°10 235 RP  Ophiopholis aculeata, Ophiocten
gracilis, Ophiura sarsi, Ophiacantha
abyssicola

56  20.07.87 61°54 06°28 77 RP Ophiura carnea, Ophiura albida

65 20.07.87 61°35 08°05 322 DS Ophiura sarsi, O. carnea, Ophiocten
gracilis

73 21.07.87 61°14 08°29 185 RP Ophiocten affinis

80  22.07.87 60°39 08°28 678 DS Ophiactis abyssicola

82  22.07.87 60°31 08°25 732 RP  Ophiactis abyssicola

90  22.07.87 60°33 06°32 252 SS  Ophiactis balli
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95
98

100

132
137
345
381

496
504
601
605
609
694
696
719
726
737
747

23.07.87
23.07.87

24.07.87

05.05.88
05.05.88
22.07.88
27.05.89

24.07.89
25.07.89
11.04.90
12.04.90
12.04.90
12.05.90
13.05.90
28.09.90
29.09.90
01.10.90
03.10.90

60°42
60°54

61734

61°30
61°02
62°31
62°12

60°33
60°37
61°56
61°49
62°05
60°57
6135
61°07
6039
62°04
62°43

05°19
06°15

06°17

07°41
07°11
08°11
03°59

09°35
08°38
05°58
06°19
06720
10°59
10°46
05°02
06°54
10°22
05°56

803
150

283

225
542
358
402

515
404
140
100
90
624
1319
610
400
850
394

DS
RP

DS

3S
DS

DS
3S
DS
DS
3S
RP
RP
DS
DS
DS
3S

Ophiocten gracilis

Ophiocten affinis, Ophiactis
abyssicola

Ophiura sarsi, Ophiocten gracilis,
Ophiopholis aculeata, Ophiacantha
bidentata, O. abyssicola

Ophiacantha abyssicolc;
Ophiacantha bidentata
Ophiacantha abyssicola

Ophiura sarsi, Ophiocten gracilis,
Ophiopholis aculeata, Ophiacantha
bidentata, O. abyssicola

Ophiomyces grandis, Ophiura carnea
Ophiopholis aculeata

Ophiura albida

Ophiopholis aculeata

Ophiura albida

Ophiura sarsi, Ophiomyces grandis
Ophiactis abyssicola

Ophiura sarsi

Ophiopholis aculeata

Ophiactis abyssicola

Ophiacantha abyssicola

Material from the Rockall Trough Programme was collected at depths of 1000-

3000 m using a Woods Hole Oceanographic Institution (WHOI)-pattern epibenthic

sledge. Only three species of post-larva were described in the present thesis of a total

of 6 (Table 2.2). The additional species were either in poor condition or could not be

identified.

Samples from both programmes were fixed in buffered seawater formalin and

transferred to 70% isopropanol for long-term storage.

Table 2.2. List of stations where ophiuroid post-larvae were collected during the

SAMS Programme. ES=Epibenthic Sledge.

Station Date Lat °N) Long W)  Depth (m) Ophiuroid Post-larvae
ES 12 03.07.73 56°49 10°15 2076 Ophiura ljungmani

ES 18 22.09.73 56°44 09°20 1392 0. ljungmani

ES 34 10.05.75 56°36 11°30 2515 Amphilepis ingolfiana

ES 99 09.07.76 60°00 10°35 1160 Ophiura ljungmani

ES 112 25.10.76 55°12 15°50 1900 O. ljungmani

ES 197 19.08.81 57°21 10°29 2200 O. ljungmani, Amphilepis
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ingolfiana
ES 244 25.07.83 57°23 10°20 2150 A. ingolfiana
ES 255 31.07.83 58°26 12°42 1595 Ophiura scomba
ES 261 01.08.83 57°24 12°05 1824 0. scomba
ES 283 15.04.85 54°39 12°15 2946 Amphilepis ingolfiana
ES401  10.09.90  54°0 12°16 2900 A ingolfiana
ES 402 11.09.90 54°40 12°16 2905 A. ingolfiana
ES 405 12.09.90 54°40 12°20 2910 A. ingolfiana
ES 412 17.02.91 57°18 10°18 2195 A. ingolfiana
ES 446  08.03.93 54°42 12°18 2846 Ophiura ljungmani

2.1.2. Sediment trap ophiuroid post-larvae

Samples of Ophiocten gracilis post-larvae were obtained using two PARFLUX
Mark 7G-21 time-series sediment traps moored in 1496 m water depth in fhe
Hebridean slope (56°72°N, 09°46°W). The trap has an opening of 0.5 m” and is
covered by a honeycomb baffle of 2.5 cm diameter/6.5 cm depth cells and 0.5 mm
thick walls. The array consisted of one trap at 1000 m and another at 1400 m depth.
The mooring was deployed on the 22/04/96 and recovered on the 02/08/96, with a
sampling interval of 7 days. Sampling cups were filled prior to deployment with
preservative fluid of 2% borax buffered formaldehyde and 5 ppt excess NaCl. The
animals entering the cups were assumed to have been killed immediately. On
recovery, 1ml of concentrated Aristar grade formaldehyde was added prior to storage
at 4°C.

During the analysis of particulate material it was noticed that a large number of
post-larval ophiuroids were present and were later identified as Ophiocten gracilis
(see chapter 3). The animals were picked out by forceps under stereomicroscope.
Disk diameter (dd) and arm length were measured under stereomicroscope using a

digitizing tablet driven by a microcomputer.

2.1.3. Adult Ophiocten gracilis

Adult individuals for reproductive biology studies (see BeiéW) were collected in the
Rockall Trough area using one of three sampling gears: a WHOI-pattern epibenthic
sledge (ES), a Semi-Balloon Otter Trawl (OTSB) and an Agassiz Trawl (AT) (Table
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2.3). Samples were fixed in 4% sea water formalin and preserved in 70% alcohol for

long-term storage.

Table 2.3. List of stations of the adult Ophiocten gracilis used for reproductive

biology studies. ES=Epibenthic Sledge; OTSB=Semi-Balloon Otter Trawl,
AT=Agassiz Trawl.

Station Date Lat('N) Long (‘W) Depth(m) Gear

23 23.09.73 56°37 09°10 704 ES
13/83/6  22.09.83 56°36 09°17 980-1005  OTSB
9/84/2 02.11.84 56°34 09°16 910-960 OTSB
3/85/10 17.04.85 56°31 09°13 795-805 OTSB
75/91/1 16.02.91 5624 09°14 725-870 OTSB

583 04.08.95 56°29.90  09°09.70 678 AT

2.1.4. Asteroidea juveniles

Juvenile asteroids were collected on the Porcupine Seabight and Porcupine
Abyssal Plain areas on the South-west of Ireland at depths between 400 and 4565 m
(Table 2.4) as part of the Institute of Oceanographic Sciences (10S) Programme in
the Porcupine area. Sampling was undertaken using an IOS epibenthic sledge
(Aldred et al., 1982) or a semi-balloon otter trawl. For further information on the
sampling gear used see Rice et al. (1991).

A total of 4013 specimens were collected in 53 stations. Twelve different species

belonging to 8 families were identified, representing 6 of the 7 orders of the Class

Asteroidea.
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Table 2.4. List of stations of the juvenile asteroids collected during the I0S Program

in the Porcupine area (SW Ireland). OTSB14=Semi-Balloon Otter Trawl;
BN1.5/3M=Epibenthic Sledge.

Position - Start

Position — End

Station Date ‘N W °N W Depth (my Gear
9638#2 09.11.77 49°50.2 14°07.3 49°50.3 14°12.6 4043-4104 OTSB14
9640#1 13.11.77  50°03.2 13°50.6 50°08.0 13°52.7 3749-3757 OTSB14
9753#7 08.04.78 50°54.5 12°10.9  50°54.8 12°11.4 1942-1942 BN1.5/3M
975443 09.04.78 51°084 12°01.5 51°09.5 12°01.8 1484-1484 BNI1.5/3M
9756#9 13.04.78  49°47.1 14°01.5  49°48.5 14°02.0 4039-4069 BNI1.5/3M
9756#14 15.04.78 54°04.0 13°55.6 50°04.3 13°53.2 3680-3697 BNI1.5/3M
9774#1 21.04.78 51°04.4 11°593  51°05.2 12°03.4 1494-1572 OTSB14
9775#3 220478  50°56.8  12°22.4  50°55.7 12°19.2 2012-2019 BN1.5/3M
9776#2 23.04.78  49°22.7 11°36.0 49215 11°35.6 770-785 BN1.5/3M
9779#1 24.04.78  49°223  12°49.1 49°20.7 12°49.5 1398-1404 BNI1.5/3M
50510 03.06.79  51°05.3 13°04.5 51°06.5 12°59.5 1925-1960 OTSB14
50515#1 06.06.79  49°43.9 15°04.6 49469 15°08.2 4505-4515 OTSB14
50518#1 07.06.79  49°273 13°21.1  49°30.1 13°26.8 2045-2110 OTSB14
50519#1 08.06.79  49°29.5 12°48.9  49°29.9 12°43.6 1465-1431 OTSB14
50523#1 09.06.79  49°31.6 11°23.9 49°29.0 11°23.9 455-490 OTSB14
50602#2 01.07.79  51°01.0  13°059 51°01.1 13°08.4 1955-1980 BNI1.5/3M
50602#3 01.07.79 51°06.8 13°16.7 51°06.9 13924 .4 1817-1930 OTSB14
50603#1 02.07.79 49°46.2 14°01.5 49444 14°00.5 4000-4000 BN1.5/3M
50604#1 04.07.79  50°06.1 13°53.0  50°06.4 13°49.9 3490-3550 BNI1.5/3M
50605#1 05.07.79  50°11.6 13°324 50°11.2 13°29.0 2820-2930 BN1.5/3M
50606#5 06.07.79  50°43.1 13°56.1  50°42.7 13°57.0 1120-1140 BNI1.5/3M
50607#1 07.07.79  51°01.7 14°12.1  51°014 14°07.3 700-712 OTSB14
50607#2 07.07.79  51°014 14°06.4 51°01.4 14°07.5 700-700 BN1.5/3M
50608#2 07.07.79  51°19.3 14°22.3  51°19.3 14°24.3 510-510 BN1.5/3M
50715 21.10.79 51°19.5 12°57 --- - 1635-1720 OTSB14
10108#1 05.09.79  49°20.6 12°49.2 49°19.6 12°48.7 1385-1390 BNI1.5/3M
1010948 07.09.79  49°11.7 12°19.4  49°10.0 12°18.5 1120-1130 BNI1.5/3M
10111#8 09.09.79  49°32.6 13°07.1 49°33.5 13°05.9 1630-1640 BN1.5/3M
10112#1 09.09.79  50°25.0 13°19.1 50°26.4 13°17.6 2640-2660 BNI1.5/3M
10112#2 09.09.79  50°252 13203 50°25.7 13°20.4 2640-2650 BNI1.5/3M
10112#3 10.09.79  50°19.1 13°25.8  50°19.9 13°26.9 2740-2755 = BNL1.5/3M
10113#1 10.09.79  50°16.1 13°31.6  50°16.3 13°32.3 2755-2760 BN1.5/3M
10114#1 10.09.79  49°45.6 14°08.2  49°45.0 14°08.0 4040-4060 BN1.5/3M
10115#1 11.09.79  49°46.3  13°56.0 49°45.6 13°56.6 3900-3950 BN1.5/3M
10120#1 13.09.79  49%27.5 11°21.7 49°27.9 11°21.2 400-400 BN1.5/3M
50913 12.11.80 50°11.9 13°39.8 50°11.3 13°41.3 3000-3040 BN1.5/3M
51103#5 21.05.81 51°47.0 13°13.1  51°47.6 13°13.8 950-930 BN1.5/3M
51110#3 28.05.81 50°16.4 13309 50°15.4 13°30.6 2785-2800 BNI1.5/3M
51403#1 25.03.82 51°37.7  12°59.8 51°36.6 13°00.0 1292-1314 BNIL.5/3M
51403#2 25.03.82 51°374 12°592 51°36.9 12°59.2 1317-1325 BNIL.5/3M
51403#3 25.03.82 51°36.8 12°59.1 51°36.4 12°59.3 1319-1325 BNIL.5/3M
51403#4 26.03.82 51°36.7 12°59.6 51°36.0 12°59.8 1319-1333 BNI1.5/3M
51403#5 26.03.82 51°37.8 12°58.9 51°37.3 12°59.0 1289-1297 BNI1.5/3M
51403#6 26.03.82 51°37 12°59 - - 1278-1295 BNI1.5/3M
51403#7 26.03.82 51°364 12°59.6 51°39.2 12°58.8 1330-1255 OTSB14
51416#1 31.03.82  50°16.8 13°314 50°16.9 13°30.7 2780-2770 BN1.5/3M
51417 01.04.82 50010.3 13°22.3  50°10.1 13°21.2 2790-2770 BN1.5/3M
51420#1 02.04.82 51°37.3  12°58.6 51°36.9 12°58.6 1326-1328 BNI1.5/3M
51420#2 02.04.82 51°372 12°59.1  51°36.9 12°59.1 1304-1309 BNI1.5/3M
51420#3 02.04.82 51°38.3 12°58.9 51°38.0 12°59.0 1293-1298 BNI1.5/3M
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51420#4 02.04.82 519379 12°59.5 51°375 12°59.6 1279-1287 BN1.5/3M
52215#1 22.06.85 49°303 14°49.0 49°30.6 14°51.3 4561-4565 BNI1.5/3M
11907#1 20.08.89  49°40.3 12°08.2 49°37.8 12°08.8 1315-1295 OTSB14

2.1.5. Echinoidea juveniles

Samples of post-larval sea urchins were taken from three major research
programmes: the SAMS programme on the Rockall Trough; the IOS programme on
the Porcupine area; and the OMEX (Ocean Margin EXchange) programme in the
Goban Spur area, South-west Ireland. Stations positions and sampling gear used are
summarised in Table 2.5. Samples from the IOS and SAMS programmes were
treated in the same way as described above for ophiuroids and asteroids.

During the OMEX programme samples were obtained using two circular box
cores with diameters of 30 and 50 cm. Samples were fixed in 4% formaldehyde and
preserved in 70% ethanol.

Four species of echinoids were identified among the juveniles. Individuals of the

genus Echinus were also collected.

Table 2.5. List of stations of juvenile echinoid samples collected during three
different  sampling programmes. OMEX=0Ocean Margin = Exchange;
SAMS=Scottish Association for Marine Science; IOS=Institute of Oceanographic
Sciences. CBC-30 and 50=Circular Box Cores with diameters 30 and 50 cm,

respectively; ES and BN1.5/3M=Epibenthic Sledge; OTSB14=Semi-Balloon
Otter Trawl. c \

Station Date Lat. °'N) Long. ‘W)  Depth (m) Gear Programme

A 26.10.93  49°28.98 11°07.97 208 CBC OMEX
A 23.05.94  49°29.7 11°08.4 208 CBC-30 OMEX
A 18.08.95  49°28.52 11°12.45 231 CBC-30 OMEX
B 20.10.93  49°21.99 11°48.09 1034 CBC-50 OMEX
B 24.05.94 49°22.4 11°45.1 1034 CBC-50 OMEX
B 20.08.95  49°22.00 11°47.99 1021 CBC-50 OMEX
1 19.10.93  49°24.72 11°31.86 670 CBC-50 OMEX
I 23.05.94 49°24.9 11°31.4 670 CBC-30 OMEX
I 19.08.95  49°24.70 11°31.86 693 CBC-50 OMEX
II 21.10.93  49°11.20 12°49.18 1425 CBC-50 OMEX
Il 26.05.94 49°11.3 12°49.7 1425 CBC-50 OMEX
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I 21.08.95 49°11.19 12°49.17 1457 CBC-50 OMEX
4 03.06.73 56°52 10°01 1993 ES SAMS
15 03.07.73 56°44 09°28 1632 ES SAMS
34 10.05.75 56°36 11730 2515 ES SAMS
99 09.07.76 60°00 10°35 1160 ES - SAMS
118 28.01.77 54°39 12°14 2910 ES SAMS
122 29.01.76 54°31 12°31 2951 ES SAMS
137 22.02.78 54°34 12°19 2900 ES SAMS
147 02.06.78 54°36 12°19 2921 ES SAMS
169 28.02.80 54°40 12°17 2910 ES SAMS
176 28.05.80 57°15 10°26 2245 ES SAMS
185 10.04.81 54°44 12°15 2907 ES SAMS
190 16.08.81 54°41 12°18 2898 ES SAMS
197 15.08.81 57°21 10729 2200 ES SAMS
200 06.02.82 57°20 10°32 2220 ES SAMS
204 12.05.82 54°40 12720 2904 ES SAMS
218 03.08.82 57722 10724 2175 ES SAMS
232 19.05.83 57°17 10°16 2195 ES SAMS
244 25.07.83 57°23 10°20 2150 ES SAMS
250 28.07.83 59°43 12°33 1270 ES SAMS
255 31.07.83 58°26 12°42 1595 ES SAMS
283 15.04.85 54°39 12°15 2946 - ES SAMS
285 15.04.85 54°39 12°14 2906 ES SAMS
289 21.04.85 57°19 10°25 2190 ES SAMS
402 11.09.90 54°40 12°16 2905 ES SAMS
405 12.09.90 54°40 12720 2910 ES SAMS
412 17.02.91 57°18 10°18 2195 ES SAMS
9753#7 08.04.78 50°54.5 12°10.9 1942-1942  BN1.5/3M 10S
9776#2 23.04.78  49°22.7 11936.0 770-785 BN1.5/3M IOS
9779#1 24.04.78  49°223 12°49.1 1398-1404 BN1.5/3M 10S
50511 04.06.79 50°32.4 13°01.4 2435-2405 OTSB14 108
50602#2  01.07.79 51°01.0 13°05.9 1955-1980  BN1.5/3M 108
50604#1  04.07.79 50°06.1 13°53.0 3490-3550  BN1.5/3M 10S
50606#5  06.07.79 50°43.1 13°56.1 1120-1140 BN1.5/3M 10S
50607#2  07.07.79 51°01.4 14°06.4 700-700 BN1.5/3M I0S
50609#1  08.07.79 51°39.7 14°16.5 400-400 BN1.5/3M 108
50913 12.11.80 ~ 50°11.9 13°39.8 3000-3040 BN1.5/3M 10S
5121741 30.09.81 50°36.1 10°19.0 150 BN1.5/3M I0S
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51403#1  25.03.82 51°37.7 12°59.8 1292-1314  BN1.5/3M I0S
51403#2  25.03.82  51°374 12°59.2 1317-1325  BN1.5/3M I0S
51403#3  25.03.82 51°36.8 12°59.1 1319-1325  BNL.5/3M I0S
51403#4  26.03.82 5136.7 12°59.6 1319-1333  BN1L.5/3M I0S
51403#5  26.03.82 51937.8 12°58.9 1289-1297 BNIL.5/3M - 10S
51420#1  02.04.82 51°37.3 12°58.6 1326-1328 BNL1.5/3M I0S
5142043  02.04.82 51°38.3 12°58.9 1293-1298  BN1.5/3M 10S
52204#1  16.06.85  51°37.07 12°59.96 1295-1310  BN1.5/3M 105
10108#1  05.09.79 49°20.6 12°49.2 1385-1390  BN1.5/3M 10S
1010948  07.09.79 49°11.7 12°19.4 1120-1130 BN1.5/3M I0S
10111#8  09.09.79 49°32.6 13°07.1 1630-1640  BN1.5/3M I0S
1011242 09.09.79 50°25.2 13°20.3 2640-2650  BN1.5/3M 10S
10112#3  10.09.79 50°19.1 13°25.8 2740-2755  BN1.5/3M 10S
10113#1  10.09.79 50°16.1 13°31.6 2755-2760  BN1.5/3M 10S
10115#1  11.09.79 49°46.3 13°56.0 3900-3950  BNIL.5/3M 108

2.2. Study of the Post-larval Development in Echinoderms

All three groups of echinoderms studied received a similar treatment for
examination under scanning electron microscope (SEM). All ophiuroids and most of
the echinoids and asteroids were air-dried. Ophiuroids and asteroids were dried
straight from the 70% alcohol, whereas the echinoids were first dehydrated in
increasing grades of acetone for 5 minutes each (30, 50, 70, 90, 95 and 100%) and
twice at 100%, leaving at this concentration overnight. After that the echinoids were
left to dry in the air. This process was adopted in order to avoid the higher surface
tensions of the alcohol and water, which can cause the delicate tests of the sea
urchins to collapse. In the case of the acetone, surface tension is smaller and therefore
the évaporation of the liquid present in the sea urchin body is less damaging.

In some cases (for asteroids and echinoids), the animals were critical point dried.
In this technique the animals are dehydrated in acetone (as described earlier) and
taken into a pressure chamber (the critical point drier), which is then filled with
liquid CO,. The acetone is flushed out of the chamber and the CO, is allowed to
replace the acetone. This process takes approximately 1 hour. During this phase, the
chamber is kept at temperatures below 14°C in order to maintain the CO, in its liquid

state. After that the temperature of the chamber is gradually increased, making the
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pressure to increase also. When the temperature and pressure attain a specific
threshold (31.5°C and 75 bar) the CO, passes directly into the gaseous state without
problems with surface tension of the liquid. This makes the shrinkage of the soft
tissues of the animal to be minimal, allowing the examination of the soft parts. After
all CO, have passed into the gaseous phase, the gas is gently flushed out of the
chamber and the specimens put into a dessicator.

Although a better preservation of the material is achieved using the critical point
drier, the air drying techniques described above were preferred, since they allow a
better analysis of the calcareous skeleton of the specimens. In critical point dried
animals, the skin is preserved covering the internal skeleton of the echinoderms,
making the description of the specimens very difficult.

After drying the species were arranged in ontogenetic series and mounted in stubs
using a double-sided adhesive tape. All animals were examined under a low-vacuum
SEM (JEOL JSM-5300LV). This equipment does not require the specimens to be
gold-coated when working on the low-vacuum mode. However, it also allows the use
of the high-vacuum mode with gold-coated specimens. Because the use of the low-
vacuum mode in this instrument requires an optimum working distance (the distance
between the specimen and the point source of the beam of electrons) of around 15
mm, the minimum magnification achieved is 50 times. For all the ophiuroids
examined, this magnification was enough to have a complete view of the disk.
However, for the larger asteroids and echinoids (with long spines) a larger working
distance was necessary. For this reason, all ophiuroids were examined without a
gold-coating and in the low-vacuum mode and asteroids and echinoids were gold-
coated and subsequently examined under the high-vacuum mode, which allows
higher working distances. The gold-coating was undertaken using a Hummer IV
Sputter Coater. The animals were coated in the pulse mode for 9 minutes. In this
mode, pulses of gold coating of 5 seconds collide with the specimens. This mode was
preferred over the continuous coating because it is better for coating surfaces with a
complex relief. In this mode, the time lag between the pulses allows the thin gold
layer over the specimen to spread covering better all the surface of the specimen.

Ophiuroid micrographs were made using roll film and the disk diameters were

measured using the SEM scalebar. During the course of this work, the Department
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acquired a new frame store for the low-vacuum SEM, which allows pictures to be
stored in a digital format. Therefore, asteroid and echinoid micrographs were stored
on a CD-ROM and measurements were performed using an image analysis software.
Asteroid measurements include arm ray (R), which is the distance between the centre
of the disk and the tip of the arm, and the disk ray (r), representing the distance
between the centre of the disk and the edge of the disk in the interradius. The ratio
between the two rays is given as R/r. Echinoid measurements include the diameter of
the test in regular echinoids and the length of the test in irregular echinoids.

Fourteen species of ophiuroid post-larvae are described including Ophiacantha
abyssicola, O. bidentata, Ophiomyces grandis, Ophiura sarsi, O. carnea, O.
ljungmani, O. albida, O. scomba, Ophiocten affinis (comb. nov.), O. gracilis,
Amphilepis ingolfiana, Ophiactis abyssicola, O. balli and Ophiopholis aculeata. The
asteroids include 11 predominantly deep-sea species: Luidia sarsi sarsi, Bathybiaster
vexillifer, Psilaster andromeda andromeda, Hyphalaster inermis, Porcellanaster
ceruleus, Benthopecten simplex simplex, Pectinaster filholi, Plinthaster dentatus,
Hymenaster pellucidus, Zoroaster fulgens and Brisingella coronata. Sea urchins
were the least abundant of the groups and yield only 4 species: Phormosoma
placenta, Spatangus raschi, Brissopsis lyrifera and Hemiaster expergitus. Post-

larvae of the genus Echinus are also described.

2.3. Reproductive Biology of Ophiocten gracilis

A total of 75 adults were used for reproductive studies (Table 2.3). They were
decalcified in Bouins solution and dehydrated in increasing grades of isopropanol
(70, 90, 100%) for two hours each and twice at 100%. After this treatment the
individuals were cleared in Histoclear overnight and embedded in paraffin wax
blocks and sectioned at S pm. The sections were stained with hematoxylin/eosin and
examined under compound microscope for the study of reproductive stages. These
were represented as a maturity index of the gonads (M.I.) (Patent, 1969). The stages
of gonad development followed that given by Fenaux (1970) for Amphiura chiajei
and Tyler (1977) for the genus Ophiura.

The presence of gametogenic tissues in post-larvae and juveniles were examined

through sectioning of the whole animal, following the same method described above.
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Samples were taken from the Rockall Trough (19 specimens), Faroe Islands (18
specimens) and sediment traps (19 specimens).

Fecundity was estimated for 4 females of different sizes (6.72, 7.53, 8.19 and 8.24
mm dd) (Table 2.3). The number of eggs was counted in 3 different gonads within
the same animal under compound microscope after a smear slide preparation. The
mean number of eggs was multiplied by the total number of gonads present. The
resulting number represented the fecundity of the determined animal. The eggs in
each animal were measured using an image analysis software in order to estimate the
mean oocyte size, which was represented by the feret diameter. The feret diameter
represents the diameter of a circle of area equal to the area of the oocyte projected in

a two-dimensional plane (video image).

2.4, Settling Rates Experiment

Settling rates of post-larvae were measured using fixed animals from sediment
traps. Three sets of 10 animals belonging to 3 different size classes (dd=0.63£0.02,
0.7940.02 and 0.91+0.01 mm) and with arms intact were dropped into an isothermal
water column (at 2, 5, 10 and 15°C) in a 500 ml measured cylinder in a constant
temperature room. Prior to the experiment, animals were put in sea water at room
temperature to avoid adverse effects of the preservative. The settling times were
measured using a digital chronometer. Settling times of animals falling close or

touching the walls of the measured cylinder were discarded. The mean feret diameter

of the animals was used.

2.5. Estimation of Carbon Demands of Ophiocten gracilis Growing in Deep-Sea
Sediment Traps

Section 2.1.2 describes the sampling of the post-larval Ophiocten gracilis in two
deep-sea sediment traps. During the study period, post-larvae were observed to grow
and the carbon demands required to achieve such a growth were estimated in the
present work. In order to calculate the carbon demand of post-larvae, 50 intact
animals of a wide variety of sizes were individually measured and dried at 60°C for

24 h. The animals were weighed (DW) and then burned in a muffle furnace for 18 h,
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in order to estimate the ash-free dry weight (AFDW). The relationship between
AFDW and disk diameter (dd) was

AFDW = 0.0082¢' 7% (2= 0.7851),
and this was used to calculate AFDW for the remaining specimens. -
50% of the AFDW was assumed to be organic carbon (Salonen ef al., 1976).

Weight-specific respiration rates were calculated for each individual. The
calculations were based on a formula described by Mahaut et al. (1995) for deep-sea

animals living in temperatures of 2-4°C:

R = 0.0074 OC™** where R=individual respiration rate (mg organic C/mg body
organic C/day) and OC=individual organic content (mgC).

The respiratory demand (Rp, in mgC ind™ day"l) was then calculated by
multiplying the organic carbon content by the weight-specific respiration rate. From
the respiratory demand, the somatic production (P, in mgC ind™ day'l) was estimated
assuming a growth efficiency of 30% (P/Rp=3/7) (Piepenburg and Schmid, 1997). As
discussed later, the growth term is not a loss of material as long as the specimens are
included in the flux.

Assimilation (A, in mgC ind™ day'l) was assumed to equal the sum of the
respiratory demand and somatic production (A = Rp+P). From assimilation, carbon
demand (D, in mgC ind™ day'l) was estimated assuming an efficiency of 80%.
Therefore, D = A/0.8 (Piepenburg and Schmid, 1997).

A second and alternative method of estimating somatic production was based on
the observed increase in mean body weight of the collected specimens.

P,;.p = AAFDW, /At = AFDW,, - AFDW,,/t,-t;, where:
P, = Somatic production between time t; and t,
AFDW,, = Mean ash-free dry weight of the population at time t;
AFDW,, = Mean ash-free dry weight of the population at time t,

Carbon demand was then calculated from production assuming a growth
efficiency of 30% and assimilation efficiency of 80%.

The main assumption, used for the calculation of the population respiratory
demand, was that all ophiuroids arrived at the same time in the trap, that all were

collected by the cups during the study period, that they were randomly sampled
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during each sampling interval and that they were not subject to any pressure of

predation. These can obviously not be tested retrospectively.

2.6. Stomach Content Analysis of Post-larval Ophiocten gracilis _

Stomach contents of all post-larval Ophiocten gracilis collected in the sediment
trap (described above) were analysed under stereomicroscope. The contents were
classified qualitatively by observing the material through the mouth or through the
transparent body wall. Soft, amorphous material were classified as detritus. O.

gracilis often showed empty stomachs and were classified as ‘Empty’.
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Chapter Three - Post-larval development in shallow and deep-sea

ophiuroids (Echinodermata: Ophiuroidea) of the NE Atlantic Ocean

3.1. Introduction

Studies on the post-larval development in ophiuroids are not abundant in the
literature. Two small specimens of Hemipholis cordifera showing the primary plates
and first appearance of the radial shields are depicted in the work of Lyman (1882)
on the Ophiuroidea of the Challenger Expedition. Subsequently, post-larval growth
in five species of brittlestar from South America was described by Ludwig (1899).
Later, Mortensen (1912) described the development of Asteronyx loveni. Clark
(1914) was the first researcher to be really concerned with the lack of studies on post-
larval growth, followed by Campbell (1922). The main aim of Clark and Campbell
was to find a natural classification for the group, solving the taxonomic problems
existing at that time.

Although at the first half of this century some species had already been described,
the main problem was the poor illustrations exhibited in such publications, which
made accurate identification of post-larvae difficult (Fig. 3.1). In the deep-sea,
sampling was extremely difficult and relatively infrequent. The sampling gear used
mesh that was too coarse to collect the small fraction of the fauna. While in shallow
waters the collection of species that brood their young helped the study of early
brittlestar stages, in the deep-sea the rarity of brooding (most of the species having a
lecithotrophic development - see Pearse, 1994; chapter 1), and the lack of a proper
sampling apparatus prevented in a certain extent the study of deep-sea forms.

After the invention of improved sampling equipment (see Hessler & Sanders,
1967), smaller species and post-larval forms were retrieved. Schoener (1967)
described the growth stages of juvenile ophiuroids and traced back from the
identified adults the respective post-larvae of each particular species. Schoener
(1967) cited that at least two species of the same genus could be identified from the
very early stages of growth, unlike Mortensen (1920) who found it impossible to
recognise differences between the post-larvae of two species of the genus Amphiura.

In a subsequent study, Schoener (1969) again concluded it was possible to
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distinguish between congeneric species soon after the metamorphosis. Other species

from shallow water were added to this list (see Muus, 1981; Webb & Tyler, 1985).

Figure 3.1. Post-larval development of Ophiactis asperula described by Ludwig
(1899). Specimens are depicted by simple lines, which do not reflect the complex

morphological characters found in such organisms.

The papers cited above were the first to deal with deep-water species and despite
all the importance related to identification of the deep-sea ophiuroid post-larvae, few
papers followed Schoener’s work. Gage & Tyler (1981a) compare the post-larvae of
the deep-sea species Ophiura ljungmani and Ophiocten gracilis using the Scanning
Electron Microscope (SEM) and emphasise that they could also be recognised under
low-power microscopes. Webb & Tyler (1985) give a good description and plates of
the post-metamorphic growth stages of three shallow water species, among which
Ophiura albida, although rarely, can also be found in deeper water. Tyler & Fenaux
(1994) infer the adult of Ophiopluteus compressus by analysing the post-larval forms
of a variety of species and the geographical distribution of the possible adults,
matching it with the larval distribution. This last paper shows the importance of a

knowledge of the very early post-metamorphic specimens, which could be useful to
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assign the adults of unknown ophioplutei that can be reared to metamorphosis and
therefore to the young post-larva. Tyler et al. (1995¢) describe the post-larva of a
new species of brittlestar (Ophioctenella acies) from the hydrothermal vents of the
Mid-Atlantic Ridge comparing it with Ophiura ljungmani, a common non-vent deep-
sea species. Other papers were published concerning this subject, ;nainly with
shallow water inhabitants (see Stancyk, 1973; Turner, 1974; Hendler, 1978; Turner
& Dearborn, 1979; Muus, 1981; Turner & Miller, 1988; Byrme, 1991), but few show
good plates. One of the exceptions is Hendler (1988) on the post-larval ontogeny of
amphiurids. Hendler identifies significant morphological characters and follows their
growth changes, correlating them in closely related species. Based on these data,
Hendler argues that the ontogenesis in post-larvae may be a reliable indicator of
systematic relationships (Hendler, 1988). Recently, Hendler (1998) compares the
ontogenetic changes in the oral papillae and other structures in some post-larval
ophiuroids.

The lack of important taxonomic characters in the post-larvae makes identification
of specimens collected in benthic samples difficult, and most frequently post-larvae
are ignored in benthic ecology studies (Turner & Miller, 1988). In the deep-sea, post-
larval ophiuroids have been collected in large quantities at certain times of the year,
representing a significant proportion of the total population (Tyler & Gage, 1980;
Gage & Tyler, 1981a). Gage (1994) noted that post-larval bivalves are not significant
in terms of biomass, but they can dominate populations numerically. The same is true
for brittlestars (Flach & Heip, 1996). In view of this problem, it is important to be
able to recognise the different species of post-larvae when adults live sympatrically
in benthic communities. In addition, such descriptions help in phylogenetic
determination (Hendler, 1988) as well as on the assessment of growth rates on early
stages of development. Gage & Tyler (1982a) showed that growth strategies can be
different in different deep-sea ophiuroid species. The early stages of growth are
particularly important as they reveal different survival strategies among species.
Rapid early growth may be a strategy for predator avoidance whereas a slow growth
rate may be determined by energy availability. The knowledge of post-larvae would
also help in brittlestar settlement and recruitment studies (Gage & Tyler, 19815,

1982b). Moreover, before assuming an adult life style, the post-larvae must spend
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some time in the meiobenthic environment, where they might be an important
component. All these factors should affect the rates of mortality and survivorship
and, consequently, the maintenance of the deep-sea brittlestar populations.

In this chapter the early post-metamorphic development of 14 species of
ophiuroids from the shallow and deep NE Atlantic Ocean is described.’The species
were chosen based on the relative abundance of different growth stages and
individuals. Ophiura sarsi, O. ljungmani and Amphilepis ingolfiana had already been
previously described (Schoener, 1967, 1969). However, the line drawings presented
in those papers do not allow an accurate identification and their development is re-
described in the present paper. The early growth stages of Ophiura albida (<1 mm
disk diameter) are also described, complementing the work done by Webb & Tyler
(1985), who described the development of specimens larger than lmm in disk
diameter. The aim is to produce, primarily, good descriptions of the ontogenetic
development of the early growth stages of these species, showing the general aspect,
as well as particular characteristics of the metamorphosed ophiuroid. It is also
intended to investigate possible phylogenetic affinities using the morphological

characters of the post-larvae.

3.2. Post-larval development

The main morphological characteristics in the early ophiuroid post-larvae are

shown in figure 3.2.
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Figure 3.2. Main structures found in the early ophiuroid post-larvae. a) Dorsal view;
b) Ventral view. CPP=Central Primary Plate; RPP=Radial Primary Plate;
RS=Radial Shield; IR=Interradial Plate; DAP=Dorsal Arm Plate; LAP=Lateral
Arm Plate; TP=Terminal Plate; VAP=Ventral Arm Plate; OS=Oral Shield;

AS=Adoral Shield; ASS=Adoral Shield Spine; J=Jaw; DP=Dental Plate;
MP=Mouth Papilla.

Subclass Ophiuridea Gray, 1840
Order Ophiurida Miiller & Troschel, 1840
Suborder Ophiurina Miiller & Troschel, 1840
Family Ophiacanthidae Perrier, 1891
Subfamily Ophiacanthinae Paterson ef al., 1982
Ophiacantha abyssicola G.O. Sars, 1871

Post-larvae of this species were found in the samples from Biofar. The earliest
post-larva found measured 0.4 mm disk diameter (dd) and possessed 5 arm segments.
The dorsal part of the disk is formed by the central primary plate (CPP), the 5 radial
primary plates (RPP), the radial shields (RS), the first interradial plate (IR1) and the
k-plate (k). The k-plate is a small plate present between the proximal end of the
radial shields and the RPPs (Ludwig, 1899). The CPP is strongly pentagonal, with
the borders filled with several small fenestrations and a solid edge. The central part
of the plate is almost imperforate, bearing few small fenestrations. Each corner of the
plate has a big trifid spine pointing outwards in a total of five spines, which are
sometimes missing owing to losses during the sample acquisition. When missing, the

places where these spines are attached can be recognized by the larger fenestrations
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Figure 3.3. Ophiacantha abyssicola post-larval development (A-D). A and D, dorsal view; B and D,

ventral view. A. 0.4 mm; B. 0.4 mm; C. 0.9 mm. Note the pentagonal central primary plate in the

centre of the disk; D. 2.0 mm. Three spine-like mouth papillac (MP) are present (the distal-most

being the former ASS). See Fig. 3.2 for explanation, k = k-plates. Sizes represent the disk
diameter.
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present on the plate (Fig. 3.3A). The main stem of these spines is fenestrated and
branches into three and each of these ramifies again into two. The RPPs have the
same fenestration pattern, but only two spines are present. The RSs are broader than
long and overlap the proximal arms. Besides the former plates, an IR1 is present,
possessing one single spine. As an individual grows, each dorsal plate added to the
disk bears just one spine. The spines also begin to erode probably owing to the
animal’s activity. The k-plate, together with the IR1, bears large rounded
fenestrations. No spines are present on the k-plates or the RSs (Fig. 3.3A). The arm
segments are large bearing three spines on the proximal segments and two on the
distal ones. The spines of the proximal segments are large, with large spinelets, and
those of the distal ones are smaller with spinelets distributed along their edges. The
lateral arm plates (LAP) are contiguous dorsally throughout their vlength, leaving the
rounded dorsal arm plates (DAPs) on their distalmost portion. The terminal plate
(TP) is bulb-shaped with several fenesvtratio'nsl

At 0.9 mm dd the CPP is still recognizable by the number of spines present on it
and its pentagonal shape, but is difficult to recognize the other primary plates (Fig.
3.3C). The number of dorsal plates increases with size and they are hardly
distinguishable, with a precise description of the dorsal plates almost impossible.

On the ventral side, the oral armature is well formed with strong and spinose teeth.
No mouth papillae (MP) are present yet and the dental plate (DP) is small and
broader than long. The adoral shield spines (ASS) are strong and spinose. The first
ventral arm plate (VAP) is bell-shaped with a convex distal end. This plate is almost
solid, bearing only few fenestrations on the lateral parts. The 2nd tentacle pore (TPo)
is well concealed by the ASS in the smallest post-larvae examined (Fig. 3.3B). At a
disk diameter of 0.66 mm the 1st MP is present as a spine-like structure at the distal
part of the jaw, near the base of the DP. Reaching 2.0 mm dd three large MP are

present and a groove is present on the oral shield (OS), indicating the identity of this

species (Fig. 3.3D).
Ophiacantha bidentata (Retzius, 1805)

Individuals at 0.5 mm dd were collected on Biofar samples, being very similar to

O. abyssicola. However, a careful examination of the dorsal plates of O. bidentata
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Figure 3.4. Ophiacantha bidentata post-larval development (A-D). A and D, dorsal view; B and D,
ventral view. A. 0.5 mm. Note the arrangement of the dorsal plates; B. 0.8 mm; C. 1.2 mm; D. 3.0
mm. See Fig. 3.2 for explanation. Sizes represent the disk diameter.
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reveals significant differences in the shape of the plates. In this species the primary
plates are not easily recognized, but an elongated and irregular in shape CPP can be
seen, bearing two spines similar to those described earlier for O. abyssicola. The
dorsal plates have scattered tiny fenestrations and larger ones on the areas below the
spines. The dorsal plates are all irregular in shape and most bear just one spine. The
RSs are similar to those described for O. abyssicola. The arms possess several
segments (> 4) with large spines, bearing large spinelets (Fig. 3.4A). At 0.8 mm dd,
the irregular CPP (bearing 2 spines) is still visible (Fig. 3.4B) and can be used to
distinguish this species from O. abyssicola, which bears a pentagonal CPP with 5
spines (Fig. 3.4C).

The early ventral development is very similar to that of O. abyssicola. However,
they are easily distinguished when the animal attains a larger size by the shape of the

oral shields (OS), which in O. bidentata is broader than long and no groove is present

(Fig. 3.4D).

Subfamily Ophiohelinae
Ophiomyces grandis Lyman, 1878

The smaller specimen of O. grandis shows a sac-like disk formed by several
scales, some of which bear large smooth spines. The scales of the central part of the
disk are largest, becoming smaller toward the edges (Fig. 3.5A). The teeth are bulb-
shaped with a pointed end mounted on a large dental plate (DP). Several mouth
papillac (MP) are present, all of which have an elongated shape. Two infradental
papillae (IP) liec on the DP, three MP on each edge of the jaw and three
supplementary papillae on its innermost part and finally one larger papilla is present
on the adoral shields. The 2nd tentacle pore (TPo) opens close to the oral slit (Fig.
3.5B).

One long tentacle scale (TS) is present on each TPo of the arms (Fig. 3.5C) when
the individual attained a larger size. The distalmost MP has now a wide flattened end.
The oral shields (OS) appear as a somewhat diamond-shaped plate (Fig. 3.5D).

Further development involves growth and broadening of the papillae and spines (Fig.
3.5E).
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Figure 3.5. Some stages of the post-metamorphic development of Ophiomyces grandis (A-E). A and
C, lateral view; B, D and E, ventral view. T = tooth; IP = infradental papilla; MP = mouth
papilla; TPo = tentacle pore; DP = dental plate. See Fig. 3.2 for explanation.
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Infraorder Chilophiurina Matsumoto, 1915
Family Ophiuridae Lyman, 1865
Subfamily Ophiurinae Lyman, 1865
Ophiura sarsi Liitken, 1858

The smallest individuals examined were about 0.37 mm dd (Fig. 3.6A), bearing
only the CPP, the five RPPs on the dorsal side and the TP of the arms. The first arm
segment is only visible ventrally (Fig. 3.6B). The CPP has a pentagonal shape and its
fenestrations are round, numerous and large throughout the plate and edges. Almost
the same pattern is found in the RPP, but here the borders have slightly smaller
fenestrations (Fig. 3.6A). The TPs are relatively large, with the distal part possessing
three large spines, being regularly fenestrated throughout its length (Fig. 3.6A). A
large adoral shield spine (ASS) is present, which is visible dorsally in the smallest
forms, as it is directed radially. It is stout and bears many small spinelets (Fig. 3.6B).
A protuberance can be seen in one of the oral shields (0S), which distinguishes the
madreporite (M) from the remaining OSs.

dd=0.45 mm: the post-larva has two arm segments and few changes have
occurred. The central part of the CPP has large round fenestrations, becoming
smaller towards the borders and larger again on the edge of the plate. The first arm
segment bears two spines and the second, one. They are small and conical in shape
(Fig. 3.6C).

dd=1.0 mm: the first and second interradial plates (IR1 and 2) are present and the
radial shields (RS) appear as a squared structure on the borders of the disk where the
arm is inserted. The RSs begin to appear when the post-larva reaches between 0.70-
0.80 mm dd, but they are very small and difficult to observe. The post-larva has
already developed several arm joints and the first ventral arm plate (VAP) assumed a
pentagonal aspect, with a slightly convex distal edge. The ASSs are not visible
dorsally. The first two dorsal arm plates (DAP) are broad and fan-shaped and
contiguous, whereas the subsequent DAPs are smaller and non-contiguous (Fig.
3.6E). Three spines are present on the proximal arm joints and two on the distal ones.

dd=2.7 mm: the k-plates (k) were added to the dorsal side, as well as secondary
plates among the CPP and RPPs. The outer arm comb (OAC) is well formed on the
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Figure 3.6. Ophiura sarsi post-larval development (A-H). A, C, E and G, dorsal view; B, D, F and
H, ventral view. A. 0.37 mm; B. 0.37 mm. Note the oral shields (OS) on the interradial area; C.
0.45 mm; D. 0.45 mm. Note the appearance of the 1st mouth papilla (the buccal scale - BS) and
the massive dental plates (DP); E. 1.0 mm; F. 1.0 mm; G. 2.7 mm; H. 1.5 mm. TPo = tentacle
pore; M = madreporite; MP2 = 2nd mouth papilla; k = k-plate; SIR = secondary interradial

plates; OAC = outer arm combs. See Fig. 3.2 for further explanation. Sizes represent the disk
diameter.
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genital plate and the DAP cén be seen intruding between them into the disk (Fig.
3.6G). The secondary interradial plates (SIR) are also seen.

dd=3.8 mm: the arm combs resemble those of the adult, with the comb extending
into the disk, as well as the first DAP, which is inserted between the distal end of
paired RSs. The RSs are “hexagonal” in shape, with a continuous micI—line suture.
Intermediate interradial plates are present on the dorsal side.

dd=0.37 mm: on the oral side, the tooth has a triangular shape with a pointed apex
and some accessory spinelets on the borders. The dental plate is large and fenestrated
mounted on somewhat rectangular oral plates. Each pair of the oral plates is
connected by an interdigitation on the proximal side and no mouth papilla is present
at this size. The adoral shields are longer than broad, bearing a spine that is about two
thirds its size. The 1st ventral arm plate (VAP) is regularly fenestrated and diamond-
shaped, with a small notch resulting from the presence of the 2nd tentacle pore
(TPo). The first appearance of the lateral arm plates (LAP) can be seen on the
proximal side of the terminal plates. No tentacle scales are present at this stage (Fig.
3.6B). Also visible in this stage are the oral shields (OS), present on the interradial
portion, between the distal corners of the adoral shields, as slightly oval, fenestrated
plates (Fig. 3.6B). The presence of OSs in the earliest post-larva agree with the
results of several authors, who reported the appearance of this plate during the
metamorphosis of the larva (Fewkes, 1887; F ell, 1941; Hendler, 1978).

The dental plate (DP) has increased in size and a small buccal scale (BS) is visible
at 0.45 mm dd on the proximal outer part of the jaw, occupying its entire length (Fig.
3.6D). This is the first mouth papilla to appear in this species, arising as a small scale
on the proximal portion of the oral plate when the animal is around 0.39 mm in dd.

dd=1.0 mm: the 2nd mouth papilla (MP2) is present on the proximal side of the
oral plate and the 2nd tentacle scale (TS) of the 2nd tentacle pore (TPo) is a broad
process placed next to the adoral shield spine (ASS) (which forms the 1st TS). The
remaining TPo of the arms bear one TS each (Fig. 3.6F).

dd=1.5 mm: the genital slits become conspicuous on each side of the arm base, the
distal edge of the 1st VAP is straight and a 3rd TS is added to the 2nd TPo, opposite

to the other two. The ASS assumes a form of a scale, covering partially the 2nd TPo.
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The 3rd mouth papilla (MP3) has also appeared on each side of the dental plate and
the tooth is a stronger structure (Figs. 3.6H).

dd=3.8 mm: the three MPs are well developed, with the third being somewhat
elongated, about half the size of the tooth. The 1st VAP is almost triangular in shape
and the 2nd TPo is elongated, with 6 scales in total on its edges. The or;1 shields are

broad and teardrop-shaped, with a constriction on the proximal third.

Ophiura carnea Liitken, 1858

The smallest post-larvae found in the Biofar samples are around 0.6 mm dd. At
this stage, the post-larva has a pentagonal CPP and the five RPPs. Also present are
the RSs and the IR1s. A dorsal view reveals the presence of the adoral shield spines
(ASS) (Fig. 3.7A). The fenestration pattern in this species is characteristic, the
central part of the CPP bears regularly spaced medium-sized circular fenestrations,
while the borders have small and more numerous round holes (Fig. 3.7A). The ASSs
in O. carnea are quite smooth and delicate (Fig. 3.7B), differing from the stout and
spinose spines of O. sarsi (Fig. 3.6B).

dd=1.2 mm: the IR1s and RSs are much larger in size and the IR2 is already
present. The RSs are almost square in shape (Fig. 3.7C). The relative size of the CPP
is much smaller in this species at this stage than that of O. sarsi.

dd=1.8 mm: the interradial plates are well developed, the RSs begin to elongate
and the k-plate (k) is present, but small (Fig. 3.7E). The outer arm combs (OAC) are
visible on the genital plates (Fig. 3.7E).

dd=2.9 mm: the animal has the adult characteristics. The outer and inner combs
grow towards the interior of the disk and the dorsal arm plate intrudes into the disk
with an elongated shape. The k-plate attained a large size, being broad triangular in
shape. Adjacent to the k-plate are intermediate interradial plates (IIR). Secondary
interradial plates (SIR) can be seen among the primary plates (Fig. 3.7G).

On the ventral side, the individual at 0.6 mm dd bears a fully developed mouth
papilla (= buccal scale), which is present on the oral plate throughout the oral slit. Its
outer part possesses small spinelets on the border. The tooth is triangular in shape,
spinulose, bearing large fenestrations. The dental plate is large and trapezoidal (Fig.

3.7B). The ASS is a quite long and slender process with squared fenestrations and
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pointed radially. The 1st VAP is arrow-shaped with a slight notch on each of its
distal lateral sides, where the 2nd tentacle pores are inserted. A very small OS can be
seen among the distal of the adoral shields and the IR1 (Fig. 3.7B).

dd=1.3 mm: the OSs have a teardrop shape and the ASSs changed in form to a
small scale-like structure forming the tentacle scales of the 2nd tentacle pores. The
genital slits are clearly visible. The small 2nd mouth papilla (MP) lies on the
proximal part of the first one (Fig. 3.7D). The 3rd MP is present when the individual
is 1.8 mm dd. At this stage, the tentacle pore begins to elongate, possessing 2 tentacle
scales on each side (Fig. 3.7F).

dd=2.9 mm: the oral frame is well formed with large teeth and a 4th MP. The
second tentacle pore is very elongated with four tentacle scales on each side, almost
inside the oral slit. The outer arm comb is clearly visible on the genital plate and the

oral shields are more elongated (Fig. 3.7H).

Ophiura ljungmani (Lyman, 1878)

dd=0.52 mm: the dorsal side bears a pentagonal CPP and 5 RPPs, which have
large fenestrations in the centre and smaller in the borders (Fig. 3.8A). Some
fenestrations are irregular in shape and some are round. The disk is slightly
pentagonal with a notch on the outer part of the junction between the RPPs. Three
arm segments are present with two spines on each side and the TPs. Those are large
and strong, with rows of fenestrations running along their length (Fig. 3.8A).

dd=0.6 mm: only the primary plates are present, but larger in size and with larger
fenestrations on the centre of the plate and smaller ones on the edges. The notch
between the RPPs is less pronounced. The arm spines are relatively small and
slender, bearing very small spinelets.

dd=1.0 mm: the IR1 can be seen from above, as well as a slight signal of the radial
shields on the sides of the arm, alongside the disk edge. The stereom structure of the
plates remains the same, although the plates are bigger in size (Fig. 3.8E).

dd=1.5 mm: individuals have well-developed primary plates, the IR1 and 2 plates
and radial shields. The dorsal arm plates are bell-shaped, with the 1st being broader

than the subsequent ones. The shape of the CPP is more round on the corners (Fig.
3.8G).



Figure 3.7. Ophiura carnea post-larval development (A-H). A, C, E and G, dorsal view; B, D, F and
H, ventral view. A. 0.6 mm; B. 0.6 mm; C. 1.2 mm; D. 1.3 mm; E. 1.8 mm; F. 1.8 mm; G. 2.9
mm; H. 2.9 mm. OAC = outer arm combs; k = k-plates; M = madreporite; MP2-4 = 2nd-4th
mouth papilae; SIR = secondary interradial plates; IIR = intermediate interradial plates. See Fig,
3.2 for further explanation. Sizes represent the disk diameter.
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dd=2.7 mm: the CPP assumed an almost circular outline and secondary interradial
scales are present on the point of contact of the CPP and RPPs. The radial shields are
longer, and a relatively large k-plate is present between the proximal portions of the
RSs, separating almost half of their mid-line suture.

Ventrally, the early 0.52 mm dd post-larva is very similar to the other Ophiura
species described above. The tooth is broadly triangular and pointed, with some
small spinelets and the dental plate is a large, fenestrated structure, with a v-shaped
distal edge. A large and block-like mouth papilla is present (= buccal scale). The
adoral shield spine is small and stubby, bearing some small spinelets along its edge.
The first VAP is pointed proximally and convex distally. The oral shields are present
and the madreporite (M) is distinguished by a protuberance in one of the sides of the
plate (Fig. 3.8B).

dd=0.6 mm: the first VAP changes shape, having a straight distal portion and a
notch on each side, related to the presence of the second tentacle pore (Fig. 3.8D).

dd=1.0 mm: the mouth structure presents a much stronger and spinulose tooth and
the 2nd mouth papilla (MP2), which is a small, scale-like structure, is located at the
proximal end of the 1st mouth papilla (MP). The Ist VAP distal portion is much
wider with numerous, regularly distributed small fenestrations, whereas the proximal
three quarters presents larger fenestrations, arranged in a more complex stereom
structure. The ASS forms the 1st tentacle scale of the 2nd tentacle pore (TPo), and
both oral shields and IR1 are visible ventrally (Fig. 3.8F).

dd=1.5 mm: a 3rd MP is formed, which is slightly smaller than the 2nd MP and
also scale-like, located on the sides of the dental plate. The 1st VAP is almost
triangular and the 2nd TPo bear 3 scales along their outer edge. The oral shields are
large, resembling a broad teardrop (Fig. 3.8H).

dd=2.7 mm: the oral structure is more heavily calcified and the second tentacle
pore is enlarged and is almost inside the mouth, bearing an additional scale on the
inner edge. The 1st VAP has a convex distal edge pointed in the middle. The oral

shield is broader with a pointed proximal and rounded distal portion.
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Figure 3.8. Post-larval development of Ophiura ljungmani (A-H). A, C, E and G, dorsal view; B, D,
F and H, ventral view. A. 0.4 mm. Note the shape and fenestration pattern of the primary plates
and the elongated terminal plates (TP); B. 0.4 mm; C. 0.6 mm; D. 0.6 mm; E. 1.0 mm; F. 1.0
mm. Note the fenestration pattern of the Ist ventral arm plate; G. 1.5 mm; H. 1.5 mm. M =

madreporite; MP2-3 = 2nd and 3rd mouth papillae. See Fig. 3.2 for further explanation. Sizes
represent the disk diameter,
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Ophiura albida (Forbes, 1839)

On the dorsal side at 0.6 mm dd the specimen has the 5 RPP and a pentagonal
CPP, with a complex stereom structure, but apparently the original plate bears round,
medium-sized fenestrations on the centre and smaller ones on the borders. Alongside
the edge of the disk, strongly rectangular RSs are present and very pronounced IR1s.
The arms are quite broad and strong (4 joints), with the dorsal arm plates (DAP)
much broader than long. Two arm spines are present on each arm joint. The terminal
plates (TP) are somewhat bulb-shaped with several fenestrations (Fig. 3.9A).

Ventrally, at 0.8 mm dd, a broad triangular teeth is inserted on a large, rhomboidal
dental plate. Only one large, block-like mouth papilla (= buccal scale) is present on
the side of the oral plates. The 1st VAP is pentagonal in shape and on its lateral parts
a tentacle pore is present, with one stubby adoral shield spine (ASS) placed as a

tentacle scale. The oral shield (OS) is well developed, resembling a teardrop (Fig.
3.9B).

Ophiura scomba Paterson, 1985

Unfortunately only few specimens could be obtained from the Rockall Trough
material. The smallest post-larva is 1.0 mm dd and bears the primary plates, among
which the CPP is pentagonal with rounded corners and has large, ovoid fenestrations.
A second layer of stereom is deposited throughout the CPP, with the exception of the
very edges of the plate. The RPPs are well conformed with the arms and the RSs are
present on the borders of the disk, on each side of the arm. The IR1 is visible on the
interradial area of the disk. The arms are well developed and the number of arm
segments could not be determined, but certainly exceeds 3. The DAPs are small with
a convex distal line and separated from each other; the arm spines are very small and
delicate (Fig. 3.10A).

dd=1.5 mm: secondary interradial scales are present on the corners where the CPP
meets the adjacent RPPs. The CPP is more circular in shape now and is completely
circular at 2.6 mm dd. The IR2 is well developed and the RSs grew larger and is

broader than long now. The outline shape of the disk is pentagonal and the stereom

structure did not change (Fig. 3.10C).
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Figure 3.9. Early stages of the post-larval development of Ophiura albida (A-B). A. Dorsal view of a

0.8 mm specimen; B. Ventral view of a 0.8 mm specimen. See Fig. 3.2 for explanation. Sizes
represent the disk diameter.
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Ventrally, the structure of the body is very similar to those of the other Ophiura
species examined so far. At 1.0 mm dd the tooth is a strong process and 3 MP are
present, a large block-like papilla that covers most of the oral slit; a second small,
scale-like papilla on the proximal side of the jaw; and a third spine-like papilla,
which is best seen in figure 3.10B. The 1st VAP has a double-arrowed shape and the
fenestrations do not differ in size like in O. ljungmani. Its lateral sides bear a notch
owing to the presence of the 2nd tentacle pores, which have one scale (the adoral
shield spine). The oral shield is present on the interradial area, between the adoral
shields (Fig. 3.10B).

dd=1.5 mm: the mouth papillac are much better formed, with the third papillae
being exceptionally well developed, different from the other species of Ophiura
studied here at this size. The 2nd tentacle pore now has 3 broad scales on the outer
and 1 on the inner edge, and is closer to the oral slit. As a result, the 1st VAP
changed in shape showing a much broader distal portion, with its middle portion
pointed and a narrower proximal side. The oral shield is well developed, with the
shape of a broadened teardrop. The 3rd tentacle pore has 2 broad scales (Fig. 3.10D).

Further development could not be depicted, since the specimens did not yield
good electromicrographs, however, no larger differences in the development from the

other Ophiura species occurred up to 2.6 mm dd.

Ophiocten affinis (Liitken, 1858) comb. nov.

Individuals with a disk diameter of 0.68 mm were obtained from the Biofar
samples. On the dorsal surface the CPP is pentagonal and five RPPs are present at
0.8 mm dd. The RSs are much broader than long and between paired RSs the IR1 and
2 are clearly seen. Among the primary plates a small plate, the secondary interradial
plate (SIR), is present. The arms are well developed, bearing two medium-sized
spines. The spines are smoother in smaller animals (Fig. 3.11B) and become slightly
thicker in the larger ones (Fig. 3.11A). The first dorsal arm plate (DAP) is broad and
short, and the subsequent plates are longer and fan-shaped (Fig. 3.11A).

dd=1.3 mm: several secondary scales (ss) surround the primary plates, but these
are still very conspicuous. The RSs are larger and the k-plate (k) is present on the

suture line between paired RSs. The intermediate interradial plate lies between that
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Figure 3.10. Two stages of the post-larval development of Ophiura scomba (A-D). A and C, dorsal
view; B and D, ventral view. A and B. 1.0 mm; C and D. 1.5 mm. SIR = Secondary interradial

plate; ss = secondary scales; TS = tentacle pore scale. See Fig. 3.2 for explanation. Sizes
represent the disk diameter.
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and the RS. The DAPs are now contiguous and elongated, with the exception of the
first plate, which is much smaller than the subsequent ones. The arm combs start to
appear on each side of the arm as a small spine on the outer edge of the RSs (Fig.
3.11C).

dd=2.0 mm: all the plates on the dorsal side of the disk are surrounded by small
scales. The disk is circular in shape and only a very slight notch is present on the disk
borders over the arm bases. The arm combs are more developed (Fig. 3.11E).

dd=3.0 mm: a larger number of secondary scales are present, although the primary
plates remain conspicuous. The RSs are larger and fully separated by small scales. A
well-pronounced notch in the disk edge is now present over the arm bases. The outer
comb is well developed, bearing small, blunt spines. The first DAP is small,
possessing small spinelets arranged in a row (V-shaped) forming the inner comb. The
remaining DAPs are broader than long, with the distal border convex and a rounded
ridge running along the arm axis on the mid-line of the plate (Fig. 3.11G).

On the ventral side at 0.68 mm dd, the teeth are triangular, thin and pointed. The
dental plate is somewhat ellipsoidal. On the jaw, only a single, long mouth papilla (=
buccal scale) is present, covering the entire length of the oral gap. The adoral shields
are longer than broad, bearing a relatively small spine beside the 2nd tentacle pore
(TPo). The oral shields (OS) are large triangular structures. The 1st VAP is a broad
arrow-shaped plate with a straight distal end. The arm spines are relatively large and
slender, nearly two thirds the size of the arm joint (Fig. 3.11B).

dd= 1.0 mm: the 2nd mouth papilla (MP) is present and the first sign of the
apppearance of the 3rd MP is noticed (Fig. 3.11D). The 1st VAP, although with the
same shape, has now two distinct fenestration patterns, with distal portion bearing
small, regularly distributed fenestrations, whereas in the rest of the plate the
fenestrations are larger and irregularly distributed. The adoral shield spine starts to
change in form to a scale-like structure. The bursal slit is well developed at that stage
(Fig. 3.11D).

dd=2.0 mm: all the three MP are well formed and the OSs assume the elongated

shape found in the adult. The 1st VAP is almost rectangular in shape and the tentacle
pores bear one scale (Fig. 3.11F).
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Figure 3.11. Post-larval development of Ophiocten affinis comb. nov. (A-H). A, C, E and G, dorsal
view; B, D, F and H, ventral view. A. 0.8 mm; B. 0.68 mm; C. 1.3 mm. Note the secondary scales
(ss) surrounding the primary plates; D. 1.0 mm; E. 2.0 mm. Note the slight notch in the disk over
the bases of the arms; F. 2.0 mm:; G. 3.0 mm; H. 3.0 mm. MP1-4 = 1st-4th mouth papillae; SIR =
secondary interradial plates; IR3 = interradial plate 3; k = k-plate; OAC = outer arm combs; TPo

= 2nd tentacle pore; TS = tentacle scale. See Fig. 3.2 for further explanation. Sizes represent the
disk diameter.
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dd=3.0 mm: the outer scale of the 2nd TPo is elongated and an additional scale is

present on the inner edge. The 2nd TPo remains outside the mouth slit, next to the 1st
VAP (Fig. 3.11H).

Ophiocten gracilis (G.O. Sars, 1871)

This is a common species in the Northeast Atlantic (Paterson et al., 1982). In the
Biofar material the smallest post-larvae found measured 0.48 mm dd. O. gracilis
appears to settle on the sediment with a relatively high number of arm segments (~5)
and even specimens found in the plankton bear more than one arm joint (chapter 6).

On the dorsal side, specimens at 0.65 mm dd have five broad RPPs and a very
large pentagonal CPP with a solid edge bearing tiny fenestrations and the central part
with irregularly distributed small fenestrations, becoming larger towards the borders.
The RPPs have a similar border, but the central fenestrations are larger throughout
the plate. The IR1 is present but not visible dorsally. The RSs are very small. The
arms bear two large spines on each segment. The dorsal arm plates (DAP) are bell-
shaped and the arm joints elongated, with the exception of the first, which is shorter
(Fig. 3.12A).

dd=1.2 mm: the IR1 and IR2 are well developed and the RSs are rectangular in
shape. The k-plate (k) is present between the RSs. Among the primary plates a small
secondary interradial plate (SIR) is present. The arm spines are longer and 3 in
number on the proximal segments. The 1st DAP is short and broad and the remaining
plates are very elongated. The outer arm combs (OAC) first appear as a spine on the
borders of the RSs (Fig. 3.12C).

dd=1.5 mm: the arm combs are more fully developed, the k-plate is larger, almost
separating the adjacent RSs. The IR3 starts to appear and intermediate interradial
plates are present between the interradial plates and RSs (Fig. 3.12E).

The ventral side of individuals at 0.48 mm dd is well developed and all ventral
ossicles have large fenestrations. The teeth are pointed, triangular with small
spinelets on each side. The dental plate is ellipsoidal, very similar to that of
Ophiocten affinis. A large mouth papilla covers the whole length of the outer part of
the oral plate. The 1st VAP is arrow-shaped, but its proximal edge is strongly convex

and its distal edge is slightly convex; on each side a deep notch leaves a way for the
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Figure 3.12. Post-metamorphic development of Ophiocten gracilis (A-F). A, C and E, dorsal view;
B, D and F, ventral view. A. 0.65 mm; B. 0.48 mm. Note the ellipsoid dental plate; C. 1.2 mm;
D. 0.45 mm. Note the fenestration pattern of the 1st ventral arm plate; E. 1.5 mm; F. 1.6 mm.
MP1-4 = 1st-4th mouth papillae; SIR = secondary interradial plates; IR3 = interradial plate 3;
OAC = outer arm combs; k = k-plate. See Fig. 3.2 for further explanation. Sizes represent the
disk diameter,
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Chapter Three

second tentacle pore. The adoral shield spine (ASS) is small with large fenestrations,
placed next to the 2nd tentacle pores (TPo). The oral shield (OS) is a small plate
among the adoral shields and IR1. The IR1 is larger, but not yet seen on the dorsal
part (Fig. 3.12B).

dd=0.9 mm: the 2nd mouth papilla (MP) is present on the proximal side of the 1st
MP. The ASS lies by the edge of the 2nd TPo forming a tentacle scale (Fig. 3.12D).
The OSs are larger and the distal border of the 1st VAP become straight with very
small and regularly distributed fenestrations, differing from the remainder of the
plate, which has larger and irregularly distributed fenestrations. The arm spines are
large, with small spinelets distributed along their edge (Fig. 3.12D).

dd=1.6 mm: the teeth are more heavily calcified, the 3rd MP is present as another
small scale-like ossicle. The 1st VAP now is almost rectangular in shape. Two

tentacle scales are present on the 2nd TPo and only one on the others (Fig. 3.12F).

Infraorder Gnathophiurina Matsumoto, 1915
Superfamily Amphilepididae Matsumoto, 1915
Amphilepis ingolfiana Mortensen, 1933

The smallest post-larva measured 0.6 mm dd and its shape is readily recognized.
Only the "?rimary plates are present in this specimen, the CPP is very large,
occupying almost the entire dorsal side and its central part is raised. The fenestrations
are medium-sized and evenly distributed throughout the plate. The RPPs are broader
than long and the stereom structure of its central part is slightly denser. Specimens
with 1 or 2 arm segments are present at this size; the arm spines are very long and
slender, with rectangular fenestrations running along its length. The terminal plate
(TP) is thin and larger than the arm segments (Fig. 3.13A).

dd=1.0 mm: the IR1s are visible on the interradial area and the elevation on the
CPP almost disappeared. However, all six primary plates have a more solid stereom
structure on their central parts. The dorsal arm plates (DAP) are fan-shaped and the

arm spines are the same size of the arm segments, with the exception of the first (Fig.
3.130).
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Figure 3.13. Post-metamorphic development of Amphilepis ingolfianal (A-H). A, C, E and G, dorsal
view; B, D, F and H, ventral view. A. 0.6 mm. Note the raised central portion of the central
primary plate and the large terminal plates (TP); B. 0.6 mm; C. 1.0 mm; D. 1.0 mm; E. 1.5 mm;
F. L5 mm; G. 3.5 mm; H. 3.5 mm. ASp = arm spines; MP2 = 2nd mouth papilla; k = k-plate.
See Fig. 3.2 for further explanation. Sizes represent the disk diameter.



e

! ’ b e et
18kV Xios i08vm GBB1IBY ¥ 2 / \ p aaaiaq

Seovm BBG1S

A ————

18kU XS0 Z0@rm BBB191 3 5G0um 998189




Chapter Three

dd=1.5 mm: the RPPs bear a kind of scar almost in the centre. The IR1 is much
larger and the RSs are present as a rectangular structure on the edge of the disk (Fig.
3.13E).

dd=2.0 mm: the IR2 has already appeared, as well as the k-plate (k), which stands
between the proximal parts of the paired RSs. Intermediate interradial scales are also
present.

dd=3.5 mm: more scales are added to the dorsal side and the RSs (triangular in
shape now) are almost fully divided by the, now, long, triangular k-plate, with the
exception of the distal part. The first DAP is squared and the spines look relatively
much smaller than observed in the early post-larva (Fig. 3.13G).

On the ventral side, specimens at 0.6 mm dd present a very large, flat tooth, broad
triangular in shape, bearing relatively large fenestrations. This kind of tooth is not
found in any of the ophiuroid post-larvae examined. The dental plate is very thin and
bar-shaped. A large block-like papilla (= buccal scale) is present covering the whole
of the oral slit. The adoral shield spines (ASS) are very large and slender, about one
quarter the size of the disk. The 1st VAP is long with a large notch on the lateral
sides and convex both the proximal and distal side. The oral shields (OS) are barely
seen on the interradial area (Fig. 3.13B).

dd=1.0 mm: the dental plate is thicker, the oral shield is triangular in shape and
the ASS stands next to the 2nd tentacle pore (TPo). The first VAP is bell-shaped now
(Fig. 3.13D).

dd=1.5 mm: a second mouth papilla (MP2) is present as a small scale-like process
on the proximal side of the jaw. The tooth is much stronger and the dental plate
larger. The oral shield developed into a fan-shaped structure (Fig. 3.13F). In the

subsequent development, the enlargement of the disk and a slight increase in size of

the MP2 takes place (Fig. 3.13H).

Superfamily Gnathophiuridea Matsumoto, 1915
Family Ophiactidae Matsumoto, 1915
Ophiactis abyssicola (M. Sars, 1861)
Post-larvae measuring 0.4 mm dd possess primary plates, three arm segments, and

the terminal plates (TP). The fenestration pattern consists of large holes of varying
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Figure 3.14. Post-larval development of Ophiactis abyssicola (A-L). A, C, E, G, I and K, dorsal
view; B, D, F, H, J and L, ventral view. A. 0.4 mm. Note the fenestration pattern of the primary
plates and the terminal plates (TP); B. 0.4 mm; C. 0.5 mm. Note the ‘bridges’ formed in the
central fenestrations of the primary plates; D. 0.5 mm; E. 1.0 mm; F. 0.9 mm. k = k-plates; M =

madreporite; TPo = 2nd tentacle pore; TS2 = 2nd tentacle pore scale. See Fig. 3.2 for further
explanation. Sizes represent the disk diameter.
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Chapter Three

size and shape (from a circular to elip‘soidal shape) spread throughout the plate, with
the fenestrations tending to be smaller on the borders. Each arm segment possess two
arm spines and the TP is fenestrated and bulb-shaped (Fig. 3.14A).

dd=0.5 mm: specimens possess a distinctive dorsal structure with respect to the
fenestration pattern. The pentagonal CPP bears large fenestrations in the central part
and smaller ones on the borders. A second layer is present over the central portion of
the CPP, showing bridges that divide the holes into two or three parts. The same
pattern is seen on the 5 RPPs. The RSs are small plates on each side of the arm,
alongside the edge of the disk. The IR1 is visible on the interradial part of the animal,
between the far corners of the adjacent RPPs (Fig. 3.14C).

dd=1 mm: both IR1 and IR2 are conspicuous on the disk, the RSs are much larger
and the k-plate (k) is present (Fig. 3.14E).

dd=1.4 mm: additional scales have been added among the dorsal plates, the
intermediate interradial plate between the k-plate and IR2, and the secondary
interradial plate (SIR) among the primary plates. The arm 'spines are much larger in
size (Fig. 3.14G). Some specimens at 1.4 mm dd have spines on the dorsal side of the
disk surface, which are short and conical, distributed on the corners of the plates (Fig.
3.140).

dd=1.8 mm: many more plates are present, mainly on the interradial region and
around the RSs, which are well developed and begin to be separated by the k-plate
(Fig. 3.14K). ‘

Ventrally, the earliest post-larva at 0.4 mm dd bears a large, spinulose tooth, with
large fenestrations. The dental plate is rectangular and one large, block-like papilla (=
buccal scale) is present. The 1st VAP is arrow-shaped, narrowed laterally where the
2nd tentacle pore (TPo) is inserted. The 2nd TPo bears one broad scale, as do the
remaining tentacle pores. The oral shield (OS) is present on each interradius and it is
relatively large. The madreporite (M) is well visible and is distinguished by a
protuberance (Fig. 3.14B).

dd=0.5 mm: not many changes occur from the former stage, only the teeth are
more spinulose and crown-shaped (Fig 3.14D).

dd=0.9 mm: the strong spinulose inferior teeth are more conspicuous. The 1st

mouth papilla (MP) is a prominent structure and the 2nd TPo is almost inside the oral
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Figure 3.14 (cont.). Post-larval development of Ophiactis abyssicola. G. 1.4 mm. Note that no
dorsal spine is present in this individual (compare with F ig. 12I); H. 1.1 mm; I. 1.4 mm. Note the

dorsal spines; J. 1.4 mm; K. 1.8 mm; L. 2.6 mm. See Fig. 3.2 for further explanation. Sizes
represent the disk diameter.
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slit, with its 1st tentacle scale covering it almost entirely. A second smaller scale can
be seen next to the 1st tentacle scale of the 2nd TPo. The 1st VAP changed in form
and has now a straight proximal and a pointed distal line. The OSs are rounded in
shape (Fig. 3.14F).

The 2nd TPo gets closer to the mouth as the animal grows (Fig. 3.14H), being
completely inside the mouth (Fig. 3.14J) at 1.4 mm dd. During this process the 1st
MP change in form from a large scale-like process to a blunted finger-like structure,
which is located deeper into the mouth slit (see Figs. 3.14 D, F, J and L). The 1st and
2nd TPo scales enlarge considerably in size as they migrate towards the mouth,
forming the 2nd and 3rd MP (figs. 3.14 D, F, J and L). The OSs assume a form of a
lozenge and the teeth the characteristic heart-shaped form (Fig. 3.14L).

Ophiactis balli (Thompson, 1840)

The smallest post-larva of O. balli sorted out from the Biofar samples is 1.0 mm
dd. Many plates are present dorsally at this size, the primary plates, with a rather
small, pentagonal in shape CPP and the 5 RPPs. The stereom structure of these plates
resembles that of Ophiactis abyssicola, with the central fenestrations being divided
by “bridges” of carbonate. Among these plates, the secondary interradial plates are
present, but are not large in size. On the interradial area, the IR1, 2 and some
intermediate interradial plates are present. The RSs are broader than larger and the k-
plates almost divide them completely. The general shape of the disk is circular. The
arms are well developed with broad DAPs occupying the entire width of the arm. The
arm spines are stubby, bearing small spinelets and are 3 in number on each side of
the arm joint in the proximal segments (Fig. 3.15A).

dd=1.5 mm: a large number of scales are present, but noticeably are the secondary
interradial plates, which are much larger in size and triangular in shape, with one of
the vertexes touching the IR3, both separating completely apart the adjacent radial
primary plates. The RSs are now almost as broad as large (Fig. 3.15C).

dd=2.0 mm: the RSs are longer than broad and almost completely separated by the

k-plate and other secondary plates. Several additional scales are present now (Fig.
3.15E).
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Figure 3.1S. Ophiactis balli post-larval development (A-F). A, C and E, dorsal view; B, D and F,
ventral view. A. 1.0 mm; B. 1.0 mm; C. 1.5 mm; D. 1.5 mm. Note the spines in the interradial
region; E. 2.0 mm; F. 2.0 mm. SIR = Secondary interradial plate; TPo = 2nd tentacle pore. See
Fig. 3.2 for further explanation. Sizes represent the disk diameter.
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At the ventral side, when the animal is 1.0 mm dd, the tooth is already a very
strong, bush-like process and only one strong MP is present, which is probably
derived from a large block-like papilla, similar to that found in the early post-larva of
Ophiactis abyssicola. The 2nd tentacle pore is located outside the mouth and bears
one large tentacle scale, the same occurring on the remaining pores. The 1st VAP is
diamond-shaped with the distal and proximal ends straight. The oral shields are
small, broader than long and rhomboid in shape (Fig. 3.15B).

dd=1.5 mm: the tentacle pore is almost inside the oral slit and its tentacle scale
bends over the oral gap. The 1st MP is located deeper into the mouth gap, with the
distal part beneath the tentacle scale cited above. The tooth is more solid, with a
tricuspid shape. The oral shield outline is more circular and some spinescan be seen
on the interradial areas of the disk. The ventral arm plates are almost rectangular in
shape. From this stage one can already distinguish some adult characters used in the
taxonomic Kkeys, e.g. the spines on the interradial areas of the disk, the mouth
structure and tentacle scales, and ventral arm plates (Fig. 3.15D).

dd=2.0 mm: the oral shields assume an ellipsoid shape, but no further

modifications appear to happen that differ from the former stage described (Fig.
3.15F).

Ophiopholis aculeata Linnaeus, 1758

The smallest individual found in the Biofar samples is 0.3 mm dd and is the
smallest ophiuroid post-larva obtained. The specimen presented the primary rosette
and 3 arm segments. The CPP is pentagonal, solid with almost no fenestrations, but
some smaller ones scattered on the borders of the plate and a trifid spine on each
corner. The 5 RPPs have similar structures, but with just one spine on each of the far
corners, between the two adjacent RPPs, and the one on the mid-distal edge, right on
the mid-line suture of the LAPs. It is worth noting that the dorsal spines on this
species seem to be inserted not on a single plate but on the mid-line suture between
two or more the plates, with each half inserted on each plate. The arm segments bear

2 spinulose spines on each side and the dorsal arm plates (DAP) possess a bifid spine

in the form of an H (Fig. 3.16A).
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Figure 3.16. Ophiopholis aculeata post-larval development (A-G). A-E, dorsal view; F-G, ventral
view. A. 0.3 mm; B. 0.6 mm; C. 1.0 mm: D. 1.5 mm. Note the arrangement of the disk spines; E.
Detail of the proximal arm segments and disk edge of a 3.0 mm post-larva; F. 0.7 mm; G. 2.0

mm. M = madreporite; T = tooth; Tpo = 2nd tentacle pore. See Fig. 3.2 for further explanation.
Sizes represent the disk diameter.
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dd=0.6 mm: a deposition of a secondary layer of carbonate changes the stereom
structure of the plate, forming some medium-sized fenestrations except in the very
centre of the primary plates. The IR1 is present and bears 3 spines distributed evenly
on the outer edge. On the arm, the 1st DAP has 4 spines on the distal edge and the
adoral shields are much larger and spinulose. Between the arm and the hisk lies the
paired RSs which are small and rectangular, with 2 spines (Fig. 3.16B).

dd=1.0 mm: the RSs and IR1s are much larger and the plates are increasingly
surrounded by spines. The IR2 appears on the interradial area (Fig. 3.16C).

As the animal grows, spines appear on the borders of the dorsal plates and also on
the DAPs (Figs. 3.16D) and the spines of the DAPs become scale-like, bordering the
distal and lateral edges of these plates (Fig. 3.16E).

On the ventral side, specimens at 0.7 mm dd show strong crown-shaped teeth and
spinulose inferior teeth. The dental plate is very wide and short imperforated plate.
No mouth papillae are present and the oral gap is strongly rounded. The 1st VAP is a
somewhat bell-shaped with the proximal side shorter and straight. The oral shield
(OS) is lozenge-shaped and the madreporite (M) can be recognized. Very small
fenestrations are present on the ventral surface (Fig. 3.16F). At 2.0 mm dd 3 spine-

like MP are present (Fig. 3.16G).

3.3. Discussion
3.3.1. General Comments

One of the primary aims of the present chapter is the accurate description of post-
larval ophiuroids. Post-larval ophiuroids can be collected in large numbers in certain
deep-sea areas at certain times of the year and many times they are put aside owing to
the lack of expertise to match them to the respective adult. Most taxonomic keys are
based on adult characters, which are not conspicuous or, more frequently, not well
developed in the post-larvae. Thus, different features must be found in order to
identify such organisms.

The study of morphological characteristics of early post-metamorphic stages
revealed that the primary plates are very important specific features. The relative size

of the central primary plate and its fenestration pattern and size are decisive in
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distinguishing congeneric species (see taxonomic discussion). Some of the arm
characteristics, as the size and shape of the adoral shield spines, dorsal arm plates and
arm spines and the size, shape and fenestration pattern of the terminal plates can also
be very useful (see O. albida). Other important characters include the dental plate,
teeth, mouth papillac and first ventral arm plate, but these appear ‘to be more
conservative within genera. However, the dental plate and the first ventral arm plate
showed a certain degree of variation within the genus Ophiura. This variation may be
important in grouping closely related congeneric species.

Despite the fact that Mortensen (1920) could not recognise the post-larvae of two
species of Amphiura, other authors detected that some congeneric species were
distinguishable from a very early post-metamorphic stage (Schoener, 1967, 1969;
Muus, 1981; Webb & Tyler, 1985). The present data show that more species may be
added to this list and evidence suggests all the species studied here have a distinct

and recognisable post-larva.

3.3.2. Taxonomic Discussion
Genus Ophiacantha

The mouth structure of O. abyssicola and O. bidentata is very similar in the
smaller individuals. The shape and arrangement of the dorsal plates are very useful in
the distinction of both species. O. abyssicola bears a pentagonal central primary plate
(CPP) with five spines distributed on the corners of the plate, whereas O. bidentata
possesses a irregular CPP (bean-shaped) with only two spines. As specimens get
larger the dorsal structure becomes unclear and at this stage the oral shield (on the
ventral side) is used for identification. In O. abyssicola the oral shield presents a

groove in the median region of the plate, while in O. bidentata this structure is wide

and plain, with no groove present.

Genus Ophiura

Post-larvae of O. sarsi and O. carnea are very similar under light microscopy.
However, early stages of O. carnea can be distinguished under SEM by the
fenestration pattern of the primary plates, which presents smaller fenestrations in the

centre of the plate and much smaller on the edges. The central primary plate is
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smaller relative to the disk diameter and the adoral shield spines are slender and
smooth, as opposed to the stubby and rough spines of O. sarsi. The relative size of
the central primary plate in O. carnea distinguishes it from O. [jungmani.

O. ljungmani can be distinguished from the former species by the much larger
fenestrations in the central parts of the primary plates, the more elong;ted terminal
plates, the somewhat ellipsoidal shape of the dental plate (as opposed to romboidal)
and the fenestration pattern and shape of the first ventral arm plate (in larger
specimens, >1 mm dd). Those characters and the relative larger central primary plate
also distinguish this species from O. albida.

O. albida is separated mainly by the presence of a bulb-shaped terminal plate and
the different stereom structure of the primary plates. The dorsal arm plates are also
much wider than long in this species.

O. scomba is distinguished mainly by the different stereom structure of the

primary plates.

Genus Ophiocten

O. gracilis is easily distinguished from all examined Ophiura species by the
presence of a very large central primary plate, with a characteristic fenestration
pattern composed of small fenestrations in the centre of the plate, which become
larger towards the edges and then very small again on the very edge of the plate. The
arm spines are much larger and the dorsal arm plates are more elongated.

Post-larvae of O. affinis can be distinguished from the former species of
Ophiurinae by the different fenestration structure of the primary plates, the early
appearance of the secondary interradial plate and by the presence of secondary scales

surrounding the primary plates in individuals larger than 1 mm dd.

Genus Ophiactis

O. abyssicola can be distinguished from O. balli mainly by the larger arm spines,
compared with the shorter and stubbier arm spines of O. balli. The radial shields are
much larger in O. abyssicola. O. balli has a more rounded disk shape and it bears a

larger number of plates on the dorsal surface of the disk.
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3.3.3. The Systematic Position of Ophiura affinis

The relationship between the genera Ophiura and Ophiocten has been questioned
by several authors (Mortensen, 19274, 1933, 1936; Clark & Courtman-Stock, 1976),
owing mainly to the characteristics exhibited by the species Ophiura affinis, which
is, apparently, intermediate between both genera. Paterson ef al. (1982) :iiscuss such
characters and, despite the fact that Ophiura affinis possesses only one major
characteristic in common with other Ophiura species (a well developed notch on the
disk margin above the arm bases), still consider the species as belonging to that
genus. The characteristics found in Ophiura affinis and species of Ophiocten, when
adult, include the emergence of the second oral tentacle pore outside the mouth, the
shape of ventral arm plates and the tentacle pore and scales of the proximal arm
segments. The only intermediate feature found in Ophiura affinis is the arm combs,
which show an intermediate feature between both genera, which together with the
notch over the arm bases, form the main characters that places O. affinis in the genus
Ophiura (Table 3.1). Yet, Paterson et al. (1982) argue that the status of O. affinis

needs to be checked after a revision is carried out for the genus Ophiura.

Table 3.1. Comparison of the main adult characters of Ophiocten, Ophiura affinis
and Ophiura (modified from Paterson et al., 1982). VAP = Ventral Arm Plate.

Characters Ophiocten Ophiura affinis Ophiura
Second tentacle pore Away from the mouth Away from the mouth  Via furrow into mouth
slit slit slit

Arm combs Simple Intermediate Well developed

Disk margin above arm Without a notch With a well developed With a well developed

bases notch notch

Shape of the VAPs Proximal side Proximal side Scallop-shaped,
produced, distal side produced, distal side irregularly hexagonal
rounded rounded : but not as Ophiocten

Proximal tentacle pore Large with only a small Large with only a small Large with many, often
and scales scale scale large, tentacle scales

The well-developed notch over the arm bases and the arm combs considered
typical of Ophiura, are subject to a great deal of variation within this genus and even
within the species Ophiura affinis. In his description of this species, Mortensen

(19274) describes the notch present over the arm as a small structure, containing only
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two small dorsal plates, whereas Paterson ef al. (1982) point out a well-developed
notch. Within the genus Ophiura, the notch can be well developed in species such as
Ophiura carnea, O. sarsi and O. [jungmani, or non-existent as in O. clemens, O.
nitida and O. violainae (see Paterson, 1985). The same degree of variation is found
for the arm combs, which can assume several shapes and disposition. in the genus
Ophiocten, there is, generally, no marked notch over the arm bases, but the same
variation in the arm combs do occur. Mortensen (1927a) points out that in Ophiocten
is present “...usually a continuous comb of papillac across the base of the arms”.
However, variation exists within the genus and some species show the arm combs
continuous over the arm bases as in Ophiocten sericeum and O. centobi (Paterson et
al., 1982); arm combs confined to each side of the arms, as in O. gracilis (Paterson et
al., 1982) and O. bisquamatum (Mortensen, 1936); or arm combs reduced or absent
as in O. hastatum (Paterson et al., 1982). The characters observed in Ophiura affinis
fall certainly within the range of variation found in both genera. Paterson ef al.
(1982) show the disposition of the arm combs in Ophiocten abyssicolum and argue
that “the form of the papillae on the dorsal arm plates may suggest an affinity with
Ophiura affinis”. The range of variation in the shape and disposition of the arm
combs is probably a good indicator of specific affinities, but not consistent enough to
describe different genera within the Ophiurinae. Characters such as the emergence of
the second tentacle pore and number of scales round this pore appear to be a reliable
distinguishing feature between Ophiura and Ophiocten.

The study of homologous structures in the post-larvae of Ophiura affinis and
Ophiocten gracilis showed that the similarity with Ophiocten is greater when
comparing the early states of some important features. Characters such as the shape
of the disk, tooth, dental plate and first ventral arm plate appear to be conservative
within both genera. Comparing these characters with those found in Ophiura sarsi
(Table 3.2), we found conspicuous differences, particularly in the shape of the dental
plate. In Ophiura sarsi it is a large and robust rhomboidal plate, whereas in
Ophiocten gracilis and Ophiura affinis, it is ellipsoidal and more delicate. The tooth
is also clearly different, with that of Ophiura sarsi being broader at the base. The
characteristics referred to Ophiura sarsi seem to agree with those of other post-larvae

of Ophiura species, e.g. Ophiura carnea (present work), O. ophiura and O. albida
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(Webb & Tyler, 1985; present work)‘ O. ljungmani presents an intermediate dental
plate morphology.

Table 3.2. Comparison of the main post-larval characters of Ophiocten gracilis,

Ophiura affinis and Ophiura sarsi. VAP = Ventral Arm Plate.

Characters Ophiocten gracilis Ophiura affinis Ophiura sarsi
Teeth long and slender long and slender broad triangular
Dental plate ellipsoid ellipsoid rhomboid
1¥ VAP shape convex proximally convex proximally pointed proximally
~ straight distally straight distally convex distally
1¥ VAP fenestration large fenestrations large fenestrations fenestrations with the
patern throughout the plate, but throughout the plate, same size and distributed
the distal part with small but the distal part with evenly throughout the
and regularly distributed small and regularly plate
fenestration distributed fenestration

General shape of disk with a sharp edge,  disk with a sharp edge, margins of the disk not

the disk and arms ~ with the arms do not with the arms do not sharp
appearing of issuing appearing of issuing arms appearing of issuing
from the dorsal side of  from the dorsal side of  from the dorsal side of
the disk the disk the disk

The first ventral arm plate in Ophiura affinis and Ophiocten gracilis are also very
similar (as is the distal part of the st VAP in O. l[jungmani), as well as the general
shape of the disk, mainly on the margins over the arm bases. In Ophiura sarsi, this
part is continuous with the dorsal side of the disk and in Ophiura affinis and
Ophiocten gracilis, it is clearly detached. Mortensen (1927a) points out that feature
as distinctive of Ophiocten, where “... the notch above the arms is feeble and the
arms thus not having the appearance of issuing from the dorsal side”. Ursin (1960)
found it very easy to distinguish small specimens of Ophiura affinis from those of
Ophiura albida, but could not discern Ophiura ophiura (= O. texturata) from O.
albida and suggested that juveniles of both species were probably similar. In fact,
small individuals of Ophiura are quite alike and difficult to recognize and the
observations made by Ursin (1960) reinforces the proposal that Ophiura affinis does
not belong to the genus Ophiura. Koehler (1897) described small individuals of O.
affinis as a new specie':sb'of Ophiocten (O. scutatum). Furthermore, the adult features
in common with the Ophiura described above are, therefore, considered as within the

range of variation found among congeners of Ophiocten. We propose that the post-
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larval characteristics described above and the adult features known for the species are

sufficient to consider Ophiura affinis as belonging to the genus Ophiocten.

3.3.4. Phylogenetic considerations

The ontogenesis of homologous structures in the ophiuroid post—lar\:ae can be of
good value in defining systematic and phylogenetic relationships among taxonomic
groups (Hendler, 1988).

The development of the mouth papillae differed among the different genera
studied. In the genera Ophiura and Ophiocten studied, the first mouth papilla (=
buccal scale) is block-like and remains as a large block-like papilla on the distal part
of the jaw in larger specimens. Additional mouth papillae are added in an
unidirectional sequence, from distal to proximal along the jaw. The same pattern of
development is observed for Ophiura ophiura (Webb & Tyler, 1985) and probably
for Ophiura scomba. The mouth papilla in these species appears to be serially
homologous. However, the fourth mouth papilla (and maybe the third) appears to
originate from the dental plate, in which case it should be homologous with the teeth
and not with the remaining mouth papillae. In this case we should consider it as an
infradental papilla. Despite being formerly considered to be present exclusively in
amphiurid species, Hendler (1998) found that an infradental papilla also occurs in the
species Ophiomusium lymani (an Ophiuridae). It is possible that this papilla occurs
all over the family Ophiuridae. However, a more careful examination of the
ontogenesis of these papillae is needed before a definite conclusion is drawn. The
general development of the oral frame within the family Ophiuridae seems to differ
among different genera. Schoener (1967, 1969) presented the oral frames of five
different genera of deep-sea species and they look very different from the
Ophiural Ophiocten examined.

The mouth papillae in both Ophiacantha abyssicola and Ophiactis abyssicola are
not serially homologous. In Ophiacantha abyssicola, the first mouth papilla is
formed by the adoral shield spine, which is serially homologous with the arm spines

(see Hendler, 1988), whereas the second mouth papilla formed on the jaw (not

shown).

83



Chapter Three

In Ophiactis abyssicola, the first mouth papilla is the buccal scale and the second
and third are the tentacle scales of the 2nd tentacle pore. The development of the
buccal scale in this species (and in Ophiactis balli) is similar to that of some
amphiurids. Hendler (1988) shows that in the Amphiura- and Amphioplus-groups the
buccal scale are not resorbed as in the Amphiodia- and Amphipholis-:groups. The
buccal scale in those groups suffers an enlargement of the proximal end in a similar
fashion to that of Ophiactis abyssicola. In O. abyssicola, the buccal scale develops
further to form an elongated mouth papilla placed deep inside the mouth.

The appearance of the secondary interradial plates in the Ophiuridae is also
interesting. In some species like Ophiura ljungmani (Schoener, 1967; present work),
O. scomba, Ophiura ophiura (Webb & Tyler, 1985), Ophiocten affinis and O.
gracilis, this plates appear earlier during the ontogenesis (< 1.5 mm dd). Later
appearance occurs in Ophiura sarsi, O. carnea and O. albida (Webb & Tyler, 1985)
(>2.5 mm dd).

Development of the oral frame in Ophiocten species appears to stop at an early
stage, similar to early ontogenetic stages in Ophiura. Could this represent a
paedomorphic feature in the evolution of the genus Ophiocten? How much these
events reflect phylogenetic affinities among the groups is not known yet, but these
characters could be useful data to test phylogenetic schemes of the Ophiuroidea, as
for instance that of Smith er al. (1995). Nevertheless, we think more data should be

gathered on the early development of ophiuroids in order to test such phylogenies.

3.3.5. Ecological Considerations

Gage (1994) emphasises that recruitment and age structure in deep-sea
populations are important in understanding processes structuring the highly diverse
communities found in the sediments and for the knowledge of rates of colonization to
predict recovery times from perturbations (see also Gage, 1991). The early phases in
the development of juveniles are then of great importance since such organisms are
subject to high rates of mortality (Gage, 1984; Tyler et al., 1991). Competition for
resources can also be important.

Recently, Medeiros-Bergen (1996) related different types of tooth with micro- and

macrophagous feeding habits in adult ophiuroids. The mouth structure of congeneric
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post-larvae is very similar and consefvative within the class. This suggests that
congeneric species could compete for the same kinds of food (some specimens were
observed to consume large food items, such as entire forams) and space, generating
an intra- and interspecific competition. In habitats containing several congeneric
species, settlement, recruitment and growth rates should be funaamental in
structuring those communities, controlling the relative abundance and distribution of
adult populations. Fast growth rates can be very important in avoiding predation by
larger organisms. Tyler et al. (1993) report that juveniles of the deep-sea urchin
Hemiaster expergitus are heavily preyed on by the seastar Bathybiaster vexillifer.
Gage & Tyler (1982c¢) point out that the deep-sea ophiuroid Ophiomusium lymani
grows rapidly to a larger size during the early post-metamorphic stages, probably to
avoid predation. Post-larvae of Ophiocten gracilis also grow very fast and start
gametogenesis very early during development (see chapter 6). As the animals grow
larger, they probably become less susceptible to predators after attaining a certain
size refuge. Gage (1984) points out that post-larvae and juveniles initially grow
quickly, but are subjected to high mortality through predation and resource

competition.
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Chapter Four — Early juvenile development of deep-sea asteroids of
the NE Atlantic Ocean, with notes on the juvenile bathymetric

distribution

4.1. Introduction

The taxonomic literature on the Class Asteroidea is vast, going back to the 18th
century (Linck, 1733; Linnaeus, 1758) though not really taking off until the 19th
century (Sars, 1875; Sladen, 1889). Taxonomic accounts are mostly based on adult
descriptions. Asteroid larvae (and echinoderm larvae in general) demand a
completely separate description, since these stages are so different from the adults
that they appear to be a completely different group (Mortensen, 1921; Strathmann,
1971).

Descriptions of juvenile forms are quite frequent among the main taxonomic
papers (Fisher, 1940; Madsen, 1961, 1981; Walenkamp, 1976; Clark, 1981, 1982,
1984; Clark & Downey, 1992). In those papers, the aim was to emphasise some of
the more important differences between juveniles and conspecific adults.
Nevertheless, many juveniles of known species have been described as new species,
causing taxonomic confusion (see Clark & Downey, 1992 for a series of Atlantic
species synonymized).

In general, descriptions involve animals with an arm radius R>5 mm. The
ontogenesis of very early juveniles (R<l mm) has sometimes been described from
specimens reared from larvae in the laboratory (Yamaguchi, 1973; Kométsu, 1975;
Oguro et al., 1976; McEdward, 1992). Such an approach was only made possible
after the discovery of the hormone responsible for the maturation of oocytes, 1-
methyladenine (Kanatani et al, 1969). As expected, the development of many
shallow water species are known, together with their recently metamorphosed
juveniles. The knowledge of culturing asteroid larvae has also helped in a better
understanding of juvenile ecology in allowing a positive identification of juveniles in
the field. Keesing er al. (1993) stress the importance of experience in culturing

methods for the distinction of different asteroid postlarvae in the field.
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Few asteroid species from the deep-sea have had the early post-metamorphic
development described (Sars, 1875; Sibuet & Cherbonnier, 1972). Juvenile ecology
is unknown. The method employed by the cited authors is to study an increasing
series of growth stages of specimens collected in deep-sea samples. This method is
the most feasible in such areas, since the culturing of deep-sea speci;s is not yet
routine or practicable. Deep-sea asteroid embryos were obtained in few occasions
(Young et al., 1996a) and juveniles have never been reared in the laboratory.

The importance of juvenile stages of marine invertebrates has already been
discussed in chapter 3. In shallow water, the juvenile development and ecology of
some of the more common and important sea stars are known: Asterias (Orton &
Fraser, 1930; Vevers, 1949; Barnes & Powell, 1951; Hancock, 1958; Loosanoff,
1964; Barker & Nichols, 1983; Nichols & Barker, 1984), Pisaster (Feder, 1970;
Sewell & Watson, 1993), Acanthaster (Yamaguchi, 1974; Zann ef al., 1987; Johnson
et al., 1991; Keesing & Halford, 1992), Mediaster (Birkeland et al., 1971), Linckia
and Culcita (Yamaguchi, 1977a, b), Coscinasterias and Stichaster (Barker, 1977,
1979), Asterina (Rumrill, 1989) and Patiriella (Chen & Chen, 1992).

In this chapter the post-metamorphic ontogenesis of 10 deep-sea asteroid species
collected during the Deep-Sea Benthic Ecology Programme of the Institute of
Oceanographic Sciences (IOS) in the Porcupine Seabight and Abyssal Plain is
described. They include the paxillosidans  Bathybiaster vexillifer, Psilaster
andromeda andromeda, Hyphalaster inermis and Porcellanaster ceruleus; the
notomyotids Benthopecten simplex simplex and Pectinaster filholi; the valvatid
Plinthaster dentatus; the velatid Hymenaster pellucidus (sensu Clark & Downey,
1992); and the forcipulatid Zoroaster fulgens. 1 also describe an early stage of
Plutonaster bifrons not shown by Sibuet & Cherbonnier (1972) and redescribe the
early development of the brisingid Brisingella coronata.

The taxonomy, distribution, abundance and importance of the deep-sea asteroids of
the NE Atlantic Ocean have been dealt with in several papers (e.g. Farran, 1913;
Cherbonnier & Sibuet, 1973; Sibuet, 1977, 1979, 1984; Gage et al., 1983; Harvey et
al., 1988). The asterozoan fauna of the Porcupine region forms the dominant element

of the megafauna. It is important also in structuring the benthic community. Rice et
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al. (1991) note the importance of Bbathybiaster vexillifer as a bioturbator of the
sediment in its search for infaunal prey (see also Tyler ef al., 1993).

The species studied in the present chapter are conspicuous elements of the
megafauna of the deep NE Atlantic. Gage et al. (1983) cite the ten most abundant sea
stars in the Rockall Trough, from which the post-metamorphic developrr;ent of eight
is described below. A great deal of the reproductive biology and possible mode of
development is also known for the species cited above, with the exception of
Plinthaster dentatus. Plutonaster bifrons is a seasonal breeder (Tyler & Pain, 1982a),
taking advantage of the seasonal pulse of phytodetritus in the NE Atlantic (Billett ef
al., 1983) to fuel reproduction. Evidence also suggests that P. bifrons benefits from
seasonal inputs of food falls of the blue whiting (Micromesistius poutassou) in the
Rockall Trough area (Tyler ef al., 1993).

Although seasonal breeding occurs in another species of sea star, Dytaster grandis
(Tyler et al., 1990), the most common mode of development in this group appears to
be lecithotrophic development, with an asynchronous reproduction throughout the
year. All the other sea stars cited above are likely to exhibit lecithotrophic
development including Bathybiaster vexillifer (Tyler et al., 1982a), Psilaster
andromeda (Tyler & Pain, 1982a), Hyphalaster inermis and Porcellanaster ceruleus
(P.A. Tyler, unpublished data), Benthopecten simplex and Pectinaster filholi (Pain et
al., 1982b), Hymenaster pellucidus (Pain et al., 1982a, as H. membranaceus) and
Brisingella coronata (Tyler et al., 1982¢). In Zoroaster fulgens the inferred mode of
development is also lecithotrophic, but this species may have a seasonal reproductive
cycle (Tyler et al., 1984b).

The primary aim of this chapter is to describe the early growth changes of the
species involved, showing how the different structures appear and change through
development. I also analyse fhe distribution of juveniles in the Porcupine area in

relation to that known for the respective adults.
4.2. Juvenile Development in Sea Stars

The main structures of interest for the study of juvenile asteroids are shown in

figure 4.1 and will be used in the descriptions given below.
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Figure 4.1. Morphological features of asteroid juveniles. A. Abactinal view; B.
Actinal view. AbP = abactinal plate; Adamb = adambulacral plate; Adsp =
adambulacral spine; ApSp = apical spine; Gran = granule; Hyd = hydropore; Ifsp
= inferomarginal plate spine; IP = inferomarginal plate; M = madreporite; Msp =
marginal spine; OP = oral plate; Sbsp = subambulacral spine; Smsp =
superomarginal plate spine; Sosp = suboral spine; SP = superomarginal plate; TP

= terminal plate;

Class Asteroidea Blainville, 1830

Order Paxillosida Perrier, 1884

Family Astropectinidae Gray, 1840
Bathybiaster vexillifer (Wyville Thomson, 1873)

R=0.84 mm (R/r=1.23). specimens have an overall body shape strongly
pentagonal. The abactinal surface is formed by irregularly shaped imbricating
paxillae, with one spine each. One superomarginal plate is present and in some of
them one spine is present. A bar-like terminal plate is present bearing a large central
spine with one small spine on each side. All spines are placed on a more dorsal
position on the tip of the plate. On the ventral side of the terminals, there are 4 large
spines, with the outer spines being the largest. A madreporite is visible on the

abactinal surface, off the edge of the interradial area of the disk (Fig. 4.2A).
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Figure 4.2. Bathybiaster vexillifer juvenile development (A-I). A-E, abactinal view; F-I, actinal
view. A. 0.84 mm; B. 1.22 mm; C. 1.92 mm; D. 2.58 mm. Note the epiproctal cone (arrow); E.

4.06 mm. See Fig. 4.1 for explanation. Sizes represent the arm radius (R).
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R=1.22 mm (R/r=1.42): the individual is stellate and the abactinal paxillae bear 3-
4 spines. The paxillar spines are small and spinulose and 3 in number. The
madreporite is larger and is closer to the margin (Fig. 4.2B).

R=1.92 mm (R/r=1.57): there are 4 superomarginal spines and 3 spines in the
terminal plates are conspicuously larger than the rest (Fig. 4.2C).

R=2.58 mm: the epiproctal cone is visible and the paxillar spines are arranged in
groups of 3-5. The dorsal surface of the terminal plates bears small spines. The
adambulacral spines are all short and spinulose (Fig. 4.2D).

R=4.06 mm: the epiproctal cone is very prominent and rows of spines can be seen
on the supero- and inferomarginal plates. The central spine of the terminal plate
points upwards (Fig. 4.2E).

On the actinal region, individuals at R=0.98 mm (R/r=1.34) possess a jaw longer
than broad with 1 apical spine and one pair of marginal spines running in the furrow
on the edge of the oral plate, with the distal-most being largest. Only 1 rather large
adambulacral spine is present in most of the adambulacral plates, but some bear 2
(Fig. 4.2F).

R=1.20 mm (R/r=1.43): most adambulacral plates bear 2 spines. The
inferomarginals possess 2 spines and a second inferomarginal begins to appear
between the first one and the terminal plate, bearing 1 spine (Fig. 4.2G).

R=1.82 mm (R/r=1.50): there are 3 adambulacral and 2 subambulacral spines.
Three marginal and 2 suboral spines are present in the oral plate. The fascioles are
very conspicuous on the interradial areas (Fig.4.2H).

R=5.50 mm: the paxillar columns have up to 4 blunt spinelets, which look
granuliform in appearance. The marginals are covered with granules. The spines of
the inferomarginals and actinal areas merge. Those spines are somewhat flat at the

top. Three adambulacral spines are present. The oral plate bears 2 apical, 5 marginal

and 2 suboral spines (Fig. 4.21).
Plutonaster bifrons (W. Thomson, 1873)

The post-metamorphic development of this species was described by Sibuet &

Cherbonnier (1972), although their specimens were all R<0.85 mm. I describe below
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Figure 4.2 (cont.). Bathybiaster vexillifer juvenile development. F. 0.98 mm; G. 1.20 mm; H. 1.82

mm; L. 5.50 mm. mo = mouth. See Fig. 4.1 for explanation. Sizes represent the arm radius ®).
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specimens at an earlier stage of development (R=0.50 mm), which is the smaller size
found in the sampling material.

At this stage, Plutonaster bifrons has a roughly rounded shape, with only the
terminal plates forming the marginal frame. The terminals are broad, with a slightly
concave proximal edge. They touch each other in the interradius, with the exception
of the interradius where the madreporite is being formed. The madreporite is clearly
visible in the interradius of the disk when R>0.56 mm. At R>0.56 mm the
madreporite does not separate the two adjacent terminals. The rounded madreporite
bears 5 spines, similar to the paxillar spines, arranged around the periphery. The
terminal plates at R=0.50 mm are armed with rows of large, subequal and fenestrated
spines running on the lateral part of the plate. A row of smaller spinulose spines run
throughout the dorsal side of the plate. Abactinal paxillae have up to 4 spines, each
spine dividing at the tip into several smaller branches (Fig. 4.3A).

Two adambulacral and 1 subambulacral spines are present on the actinal side.
Each oral plate bears 1 apical, 3 marginal and 2 suboral spines. All spines are

relatively elongated and spinulose. No actinal plates are present (Fig. 4.3B).

Psilaster andromeda andromeda (Miiller & Troschel, 1842)

R=0.80 mm (R/r=1.32). specimens have a strongly pentagonal shape. The
abactinal surface shows paxillae bearing at least 1 spine. However, individuals at this
size were critical point dried, which preserved the epidermis preventing the
examination of the abactinal paxillae in detail. Only 1 superomarginal is present,
with 1 or 2 spines. The terminal plate bears 3 spines placed dorsally, with the central
one being the largest, and 4 large spines ventrally, with the outer two being of a
slightly larger size (Fig. 4.4A).

R=1.08 mm (R/r=1.39): the abactinal paxillae have 1-2 spines, whilst the body
shape is slightly more stellate. The superomarginal have 3 spines and in the
terminals, 1 pair of small spines is present on each side of the 3 large dorsal spines.
The outer two ventral spines of the terminals are much enlarged and 1 additional
spine is present on the outer side of the terminals (Fig. 4.4C).

R=1.49 mm (R/r=1.57). the arms are larger owing to the growth of the

superomarginals and terminals. The abactinal paxillae bear 1 to 5 spines. The
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Figure 4.3. Plutonaster bifrons juvenile development (A-B). A. 0.50 mm, abactinal view; B. 0.50

mm, actinal view. See Fig. 4.1 for explanation. Sizes represent the arm radius (R).
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superomarginals possess 2 rows of 3 spines and the large spine of the Ist
inferomarginal is easily seen on the interradial region. The terminals are more
spinose with the addition of several new spines. There are 3 spines on each side of
the 4 large ventral spines, and 2 spines in between the dorsal and the ventral terminal
plate spines at the tip of the plate. A row of small spines is present, running through
the proximal edge of the dorsal surface of the terminals. A large, rounded
madreporite can be seen on the edge of the interradial area of the disk. The surface of
the superomarginal and terminal plates is granular (Fig. 4.4E).

R=2.30 mm (R/r=1.73). there is a prominent epiproctal cone. Some papulae can
be seen on the radial areas of the abactinal surface. The madreporite is relatively
small and the arms are longer owing to the presence of the 2nd superomarginal. This
plate bears 2 rows of 3 spines, whereas the 1st superomarginal plate possesses 2 rows
of 4 spines (Fig. 4.4G).

R=4.55 mm (R/r=2.20): seven marginals are present, decreasing in size towards
the tip of the arm. The terminals are much enlarged with a coarse granuliform aspect
(Fig. 4.4H). Many papulae are present on the abactinal areas at the base of the arms.

The actinal surface of specimens at R=0.75 mm (R/r=1.26) shows 1 apical spine
and 2 suboral spines on the oral plate. At least 1 large adambulacral spine is present.
One inferomarginal plate is present, bearing 1 spine (Fig. 4.4B).

R=1.16 mm (R/r=1.42): three suboral and 3 adambulacral spines are present. The
inferomarginal spine is much enlarged and 2 additional spines are present in this
plate (Fig. 4.4D).

R=1.84 mm (R/r=1.66): the number of apical spines increases to 2. There are 2
rows of 4 suboral spines on the oral plate running parallel to each other. Five
adambulacral and 3 subambulacral spines are present in the furrow region. A 2nd
inferomarginal is present bearing 1 large spine and 2 smaller ones. The Ist
inferomarginal has 3 large spine and several smaller ones (Fig. 4.4F).

R=4.26 mm (R/r=2.16): the 2 apical spines are flattened. The inferomarginals
have a granuliform aspect and bear 1 larger and several smaller spines, with the
exception of the 1st, which has 3 large spines (Fig. 4.41).

R=14.20 mm: the 2 apical spines on the oral plate are spatulate and up to 7

adambulacral spines are present. The apical spines remain the same shape up to a size
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Figure 4.4. Psilaster andromeda andromeda juvenile development (A-D). A C E, G and H,
abactinal view; B, D, F and I, actinal view. A. 0.80 mm; B. 0.75 mm; C. 1.08 mm; D. 1.16 mm;
E. 1.49 mm; F. 1.84 mm. Note the enlarged inferomarginal plate spine (arrow). See Fig. 4.1 for

explanation. Sizes represent the arm radius (R).



15kV X568 S8eovrm BBBEB39

ey

iskd wks | SPEhnLBB0834 15kU X3S SeBLm BEOO3P







Figure 4.4 (cont.). Psilaster andromeda andromeda juvenile development. G. 2.30 mm; H. 4.55
mm; L. 4.26 mm. Note the enlarged inferomarginal plate spines (arrow). EC = epiproctal cone.

Sizes represent the arm radius (R).
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of R=62.60 mm, only increasing in size. Clark & Downey (1992, Fig. 15a) depict
much broadened apical spines. This probably happens later in the development, since
specimens examined up to R ~ 62 mm show 4 distinct spatulate spines, but not to the

degree shown by Clark & Downey (1992).

Family Porcellanasteridae Sladen, 1883
Hyphalaster inermis Sladen, 1883

Individuals of Hyphalaster inermis at R=1.35 mm (R/r=1.19) (Fig. 4.5A) have a
strongly pentagonal and flattened body shape. The abactinal surface is large, with
large polygonal and fenestrated plates, including the primary interradials, in the
centre of the disk. The plates become smaller and rectangular in shape towards the
edge of the disk. The arrangement of the abactinal plates is similar to that of tiles in a
roof, with the plates imbricating. Only the 5 terminals are present on the edge of the
disk, which are moderately thick and very elongated, with a concave proximal
margin. The adjacent terminals meet in the interradial region. Each terminal plate
bears a medium-size central spine pointing abradially and 3 smaller spines on each
side on a more ventral position, 1 closer to the central spine and the other 2 closer to
the interradius (see Fig. 4.5B). A hydropore is present on the edge of the abactinal
region, next to the point of connection between 2 adjacent terminals (Fig. 4.5A).

R=3.74 mm (R/r=1.56): the primary interradials are still visible in the centre of
the abactinal area, including a central plate. A row of small plates running on the
interradia is present bearing one small spine. The abactinal surface of the arms is
formed by small plates. All abactinal plates bear 1-2 short spines. Terminals, and
their respective spines, are much enlarged, with 4 spines on each side ventrally. The
most central plate is the largest. Two superomarginals are present, with the first being
much larger and block-like. No spines are present in the superomarginals.
Madreporite large and placed on the edge of the abactinal surface next to the 1st
superomarginals (Fig. 4.5C).

R=4.38 mm (R/r=1.77): the central portion of the abactinal surface bears a cluster
of small spines. Small plates can be seen scattered all over the surface among the
larger plates. The interradial area with several small plates and small spines, gives a

very rugose aspect to this area. Three superomarginals are present and a 4th is
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Figure 4.5. Hyphalaster inermis juvenile development (A-E). A, C and E, abactinal view; B and D,
actinal view. A. 1.35 mm; B. 1.43 mm; C. 3.74 mm. Note the central plate (arrow); D. 3.06 mm;
E. 438 mm. crib = cribriform organ; EC = epiproctal cone; J = jaw. See Fig. 4.1 for further

explanation. Sizes represent the arm radius (R).
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Chapter Four

beginning to form on the inner part between the terminal plate and the 3rd
superomarginal. On the interradius, between the superomarginals, a row of spines is
present on each side, possibly representing the primordia of the cribriform organ
(Fig. 4.5E).

On the actinal surface at R=1.43 mm (R/r=1.23), all plates are flattened, with the
exception of the broad jaws, which are raised in the central portion. Each oral plate
bears a large and flattened apical spine and 2 smaller scale-like marginal spines on its
lateral edge. Only 2 adambulacral plates are present, each with 2 flattened spines,
with the distal-most the largest (Fig. 4.5B).

R=3.06 mm (R/r=1.34): four marginal and 3 adambulacral spines are present. All
furrow spines appear more elongated. The Ist inferomarginal is large and bears 1
small spine. The 2nd inferomarginal is starting to appear in the inner part, between
the 1st and the terminal. The actinal plates are rectangular in shape (Fig. 4.5D).

At a later stage (R=8.70mm), the arms are more elongated and the epiproctal cone
is present. The cribriform organs are well-developed and 5 in number in each

interradius. The apical spine is more elongated.

Porcellanaster ceruleus Wyville Thomson, 1877

R=0.47 mm (R/r=1.22): individuals are pentagonal in shape. The abactinal surface
has 5 large developing interradial plates. These plates have an irregular shape with
very large fenestrations. Some are still only fused bars. On the edge of the disk only
the terminals are present. They are thin with a very thin and long central spine, with
spinelets along its edge. Four small spines are found on each side of the central spine
of the terminals. The terminals also bear two large spines at a more ventral position,
so that when looking from above it is possible to see 3 long, thin spines in each
radius (Fig. 4.6A).

R=0.54 mm (R/r=1.24): the abactinal plates assume a more round outline and
fenestrations can be seen on the terminals. The number of spines on the terminals
increases to up to 6 on each side. The hydropore is present in the interradial area
(Fig. 4.6C).

R=0.92 mm (R/r=1.22): radial plates are added to the abactinal surface. The

abactinal plates are rounded and the fenestrations are relatively smaller owing to the
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Figure 4.6. Porcellanaster ceruleus juvenile development (A-)). A, C, E, G, I and J, abactinal view;
B, D, F and H, actinal view. A. 0.47 mm; B. 0.52 mm; C. 0.54 mm; D. 0.53 mm; E. 0.92 mm; F.
1.05 mm. Note the presence of forams in B and D. inter = interradial plate. See Fig. 4.1 for

further explanation. Sizes represent the arm radius (R).
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Chapter Four

deposition of calcium carbonate. The terminals and spines are much enlarged and a
round notch is present between adjacent terminals. The madreporite is large and
placed between 2 terminals. The ventral side of the terminals is more protuberant
with the place of insertion of the 2 ventral spines being easily seen from above (Fig.
4.6E).

R=1.40 mm (R/r=1.73): a central primary plate starts forming. The arms are larger
owing to the presence of the 1st superomarginals. The terminals are very large and
the 3 spines are very long and almost solid (Fig. 4.6G).

R=2.16 mm (R/r=1.96): animals have more plates added to the abactinal surface
of the arms. The 2nd superomarginals are already present (Fig. 4.61).

As the animals grow, new plates are added to the abactinal surface. In animals
with stomachs full of sediment, the ratio R/r can be small even in larger specimens
(compare Figs. 4.61 and K).

The actinal surface of individuals at R=0.52 mm (R/r=1.24) shows a single apical
spine on the mid-line suture of 2 paired oral plates. In addition, each oral plate bears
2 marginal spines with the distal-most the largest. Only 1 adambulacral spine is
present. All spines of the actinal surface are relatively long and thin, with small
spinelets along their length (Figs. 4.6B and D).

R=0.70 mm (R/r=1.20): there are 2 adambulacral spines and at R=1.05 mm
(R/r=1.41) all the furrow spines become thicker (Fig. 4.6F).

R=1.67 mm (R/r=2.18): the furrow spines are slightly flattened. The 1st
inferomarginal is present (Fig. 4.6H).

R=4.40 mm: the epiproctal cone and the cribriform organs start forming.
However, the cribriform organ present on the same interradius of the madreporite is
already well-developed. The single apical spine of the jaws is thicker and 3 subequal
and conical marginal spines are present.

R=6.00 mm: the epiproctal cone is more elongated and all 5 cribriform organs are

fully-de.veloped (one on each interradius).
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Figure 4.6 (cont.). Porcellanaster ceruleus juvenile development. G. 1.40 mm; H. 1.67 mm; L 2.16

mm; J. 2.31 mm. Note the central plate (arrow). See Fig. 4.1 for explanation. Sizes represent the
arm radius (R).
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Order Notomyotida Ludwig, 1910
Family Benthopectinidae Verrill, 1899
Benthopecten simplex simplex (Perrier, 1881)

R=0.83 mm (R/r=1.43): animals have a circular disk with the terminals issuing
from it. The terminals do not meet in the interradial area. Instead, a large interradial
plate is present bearing 1-2 spines. In the centre of the abactinal surface, a central
primary plate is present possessing a moderately large central spine and a smaller
spine on the periphery. The terminal plate is strong and block-like, with a well-
developed spine armature composed of 3 spines located more dorsally, 2 in the
middle (largest) and 4 ventrally (inner 2 larger). The dorsal surface of the terminals is
very granular (Fig. 4.7A).

R=0.97 mm (R/r=1.44): new plates are added to the abactinal surface. The central
primary plate bears a large central spine surrounded by 5 smaller ones. Primary
interradials have 2 spines of different sizes. The remaining abactinal plates have only
1 spine. The terminals are larger, with a concave proximal margin and meet in the
interradial area. An extra spine is present on the terminal plate on each side of the 2
largest (Fig. 4.7B).

R=1.41 mm (R/r=1.61): the arms are larger and the proximal margin of the
terminals is strongly concave. A pair of spines is present between the 2 largest spines
of the terminals, but in a slightly dorsal position. An odd superomarginal is present
on the interradial area bearing a moderately small spine (Fig. 4.7C).

R=1.84 mm (R/r=1.91): the central primary plate is still visible bearing 1 central
spine surrounded by 6 smaller ones. The spine on the odd superomarginal is very
large in size (over 0.65 mm) and points upwards. Three additional smaller spines are
present on the base of each odd superomarginal spine. The 2nd superomarginal bears
2 spines and the 3rd superomarginal is starting to appear between the 2nd and the
terminal. The appearance of the marginals in this species is on the side of the arm and
not intem‘éHy as in other species (e.g. Hyphalaster inermis). The 3rd superomarginal
possesses | spine at this stage (Fig. 4.7D).

R=5.86 mm (R/r=3.53): the large erect spines of the odd superomarginals are

easily seen. The remaining superomarginals have 2 spines, one being larger and

pointing abradially (Fig. 4.7E).

104



Figure 4.7. Benthopecten simplex simplex Juvenile development (A-I). A-E, abactinal view; F-1,
actinal view. A. 0.83 mm; B. 0.97 mm; C. 1.41 mm; D. 1.84 mm; E. 5.86 mm. Note the central

plate (arrow). inter = interradial plate; SPsp = odd superomarginal plate spine. See Fig. 4.1 for
further explanation. Sizes represent the arm radius ®).
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On the actinal surface at R=0.75 mm (R/r=1.39), the jaws are rectangular, with 1
apical and 2 marginal spines on each oral plate. Only 1 adambulacral spine is present.
The furrow spines are rather large and spinulose (Fig. 4.7F).

R=1.02 mm (R/r=1.60): the apical spines are larger in size and cover the mouth.
Three marginal spines are present on the furrow and 1 suboral spine on the distal
margin of the oral plate. One adambulacral and 1 subambulacral spines are present
(Fig. 4.7G).

R=3.25 mm (R/r=2.47): two elongated adambulacral and 1 elongated
subambulacral spines are present. The suboral and subambulacral spines form a very
conspicuous row along the margin of the disk pointing abradially. An odd
inferomarginal bearing 3 spines is present on each interradius. The remaining
inferomarginals have 2 spines (Fig. 4.7H).

R=6.12 mm (R/r=3.55): three to four marginal spines are present on the furrow
and a 2nd suboral spine is found on the proximal edge of the oral plate, just above the
apical spine. Adambulacral plates have 3 spines. Two subambulacral spines are
present. The odd inferomarginal has 5 spines, while remaining inferomarginals have
2 spines (Fig. 4.71).

When the animal attains a much larger size, R=14.00 mm, the abactinal plates
have up to 3 spines and the supero- and inferomarginals bear l/large spine. At
R=17.50 mm, 4 adambulacral spines are present and the inferomarginals bear 1 large
and 1 accessory spine. The odd inferomarginal has small spinelets. When R=36.00

mm, the accessory spine of the inferomarginals is % of the main spine of the plate.

Pectinaster filholi Perrier, 1885

R=0.98 mm (R/r=1.47): the general shape of the body is similar to that of
Benthopecten simplex simplex at a similar size. The disk is circular with a large
rounded central plate bearing 4 small spines, and 5 large interradial plates bearing up
to 5 small ;pines. Between the interradials, 1 or 2 radial plates are present, each
possessing only 1 spine. The interradials touch the central plate in the proximal side
and on the opposite side separate 2 adjacent terminals. The terminals are stubby and

block-like, almost rectangular in shape bearing a strong spine armature on their tips,
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Figure 4.7 (cont.). Benthopecten simplex simplex juvenile development. F. 0.75 mm; G. 1.02 mm;

H. 3.25 mm; L 6.12 mm. See Fig. 4.1 for explanation. Sizes represent the arm radius (R).
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with 4 medium-sized spines ventrally, 2 larger in the middle area and 4 on a more
dorsal position. The dorsal surface of the terminals has a granular aspect (Fig. 4.8A).

R=1.83 mm (R/r=2.01): the central plate is still visible and it is ornamented with 1
central spine surrounded by up to 9 spines. The interradial plates still occupy a
peripheral position separating the 2 adjacent 1st superomarginals. The distal-most
spine of the interradial plate points abradially. The arms are larger, with one
superomarginal bearing a spine and the terminals having a concave proximal margin.
Terminals have 3 spines on each side, plus the 2 larger ones in a more central
position. Smaller spines, on the sides and the centre of the plate, are also present
(Fig. 4.8C).

R=3.60 mm (R/r=2.68): the abactinal paxillae are rounded and slightly convex
and bear a larger central spine surrounded by smaller ones. The interradial plates still
occupy the edge of the disk, but they do not separate the 2 adjacent 1st
superomarginals, which now touch in the middle of the interradial area (Fig. 4.8E).

R=4.30 mm (R/r=2.91): the structure of the paxillae and superomarginals is easily
seen. Five superomarginals are found, with the 5th being issued on the lateral part of
the arm, between the terminal and the 4th superomarginal. Superomarginals bear 3
spines, with the central one the largest and 2 rather small ones (Fig. 4.8G).

On the actinal side at R=1.82 mm (R/r=1.90), the oral plates have 1 apical, 4
marginal and 1 suboral spines. The suboral spines are placed proximally and distally
on the oral plate. In the furrow, 3 adambulacral and 1 subambulacral spines are
present. Only 1 inferomarginal plate is present bearing 2 spines, the distal one the
largest. Adjacent inferomarginals do not touch in the middle of the interradial area
(Fig. 4.8B).

R=2.79 mm (R/r=2.14): three suboral spines are present, but in some oral plates a
4th spine may also be present. The adambulacral plates bear tip to 4 spines. First
inferomarginals touch in the middle of the interradial area, each possessing 3 spines,
with the centréi'the largest. The second interradial has 1 spine (Fig. 4.8D).

R=5.56 mm (R/r=3.41): five marginal and up to 5 adambulacral spines are
present. There are 4 suboral spines, with the 2nd nearest to the distal margin the
largest. The surface of the inferomarginals has a granular aspect. First inferomarginal

bears 4 spines and several smaller spines on the surface (Fig. 4.8F).
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Figure 4.8. Pectinaster filholi juvenile development (A-G). A, C, E and G, abactinal view; B, D and
F, actinal view. A. 0.98 mm; B. 1.82 mm; C. 1.83 mm; D. 279 mm; E. 3.60 mm; F. 5.56 mm; G.
4.30 mm. cp = central plate; inter = interradial plate; J = jaw; mo = mouth; rad = radial plate;

SPsp = superomarginal plate spine. See Fig. 4.1 for further explanation. Sizes represent the arm
radius (R).
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When R=8.00 mm, the five primary interradials are still visible on the edge of the
abactinal area. At R=11.00 mm, these plates are located more to the centre of the disk
owing to the addition of new abactinal plates between the primary interradials and
the marginals. These are 9 in number and bear a single large spine, plus small

spinelets. Only 1 subambulacral spine is present. At R=13.00 mm the number of

adambulacral spines increases to 5.

Order Valvatida Perrier, 1884
Family Goniasteridae Forbes, 1841
Plinthaster dentatus (Perrier, 1884)

R=1.05 mm (R/r=1.50): animals bear several abactinal plates from which the
central one is conspicuous, although the interradials are not easily distinguished. The
terminals are stubby with a convex distal margin and 4 thick, triangular spines placed
ventrally and a single smaller central spine at a more dorsal position. The terminals
do not meet in the interradial area. The 1st superomarginals are beginning to be
formed next to the terminals (Fig. 4.9A).

R=2.28 mm (R/r=1.52): the abactinal plates are enlarged and bear a small raised
area in their centre. A number of small granules are present surrounding some of the
abactinal plates. The madreporite occupies an interradial position and bears a long
furrow. The 1st superomarginal is large with 2 small, knobby spines and a granular
surface. The 2nd superomarginal is beginning to form in the middle of the area
between the terminal plate and the 1st superomarginal. The terminal is a strong,
triangular plate with 4 large spines on each side on the actinal side, increasing in size
outwards. A central spine is present on the tip of the terminal plate (Fig. 4.9C).

R=3.60 mm (R/r=1.66): the central plate is still visible. The abactinal plates,
mainly in the central portion, are surrounded by granules. The madreporite develops
another furrowdar_ld now has a cross shape. The 1st superomarginal bears 3 knobby
spines and the second 2. The 3rd superomarginal is present as a small plate (Fig.
4.9E).

On the actinal side at R=1.19 mm (R/r=1.49), the jaws are rectangular in shape.
Each oral plate bears a large, triangular apical spine and smaller marginal spines

running in the furrow, increasing in size distally. Only 1 adambulacral plate is

110



Figure 4.9. Plinthaster dentatus juvenile development (A-E). A, C and E, abactinal view; B and D,
actinal view. A. 1.05 mm; B. 1.19 mm; C. 2.28 mm; D. 2.27 mm; E. 3.60 mm. J = jaw. See Fig.
4.1 for further explanation. Sizes represent the arm radius ®).
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present bearing 2 spines, with the d‘istal one the largest. The 1st inferomarginal plate
is present in the interradial area. The terminals are fused on the ventral side and only
a small orifice is present between the two most central spines (Fig. 4.9B).

R=2.27 mm (R/r=1.65): the oral plates bear 5 marginal and 1 suboral spines.
Three adambulacral and 1 subambulacral spines are present. The 1st inferomarginal
is very large bearing 3 medium-size stubby spine (Fig. 4.9D).

At a later stage, R=7.60 mm, all marginals bear a cluster of knobby granules. The
actinal area is also covered with granules. The adambulacral plates bear 3-4 finger-
like spines, 1 main subambulacral spine and a number of subambulacral granules. A

row of stubby suboral spines are present on the oral plate.

Order Velatida Perrier, 1893
Family Pterasteridae Perrier, 1875
Hymenaster pellucidus Thomson, 1873

The presence of a thin supradorsal membrane and large spines on the abactinal
surface made the description of this species rather difficult. The description of the
abactinal plates was not possible. Also, at fixation, Hymenaster pellucidus specimens
tend to curl and change the general shape of the body. For this reason, measurements
of the body are estimates and some could not be measured.

Individuals with r=0.48 mm show an abactinal surface with a thin supradorsal
membrane and 1 paxillar column in each ray bearing at least 7 large, thin spines with
a solid structure. These form the osculum (Fig. 4.10A).

The structure of the tip of the arm can be seen in figure 4.10c. The individual
(r=0.65 mm) has a large terminal plate with a concave proximal margin bearing a
group of large spines, similar to the paxillar spines. Each side of the terminals
possess at least 5 spines (Fig. 4.100C).

At R=1.57 mm (R/r=1.98), the structure of the abactinal plates can be seen in the
centre of the plage; They are rounded and bear many fenestrations (Fig. 4.10E).

The actinal side at R=1.02 mm (R/r=2.24) show the oral plates bearing 1 large and
acute apical spine. Only 1 acute adambulacral spine is present. The number of
actinolateral spines is at least 6, with the size increasing from the proximal to the

middle and then decreasing in size again towards the tip of the arm (Fig. 4.10B).
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Figure 4.10. Hymenaster pellucidus juvenile development (A-F). A, C and E, abactinal view; B, D
and F, actinal view. A. r=0.48 mm; B. R=1.02 mm; C. r=0.65 mm; D. R=2.43 mm; E. R=1.57
mm. Note the abactinal plate (arrow); F. r=1.09 mm. mo = mouth; PC = paxillar column; SM =

supradorsal membrane; sp = spine; tf = tube foot. See Fig. 4.1 for explanation.
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Chapter Four

At R=2.43 mm (R/r=2.49), a suboral spine is present next to the apical spine,
being slightly larger. There are 2 long adambulacral spines on the furrow (Fig. 4.10D
and F).

When the animal attains R=16.70 mm, the paxillae bear 3 spines and the oral

plates have 4 short and conical marginal and 2 stout suboral spines. Three

adambulacral spines are present.

Order Forcipulatida Perrier, 1884
Family Zoroasteridae Sladen, 1889
Zoroaster fulgens Thomson, 1873

Figures 4.11A and 4.11C show 2 individuals of Zoroaster fulgens at R=0.53 mm
(R/r=1.60) and R=0.58 mm (R/r=1.46), respectively. The specimen in figure 4.11A
was critical point dried, which preserved the skin over the skeleton quite well, hiding
the plates from view. In this specimen, we note six knobs on the abactinal surface (1
central and 5 interradial) and a terminal plate with 4 stubby spines.

The individual in figure 4.11C was air dried. Using this method, the skin is pulled
away, revealing details of the skeleton. In this figure we notice that the 6 knobs are 6
stubby spines placed on the rounded central primary plate and on each interradial
plate. The terminals are somewhat spherical and do not meet in the interradial area.
Each terminal bears 4 large and thick spinulose spines.

R=0.78 mm (R/r=1.43): the spines on the primary platés are larger in size, and 5
radial plates are present. Some of the radials bear a single small spine. The 1st
superomarginal is present on the sides of the terminals, bearing 1 spine (Fig. 4.11E).

R=1.05 mm (R/r=1.79): the central primary plate has a pentagonal shape, and the
interradials are polygonal. Adjacent terminals are still separated by the interradials.
The proximal margin of the terminals is almost straight and some small spines are
present. The 4 primary spines of the terminals are much enlarged (Fig. 4.11F).

R=1.59 mm (R/r=1.95): a large rectangular plate is present between 2 interradials,
with no other equivalent on the other radii. The spines of the interradials are very
large. The terminals are strongly circular and a row of small spines is visible on their

periphery, right above the 4 large spines. Two superémarginals are present, each with

a small spine (Fig. 4.11H).
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Figure 4.11. Zoroaster fulgens Jjuvenile development (A-L). A, C, E, F, H, J and L, abactinal view;
B, D, G, I and K, actinal view. A. 0.53 mm; B. 0.54 mm; C, 0.58 mm; D. 0.80 mm; E. 0.78 mm.
cp = central plate; inter = interradial plate; J = jaw; rem? = remnants of lecithotrophic egg (9);

sens = sensory podium,; tf = tube foot. See Fig. 4.1 for further explanation. Sizes represent the
arm radius (R).
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R=2.04 mm (R/r=2.45): the spine of the central primary plate is very large and
strong, and it is surrounded by 5 smaller spines (about half the size). The central
spine of the interradials is not as large and it is also surrounded by smaller spines.
The terminals change in shape from circular to more elongated, with a slightly
concave proximal margin. Of the 4 primary spines of the terminals, the 2 internal-
most are very enlarged, almost twice as large as the external ones. Smaller spines are
present all over the perimeter of the plate. Three small spines are also present on the
proximal edge of the terminals. The 1st superomarginal is larger than the 2nd and
bears 2 small spines (Fig. 4.11J).

R=3.75 mm (R/r=3.15): a markedly raised central portion of the central primary
plate can be seen, where the central spine is inserted. The abactinal plates of the arms
form a single row, each bearing 3 spines arranged transversally. A large radial plate
on the base of the arm is present with 2 large spines and some smaller ones
surrounding them. The terminals are large and their proximal margin is strongly
concave. Four superomarginals are present with 2 small spines each (Fig. 4.11L).

On the actinal side, the critical point dried specimens, at R=0.54 mm (R/r=1.41),
show no spines. Three pairs of tube feet are present plus the unpaired sensory podia
(Fig. 4.11B).

R=0.80 mm (R/r=1.53): the jaw is rectangular in shape and each oral plate bears
an apical and a suboral spine on the opposite end, both placed on the adradial corner
of the plate. Only 1 adambulacral and 1 subambulacral spines are present. The
subambulacral spines point abradially (Fig. 4.11D).

R=1.25 mm (R/r=1.89): the apical spines are larger and 2 fully formed
adambulacral plates are present. A 3rd plate is starting to develop on the internal side
between the terminal plate and the 2nd adambulacral. A groove is present in the
central area of the terminals, probably as a channel for the sensory podia (Fig.
4.11G).

R=2.46 mm (R/r=2.50): the spines of the jaw are larger. The small
inferomarginals can be seen next to the adambulacrals, but they do not meet at the
interradial area (Fig. 4.111). R=3.74 mm (R/r=3.40): the suboral spines are much

enlarged and are larger than the apical spines. The arms are long and the terminals
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Figure 4.11 (cont.). Zoroaster filgens juvenile development. F. 1.05 mm; G. 1.25 mm; H. 1.59 mm;
L 2.46 mm; J. 2.04 mm; K. 3.74 mm; L. 3.75 mm. ¢p = central plate; odd rad = odd radial plate;
rad = radial plate. See Fig. 4.1 for further explanation. Sizes represent the arm radius R).
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enclose around 4 adambulacral plates. The inferomarginals bear 1 rather large spine
(Fig. 4.11K).
Later, animals at R=5.00 mm have 2 adambulacral and 1 subambulacral spines. At

R=26.00 mm large duck-billed pedicellariae can be seen on the furrow spines.

Order Brisingida Fisher, 1928
Family Brisingidae G.O. Sars, 1875
Brisingella coronata (G.O. Sars, 1872)

All specimens of B. coronata were critical point dried, which made the description
of the abactinal plates impossible. The number of arms varied between 8-10 in the
specimens described and were usually broken.

The abactinal surface of specimens with disk diameter (D) of 2.08 mm bear 1
large central spine and large interradial spines. Smaller spines can also be seen
scattered over the surface (Fig. 4.12A). Crossed pedicellariae are present on the base
of the large spines and also on the abactinal surface, close to the base of the arms
(Fig. 4.13A).

D=2.27 mm: two large spines can be seen in some interradius. The arms are
broader at the bases, tapering towards the tip (Fig. 4.12B). The tip of the arms are
bifurcated with 1 spine issuing from each branch (Fig. 4.12C). The abactinal surface
of the arms are covered by crossed pedicellariae (Fig. 4.13B). The spines are long
and point abradially, having large clusters of crossed pedicellariae at their bases (Fig.
4.13C). The pedicellariae are small (~70 um long and 24 pum in width) with the distal
edge broadened and with a serrated border (Fig. 4.13C).

D=2.40 mm: a ring of small spines is visible around the edge of the disk. A
madreporite is present on the edge of the disk in the interradius (Fig. 4.12D).

D=6.81 mm: the large central spine is still visible, as are the interradial spines.
Small and abundant spines scattered all over the abactinal surface. The large
madreporite is f(;und at the edge of the disk. Crossed pedicellariae are scattered all
over the abactinal surface (Fig. 4.12E).

On the actinal side, the oral aperture at D=1.71 mm is very large and circular, with
a large oral membrane covering most of the oral aperture. The disk being formed

basically by the vertebrae of the arms. On the interradial area a jaw is present with 2
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Figure 4.12. Brisingella coronata juvenile development (A-I). A, B, D and E, abactinal view; C,
lateral view; F-I, actinal view. A. 2.08 mm; B. 2.27 mm; C. 1.50 mm; D. 2.40 mm; E. 6.81 mm,

Note the elongated spine in the centre of the disk. See Fig. 4.1 for further explanation. Sizes
represent the disk diameter.
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Figure 4.12 (cont.). Brisingella coronata juvenile development. F. 1.71 mm; G. 2.60 mm; H. 2.66
mm; 1. 5.38 mm. mo = mouth; om = oral membrane; sp = spine; tf = tube foot. See Fig. 4.1 for
further explanation. Sizes represent the disk diameter.
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Figure 4.13. Pedicellariae of Brisingella coronata at 2.4 mm disk diameter (A-C). A. Detail of two
arms showing the arm spines bearing tufts of crossed pedicellariae at their bases (arrow). B,

Detail of the base of the arm. Note the presence of pedicellariae on the surface of the arm (arrow).
C. Detail of the arm spine showing the crossed pedicellariae.
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large suboral spines pointing abradially. The adambulacral plates are elongated,
bearing 1 long spine on the actinolateral area. Each spine with a cluster of crossed
pedicellariae (Fig. 4.12F).

D=2.60 mm: no major changes have occurred (Fig. 4.12G) and figure 4.12H
shows the actinal surface of the arm. )

D=5.38 mm: two small apical spines are present in the interradial area (Fig.
4.121).

4.3. Ontogenetic changes in the R/r ratio of asteroids

The R/r ratio in asteroids is a value that provide direct information concerning the
shape of the animal. Animals with high R/r ratios show long arms and a relatively
small disk, whereas low values represent individuals with an stellate or pentagonal
shape.

As mentioned earlier in this chapter, juvenile asteroids can differ in size from
conspecific adults in more than two orders of magnitude and the ratio R/r may also
be quite different from the adult. Young specimens generally show a more
pentagonal shape, with only a terminal plate present in the arms, which generate very
low R/r values. However, some species present a different shape altogether, as in
Luidia sarsi.

I examined the ontogenetic changes in R/r ratios by comparing the changes in
both measures taken (R and r). Data for Hymenaster pellucidus and Brisingella
coronata are not available owing to the difficulty in measuring the former species
and the absence of sufficient specimens with arms intact in the latter.

The changes in the size R and r in all examined species could be described by a

positive linear function of the type:
R=ar+f (1)

where o, and P are the regression coefficients from the least squares analysis.

Resolving the equation (1) for R/r we have:
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At any particular time the changes in the ratio R/r will be described by the

equation :

d(R/r) _ ﬂ &

dr
dt dr

therefore when:

>0 4RI

< 0 = body grows faster than the arms;

ﬁ<0:>d(R/r)

> 0 = body grows slower than the arms;

d(R/7)
dt

p=0=>

= ( = growth is isometric;

.dr . ..
assuming Z is always positive.

Looking at equation (1), o will give a measure of the magnitude of R in relation to
r (bearing in mind the constant ). The higher o is, the larger the size R.

In all species examined the arms grow faster than the body during the early stages
of life (Figs. 4.14 and 4.15). The changes in the ratio R/r were accentuated in Luidia
sarsi. The smallest specimen examined (R=1.30 mm) shows a R/r ratio of 2.45. The
remaining paxillosidans show a much less accentuated change, with R/r ranging from
1.2 to 2.4. Psilaster andromeda (R=4.55 mm) and Plutonaster bifrons (R=4.21 mm)

showed R/r ratios of 2.2 and 2.4, respectively, whereas in L. sarsi at R=4.14 mm the

ratio is 4.13 (Fig. 4.14).
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Figure 4.14. Relative changes in size of arm and disk radii with growth in

paxillosidans.

In the notomyotids Benthopecten simplex and Pectinaster filholi, R/r also changes
quite rapidly with growth, ranging from 1.4 to 3.6. The same trend occurs in the
forcipulatid Zoroaster fulgens. In the valvatid Plinthaster dentatus the ratio changes

very slowly (1. 5 1.7) in specimens of sizes between R 1.05 and 3.60 mm (Fig. 4.15).
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Figure 4.15. Relative changes in size of arm and disk radii with growth in
notomyotids (top graphs) and in the goniasterid Plinthaster dentatus and the

zoroasterid Zoroaster fulgens (bottom graphs).

The value of B in equation (3) is related to the relative growth of arms and body.
The regression analysis of R against r for the ten species studied generated negative
values of B, demonstrating that in all species the arms grow faster than the body.
However, for Porcellanaster ceruleus and Plinthaster dentatus, B values were close
to zero. This means that the early growth of these two species is nearly isometric. In
general, the larger absolute values of B for the two notomyotids, Luidia sarsi and
Zoroaster fulgens agree with a faster change in the ratio R/r with growth. The three
astropectinids and the porcellanasterid Hyphalaster inermis show similar B values,

intermediate between the two groups mentioned above.

4.4. Juvenile bathymetric distribution in the Porcupine area
A comparison of the juvenile bathymetric distribution with the distribution of

conspecific adults in the Porcupine Seabight and Porcupine Abyssal Plain (PAP) was
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made. The comparison was based on the known bathymetric distribution of adults of
the species examined in the present study (Clark & Downey, 1992), and on the

distribution of conspecific adults collected during the same sampling programme
(108). _

The adult range for the asteroids collected during the IOS Programme was always
narrower in comparison to that given by Clark & Downey (1992), in part owing to
the actual depth range sampled during the former. The I0S Programme sampled
depths between 135 and 4850 m, covering mainly the Porcupine Seabight and PAP.
A few of the shallower stations were sampled on the Celtic Shelf (from where the
shallower record of Luidia sarsi was taken). The deepest stations correspond to the
approximate maximum depth found in the PAP area (~4850 m).

Juveniles of Hymenaster pellucidus and Brisingella coronata were found in
depths within the upper and lower limits of the distribution of conspecific adults for
both ranges given (Fig. 4.16).

Hyphalaster inermis juveniles occurred 490 m shallower than the adults in the
same area. However, the juvenile distribution is within the limits known for this
species world-wide. The same is found for Pectinaster filholi and Zoroaster fulgens
juveniles, but with the distribution in the Porcupine area being only 50 and 700 m
deeper than that of the adults, respectively. In Porcellanaster ceruleus, juveniles
occurred both shallower (~300 m) and deeper (~500 m) than the respective adult
distribution in the area. Bathybiaster vexillifer showed the similar results (Fig. 4.16).

The remaining five species showed juvenile distributions deeper than the adults,
irrespective of the source. Differences tended to be more accentuated when compared
with the data available for the studied area than for the known distribution given by
Clark & Downey (1992). Juveniles of Luidia sarsi, Plutonaster bifrons and Psilaster
andromeda occurred over 500 m deeper than the lower bathymetric limit of their
adult counterparts. Plinthaster dentatus juveniles were over 2000 m in excess of
adult depths (Fig. 4.16). In Benthopecten simplex differences were around 200-300 m

when comparing with the known distribution and with that found in the Porcupine

arca.
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Figure 4.16. General bathymetric distribution of adult asteroids (solid black - Clark
& Downey, 1992); of adults collected during the I0S Programme (grey); and of

juveniles in the Porcupine area (white).
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4.5. Discussion
4.5.1. Taxonomic discussion

We found no congeneric species in the samples examined. Three species belonged
to the family Astropectinidae, two to the Porcellanasteridae and two to the

Benthopectinidae. Only a single species was found in each of the remaining families

Goniasteridae, Pterasteridae, Zoroasteridae and Brisingidae.

4.5.1.1. Family Astropectinidae

The astropectinids examined were Plutonaster bifrons, Bathybiaster vexillifer and
Psilaster andromeda. Early juveniles of P. bifrons differ from the other two species
by the overall shape of the body, which is more rounded, whereas in the other two
species the body is strongly pentagonal. The paxillae of P. bifrons are also different
bearing up to four spinulose spines (only one simple spine in the other species). P.
bifrons also bears a broader terminal plate with a concave proximal margin. The
armament of the terminals also differs, these being more abundant and bearing
subequal spines, whereas in B. vexillifer and P. andromeda there are three larger and
more prominent spines.

Psilaster andromeda differs from Bathybiaster vexillifer mainly by the well-
marked marginal frame and the large spine present on the first inferomarginals. At a
larger size (R=5.50 mm) the superomarginal alignment is dorsal in P. andromeda and
lateral in B. vexillifer. The spines of the marginals and actinal areas are finger-like in
P. andromeda and flattened at the top in B. vexillifer. The paxillar spinelets in P.
andromeda are also finger like, whereas in B. vexillifer they are blunt, with a
granuliform aspect. P. andromeda has more elongated arms with the marginals more
well-defined. The apical spine of the mouth is flattened as opposed to the finger-like

apical spines found in B. vexillifer.

4.5.1.2. Family Porcellanasteridae
Juvenile development of Hyphalaster inermis and Porcellanaster ceruleus was
described by Madsen (1961). However, the smallest specimens described by Madsen

(1961) have R>4 mm, whereas in the present chapter descriptions cover individuals

from R<1 mm.
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Both species can be very easily distinguished. Early juveniles of Hyphalaster
inermis have a well-marked marginal frame, with a very wide terminal plate forming
a strongly pentagonal outline. Each terminal has a moderately small central spine. In
Porcellanaster ceruleus the marginal frame is not well-marked and there are 3 very
large and thin spines on the terminals. Very early juveniles of P. ceruZeus are also
much smaller and bear only 5 interradial plates on the abactinal side, whereas H.
inermis possesses a much larger number of abactinal plates.

It is interesting to note (although not shown here) that the epiproctal cone
probably forms at the same time as the cribriform organs. This could be important for
a change in the life style from epibenthic to shallow infaunal. Madsen (1961) shows
that individuals of Hyphalaster inermis at R=6 mm show both structures already
formed. In individuals at R=4 mm an epiproctal cone is not found and the cribriform
organs were poorly developed. In Porcellanaster ceruleus a well-developed
epiproctal cone and cribriform organs were found in specimens at R=4.4 mm.

The difference in the time of appearance of these structures may represent
different survival strategies for juveniles of different species. Early juveniles of
Porcellanaster ceruleus were found to prey upon forams. Possibly, the animals
change from a predatory behaviour when small juveniles to the adult mud-
swallowing condition (observed) after the cribriform organs and the epiproctal cone
are fully developed, allowing the individual to burrow into the sediment. In P.
ceruleus the furrow and oral spines are initially needle-like, but become flattened
with growth, facilitating sediment ingestion and protecting the tube feet from the
sediment.

Another interesting point is that the cribriform organs do not always develop at
ther same rate in the different interradii of the same individual. It was noticed that, in
Porcellanaster ceruleus, the cribriform organ of the interradius where the
madreporite is present is the first to complete development, whereas the others are in
an earlier stage of development. Madsen (1981) found that in the species Styracaster
elongatus the interradius with the madreporite had three cribriform organs, with the
central well developed and the outer ones consisting of a single row of papillae on
each side. In the cribriform organs of the remaining interradii, however, the

development had just begun. The differential development of the cribriform organs
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may be related to the need of the individual to ventilate the area of the madreporite,
which supplies water for the water vascular system. This may be more important

owing to the infaunal life style of these animals.

4.5.1.3. Family Benthopectinidae

The early post-metamorphic stage of both benthopectinid species examined show
a similar overall shape and arrangement of the abactinal plates. The abactinal surface
is comprised of a central and 5 interradial plates, the latter occupying the whole
interradius.

They differ from each other in the pattern of arrangement and relative size of the
spines of the terminal plates and on the number and distribution of spines in the
primary plates. At a slightly larger size, Benthopecten simplex (~R=1.4 mm)
develops the odd marginal plate and a large spine on it, typical of this genus.

Pectinaster filholi does not bear this odd plate.

4.5.2. Phylogenetic considerations

Some interesting features of the post-metamorphic ontogenesis of sea stars were
observed. The relative appearance and arrangement of the suboral and subambulacral
spines in the early sea star suggest that both structures are homologous. The marginal
and adambulacral spines are equally similar in nature and also suggest homology,
implying that the oral plate is either an adambulacral ossicle or results from the
fusion of two or more adambulacrals. However, Fell (1963) argues that the oral plate
in asteroids is derived from the first ambulacral plate, called by Fell (1963) the
mouth-angle plate (in the somasteroid genus Chinianaster, Fig. 11E). Spencer &
Wright (1966) point out that in Platasterias (now considered a subgenus of Luidia)
the mouth-angle plates superficially appear to be enlarged adambulacrals. Indeed
Turner & Dearborn (1972) consider the mouth-angle plate as the first ossicle in the
adambulacral series. Gale (1987) states, however, that “the origin of the mouth-angle
plates (presumably either modified ambulacrals or adambulacrals) remains equivocal
in spite of embryological studies”. I suggest the oral plates (mouth-angle) may

represent fused adambulacrals and consider the suboral and marginal spines as
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serially homologous with the subambulacral and adambulacral spines, respectively,

since they appear to have the same origin during post-metamorphic ontogeny.

4.5.3. Size at metamorphosis

The descriptions of the early post-metamorphic ontogenesis of t‘he deep-sea
asteroids presented in this chapter show the smallest juveniles obtained by the
sampling methods applied. However, it is difficult to tell whether those represent the
very early stages after metamorphosis, since no data on metamorphosis or culturing
of these species are available.

Data available for shallow water species show that recently-metamorphosed
individuals usually have two pairs of podia (Strathmann, 1971, 1974a; Yamaguchi,
1973; Emlet ef al., 1987). Members of the family Luidiidae, however, frequently
have a larger number of podia resulting from a large post-larva (Wilson, 1978;
Komatsu er al., 1982; Domanski, 1984). Specimens of Luidia sarsi examined (not
included herein) usually showed over 4 pairs of podia and a large size, in accordance
with the formerly cited authors. The lecithotrophic species Pteraster tesselatus also
develops several pairs of functional podia, which help the attachment in the
substratum (McEdward, 1992). Among the studied species, the smallest juveniles of
Plutonaster bifrons, Porcellanaster ceruleus, Benthopecten simplex and Plinthaster
dentatus show only two pairs of tube feet, suggesting they are probably recently-
metamorphosed individuals. The same is probably true for Hyphalaster inermis and
Pectinaster filholi which, although the number of podia was not clearly visible, it
was probably between 2 and 3. Small individuals of Bathybiaster vexillifer, Psilaster
andromeda and Zoroaster fulgens have three pairs of podia and are likely to be early
juveniles. Hymenaster pellucidus showedr4 pairs of tube feet, but this could be
related to the mode of development of this species, which broods the young (Clark &
Downey, 1992), producing larger offspring.

Size is another indication of an early-metamorphosed individual. In general, post-
larvae of planktotrophic species are less than 1 mm in diameter, whereas those of
non-planktotrophic forms are larger than 1 mm in diameter (we can consider the
diameter of a sea star as twice the size of the radius R) (Hyman, 1955; Strathmann,

1974a). Emlet et al. (1987) argue that this could represent a trade-off between the

131



Chapter Four

advantages of survival of a large-sized post-larva and decreased fecundity in non-
planktotrophic species. This appears to be true for a species of sea urchin which
produces smaller post-larvae when eggs are depleted of their lipid source of energy
(Emlet & Hoegh-Guldberg, 1997). Luidiids are, again, exceptions to this statement,
producing a large post-larva after planktotrophic development (see abovg).

The only planktotrophic species examined in the present study was Plutonaster
bifrons. The smallest post-larvae obtained were R=498 pm, which falls within the
expected size. All the remaining species are non-planktotrophs (see introduction) and
most juveniles measured over R=800 pum. The only exceptions were Porcellanaster
ceruleus and Zoroaster fulgens. P. ceruleus is an asynchronous breeder producing
eggs up to 600 pm in diameter (P.A. Tyler, unpublished data) and the smallest
juveniles were R=470 um. In Z. fulgens, eggs are up to 950 um in diameter (Tyler et
al., 1984b) and juveniles are R=528 pum. These small specimens of Z. fulgens even
lack a well-formed mouth and show possibly the presence of resorbing larval tissues
or maybe remnants of a lecithotrophic egg (Janies & McEdward, 1993) in the mouth
region (Fig. 4.11b). Individuals of both these species are at the limit of the usual size
at metamorphosis for lecithotrophic species found elsewhere (Strathmann, 1974q;
Emlet et al., 1987). Other lecithotrophic species, with unusual small juveniles, do
occur in nature (Yamaguchi, 1974; Komatsu, 1975). |

The sizes encountered in the present work must be interpreted with caution. The
lack of knowledge of growth rates and the relative time of appearance of different
structures in the early-metamorphosed juveniié make the assessment of the size at
metamorphosis speculative. We should also bear in mind that the size at
metamorphosis can be influenced by thé relative time spent in the plankton (Wilson,
1978; Domanski, 1984) or even by delaying settlement (Yamaguchi, 1974) and the
relative feeding state of the larvae (Lucas, 1982). Nevertheless, the present data
suggest that the post-metamorphic ontogenesis described include the early stages of

growth and consequently the newly-settled individuals.
4.5.4. Changes in the ratio R/r with growth

The analysis of the ratio R/r in asteroids should be taken with caution. A number

of factors may cause variation in such measurements. In porcellanasterids this ratio is
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affected by the mud-swallowing habit of this group (Madsen, 1961; this chapter).
The relative amount of body fluids also was found to have an impact in the disk size
of Odontaster validus (Pearse, 1965). The ingestion of large prey items, very
common among certain groups (e.g. astropectinids), may also distort the disk.

Although the data presented herein are scarce and only a few s;)ecies were
analysed, evidence suggests that the changes in the ratio R/r with growth may be
similar among related group of species. Species of the families Astropectinidae and
Benthopectinidae examined appear to have similar rates of change in R/r with growth
within each family. The astropectinids Bathybiaster vexillifer, Plutonaster bifrons
and Psilaster andromeda have adults with the mean ratio R/r varying between 4 and
5, whereas in the benthopectinids Benthopecten simplex and Pectinaster filholi it
varies from 5 to 8 (Clark & Downey, 1992). In the juveniles, the ratio of change with
growth was more accentuated in the benthopectinids than in astropectinids. If this
trend continues throughout the life of the species, one might expect the
benthopectinids to attain larger values of R/r in adult life that seems to be the case.
Madsen (1961) shows a positive linear relationship between R and r over a wide
range of sizes in porcellanasterids, suggesting that changes in R/r are also linear with
time.

Porcellanaster ceruleus and Hyphalaster inermis show arsimilar R/r with growth.
In the former, however, and also in the goniasterid Plinthaster dentatus, growth is
nearly isometric during the early stages. The rate of change in R/r with growth in
these species is very low. Adult P. ceruleus have R/r ratios of up to 3.5 (Madsen,
1961; Clark & Downey, 1992), whereas in P. dentatus the ratio is only 1.3 (Clark &
Downey, 1992), very close to the ratios found for conspecific juveniles.

The significance of the different changes in the ratio R/r with growth is unknown.
Blake (1990) argues that proportions and armour dévelopment in asteroids evolved in
response to demands of protection, body flexibility, support on soft substrata and
internal capacity. Large arms relative to the body may be important in offering a
higher motility and flexibility for predator avoidance and/or acquisition (capture and
larger area scanned) and manipulation of prey items (reviewed by Blake, 1989).
Many sea stars are able to capture motile prey, but the shape of the body varies

(Jangoux, 1982). Young sea stars with a carnivorous feeding habit occur in nature
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(Sloan, 1980). Evidence of predatory behaviour was found for the three species of
Astropectinidae studied. Early juveniles were found to have relatively large prey
items such as bivalves, gastropods and forams in the stomach. Although the arms of
the studied astropectinids grow faster than the body, this change occurs more
gradually than for the benthopectinids. Thus, astropectinids with R similar to that of
benthopectinids have relatively larger body (larger r). Astropectinids are intraoral
feeders (Jangoux, 1982) and a large disk may allow larger prey to be swallowed (Van
Veldhuizen & Oakes, 1981). The size of the prey is important for newly-settled
asteroids. Strathmann (1978b) stresses that forcipulatid juveniles are about 0.5 mm in
diameter at metamorphosis and that newly-metamorphosed bivalves are appropriate
prey for them. He argues, however, that barnacle cyprids are maybe too large to be
effectively attacked. A rapid increase in disk size could, therefore, confer advantages
in selecting a larger variety of prey items. Alternatively, a large size may also be
important in providing refuge against predation (Van Veldhuizen & Oakes, 1981).

In the luidiid Luidia sarsi, however, which is also an intraoral feeder and
carnivore on macroscopic prey (Jangoux, 1982), the relative growth of the body
differs from that found for the astropectinids examined. In fact, the ratios R/r in this
species are quite high. This suggests that the relationships between body shape and
food specialisation are more complex and other different constraints may be
involved.

Both species of porcellanasterid studied show little change in R/r ratios with
growth. In these species a long arm is probably not needed, since they assume the
mud-swallowing habit of the adults quite early in life. However, there is evidence
suggesting that very early stages of Porcellanaster ceruleus are predators on forams
(which are not very active organisms).

Plinthaster dentatus Showed a nearly isometric growth with very little change in
the ratio R/r, Adult P. dentatus feeds on forams, crinoids and solitary corals
(Halpern, 1970 in Jangoux, 1982). The feeding habit of the juveniles, however, is not
known and may differ from that of the adults.

Some juvenile asteroids have diets completely different from conspecific adults.
The coral-eating sea star Acanthaster planci has juveniles that feed on coralline algae

(Yamaguchi, 1974; Zann et al., 1987; Johnson et al., 1991). This diet changes at a
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certain point during development, when animals switch to a non-cryptic life style,
feeding on coral during day-time (Zann et al., 1987). Other species also show similar
shifts in life style and feeding habit between juveniles and adults (Barker, 1977,
1979; Scheibling, 1980; Barker & Nichols, 1983). This transition in the life history
has also been reported for other invertebrate groups (Gosselin, 1997). )

Many very early juveniles feed extraorally on the surface film of the sediment
(reviewed by Sloan, 1980), including a species of Luidia (Birkeland ef al., 1971). In
this case, the size of the body is not crucial for the ingestion of prey, but large arms
may still be advantageous for capturing more motile prey.

It is also possible that shape is phylogenetically constrained. Blake (1989) argues
that the same adult feeding habit is shared by morphologically distinct species. In this

case, shape has no influence on the feeding habit.

4.5.5. Juvenile bathymetric distribution

It 1s generally expected that species with planktotrophic development will have a
more widespread distribution than species with abbreviated development (either free-
living or contained). This view is, however, contradicted by some examples of
species with a broad distribution and a non-planktotrophic mode of development
(Jackson, 1986; Young & Cameron, 1987, Laegdsgaard et al., 1991). Some
lecithotrophic larvae can delay metamorphosis for long periods of time not losing
competency (Birkeland er al, 1971), whereas others may show facultative
planktotrophy (Kempf & Hadfield, 1985; Emlet, 1986). In the deep-sea, eggs,
embryos and larvae of lecithotrophic and planktotrophic species may last a long time
in the plankton owing to the lower metabolic levels present in a cold environment
(Emlet et al., 1987; Young & Cameron, 1989; Shilling & Manahan, 1994; Young et
al., 1996¢, 1997). This could lead to a higher dispersal potential for these organisms.

The presence of very early juveniles in the sediment is indicative of settlement,
suggesting that colonisation by juveniles resulted from the supply of larvae to the
area in question. Migration of juveniles is unlikely, since speeds attained by juveniles
of Asterina miniata are low (Rumrill, 1989), but post-metamorphic dispersal may be
important for some species (Chen & Chen, 1992; McEdward, 1992). Therefore, the

early stages described in this chapter and their bathymetric distribution probably
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reflect the dispersal and seﬁlement patterns of the species involved. Of all the species
examined, only 2 showed juvenile distributions within the range of the adults.
Among those species, Hymenaster pellucidus was the only one that broods young
(Clark & Downey, 1992), which leads to a low dispersal capability. The remaining
species (Brisingella coronata) is probably a lecithotroph (Tyler et al. :19820) and
juveniles were relatively rare in the samples.

Despite the presence of species with different modes of development, all the
remaining species showed a wider juvenile distribution than the adults. Juveniles
occurred within the limits of the adults and also deeper. The porcellanasterids and
Bathybiaster vexillifer occurred in depths shallower than the adults in the area, but
not when compared with the known records for this species (Clark & Downey,
1992). Many juveniles occurred over 500 m deeper than conspecific adults and in
some, as Plinthaster dentatus, this value was 4 times as large. However, the deepest
record for juvenile P. dentatus was found for only one juvenile in a single station. All
the remaining records of this species fall between 1200-1300 m depth, which makes
us suppose that the one odd result was a result of contamination of the sample.

Gage et al. (1984) compare the juvenile and adult bathymetric distributions of
deep-sea echinoderm species. Among the asteroids analysed, Gage et al. (1984) show
that, from the most abundant species (in the Rockall Trough area), at least three had
wider juvenile than adult bathymetric distributions. It is also known that the
ophiuroids Ophiocten gracilis, Ophiura ljungmani and Ophiomusium lymani settle
outside the adult range (Gage & Tyler, 1981a; Gage et al., 1984; chapter 6). The
reason for the absence of adults in the samples at those depths is unknown, but could
be related to predation, competition, absence of suitable food for the adults or even
pressure.

The development of early embryos of Plutonaster bifrons appears to be
constrained by, pressure (Young et al., 1996a). Young et al. (1996a) point out that
pressure tolerances may set up the upper and lower bathymetric limits of the species.
The presence of early juveniles in deeper areas suggests that larvae may be tolerant to
higher pressures, allowing settlement to occur in such areas. The juvenile resistance
to high hydrostatic pressures is not known, but it should be interesting to test the

tolerances for this stage of the life history. Early juvenile tolerances to this
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environmental variable méy be the key to understanding bathymetrical distributions
of asteroids in shelf and deep-sea areas.

The fate of the juveniles ending up in deeper areas remains obscure. Predation and
competition for food may be important. In shallow water, data on the mortality of
juvenile sea stars are divergent. Some studies show that predation and r;lortality are
low in juveniles of some asteroid populations (Barker, 1979; Rumrill, 1989). This
may be related to the cryptic attitude taken by juveniles, hiding under boulders or
seagrass and macroalgae patches (Yamaguchi, 1973, 1977a; Barker, 1977;
Scheibling, 1980; Barker & Nichols, 1983).

Nevertheless, Sewell & Watson (1993) found that juvenile mortality could be as
high as 99% in Pisaster ochraceus. The stress caused by living in the shallow
subtidal and intertidal may be important in this case. Zann ef al. (1987) showed that
juveniles of Acanthaster planci have a high mortality owing to disease and probably
cyclones, but emphasize that predation is probably not an important source of
mortality. In deep-sea areas, bioturbation of the sediment and the bulldozing
activities of some megafaunal species may be important causes of the mortality of
recently-settled individuals. The causes and fate of the allopatric settlement in deeper
regions remain unsolved and the importance of pre- and post-settlement processes
needs addressing. However, even in shallow water the importance of this is difficult

to determine (Keesing et al., 1993).
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Chapter Five - Post-larval development of some deep-sea echinoids of
the NE Atlantic Ocean
S.1. Introduction

The echinoid fauna of the deep NE Atlantic Ocean comprises species of the orders
Cidaroidea, Echinothurioida, Echinoida, Spatangoida and Portalesioidea. The species
of the first three orders are conspicuous components of the epibenthic megafauna at
slope depths. The remaining two orders comprise the irregular echinoids, many of
which burrow into the soft, deep-sea sediments (Gage et al., 1985). Adults of all
species present in this region were described during the second half of the nineteenth
century and beginning of the twentieth (reviewed by Mortensen, 1928-51). During
this time taxonomy dominated the study of echinoderms and other groups. This
reflected the need to describe and classify a whole new fauna that was being retrieved
from the oceans, particularly by the great expeditions that were taking place at that
time. Among those we can cite the voyages of the British Navy ships Lightning
(1867), Porcupine (1868-70) and Challenger (1872-76); the French Travailler (1881-
82) and Talisman (1883); the Swedish Albatross (1947-48); and the Danish Galathea
(1950-52), among others (reviewed by Mills, 1983).

Although the echinoid fauna of the NE Atlantic has been sampled for over a
century and is relatively well-known, very little is known of the life cycles of
particular species. Probably the best known aspect of the life cycle is the
reproductive biology of a series of species. The genus Echinus has been subjected to
several studies. The gametogenesis and population biology is known for E. affinis
(Tyler & Gage, 1984a), E. acutus var. norvegicus and E. elegans (Gage et al., 1986).
Together with E. alexandri (Mortensen, 1943; Tyler & Gage, 1984a) these four
species have overlapping distributions on the continental slope of the NE Atlantic
and show a similar pattern in reproduction (Tyler ef al., 19954a). These species have a
seasonal cyclein gametogenesis with spawning during the early months of the year
(although with a slight variation from species to species). The small egg sizes and
high fecundity suggest that they produce a large number of planktotrophic
echinoplutei, which feed in the water column. E. esculentus, a more coastal species

(Comely & Ansell, 1988), can also occur at slope depths (Mortensen, 1903). In
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shallower water it also preéents seasonality in reproduction (Moore, 1935; Nichols et
al., 1985; Comely & Ansell, 1989). In the deep areas of the NE Atlantic it is thought
that the seasonal pulse of phytodetritus (Billett et al., 1983) fuel and cue the
reproductive cycles of these species (Tyler et al., 1982c¢). Evidence for E. affinis
suggests that this material is indeed used as a source of energy for both ‘r_naintenance
and body and gonad growth (Campos-Creasey et al., 1994).

Tyler & Gage (1984b) studied the gametogenic cycle of two deep-sea cidarid and
five echinothurioid species. In all echinothurioids (Phormosoma placenta,
Calveriosoma hystrix, Araeosoma fenestrum, Sperosoma grimaldii and Hygrosoma
petersii) and in the cidarid Poriocidaris purpurata gametogenesis is asynchronous
and the production of relatively large oocytes suggests an abbreviated lecithotrophic
development. In Cidaris cidaris there was no evidence of seasonality, although a
planktotrophic larva is known for this species (Prouho, 1888; Mortensen, 19274).

The reproductive biology of the deep-sea pourtalesiid echinoids Pourtalesia
Jeffreysi, P. miranda and Echinosigra phiale has been studied in detail by Harvey &
Gage (1984). The authors suggest that development in all three species is
lecithotrophic, based on egg size and fecundity. In the spatangoid Brisaster fragilis,
Mortensen (1927a) proposes a direct development based on the large yolky eggs this
species possesses. In Hemiaster expergitus reproduction is probably not seasonal
(Gage, 1987).

The larval stages of some of the echinoid species of the NE Atlantic are known.
Larvae of Cidaris cidaris (above), Echinus esculentus and E. acutus (Shearer &
Lloyd, 1913; Shearer et al., 1914; Hagstrém & Lenning, 1961) have been cultured.
The spatangoid Spatangus purpureus, an irregular sea urchin occurring from the
lowermost tide limit to upper slope depths, has a known larva (Ohshima, 1921;
Mortensen, 1913; Rees, 1953), which is present in the water column during the
summer months suggesting seasonality in reproduction (Mortensen, 1927a). The
larva of the spatangoid Brissopsis lyrifera is also well-known (Mortensen, 1920;
Rees, 1953). According to Mortensen (1927a) the larva of B. lyrifera is distinguished
from other known spatangoid larvae by the lack of postero-lateral arms.

Despite the very good quality, echinoid taxonomy (and probably general
taxonomy) is biased towards the study of adult-based characters (Agassiz, 1872;
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Lovén, 1874; Thomson, 1874b; Mortensen, 1903, 1907, 1928-51). This reflects the
generally more conspicuous nature of the adults and relative ease with which they are
sampled in the marine environment, as opposed to larval and early post-larval stages.
Larval biology and ecology has received a great deal of attention. However, larval
morphology probably contributes little to systematics (Fell, 1948; {)_\/’ray, 1996;
Smith, 1997) and similarity of larval morphology between echinoderm groups
appears to be the result of convergent evolution in a completely different
environment from post-metamorphic individuals (Raff, 1987; Strathmann, 1988a, b;
Smith ez al., 19954).

Post-larvae and juveniles could be treated as “adult miniatures”, sharing similar
morphological characteristics with conspecific adults, as well as sharing their benthic
environment. However, many such characteristics are still developing and the small
size makes them experience a completely different physical and biological
environment. The study of their morphological state, development and relative time
of appearance can be important for taxonomy and evolutionary, ecological and
developmental processes. For instance, the time of appearance of the cribriform
organ and epiproctal cone in porcellanasterids may represent an important ecological
shift in the mode of life of these organisms (see chapter 4).

Because of the secular experience in culturing echinoid 1arvae, knowledge of the
development and metamorphosis of shallow water species is extensive (Miiller,
1854; Bury, 1895; MacBride, 1903; Mortensen, 1921, 1927a; Ubish, 1927,
Mortensen, 1937; Strathmann, 19744, 1978a; Cameron & Hinegardner, 1978; Chia
& Burke, 1978; Schroeder, 1981; Emlet, 1986; Emlet ez al., 1987). However, most of
the efforts on these studies were directed towards the study of larval forms and
metamorphosis. As a result, only the very early post-metamorphic stages are
described (MacBride, 1914; Onoda, 1936, 1938; McPherson, 1968; Hinegardner,
1975; Cameron & Hinegardner, 1978; Amemiya & Tsuchiya, 1979; Emlet, 1988;
Olson ef al., 1993), with some exceptions where more advanced juvenile stages are
shown (Hinegardner, 1969). Detailed description of plates and test development are,
nevertheless, lacking in these papers.

The papers devoted to the study of the post-larval morphology and development

of echinoids date back to the last century. Many accounts relate to isolated juvenile
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stages found scattered among the vast taxonomic literature of the Echinoidea (e.g.
Lovén, 1874; Mortensen, 1903, 1907, 1910). Detailed study of the post-larval
development was made by Théel (1892) who studied the clypeasteroid
Echinocyamus pusillus, showing the development of spines, teeth and sphaeridia.
Gordon (19264, b) described the plate formation and morphology dur;ng the post-
metamorphic ontogeny of the regular sea urchin Psammechinus miliaris (as Echinus
miliaris, see also Théel, 1902) and the spatangoid Echinocardium cordatum,
respectively. The post-larval development of cidaroids was addressed by Mortensen
(1927b). Gordon (1929) studied the plate development in Arbacia punctulata and
Echinarachnius parma. Salas & Hergueta (1994) used the SEM to describe the
changes in morphology in the post-larvae of the shallow water sea urchin Arbaciella
elegans from the Mediterranean coast of Spain. -

On the other hand, descriptions of deep-sea species relied (and still do)
exclusively on post-larvae sampled from benthic populations. Mortensen (1903,
1907) describes some juvenile features of two deep-sea species, Phormosoma
placenta and Hemiaster expergitus respectively, collected during the Danish Ingolf
Expedition. Mortensen (1907) also described the test morphology of Spatangus
purpureus at 4 mm in length and the post-larval development of another spatangoid,
Brisaster fragilis (Fig. 5.1). Although both species occur in shallow water, their
distributions extend to upper bathyal depths. The post-metamorphic development and
morphology of some pourtalesiid sea urchins have been examined in detail by Gage
(1984) and Harvey & Gage (1984). The latter authors, however, could not distinguish
between two different species at sizes smaller than 3 mm in length.

Biological and ecological aspects of echinoid post-larval life are poorly known in
the deep-sea. Most knowledge comes from samples dredged on a seasonal basis,
revealing spatio-temporal patterns in settlement and recruitment success (Gage &
Tyler, 1985; Flach & Heip, 1996). Gage et al. (1985) suggest that recruitment in the
genus Echinus is variable from year-to-year. In addition, it appears that some
echinoid juveniles may have a wider bathymetric distribution than their adult
counterparts (Gage ef al., 1984), as seen in some ophiuroids (chapter 6) and asteroids
(chapter 4). However, the major problem faced by researchers is the identification of

such individuals (Tyler & Gage, 1984a; Gage & Tyler, 1985; Gage et al., 1985),
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Figure S.1. Growth stages of Brisaster fragilis depicted by Mortensen (1907).

leaving a gap in the understanding of patterns of settlement and recruitment of

determinate species.

Agassiz (1869), referring to differences between juveniles and adult echinoids,
stresses that “the changes some species undergo are so great that nothing would have

been more natural than to place the two extremes of the series not only in different
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species, but often in different genera, and even in different families”. A further
problem is that culture methods for deep-sea echinoids (and indeed for any other
deep-sea echinoderm group) are not well developed. Fertilization has been successful
for some species and embryos and larvae have been obtained (Young »& Cameron,
1989; Young et al., 1989; Young & Tyler, 1993; Young er al, 1996a, b).
Metamorphosis has been achieved only for some species that have distributions
extending into shallow water (Shearer et al., 1914; Hagstrém & Lenning, 1961).
Juveniles sampled from the field through remotely operated sampling gears are
generally broken or denuded owing to the fragility of their tests.

In the present chapter an attempt is made to address this problem by analysing the
growth stages of some of the more abundant species of echinoids. These include the
phormosomatid Phormosoma placenta, the spatangids Spatangus raschi and
Brissopsis lyrifera and the hemiasterid Hemiaster expergitus. For the very speciose
genus Echinus, however, it proved impossible to distinguish morphologically

between different species and this problem is discussed.

5.2. Echinoid post-larval development

The different morphological structures and nomenclature used for the regular and

irregular juvenile sea urchins described below is shown in figure 5.2.

Class Echinoidea Leske, 1778
Subclass Euechinoidea Bronn, 1860
Order Echinothurioida Claus, 1880
Family Phormosomatidae Mortensen, 1934
Phormosoma placenta Thomson, 1872

This species is distributed in the North Atlantic from off Iceland and Faroes to the
Gulf of Guinea and from Davis Strait to the West Indies (Mortensen, 19274). It
occurs in depths of 260 to 2898 m (Harvey et al., 1988) and animals collected with
dredges and trawls have generally collapsed tests owing to the imbricating
arrangement of the coronal plates.

Juveniles were not abundant in samples and most of the specimens had denuded

tests, which made an accurate description of the spines and pedicellariae not possible.
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Interambulacral plates
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Figure 5.2. Morphological characteristics of regular (A-B) and irregular (C-F)
echinoids. A and D. adoral view; B and C. aboral view; E. anal view; F. Detail of
plastron of Echinocardium flavescens. amb = ambulacrum; An = anus; go =
gonopore; LA = labrum; mo = mouth; Otf = oral tube feet; PF = peripetalous
fasciole; Plas = plastron; pp = periproct; psp = peristomial plates; Rtf = respiratory
tube feet; SF = subanal fasciole; St = sternal plate; Sutf = subanal tube tube feet. A

and B modified from Barnes (1968); C-E modified from Nichols (1959); F
modified from Hayward & Ryland (1990).

Furthermore, specimens did not yield good SEM micrographs and only a partial

description of some early stages is given.
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Figure 5.3. Phormosoma placenta juvenile development (A-G). A. Aboral view of juvenile at 1.58
mm; B. Detail of the tubercule of the test spine of the specimen of F. Note the large perforation in
the centre; C. 3.30 mm, aboral view; D. 3.72 mm, aboral view; E. Detail of periproct of specimen
of D showing the anal opening (arrow); F. 2.48 mm, adoral view; G. 3.48 mm. BP = buccal plate;

GP = genital plate; IP = interambulacral plate; OP = ocular plate; pp = periproct; T = tooth. Sizes
represent the test diameter.
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The smallest specimené found measured 1.58 mm in diameter. On the aboral
surface the periproct is irregular in shape, bearing several small scales. The anal
opening is still not formed. Surrounding the periproct there are five polygonal genital
plates bearing up to two tubercles, where spines are inserted. The ocular plates are
also polygonal in shape and almost as large as the genitals and do not touch the
periproct region. Together, the periproct and apical system occupy almost the whole
of the aboral surface (Fig. 5.3A). Only one primary spine is present on each
interambulacral plate. The tubercles of the primary spines and apical system bear a
large foramen in the centre of the mamelon, with small pits surrounding it (Fig.
5.3B).

At 3.30 mm diameter the periproct is much enlarged and circular, but the anal
orifice is not formed (Fig. 5.3C). This structure is formed when the animal attains
around 3.72 mm in diameter (Fig. 5.3D). At this size the genital plates have up to
three tubercles and the proximal tip of the oculars touch the periproct (Fig. 5.3E).

On the adoral side at 2.48 mm diameter the teeth are pointed and arranged in a
way that each tooth overlaps its subsequent neighbour, with the tips of the teeth not
touching. The peristomial membrane is completely covered by the buccal plates (Fig.
5.3F).

At 3.48 mm diameter the arrangement of the teeth is clearly visible. Some plates

are added to the peristomial membrane between the buccal and coronal plates (Fig.

5.3G).

Order Echinoida Claus, 1876
Family Echinidae Gray, 1825

Genus Echinus Linnaeus, 1758

Post-larvae of the genus Echinus were globular in shape and slightly flattened at
the adoral surface (Fig. 5.4A and B). The aboral surface is composed by a large and
round central anal plate surrounded by 5 genital plates. The genital plates are large
and polygonal, bearing one juvenile spine each (Fig. 5.4A). The juvenile spines bear
large branches at the tip. In some specimens, the juvenile spines have only small
branches, which may suggest these represent a different species (Fig. 5.4C). The

ocular plates are large and polygonal with two juvenile spines each. The ocular plates
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Figure 5.4. Echinus juveniles (A-C). A. 0.97 mm, aboral view; B. 0.80 mm, adoral view; C. 1.00
mm, adoral view. AP = anal plate; Asp = adult spine; BP = buccal plate; GP = genital plate;
Gped = globiferous pedicellaria; IP = interambulacral plate; Jsp = juvenile spine; OP = ocular
plate; Oped = ophicephalous pedicellaria; ps = peristome; T = tooth. Sizes represent the test
diameter.
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surround the genital plétes, forming a dicyclic apical system (Fig. 5.4A).
Interambulacral plates are present on the ambital and adoral areas, and bear large
adult spines (Figs. 5.4A and B).

Ophicephalous pedicellariae are present all over the test surface (Fig. 5.4A), even
in very small specimens. Globiferous pedicellariae are rarer and generally appear
when individuals are around 1 mm in diameter (Fig. 5.4A).

Individuals at 0.8 mm in diameter do not have the mouth apparatus formed. In the
peristomial region only a peristomial membrane is present, which is still not pierced
by the mouth, but already bear developing buccal plates (Fig. 5.4B). In some
individuals at 1 mm, the Aristotle’s lantern is already present and the whole

peristomial area is well-developed (Fig. 5.4C).

Order Spatangoida Claus, 1876
Family Hemiasteridae Clark, 1917
Hemiaster expergitus Lovén, 1874

Hemiaster expergitus is a rather conspicuous member of the infauna of deep-sea
sediments to the west of the British Isles. In the Rockall Trough this species was
recorded from 1047 to 2910 m depth (Gage et al., 1985; Harvey et al., 1988), but the
depth range can be larger elsewhere (Mortensen, 1927q). Test length (TL) can reach
up to 53.5 mm (Mortensen, 1927a) and Gage (1987) suggests that it should take
around 16 years for an individual to attain a test length of 30 mm.

Post-larval Hemiaster expergitus is described by Mortensen (1907) from size of 3
mm TL. The smallest specimen found in the present samples measured 0.91 mm TL.
Because of the fragility of the test, very small specimens were always broken,
making an accurate description difficult. The most striking feature in these small
specimens are the relatively large, broad, leaf-shaped spines present on the adoral
surface and on the ambitus of the test. The individuals show no fascioles.

TL=1.10 mm: the test is globular in shape. The mouth is pentagonal and the
peristomial membrane already bears several small plates. The mouth opening is
already formed. Five adoral spines surround the mouth (peristomial spines), bending

over it. The spines differ in shape from those of the test, being much thinner and
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Figure 5.5. Hemiaster expergitus juvenile development (A-H). A-B, adoral view; C. lateral view; D-
H, aboral view. A. 1.10 mm; B. 2.30 mm; C. 4.23 mm. Note the location of the peristome (arrow)
and periproct (double arrowhead); D. 0.91 mm; E. 1.47 mm; F. 2.13 mm; G. 4.02 mm; H. Detail
of G. amb = ambulacrum; Ftf = frontal tube foot; Gped = globiferous pedicellaria; LA = labrum;
PF = peripetalous fasciole; Plsp = plastron spines; pp = periproct; ps = peristome; Pssp =
peristomial spine; Ptf = penicillate tube foot; St = sternal plate; Tsp = test spine. Asterisk points
the location of a genital plate. Sizes represent the test length.
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smaller. Surrounding the‘mouth are the penicillate tube feet and sphaeridia (Fig.
5.5A).

TL=2.30 mm: the labrum is square in shape and the sternal plates each bear two
large leaf-shaped spines. The ambulacral areas, not clearly visible in figure 5.5B, can
be noticed by the presence of the penicillate tube feet (Fig. 5.5B).

TL=4.23 mm: the test is more globular, increasing in height (Fig. 5.5C). The
labrum starts to differentiate to form a lip. A cluster of plastron spines is clearly
visible towards the rear of the adoral side of the test (Fig. 5.5C).

On the aboral surface at 0.91 mm TL, the anus is already formed, but not clearly
visible in figure 5.5D. In those specimens the digestive tract is well-formed and is
clearly visible through the transparent test.

TL=1.47 mm: the test begins to elongate. The periproct is clearly visible and
formed by five triangular plates. The ambulacra are formed by small plates and
appear to end right on the periproct. The genital plates cannot be seen with certainty.
At this stage some ophicephalous pedicellariae are present on the interambulacra.
Some of the spines of the aboral surface are spear-shaped (Fig. 5.5E).

TL=2.13 mm: the periproct occupies a more posterior position and the genital
plates appear to be present right next to it. No fasciole is present (Fig. 5.5F).

TL=4.02 mm: the peripetalous fasciole is present. The spines of the rear end of the
test are spoon-shaped, whereas those of the front end are leaf-shaped (Fig. 5.5G). The
spines within the peripetalous fasciole are also spoon-shaped (Fig. 5.5H). Two

frontal tube feet are present within the fasciole (Fig. 5.5H).

Family Spatangidae Gray, 1825
Spatangus raschi Lovén, 1869

Spatangus raschi is an abundant species to the west of the British Isles. Farran
(1913) reporteg_i large numbers in the Porcupine Seabight and on the Porcupine Bank
(146-1024 m dépth). In the Rockall Trough area this species was recorded from 225
to 1020 m depth (Harvey ef al., 1988), but the actual depth range for this species
appears to be from 150 to 1500 m (Gage et al., 1985).

Small juveniles examined in the present work presented a purple colour, similar to

that of the adults. The smallest specimens measured around 0.67 mm TL.



Figure 5.6. Spatangus raschi juvenile development (A-N). A-H, aboral view; 1. view of the rear
portion of the animal; J-N, adoral view. A. 0.69 mm; B. 0.83 mm; C. 0.99 mm; D. 1.26 mm; E.
Detail of the spines of the anterior end of the test; F. 1.64 mm. Note the location of the ambulacra
(arrows); G. Detail of the anterior end of F; H. Detail of the posterior end of F. Note the double
row of pedicellariae in the ambulacrum (arrow). Plsp = plastron spines; ps = peristome; SF =

subanal fasciole; Susp = subanal spine; tf = tube foot. Sizes represent the test length.
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Chapter Five

Specimens at 0.69 mrn TL showed a rather elongated test with a very
conspicuous, closed subanal fasciole, formed by a single row of clavulae arranged in
a circle (Fig. 5.61). The clavulae are quite elongated and widened at the tip. Inside the
subanal fasciole, four long, thin subanal spines are present being directed distally
(see Figs. 5.6A and I). All the primary spines of the interambulacral plates are
slightly curved and finger-like. The labrum possesses a large primary spine and a
smaller mouth spine bending over the peristome. Another four peristomial spines are
present, each belonging to an interambulacral plate. The two sternal plates are rather
small, with only one spine each. The peristomial membrane bearing no plates and
with no sign of the perforation for the mouth. Each ambulacrum surrounding the
peristome bears two tube feet (one on each plate), not yet penicillate, and one
sphaeridium (Fig. 5.7A).

TL=0.83 mm: the spines of the interambulacral areas change in shape. The spines
are beginning to become more heavily calcified. In a more advanced stage the spines
of the plastron are spatulate, with a rounded posterior end and serrated at the edges
(Figs. 5.6B and C). Those of the anterior end of the test are less spatulate, with
serrated edges and a narrowed terminal portion, ending in three pointed projections
(Figs. 5.6B, C and E). The peristomial spines are somewhat flattened and slightly
curved. The peristomial membrane is already pierced with the mouth opening and
bears several small plates arranged concentrically (Fig. 5.7B). Ophicephalous
pedicellariae are distributed along the adoral side in rows accompanying the
ambulacra (Fig. 5.7F).

TL=1.26 mm: the peristome is pentagonal in shape and the plates in the
peristomial membrane are much more developed (Figs. 5.6D and 5.7C). On the
aboral side, at 1.35 mm TL, the periproct is clearly visible and the large genital plate
2 can be seen (Fig. 5.6K). The dorsal spines are spear-shaped. Those of the posterior
end of the test are surrounded by small, club-shaped spines. Inside the subanal
fasciole, six long spines are now present (Figs. 5.6] and K).

TL=1.64 mm: the rows of ophicephalous pedicellariae are very conspicuous on the
adoral surface (Fig. 5.6F). A closer look at the bivial ambulacra shows that each
pedicellaria is attached to a somewhat rounded ambulacral plate, forming a double

row (Fig. 5.6H). However, in the trivial ambulacra the pedicellariae appear as a small
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Figure 5.6 (cont.). Spatangus raschi juvenile development. I. 0.69 mm; J. 1.35 mm; K. Detail of the
posterior end of J; L. 3.63 mm; M. Detail of the posterior end of L showing periproct; N. Detail
of the posterior end of L showing the secondary club-shaped spines surrounding the primary
spines of the rear of the test. Gped = globiferous pedicellaria; pp = periproct; SF = subanal
fasciole; Ssp = secondary spine; Susp = subanal spine; Tped = tridentate pedicellaria. Sizes
represent the test length.
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Figure 5.7. Peristome development of Spatangus raschi and pedicellariae (A-F). A. 0.69 mm; B.
083 mm; C. 126 mm; D. Tridentate pedicellaria; E. Ophicephalous pedicellariae; F.
Ophicephalous pedicellariae arranged in double rows along the ambulacrum. LA = labrum; mo =
mouth; ps = peristome; psp = peristomial plates; Pssp = peristomial spine; Sph = sphaeridia; Ssp
= secondary spine; tf = tube foot. Sizes represent the test length.
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single row, probably owing to the smaller size of the ambulgcral plates and its
arrangement (Fig. 5.6G). Several small, club-shaped spines are present in the front of
the test.

Aborally at 1.67 mm TL the small secondary spines are still present in the region
between the subanal fasciole and the periproct. At 3.63 mm TL, the shape of the
body changes from egg-shape to heart-shape, more similar to the adult (Fig. 5.6L).
The ophicephalous pedicellariae are now present on the aboral surface (Fig. 5.7E)
and another type, the tridentate pedicellaria, is also present (Fig. 5.7D). The tridentate
pedicellaria shows the same characteristics of adult tridentate pedicellariae depicted
by Mortensen (1907) for this species. On the aboral side, the pedicellariae are not
restricted to the ambulacral areas (Fig. 5.6M). The secondary spines (club-shaped) on
the rear end of the test are still present (Fig. 5.6N).

Family Brissidae Gray, 1855
Brissopsis lyrifera (Forbes, 1841)

Brissopsis Iyrifera is an abundant species inhabiting areas around the British and
Irish coasts (Farran, 1913; Mortensen, 1927a; Harvey ef al., 1988). The bathymetric
distribution of this species ranges from 5 to 1400 m. Harvey et al. (1988) report a
species of Brissopsis from the Rockall Trough area, which they argue is probably B.
lyrifera, based mainly on the length and width of the anterior and posterior petals and
pedicellariae. The present specimens were collected from the Porcupine Seabight and
Goban Spur areas, where juveniles of thié species were abundant.

The peristomial development is similar to the other spatangoids described. At
around 0.50 mm TL, the five peristomial spines are already present. They are small
and slightly curved, bending over the site of the future mouth (as to form a dome).
On the ambulacral areas, close to the mouth, there is one penicillate tube foot (with
its projections_starting to be issued) and one sphaeridium (Fig. 5.8A). As the
development progresses, the peristomial membrane appears (Fig. 5.8B) and the
peristomial spines start to elongate (Fig. 5.8C). At 2.70 mm TL, the mouth has a
pentagonal shape and the peristomial membrane is already pierced, forming the
mouth opening. The peristomial membrane bears small scales arranged

concentrically around the mouth. Three penicillate tube feet are present in each



Figure 5.8. Peristome development of Brissopsis lyrifera (A-E). A. 0.50 mm; B. 0.62 mm; C. 0.85
mm; D. 2.70 mm; E. 3.18 mm. LA = labrum; mo = mouth; Ptf = penicillate tube foot; Plsp =
plastron spine; ps = peristome; psp = peristomial plates; Pssp = peristomial spine; Sph =
sphaeridia. Sizes represent the test length.
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ambulacrum, each bearing several elongated rods (Fig. 5.8D). At 3.18 mm TL, the
peristomial spines are much elongated and curved (Fig. 5.8E).

The development of the test is described below. At 0.54 mm TL, the test is
spherical in shape. The spines of the test, although large, are still quite rudimentary,
with the stereom formed by a series of interconnected bridges of calcium carbonate.
The spines are slightly curved and finger-like (Fig. 5.9A).

TL=0.60 mm: the stereom structure of the spines begins to change. The distal ends
of the spines are more spatulate and a layer of stereom begins to be deposited along
the length of the spines (Fig. 5.9B). As a result, the spines change completely in
shape and structure, bearing a smooth and ornamented surface when the animal
attains 0.85 mm TL (Fig. 5.9C). These spines are distributed on the interambulacral
areas on the adoral surface and on the ambitus of the test. The test at this stage is still
spherical in shape.

TL=1.26 mm: the test is more elongated and the plastron spines are easily
recognizéd, although the plates are not clearly seen (Fig. 5.9D). At 2.70 mm TL, the
labrum can be seen as a square plate, bearing one large spine (Fig. 5.8D) and the
sternal plates bearing three spines each (Fig. 5.9E). The test is egg-shaped.

On the aboral surface, at 0.68 mm TL, a very conspicuous juvenile fasciole is
present surrounding the whole of the aboral area and the periproct. This fasciole is a
circle formed from a single row of clavulae. Each clavula is short, ending in a quite
enlarged cone-shaped projection. Inside the fasciolar area, four large spines are
present distributed in each corner as to form an imaginary square. The spines are thin
and elongated, with a simple stereom structure (Fig. 5.9F).

TL=1.06 mm: the test is more elongated and the juvenile fasciole still surrounds
the whole of the aboral surface. The four spines inside the fasciole have a more
complex structure, with a smobth surface and a spear-shape. Some secondary, small
club-shaped spines are also present. The periproct is formed by several small,
triangular plates, with spinulose tips. At the rear of the test four long spines are
present (Fig. 5.9G).

TL=1.60 mm: a subanal fasciole is already formed, composed by a single row of
clavulae. At 2.30 mm TL, this fasciole is well-developed and a peripetalous fasciole

is beginning to form (Fig. 5.9H). The peripetalous fasciole is composed by a single
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row of clavulae on the frontal portion of the aboral surface. The clavulae from both
subanal and peripetalous fascioles are thin, with a not very pronounced distal end. In
this specimen we can note the remains of the juvenile fasciole (which is being
resorbed), in which the clavulae have a completely different morphology. Although
both clavulae cone-shaped ends, the diameter of the terminal portion of those of the
subanal and peripetalous fascioles is around 40 pm, whereas that of the juvenile
fasciole is around 90 pm at this stage (Figs. 5.9H and I). All over the aboral surface
many small, club-shaped secondary spines can be seen (Fig. 5.91). The primary
spines of the anterior of the test are spear-shaped, whereas those of the posterior end
are spoon-shaped (Fig. 5.9H). In this specimen, a small rostrate pedicellaria is
present on the ambital region of the test (Fig. 5.10A). v

TL=3.18 mm: a tridentate (Fig. 5.10B) and a triphyllous (Fig. 5.10C) pedicellariae
are present. In some specimens the labrum starts to project over the mouth.

TL=3.87 mm: the overall shape of the body is ovoid, but the front of the test is
straight (Fig. 5.9K). The peripetalous fasciole is somewhat heart-shaped, formed by a
double row of clavulae. Within this fasciole two frontal tube feet are present and
several small club-shaped and large spear-shaped spines (Fig. 5.9L). At the rear of
the test, the very conspicuous subanal fasciole is formed by a large number of
clavulae. The primary spines are spoon-shaped. The periproct is rounded and covered
by several small scales (Fig. 5.9M).

In larger specimens at around 20.00 mm TL, fully developed rostrate (Fig. 5.10E)
and tridentate (Fig. 5.10D) pedicellariae can be found. No globiferous pedicellariae

were found.



Figure 5.9. Brissopsis lyrifera juvenile development (A-M). A-E, adoral view; H, I and ], lateral
view; F, G, K, L and M, aboral view. A. 0.54 mm; B. 0.60 mm; C. 0.85 mm; D. 1.26 mm; E.
270 mm. JF = juvenile fasciole; LA = labrum; Plsp = plastron spine; ps = peristome; SF =

subanal fasciole; Tsp = test spine. Sizes represent the test length.
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Figure 5.9 (cont.). Brissopsis lyrifera juvenile development. F. 0.68 mm; G. 1.06 mm; H. 2.30 mm;
L. Detail of H showing the clavulae of the juvenile and peripetalous fascioles and the secondary
spines; J. 3.18 mm; K. 3.87 mm; L. Detail of K showing the peripetalous fasciole and the frontal
tube feet; M. Detail of K showing the periproct are and the subanal fasciole. Acl = clavula of
adult fasciole; Ftf = frontal tube foot; Jcl = clavula of juvenile fasciole; JF = juvenile fasciole; mo
= mouth; PF = peripetalous fasciole; pp = periproct; Rped = rostrate pedicellaria; SF = subanal
fasciole; Ssp = secondary spine; Tsp = test spine. Sizes represent the test length.
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Figure 5.10. Pedicellariac of Brissopsis lyrifera (A-E). A. Small rostrate pedicellaria of a 2.30 mm
TL specimen; B. Small tridentate pedicellaria of a 3.18 mm TL juvenile; C. Triphyllous
pedicellaria of the same juvenile of B; D. Fully developed tridentate pedicellaria of a 20.00 mm
TL specimen; E. Fully developed rostrate pedicellaria of the same specimen of D.
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5.3. Discussion
5.3.1. Taxonomic discussion
5.3.1.1. Phormosoma placenta

Unfortunately this species was not very abundant in the samples and most
specimens presented denuded tests. They also did not yield good SEM pictures
owing to the poor contrast achieved during examination. No other juvenile
echinothurioid was found in the samples, making any comparison impossible.
Phormosoma placenta differs, nevertheless, from the other regular post-larvae of the
genus Echinus by the presence of several small plates in the periproct (a large anal
plate is present in Echinus; compare figures 5.3A and 5.4A below) and the different
stereom structure of the genital and ocular plates (labyrinthic in P. placenta and
perforate in Echinus - see Smith, 1980). The primary tubercles in P. placenta have a
foramen in the centre (Fig. 5.3B), whereas in Echinus they bear very small, regularly
distributed holes. On the ventral side they differ in the arrangement of the teeth and
buccal plates (see Figs. 5.3F and 5.4C). The apical system in P. placenta agrees with
that depicted by Mortensen (1903) for a post-larva of the same species.

5.3.1.2. Spatangoids

Three species of spatangoids are described in the present chapter. Spatangus
raschi belong to the family Spatangidae, Brissopsis lyrifera to the Brissidae, and the
third, Hemiaster expergitus, to the Hemiasteridae. Although all three species showed
a similar peristomial structure, with similar arrangement of spines, tube feet and
sphaeridia around the peristome, early post-larvae of H. expergitus are easily
separated from the other two by the complete absence of a fasciole. In this species
only a peripetalous fasciole is formed after the animal is over 3 mm TL (Mortensen,
1907) and it is the only fasciole present during all its life. The spines in H. expergitus
are also very distinctive, being very broad and leaf-shaped.

The other two species are clearly distinguished by the position of the fasciole and
the morphology of the clavulae. Spatangus raschi bears a subanal fasciole clearly
directed to the rear of the test, formed by very elongated clavulae. In Brissopsis
lyrifera a juvenile fasciole is present surrounding the whole of the aboral surface,

including the periproct. The clavulae are relatively shorter, with a much wider
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terminal portion in comparison with those of S. raschi. Later this fasciole gradually
disappears, giving way to the adult peripetalous and subanal fascioles. At these later
stages B. lyrifera bears two distinct fascioles, whereas S. raschi possesses only the
subanal fasciole. The plastron spines are also very distinctive, with those of B.
Iyrifera being leaf-shaped and elongated, with pointed tips. In S. raschi spines are

also spatulate, but with rounded tips.

3.3.2. Development of the apical system and periproct in spatangoids

Gordon (1926b) describes, in great detail, the development of the spatangoid
Echinocardium cordatum. Gordon (1926b) shows how the apical system in early
juveniles is endocyclic, becoming exocyclic as ontogeny progresses. Although plate
development is not as clear in the spatangoids examined, it is clear in Hemiaster
expergitus that the development of the apical system and periproct is similar to that
described for E. cordatum. Mortensen (1907) states that in a juvenile of H. expergitus
examined by him, the periproct is clearly separated from the apical system.
Mortensen’s specimen, however, is 3 mm TL and the examination of smaller
specimens in the present chapter (1.47 mm TL, Fig. 5.5E) shows clearly the
endocyclic nature of the apical system, with the periproct later migrating towards the
posterior of the test in the interambulacrum 5. The same is probably true for the other
two species examined, possibly representing a characteristic of the whole order.
Indeed another spatangoid, Brisaster fragilis, show a similar trend during
ontogenesis (Fig. 5.1; Mortensen, 1907). Fell (1963) argues that there is a tendency
for the migration of the periproct out of the apical system to the interambulacrum 5
in certain groups. This is an evidence for the belief that irregular echinoids evolved
from a regular echinoid ancestral (Durham, 1966; Littlewood & Smith, 1995; Smith
et al., 1995). Perhaps the exocyclic type of apical system evolx}ed through
heterochrony; from an endocyclic type of apical system. Heterochrony seems to have
played an important role in the evolution of echinoids (McNamara, 1982, 1988).
McNamara (1987) points out that this ontogenetic and phylogenetic migration of the
periproct may have arisen from a localized plate translocation of the periproct and

genital plate 5 from the rest of the apical system.
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3.3.3. Formation of the mouth and fascioles in spatangoids

The spatangoids examined and the genus Echinus (see section 5.3.4 below)
probably develop indirectly through a planktotrophic echinopluteus. This is thought
to be true either by direct evidence, as in the case of the known larva of Brissopsis
lyrifera (Mortensen, 1920) and Echinus esculentus and E. acutus (Shear?&r & Lloyd,
1913; Shearer et al., 1914; Hagstrom & Lenning, 1961), or indirectly by looking at
egg size (see introduction for species of the genus Echinus). Evidence for several
echinoid species with larval development suggests that the size of post-larvae at
metamorphosis ranges between 0.3-0.6 mm TL (MacBride, 1903, 1914; Mortensen,
1938; Onoda, 1936; Lenning & Wennerberg, 1963; Hinegardner, 1969; Emlet ef al.,
1987; Emlet, 1988).

It is interesting to note that all Echinus specimens examined during the course of
this work (discussed later) showed no sign of a mouth at sizes up to almost 1 mm in
diameter. The spatangoids, also, did not develop a mouth until they attained around
0.8 mm TL. It is likely that these specimens remain in the sediment without eating
for some time until a proper mouth is formed. Olson et al. (1993) found that early
juveniles of the pencil sea urchin Phyllacanthus imperialis do not show any evidence
of a mouth until they are 21 days old. P. imperialis develops through a lecithotrophic
echinopluteus. Olson ef al. (1993) argue that young urchins meet their nutritional
needs from remaining stored nutrients or possibly through the uptake of dissolved
organic matter (DOM). Emlet & Hoegh-Guldberg (1997) showed that post-larvae of
the lecithotrophic sea-urchin Heliocidaris erythrogramma benefit from energy
reserves from the egg. Post-larvae that developed from eggs that had been deprived
from lipid stores were smaller in size than those developing from normal, lipid-rich
eggs (Emlet & Hoegh-Guldberg, 1997). In the case of the planktotrophic species
examined here, however, it is possible that uptake of DOM may play an important
role, since nutrients are stored in eggs of planktotrophic species are unlikely to last
long during development. Larvae of some species are able to take up amino acids
from the water (De Burgh & Burke, 1983; Manahan ef al., 1983, 1990; Shilling &
Manahan, 1994).

The arrangement and shape of the fascioles in the three spatangoids examined

showed different patterns, which may represent different life styles once the animal
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settles on the sediment. In Sparangus raschi a well-developed subanal fasciole is
present, probably at metamorphosis, as evidenced by the small specimens collected.
Gordon (1926b) shows that this fasciole is present in Echinocardium cordatum when
metamorphosis is completed. Nichols (1959) shows how the subanal fasciole
together with the subanal tube feet act to build a sanitary tube in many;patangoids,
where all the currents generated on the surface of the test converge. Many
spatangoids also build a respiratory funnel. However, according to Nichols (1959)
adult S. raschi probably does not need these devices, since this species probably
ploughs through the substratum with most of its corona exposed above the surface.
Nichols (1959) argues that the sanitary device in S. raschi is reduced and only
concerned with faecal waste. In early post-larvae, the subanal fasciole is much larger
relative to the body and large subanal spines are present. It is possible that this
fasciole has an important role for circulation of water and cleaning of the juvenile sea
urchin, which is likely to have a burrowing life style. Even though we could not find
any subanal tube foot, possibly the elongated clavulae and the very long subanal
spines are sufficient to form a sanitary tube when juveniles are burrowed.

A very different situation is found in Brissopsis Iyrifera. This species possesses a
juvenile fasciole enclosing the periproct. Adult peripetalous and subanal fascioles
develop later during ontogeny. The function of the juvenile fasciole is unknown, but
the morphology of the clavulae differs completely from those of the subanal fasciole
of Spatangus raschi and even from the adult fascioles (subanal and peripetalous) of
B. lyrifera. The clavulae of the juvenile fasciole is shorter, stubbier and much wider
at the tip, whereas those of S. raschi and B. lyrifera (adult fascioles) are thinner and
less widened at the tip. Because of the dorsal position of the juvenile fasciole, it is
possible that B. lyrifera post-larvae live partially buried, with the aboral region
exposed and the fasciole functioning in the circulation of water and cleaning of the
faecal products. Later in development, with both adult fascioles present, the animal
will show the presence of the respiratory funnel and double sanitary tube described
by Nichols (1959).

Hemiaster expergitus is unique among the former two species, since it does not
bear any fasciole until the animal has attained 3 mm TL (Mortensen, 1907; present

study). Gage ef al. (1985) report a specimen of H. expergitus with 32 mm TL living
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in a burrow 12 cm below the surface of the sediment, with a long oblique siphon
connecting it to the surface. It is unlikely that early post-larvae can live deep in the
sediment mainly because of the size and the absence of the frontal tube feet
(important in the construction of a respiratory funnel - see Nichols, 1959; Chesher,
1963) and a peripetalous fasciole. Early post-larvae are likely to ‘be shallow
burrowers, burrowing deeper into the sediment as ontogeny progresses (formation of
the peripetalous fasciole, frontal tube feet and increase in size).

The spines of the test of all spatangoids studied are spatulate, with those of
Hemiaster expergitus being the most spatulate. In adults, the spatulate spines of the
plastron serve as locomotory appendages. Nichols (1959) noted that these spines
were not essential for descending into the substratum in two spatangoid species,
Echinocardium cordatum and Spatangus purpureus. Feber & Lawrence (1976) found
that the oar-shaped ventral spines around the plastron of the spatangoid Lovenia
elongata (this species has a naked plastron) were important during the process of
burrowing. In juveniles, the spatulate spines are distributed throughout the adoral and
ambital regions of the test and are likely to function as locomotory, as well as
digging appendages. However, very early post-larvae of Spatangus raschi and
Brissopsis lyrifera do not have spatulate spines (H. expergitus smaller than 1 mm TL
were not found). Spatulate spines develop a little later during ontogeny and if these
animals are really shallow burrowers this might not be a serious problem.

Another interesting aspect is that the mouth formation and structure are similar in
all spé‘;angoids studied. The presence of the peristomial spines bending over the
mouth and penicillate tube feet suggest that the mode of feeding in juveniles is

similar to that of the adults (Nichols, 1959).

5.3.4. The Echinus problem

During the course of this study I have examined a quite large number of recently-
metamorphosed specimens of the genus Echinus. It was not possible to distinguish
between different species, despite some differences found. Adult Echinus species are

identified based on the characteristics of the test and coronal plates and pedicellariae

(Mortensen, 1927a).
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In juveniles, the shape of the test and the coronal plates differ completely from
those of adult specimens. The plates of the apical system (genitals and oculars)
occupy most of the aboral surface of the test (Fig. 5.4A). The genitals and oculars
also bear juvenile spines, whereas adult spines are present only on the ambitus and
adoral surface on the interambulacral plates (Fig. 5.4A). Juvenile spines appear very
early during the development of some sea urchins (e. g Gordon, 1926a). Emlet
(1988) notes that cidaroid juveniles possess a larger number of juvenile spines than
euechinoids. The juvenile spines were, in fact, the only structure that differ
substantially between specimens. It was found that in some individuals, the
ramifications of these spines, which normally bear four branches at their tips, were
very long and prominent. In other specimens, however, they were short and poorly
developed (compare specimens of Figs. 5.4A and C). It is possible that this may
represent different species, but these spines are lost with growth before other
distinguishable specific characters are formed, including pedicellariae (see section
5.3.4.1 below).

Most of the remaining characteristics and general morphology of the test and

spines were very similar in all specimens, making it impossible to morphologically

separate different species.

5.3.4.1. Ontogenetic changes in the morphology of pedicellariae in Echinus

Early post-larval specimens of the genus Echinus presented a considerable number
of ophicephalous pedicellariae on the aboral surface. In slightly larger individuals
these were present also on the ambitus of the test (Fig. 5.4A) and on the adoral
surface, including the buccal plates. The early presence of ophicephalous
pedicellariae is common in many species and in some cases they are present even
before metamorphosis takes place (Mortensen, 1921). Despite its early presence, this
type of pedif:ellariae (Fig. 5.11D) has no value for the identification of Echinus
species, sincé they show very little interspecific variation (see Mortensen, 1903,
1943). Triphyllous pedicellariae also occur, but are equally of minor importance for
taxonomy (Fig. 5.11E).

Pedicellariae which show some interspecific variation among different Echinus

species include the globiferous and tridentate (Fig. 5.11A, B and C). In general,
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Figure 5.11. Pedicellariae of the genus Echinus (A-E). A. Adult tridentate pedicellaria of E. acutus
norvegicus;, B. Adult tridentate pedicellaria of E. alexandri; C. Globiferous pedicellariae of E.
alexandri, D. Ophicephalous pedicellaria of a juvenile; E. Triphyllous (Tped) and ophicephalous
(Oped) pedicellariae of a juvenile.
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however, a combination of both kinds is needed for identification, since they often
show some overlapping characteristics owing to intraspecific morphological
variation. For instance, globiferous pedicellariae of Echinus elegans bear 2-3 teeth on
either side of the blade, whereas those of E. alexandri have 3-4, E. affinis 2-3 and E.
acutus var. norvegicus, 1-2 teeth (Mortensen, 1903). In juveniles, globiferous
pedicellariae appear generally when the animal is around 1 mm in diameter and are
not very numerous (Fig. 5.10A). Tridentate pedicellariae appear much later when
animals are over 15 mm in diameter.

A further problem concerning the use of pedicellariae for the identification of
juvenile Echinus is that evidence suggests that these structures undergo ontogenetic
changes concomitantly with the development of the test. Table 5.1 shows that
globiferous pedicellariae increase in size as ontogeny progresses. The same appears
to be true for the ophicephalous pedicellariae. In the globiferous type, however,
pedicellariae appear to be increasing in size continuously and, even in individuals
with a test diameter of 15 mm, these pedicellariae do not appear to have attained full
size. In adults, globiferous pedicellariae appear to reach larger sizes (Mortensen,
1903, 1928-51). Figure 5.12 shows that not only the size, but also other
characteristics may change with growth. In smaller globiferous pedicellariae, the
blade is shorter and only one tooth is present on each side (Fig. 5.12A). In larger
individuals, the blade is longer and one or two teeth may be present in the same
individual (Fig. 5.12B and C). The ontogenetic changes in the morphology of
globiferous pedicellariae suggest these structures are not reliable indicators of
taxonomic affinities at least in juveniles of the genus Echinus.

In contrast, ophicephalous pedicellariae appear to show more ontogenetic
variation in size than in the overall shape. In addition, these structures probably attain
full size earlier than the globiferous type. An Echinus juvenile at 6.5 mm in diameter
showed ophicephalous pedicellariae measuring 245 pm in lepgtp, whereas an

individual at 15 mm in diameter had pedicellariae measuring only 255 um in length.

169



Chapter Five

Table 5.1. Size of globiferous and ophicephalous pedicellariae in Echinus juveniles.

Test Diameter Globiferous Test Diameter Ophicephalous
(mm) Length (um)* (mm) Length (um)**
1.00 100 0.78 65
1.20 125 1.00 84
1.43 104 1.00 95
3.80 200 6.50 245
6.50 230 15.00 255
15.00 470 --- -

* Total length of one valve
** Length of the blade, not including the handle at the base of the pedicellaria

5.3.4.2. Possible reasons for the similarity among Echinus post-larvae

As already mentioned earlier in this chapter, the NE Atlantic Ocean around the
British Isles is shared by five species of the genus Echinus, with overlapping
distributions on the shelf and slope. All species show seasonality in reproduction,
with the production of a planktotrophic echinopluteus. There appears to be, however,
a different time of spawning for some species (Tyler et al., 1995a). Nevertheless, it
seems likely that juveniles of such species co-occur in the sediment. The study of the
post-larval morphology revealed a high morphological similarity among all
individuals examined, with only slight differences in the shape of juvenile spines.
Why then are all juveniles so similar to each other?

The number of different species of Echinus examined in the samples cannot be
determined. However, it seems that at least two were present. The difficulty in
distinguishing these post-larvae is great even in specimens with very well-known life
cycles. MacBride (1903) stresses that he could not identify with certainty small sea
urchins dredged in the Plymouth Sound. This was not possible even though they
belong to djfferent genera (Echinus esculentus and Psammechinus miliaris, as
Echinus miliaris).

A further problem to this question is that some species of Echinus are known to
form hybrids (Shearer ef al., 1914; Hagstrom & Lonning, 1961). Shearer et al. (1914)
show that post-metamorphosed hybrids of E. esculentus and E. acutus flemingii have

intermediate morphological characteristics. Deep-sea species like E. alexandri, E.
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Figure 5.12. Valves of globiferous pedicellariae of juveniles of the genus Echinus. Note the

difference in size and the variability on teeth number. B and C from the same specimen.
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elegans and E. acutus norvegicus spawn during similar periods and may form
hybrids. This would compound yet more problems for the identification of juveniles.
It is interesting that, despite having differentiated morphologically, some of the
Echinus species of the British Isles did not evolve any kind of reprodugtive barrier,
like for instance, the gamete incompatibility found in the Indo-Pacific sea urchins of
the genus Echinometra (Metz et al., 1991).

The similarity among juvenile stages may also be related to the probably relative
recent speciation of the genus. Fossil records of Echinus start appearing in Pliocene
deposits (c.a. 2-5 mya) (Mortensen, 1943). Tyler et al. (1995a) suggest that the
cosmopolitan distribution of the genus is related to the variation in hydrographic
events associated with the glacial/interglacial periods. The absence of a reproductive
barrier for some species (discussed above) also points to the closer relations among
these species (in the NE Atlantic).

Tyler et al. (19954a) argue that the distribution and speciation in the North Atlantic
(centre of distribution of the genus - Clark, 1912; Mortensen, 1943) may be related to
the pressure adaptation of embryos, enabling the genus to invade deeper areas.
Evidence suggests this process is taking place in the species E. acutus, generating a
shallow and a deep water forms, with larvae exhibiting different pressure tolerances
(Tyler & Young, 1998). It is likely that the selective pressures acting on the
speciation of the genus are operating at the embryonic/larval and/or adult period. It
seems clear also that the early post-larval morphology has been preserved as a
“winning cotﬁbination”, essential for the survival in the sediment during the early
stages of life. A similar result was reported by Dixon & Dixon (1996) for
hydrothemal vent shrimps. Dixon & Dixon (1996) could not distinguish between
three genera of vent shrimp post-larvae morphologically despite being genetically
different. This may reflect the need of a particular set of morphological
characteristics in order to be successful in a particular environment.

We cannot, however, rule out the possibility of changes in the physiology of post-
larval stages enabling them to survive in deeper areas. Studies on the pressure
tolerances of early post-larvae would be interesting to test whether their tolerance
would prevent or not the colonization of deep-sea areas. Embryos of a number of

echinoid species seem to resist high hydrostatic pressures (Marsland, 1938, 1950;
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Young, 1996) and Young ef al. (1995) point out that larvae would not be prevented
from invading depths as great as 2000 m (see also Young ef al., 1997a; Tyler &
Young, 1998). At the same time, pressure tolerances of larvae of some species appear
to set the bathymetric range of conspecific adults (Young & Tyler, 1993; Young et
al., 1996a). If evolution in the genus Echinus is operating as a way of preserving the
early morphology, this would explain why different species have such similar early

post-metamorphic morphologies.
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Chapter Six - Reproduction, dispersal, settlement and carbon demands

of the bathyal ophiuroid Ophiocten gracilis in the NE Atlantic

6.1. Introduction -

Five species of the brittle star genus Ophiocten are found in the North Atlantic,
Mediterranean and Arctic Ocean. Early confusion in the taxonomy of this genus was
clarified by Paterson ez al. (1982). O. sericeum is an Arctic species, in predominantly
shallow water, but occurring as deep as 2000 m. O. abyssicolum is present from the
Mediterranean Sea at depths below 100 m to south-west Ireland where it has been
found between 300-1000 m depth. O. hastatum inhabits the deeper part of the eastern
Atlantic from 1130 to 4700 m depth whilst O. centobi is known from the Bay of
Biscay at 2420 m depth (Paterson ef al, 1982). The most common deep water
species is O. gracilis, which occupies upper slope depths in the temperate North
Atlantic.

Ophiocten gracilis is a small brittle star (max. disk diameter ca. 12 mm) probably
present throughout the North Atlantic at depths of 600-1200 m. It was formerly
considered a ‘warm water’ variety of O. sericeum (O. sericeum gracilis) (Grieg,
1903; Mortensen, 1933; Semenova et al., 1964), but its specific status was clearly
stated by Paterson et al. (1982), based on morphological characteristics and
geographical and bathymetric distribution.

Populations of Ophiocten gracilis are well-developed on the eastern side of the
North Atlantic at depths between 800-1000 m, where densities can be as high as 800
m? (Piepenburg & von Juterzenka, 1994; Lamont & Gage, 1998). The larva,
Ophiopluteus ramosus (Tyler & Gage, 1982b), occurs in the North Atlantic during
spring and summer months. Geiger (1963) reported O. ramosus east of
Newfoundland and Flemish Cap during the spring whilst Semenova et al. (1964)
found O. ramos;s in the Norwegian and Barents Seas. A slightly longer period of
occurrence of this larva is reported by Tyler & Gage (1982b), extending from
February to September in the Rockall Trough area. Post-larvae of Ophiocten gracilis
have been shown to settle over a wide bathymetric range, even in the deeper areas of
the Rockall Trough, where the juveniles do not survive to the next year (Gage &

Tyler, 1981a). This mortality represents a large wastage of dispersal stages for this
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species.

The events occurring afier the settlement of Ophiocten gracilis post-larvae, as
well as for most (if not all) other deep-sea invertebrate juvenile stages, are virtually
unknown, as the assessment of mortality and other ecological parameters often
require studies at time scales of days or less (Stoner, 1990; Rowley, 1950; Gosselin
& Qian, 1996). This is very difficult in deep-sea areas. In fact, most studies reporting
the ecology of juvenile stages were undertaken in the intertidal zone or shallow
subtidal (see Gosselin & Qian, 1997 for review). However, knowledge of rates of
mortality and growth are of great importance for recruitment studies and the
maintenance of populations in specific areas. The early post-metamorphic stages in
some species are known to suffer a dramatic mortality during the first day of benthic
life (Gosselin & Qian, 1997; Hunt & Scheibling, 1997).

Individuals of Ophiocten gracilis settle as small juveniles after metamorphosis in
the water column. Therefore, processes occurring during the early benthic life must
have a large impact in the distribution and abundance of the adult populations. This
might explain the preclusion of this species in deeper areas where the supply of post-
larvae is common. Despite their presence in the water column and sediments during
spring and summer months (Gage & Tyler, 1981a; Tyler & Gage, 1982b; Piepenburg
& von Juterzenka, 1994; Flach & Heip, 1996), very little is known about the biology
and ecology of juvenile stages of this species. The post-metamorphic ontogenesis of
O. gracilis is described in chapter 3. The presence of larval and post-larval stages in
the water column during specific months denotes a seasonality in the reproduction.
However, gametogenesis of O. gracilis has not been described previously.

In this chapter we describe the gametogenesis of Ophiocten gracilis and analyse
the growth of newly-settled post-larvae, based on individuals collected with sledges
and trawls, and weekly samples taken by sediment traps, respectively. Sediment trap
samples provided an unique opportunity to estimate the carbon demands required
during the early growth after settlement, together with a visual analysis of the
stomach contents of individuals. The recruitment and possible causes of the

widespread allopatric settlement are discussed.
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6.2. Reproductive biology

Both males and females showed a similar pattern in gonad development (Fig. 6.1).
The animals were ripe in February presenting well-developed gonads. In April all the
animals started to develop gonads, probably after a major spawning period. Gonads
continued to mature during mid-spring through autumn. These data show a
distinctive seasonal pattern in reproduction, with a synchronous spawning occurring
in the early months of the year.

Examination of early post-larval stages showed that developing gonads were
found in individuals as small as 1.4 mm dd. In these animals even the sex could be
determined. Germinal cells were recognised in a post-larva only 1 mm dd.

Fecundity values were similar for 3 of the 4 brittle stars examined, with the
highest value of 50,820 eggs ind” (Table 6.1). The fourth individual presented the
lowest value of 23,166 eggs ind" and was also the animal with the smallest disk
diameter. The mean fecundity for all the females measured was 40,356 eges ind™
(SD=11,997). All the individuals measured were at the same reproductive stage III
and showed similar egg sizes (Table 6.1). At this stage the oocytes start to

accumulate yolk and present a pale cytoplasm with a large eccentric germinal vesicle

(Tyler, 1977).

Table 6.1. Fecundity and egg size of specimens of Ophiocten gracilis.

DD (mm) Fecundity Mean egg size Max. egg size Stage of
(total No eggs) (1m) (1m) Development
ML)
6.72 23166 56.55 (§D=12.52) 82.38 m
7.53 45165 *oAok *okk I
8.19 42273 49.86 (SD=12.09) 80.02 I

8.24 50820 58.61 (SD=9.15) 71.5 I
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Figure 6.1. Changes in the maturity index of the gonads of Ophiocten gracilis with

time of both males (n=33) and females (n=32) of different sizes.

6.3. Growth'of the early post-larva

Settlement occurred in both traps during mid-May. The mean disk diameter was
0.66 mm (SD=0.06) for the 1000 m trap and 0.69 mm (SD=0.08) for the 1400 m trap
(Fig. 6.2). It is assumed that a large number of post-larvae settled in the cone and in
the baffle of the trap and grew during the period of collection and, from time to time,

a number of individuals fell into the cup, being immediately killed by the
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preservative present. Therefore, the increasing mean disk diameter observed during
the period reflects the growth of the organisms in the cone and/or baffle. Several
lines of evidence suggest growth on the traps (see section 6.7.2).

In order to test differences in mean disk diameter in the two traps, a t-test was
applied. For days 149.5 and 156.5 a Mann-Whitney U-test was emploged since the
data did not pass the Kolmogorov-Smirnov test for normality and the test for
homogeneity of variances. The mean disk diameter of the organisms collected during
day 142.5 (mid-point of the sampling interval) was not statistically different for both
traps at 1000 and 1400 m depth (t=-0.78, p=0.44, n,=4, n,=345). However, those
values were significantly different for days 149.5 (U’=18530, p=<0.0001, n,=195,
0;=1156), 156.5 (U’=76, p=<0.0001, n,;=64, n,=84) and 212.5 (t=4.92, p=<0.0001,
n=11, n,;=10), being smaller in the deeper trap. Values for day 198.5 (t=0.75,
p=0.47, n;=11, n,=4) were not significantly different, whereas for days 170.5 and
177.5 only two and one individuals were collected in the 1400 m trap, respectively.
For the rest of the sampling period (days 163.5, 184.5, 191.5 and 205.5) comparison

was not possible owing to the lack of data on either trap.

Day Number
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Figure 6.2. Mean changes in disk diameter of post-larval Ophiocten gracilis
collected in the sediment traps. Numbers collected during each sampling period
are listed in Table 6.6. Filled circles are 1000 m trap; open circles are 1400 m trap.

Error bars are standard deviation.
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6.4. Settling rates

The results of the single analysis of variance (ANOVA) to test differences in
settling times of different size post-larvae showed that for 2°C, 10°C and 15°C no
significant differences were found (Table 6.2). For 5°C however, results were
significantly different with animals at 0.91 mm dd settling faster (558.84 m day'l)

than the 2 smaller size classes individuals (497.30 and 474.92 m day'l) (Tables 6.2
and 6.4; Fig. 6.3).

Table 6.2. One-way analyses of variance testing differences in settling times of

different size post-larvae of Ophiocten gracilis (0.63, 0.79 and 0.91 mm feret dd)

at 4 temperatures.

Temperature ('C)  Source of variation  d.f. SS MS F p

2 Between groups 2 14796.84 7398.421 2218 0.134
Within groups 21 70058.8 3336.133

5 Between groups 2 23662.05 11831.02 3.390 0.052
Within groups 22 76782.64 3490.12

10 Between groups 2 1630.744 815372 0.299 0.745
Within groups 23 6275422  2728.444

15 Between groups 2 6521.625 3260.812 1.084 0.355
Within groups 23 69214.99  3009.347

The comparison of the settling rates of each size class at different temperatures
showed mixed results. No difference was found in the 0.63 mm mean feret diameter
size class (Table 6.3). This group presented a high variance in settling times and the

mean settling rate (pooled data) was of 524.02 m day'1 (SD=75.56, n=40).
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Figure 6.3. Settling rates of post-larvae of Ophiocten gracilis at different

temperatures. Each box encloses the middle 50% of measurements. The median

value is marked by a horizontal continuous line and the mean by a dashed line

within the box. Bars above and below each box enclose the 95th and 5th

percentiles. Measurements lying outside the 5th and 95th percentiles are plotted as

small, open circles.

Table 6.3. One-way analyses of variance testing differences in settling times of post-

larvae of Ophiocten gracilis at 4 temperatures (2, 5, 10 and 15°C).

Mean Feret Disk

Source of variation  d.f. SS MS F p
Diameter (mm)

0.63 Between groups 3 34997.66  11665.89 2.238 0.101
Within groups 36 187687.7  5213.547

0.79 - Between groups 3 69560.93 2318698  13.399  6.2E-06
Within groups 34 58833.08 1730.385

0.91 Between groups 3 3678048  12260.16 7214 0.002
Within groups 19 ' 32289.88  1699.468
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A significant difference in settling rates was observed for the 0.79 and 0.91 mm
mean feret dd size classes (Table 6.3; Fig. 6.4). In these groups there was observed a
decrease in settling rates with increasing water temperatures. For the 0.79 mm feret
dd size class, the mean settling rate was 457.28 (SD=41.60, n=10, 2_°C), 474 .92
(SD=43.88, n=10, 5°C), 523.48 (SD=47.14, n=9, 10°C) and 567.13 m day’
(SD=31.91, n=9, 15°C). In the 0.91 mm size class, the values were 493.15
(SD=48.17, n=4, 2°C), 558.84 (SD=15.95, n=5, 5°C), 533.25 (SD=45.26, n=7, 10°C)
and 605.88 m day™' (SD=44.75, n=7, 15°C) (Table 6.4; Fig. 6.4).

Table 6.4. Mean settling rates (+ SD) of Ophiocten gracilis of different sizes at

different temperatures.

Mean Feret Disk Temperature n Settling Rate + SD (m day™)
Diameter (mm) ‘O
0.63 2 10 511.19+£72.66
5 10 497.30 £ 80.58
10 10 513.47 £ 60.26
15 10 574.12 +73.83
0.79 2 10 457.28 £41.60
5 10 474.92 +43.88

10
15

9 52348 £47.14

9 567.13 £31.91

0.91 2 4 493.15 £ 48.17
5 5 558.84 £ 15.95

10 7 533.25+45.26

15 7 605.88 +44.75
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Figure 6.4. Settling rates of post-larvae of Ophiocten gracilis of different sizes at 2,

5,10 and 15°C. See figure 6.3 for explanation.

6.5. Stomach contents

The qualitative analysis of the stomach contents of post-larvae of Ophiocten
gracilis collected in the two sediment traps revealed the predominance of detritus and
foraminifera among the specimens. The number of animals showing empty stomachs
was also very high (Table 6.5), but this may have been partially caused by
regurgitation. Note that the presence of forams and detritus was not mutually

exclusive and a large number of animals presented both items in the stomach. Large
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forams were probably more easily removed from the stomach by the regurgitation
action than detritic material.

The number of individuals with stomachs containing detritus varied from none
(days 142.5 and 149.5) to more than 80% (day 212.5) in the 1000 m trap;In the 1400
m trap, the percentage of organisms with detritus in the stomach was also higher
during the later sampling periods (Table 6.5; Fig. 6.5).

In the 1000 m trap, the number of organisms with forams present in the stomach
was always higher than 15%, with a maximum of around 55% in day 156.5. The
average number in this trap was around 32%. In the 1400 m trap, an average of about
16% of the organisms had forams in their stomachs, with a maximum of 25% (Table
6.5).

In both traps, between 50 and 60% of the animals on average had empty stomachs,
with the larger values present in the earlier sampling periods. In some samples the

numbers were as high as 85% (Fig. 6.5).
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Figure 6.5. Percentage of the total number of Ophiocten gracilis post-larvae
collected in each sampling interval with a determinate type of food within the

stomach for the top and bottom sediment traps.

From all the animals examined, a few presented stomach contents other than

forams and detritus or material not identified. These include 5 post-larvae with a
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polychaete and 1 post-larva with eggs of an unknown species.

6.6. Carbon demands of post-larvae

The analysis of carbon demands of post-larvae were done only for the specimens
collected in the 1000 m trap owing to their constancy in the sevgral samples
collected. ~ Ophiuroids were collected from day 142.5 (mid-point of sampling
interval) till day 212.5. Only one sampling period did not collect post-larvae (day
205.5) giving a total of 453 animals collected. The mean disk diameter of the
individuals showed a progressive increase with time (Fig. 6.2).

Data on the carbon content of post-larval Ophiocten gracilis were compared with
the particulate organic carbon (POC) flux measured in the same trap (1000 m) during
the study period (R.S. Lampitt, unpublished data). In these samples, POC flux varied
between 3 and 11 mg m™ day'l (Fig. 6.6). Ophiuroids represented between 0.07 and
7.32% of the daily flux for each sampling period (excluding ophiuroids) (Table 6.6).
The organic carbon assimilated by the population present at each time varied
between 0.06 and 0.57 mgC m> day'1 (Fig. 6.7). These values represented between 1
and 11% (mean 4.59%)) of the total daily POC flux.

Day Number
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Figure 6.6. Flux of Particulate Organic Carbon (POC) during the study period for the

1000 m trap. Data for the last 2 sampling periods are not available (R.S. Lampitt,
unpublished data).
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Table 6.6. Percentage of the POC flux (only for the 1000 m trap) consumed by post-
larval Ophiocten gracilis assuming (1) 3/7 P/R ratio and (2) observed mean
changes in AFDW. dd is the disk diameter. Note also the number of specimens
collected in the 1400 m trap.

Day POCFlux Number Number Mean dd % Flux % Flux Used % Flux Used

Number Represented by by
(mgC day™) specimens specimens +SD by Ophiuroids Ophiuroids Ophiuroids (2)
(1000m) (1000 m) (1400 m) (mm) 1)

142.5 10.78 4 345 0.66+0.06 0.07 3.34 824
149.5 10.52 195 1156  0.99+0.18 6.59 5.42 9.79
156.5 375 64 84 1.10£0.13 7.32 10.13 16.72
163.5 9.79 35 EAE 1.13+0.13 1.61 2.96 4.77
170.5 3.56 22 2 1.17+0.16 3.02 1.3 11.19
1775 5.84 57 1 1.21+0.13 5.09 397 5.78
184.5 300 6 Hokok 1.34+0.15 1.26 4.82 7.01
191.5 S5R39 48 e 1.31+0.16 B0 | 254 3.61
198.5 5.74 11 4 1.42+0.20 1.5 1.05 1.26
205‘5 3% %k %k %k %k 5 kok ok kK ok X%k ok 3k
212.5 SRS 11 10 1.60+0.10 Rk Gt HRH
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Figure 6.7. Estimates of the total amount of carbon consumed by the Ophiocten
gracilis population assuming a ratio P/R of 3/7 and assimilation efficiency of

80%. The respiration component represents a real loss of organic carbon within

the trap (1000 m).
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Results based on the calculation of somatic production from changes in AFDW
yield different results. The change in mean AFDW with time is described by a linear
regression with equation:

AFDW = 0.0014 DN - 0.1706 (2 = 0.9416), where DN=Day Number.

The results showed that a higher demand for carbon is necessary for t}:e animals in
order to attain the weights found in the samples, than that calculated based on
weight-specific respiration rates (Fig. 6.7). In fact, between around 1 and 17% (mean
7.60%) of the carbon flux would be necessary to account for the changes in AFDW
of the population (Table 6.6).
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Figure 6.8. Relative percentages of the flux consumed by the post-larvae of
Ophiocten gracilis during the study period (1000 m trap). Growth 1 represents the
production calculated assuming a ratio P/R of 3/7. Growth 2 calculated based on
mean changes in AFDW of the population.

6.7. Discussion

Populations of Ophiocten gracilis are well-developed at depths of around 800-
1000 m on the upper slope of the North Atlantic. Off the east coast of the USA and
Canada, this species was described as Ophioglypha signata (Verrill, 1882), but it was
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later assigned as Ophiocten gracilis (Paterson et al., 1982). The Flemish Cap, off
Newfoundland, appears to be the source population for the larvae and post-larvae
collected in the plankton by Geiger (1963) and Semenova et al. (1964).

On the east side of the North Atlantic at upper slope depths of the Rockall Trough
area, the population density of Ophiocten gracilis reaches 800 ind rn'; (Lamont &
Gage, 1998). Piepenburg & von Juterzenka (1994) estimated a maximum density of
497 ind m? in the Kolbeinsey Ridge, north of Iceland, and biomasses up to 120 mg
AFDW m™. Such an abundance and biomass imply this species as one of the most
conspicuous members of the megabenthos and, probably, with no less importance for
the structure of the benthic community. The main question is how such populations

are maintained at these levels of abundance in those deep-sea areas?

6.7.1. Reproductive ecology and production of offspring

Reproduction in Ophiocten gracilis is seasonal and synchronous. The period of
spawning occurs in early spring, which enables the larvae to take advantage of
sinking phytodetritus from the spring bloom of phytoplankton (Lochte et al., 1993).
Larvae can probably remain in the water column for 1-2 months and their numbers
probably reflect the total number of eggs produced by the population. The fecundity
of O. gracilis is disk size dependent, with the maximum number being 50,820 eggs
per individual. Similar values were found by Hendler (1975) for shallow water
ophiuroids with planktotrophic development. Tyler & Gage (1980) also report values
of the same order of magnitude for the deep-sea brittle star Ophiura ljungmani. If the
O. gracilis mean fecundity per individual (Table 6.1) is multiplied by population
density (800 ind m>, Lamont & Gage, 1998), assuming a sex ratio of 1:1, a total
population fecundity of ~16 million eggs m™ is achieved. The high abundance and,
therefore, the close proximity between individuals would probably lead to a high rate
of fertilization success (Pennington, 1985), with a large production of embryos and
larvae.

Ophioplutei (Ophiopluteus ramosus) and post-larval Ophiocten gracilis are
common in the surface plankton of the North Atlantic during spring and summer
months (Mortensen, 1901; Geiger, 1963; Semenova et al., 1964; Tyler & Gage
1982b). Semenova et al. (1964) reported densities up to 1000 larvae m>, representing
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around 80% of all the zooplankton sampled. The upward vertical migration to surface
waters seems to pose no obstacles to these animals. Spawning in this species occurs
early in spring which may be an adaptation for the larvae to reach the surface layers
before seasonal stratification of the water column. Young et al. (1996¢) suggest that
long vertical migrations for deep-sea urchin larvae are more likely to t:e limited by
physiological tolerances than by energy stores. Ascending in a cooler water column
would also conserve energy through a lower metabolic rate (Young et al., 1996¢).
Other larvae of deep-sea benthic invertebrates are known to perform such a migration

(Killingley & Rex, 1985; Bouchet & Warén, 1994).

6.7.2. Metamorphosis and settlement: revisiting the non-viable settlement of

Ophiocten gracilis

Metamorphosis takes place in the water column and post-larvae will probably
settle randomly affected by advective processes in the subsurface water column. The
high abundance of the larval stage were also observed for post-larvae. In sediment
traps, densities reached 3,214 post-larvae m?, during a single settlement period.
Although mortality is likely to be high during these stages, the high population
fecundity is reflected in terms of numbers settling on the bottom.

However, not all post-larvae settle close to the adult population and many benthic
post-larvae settle outside the depth range of the species (Gage & Tyler, 1981a). Post-
larval O. gracilis were collected in a trap moored at 4500 m depth in the Porcupine
abyssal plain (not included herein). Early juveniles were also collected at shelf depths
round the Faroe Islands (Chapter 3; Tyler et al., in prep.). These data show that post-
larvae are spread not only over a large bathymetric range, but also over a large
geographical area. We do not know the source population for these post-larvae, but
we cannot rule out the possibility of larvae being carried by the Gulf Stream from
populations in the western side of the Atlantic. These animals were indeed collected
far offshore by Geiger (1963) and Semenova et al. (1964). If this holds true, it may
be significant in maintaining the gene flow between populations of the two sides of
the Atlantic.

Settlement of post-larvae occurred during mid-May, but data in the literature

suggests that it can be extended until September (Gage & Tyler, 1981a). Post-larvae
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start settling on the bottom probably when they have attained around 0.60 mm dd and
5-6 arm segments. Hendler (1975) points out that planktotrophic post-larvae settle
with 0-8 arm segments and that they have normally high arm length/dd ratios.
Hendler argues that this could enhance dispersal and could even confer advantages in
feeding and locomotion. It is likely that up to a size of 0.6 mm dd, the larger number
of arm segments will be important for flotation, however this was not quantified in
the present study. For larger sizes, the larger number of arm segments was probably
outweighed by the increase in weight. In fact, larger animals sank faster even with
longer arms.

The measured settling rates suggests that they sink rapidly (~500 m day‘l). This
rate is up to 5 times the sinking rates of marine snow (Lampitt, 1985; Alldrédge &
Gotschalk, 1988; Lampitt ef al., 19935, Turley et al., 1995). However, it should be
kept in mind that the experiments presented in this chapter were done in a very small
scale and in still water using dead animals. In the open ocean many hydrodynamic
features may keep those animals in suspension or take them to the bottom. During
the period between metamorphosis and settlement is was observed that in some
individuals collected (including Ophiocten gracilis and Ophiura ljungmani) in
additional samples (not included herein) the degree of calcification was much
smaller. Nevertheless, we do not know whether this represents a real feature or only
an artefact of preservation. If this is real, then this could be an essential feature which
allows post-metamorphic individuals to remain afloat, enhancing the dispersal
potential. Larval arms are present after metamorphosis in O. gracilis (J.D. Gage,
personal communication) and may also help in keeping post-larvae afloat.
Nevertheless, no post-larvae collected in either the sediments or sediment traps had
larval arms still attached, suggesting that larval arms are only present at smaller sizes
(<0.5 mm).

Gage & Tyler (1981a) argued that post-larvae settling in deeper waters do not
survive to the following year. The causes of the non-viability of such a settlement
remain unclear. Competition for resources, predation and lack of suitable food may
be involved. Effects of pressure may also prevent colonization of deeper areas by
shallow water organisms. Somero (1992) notes that vertical distribution patterns of

species in aquatic habitats may be established by differences in tolerance of pressure.
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However, larvae of a series of shallow water species are tolerant to high hydrostatic
pressures (Tyler & Young, 1998).

If larvae of shallower water animals are capable of withstanding pressures higher
than those faced by conspecific adults, pressure may have a deleterious effect on
others stages of the life history, such as metamorphosis or the ‘early post-
metamorphic life. In the two traps examined in the present study, post-larval
Ophiocten gracilis were collected. The 1000 m depth trap was placed at the right
depth range of the species and the post-larvae appear to have had a ‘normal’ growth,
attaining a considerable size and even started to develop gonads. In the deeper trap
(1400 m), which was outside the depth range of the species, growth was limited and
at days 149.5 and 156.5 presented a much smaller size than the animals of the
shallower trap at the same dates. It is clear that animals settled at the same time and
size in both traps, but the subsequent growth was different. Pressure may be an
important factor affecting the growth of post-larvae and the underlying cause
precluding the development of this species in deeper water.

The smaller sizes in the lower trap could also be explained by the arrival of newly-
settled post-larvae, but why then was this not recorded by the upper trap? Food
supply cannot be responsible since the flux of organic carbon was quantitatively
similar for both traps during the study period (section 6.6; R.S. Lampitt, personal
communication). The difference in temperature between the upper and lower traps
was about 3°C. This could have caused the lower growth rate observed in the deeper
trap, since temperatures were lower at 1400 m. Whatever the reasons may be, they
are certainly related to events occurring during the early benthic life, since post-
larvae collected in deeper water probably do not grow much further from the size at
settlement (Gage & Tyler, 1981a). In such a case, post-larvae will form an ephemeral
pseudopopulation (Mileikovsky, 1961) at these sites, serving as additional sources of
food for the benthic community. In the Hebridean Slope, post-larvae of Ophiocten

gracilis represented more than 7% of the total POC flux at times (Table 6.6).

6.7.3. Juvenile ecology

The early benthic life is probably of great importance (see above) and subsequent

growth probably play an important role for survival. Fast growth may be essential for
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avoiding predation. During the early phase of benthic life post-larvae face a
completely different set of predators and prey, and overall environmental conditions,
than the adults. Hunt & Scheibling (1997) point out that recently settled echinoderms
are preyed upon mainly by small predators. Larger size has been shown to provide
protection against predators in many invertebrates (Smith & Herrn_l_dnd, 1992;
Gosselin & Qian, 1997). However, this is not always the case (see Hunt &
Scheibling, 1997 for review).

The time these animals will take to recruit to the adult population will depend on
the definition given to this episode. The definition of recruitment often varies in
different fields of research (e.g. fisheries and benthic ecology). If we consider recruits
as the smallest sized animals that can be censused in the samples, which is many
times used in benthic ecology studies, then we could consider recruitment as
occurring at the time of settlement of Ophiocten gracilis. However, Hunt &
Scheibling (1997) question this definition of recruitment and emphasise that a
probably more meaningful definition is the time when individuals are added to the
breeding population. If we consider recruitment according to this second definition,
O. gracilis individuals probably recruit around 5 to 9 months after settlement,
considering a seftlement period from May to September and reproduction in
February/March. At this time animals would probably have attained a size of 2-3 mm
in disk diameter. These data are based on the exponential growth of post-larvae
examined and on the relative fast development of the gonads, which would ensures
that individuals could join the reproducing populations in the reproductive season
immediately following settlement. It is clear that individuals of O. gracilis will spend
a considerable period of time as macrofauna, even after recruitment has happened.
During this period evidence on stomach contents suggests these animals are
omnivores and opportunistic carnivores, predating on forams and polychaetes, and
probably on other groups as opportunity arises. This shows that recruitment to the
adult population not always ensure a fully change from juvenile to adult life and,
therefore, the term recruitment should be used with care in ecological studies.

Recruitment is likely to be relatively constant in the Rockall Trough area.
Examination of the samples collected during the long-term programme in this deep-

sea area by the Scottish Association for Marine Science suggests that post-larvae of

193



Chapter Six

Ophiocten gracilis have a quite constant presence in summer month samples (J.D.
Gage, personal communication). Gage (1995), based on growth models, concluded
that variations in the size structure of populations of Ophiura ljungmani are likely to
be affected by interannual variations in recruitment success. Ophiocten gracilis share
many features of the life cycle of Ophiura ljungmani, including seasor:al breeding
and planktotrophic larvae. If the model proposed by Gage (1995) is right and
recruitment is constant, it is expected that the population size structure of Ophiocten
gracilis is constant over time. The widespread settlement that this species presents
supports this idea.

Populations of Ophiocten gracilis in the Hebridean slope will likely be maintained
by the huge fecundity of the population, which is helped by the early recruitment to
the reproducing population. Also these animals probably live for maybe 10 years and
are, of course, well adapted to the conditions in the upper slope. This fecundity will
be converted into a large number of post-larvae settling regularly which, although a
probably large larval and post-larval mortality and wastage of post-larvae do occur,
will maintain the population at such high abundance.

The whole life cycle of Ophiocten gracilis and mainly the production of larvae
and the settlement back to the benthic environment must be of great importance for
the bentho-pelagic coupling and the exchange of carbon between these two
compartments. As stated in section 6.6, the total number of post-larvae settling onto
the bottom of the Hebridean slope can represent a considerable fraction of the total
carbon flux in the region. The supply of post-larvae to deeper water can also
represent a important source of food for populations living at such depths.
Furthermore, eggs and embryos produced at the bottom are transferred to the surface
layers where they will interact, consuming part of the primary production as larvae

and be consumed by other organisms.
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6.7.4. Significance of the growth of post-larval O. gracilis for sediment trap

measurements

6.7.4.1. Problems with the sediment trap technique

Sediment traps have often been used to measure downward flux of P(3C and there
is a considerable body of complementary data to indicate that they function in a
quantitative way (e.g. Gardner et al., 1997 and references cited therein) and a picture
is now emerging of the global trends and the relationship between deep water particle
flux and primary production in the euphotic zone (Lampitt & Antia, 1997). However,
there are a number of features of the trapping technique, both physical and biological,
which suggest that a degree of caution is required. |

The most important physical problem associated with the sediment trap technique
is that the effects of ambient currents are poorly understood, but almost certainly
have a significant effect on trapping efficiency (Hargraves & Burns, 1979, Gardner,
1980a, b, Butman, 1986, Baker et al., 1988). Other problems include solubilization
of carbon (Knauer ef al., 1984), bacterial degradation (Iturriaga, 1979, Gardner et al.,
1983), resuspension (Gardner & Richardson, 1992) and the presence of swimmers
(Coale, 1979, Lee et al., 1988, Karl & Knauer, 1989, Michaels ef al., 1990, Hansell
& Newton, 1994).

An aspect which has not been considered to date is the settlement of benthic

organisms onto the cone and/or baffle of those traps which have such a design.

6.7.4.2. Evidence for growth in the trap

In section 6.6 we presented data on post-larval brittle stars supposedly growing in
a deep-sea sediment trap. However, before discussing the carbon demands of the
population of brittle stars we should consider whether there is evidence that growth
occurred within the trap. Although they were not actually seen growing or dwelling
in the trap, a number of lines of evidences suggest this was the case. The first one is
the progressive increase in size of individuals collected throughout the study period
(Figure 6.2). The growth of these organisms appears to be similar to the growth of

conspecific adults (J.D. Gage, personal communication).
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The large disk diameters observed in later samples are also unique. Evidence
collected in the present study and elsewhere (Gage & Tyler, 1981a; J.D. Gage,
personal communication) suggests that post-metamorphic Ophiocten gracilis
individuals settle with a size around 0.6 mm dd and 5-6 arm segments. Post-larvae of
planktotrophic brittle stars normally possess up to 8 arm segments (Her;dler, 1975).
Some post-larvae collected in the traps were around 1.8 mm dd with over 20 arm
segments. To our knowledge, there is no evidence showing that these organisms (or
any other post-larval ophiuroid) can attain such sizes while still in the water column.
Resupension of juveniles from the bottom and subsequent collection by the trap is
very unlikely, since the trap in question was almost 500 m above the bottom. Despite
the presence of Intermediate Nepheloid Layers in the area (Fig. 6.9), these were
carrying only very small particles and at very slow speeds (R.S. Lampitt, personal
communication). Therefore, this increase of around 3 fold in disk diameter was
assumed to have been caused by growth within the sediment trap.

The analysis of the stomach contents revealed the presence of foraminifera,
unidentified detritus and even polychaete worms (section 6.5). This suggests that
organisms were eating the particulate material reaching the trap, since there is no
evidence to date showing that post-larval ophiuroids are able to feed while afloat in
the water column. This hypothesis is also supported by the large percentage of
animals with empty stomachs found during the early periods of sampling (at
settlement). Mileikovsky (1968) emphasises that larvae of ophiuroids are limited in
their range of dispersal because of their inability to remain afloat a long time after
metamorphosis and because of the lack of suitable food conditions for post-larvae in
the plankton. However, Strathmann (1974a) points out that metamorphosed
ophiuroids collected from the plankton exhibit no signs of starvation and argues that
maybe further evidence would show that these animals either can feed or do not
spend much energy while in the plankton. This evidence, however, has still to be
obtained.

The results presented above suggest that growth occurred in the trap after a major
settlement event. This occurred during mid-May and it is reinforced by the

appearance of post-larvae of similar sizes in the 1400 m trap. No evidence could be
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Figure 6.9. Across-slope depth profiles showing the amount of suspended particulate
matter (SPM) present in the Hebridean Slope area during the study period. Note
the presence of Intermediate and Benthic Nepheloid Layers (INL and BNL -
arrows) on the N1500 profile.
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found of a second settlement in the traps, from which we conclude that the specimens
collected were all from a single cohort.

Assuming the animals are growing in the traps and eating the settling organic
material, the second question is where and how did those animals survive in the trap?
The presence of preservative fluid in the sampling cups immediatel; denies the
possibility of growth within the cups, leaving only the baffle and the collection cone
internal surface. The baffle is a structure used to decrease the effect of currents
passing over the trap mouth. It acts by reducing the scale of turbulence and mixing
within the trap (Gardner, 19805). The baffle also helps preventing large animals
entering the trap, which can cause biases in the measurements. Despite their
importance, baffles also offer a large surface area for fouling organisms and, in the
present case may have provided a substrate for ophiuroid post-larvae.

Another possibility is that post-larval Ophiocten gracilis settled on the internal
walls of the sediment trap cone. Although ophiuroids lack the suckered tube feet
present in many asteroids and echinoids, they are very good climbers and may have
been able to live on that surface, despite its smoothness and high inclination angle
(70°). Cones of sediment traps are designed with smooth internal surfaces in order to
offer the smallest possible resistance to the settling particles, allowing them to slide
down into the collection cup. The presence of epifauna such as ophiuroids will
increase surface roughness and prevent detrital material from reaching the sampling
cup. This could generate a microenvironment where POC would be ultimately
consumed by ophiuroids and possibly other organisms (“swimmers”, etc:) and also
degraded by bacteria (Iturriaga, 1979, Gardner et al., 1983). Recovery of Parflux
traps is carried out without a sampling cup under the cone and it is possible that some
epifauna on the trap walls do not fall into the cups but are nevertheless washed off
and lost during recovery. If all the specimens were on the cone wall, a rough
calculation indicates that up to 0.95% of the surface of the cone would have been

covered by the ophiuroids during the present study.
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6.7.4.3. Carbon demands of post-larvae

The third question to be posed here is whether the results of carbon demands are
valid, bearing in mind a number of uncertainties in the error. Estimated values are
based on the numbers of post-larvae collected during the period of study, which will
represent a minimum estimate of the total living in the trap. -

Measurements of weight-specific respiration rates also carry an intrinsic error,
since the relationship of size to respiration was derived from a variety of different
species from invertebrates to fishes (Mahaut ef al., 1995). In fact the calculation of
growth based on the increase in the population biomass over time showed higher
values. This could represent a higher allocation of resources to growth than that
assumed here (P/R=3/7). Our results suggest a P/R ratio of around 1. Furthermore,
P/R ratios are highly variable among different species and life stages (Humphreys,
1979) and one would expect some variation from the assumed 3/7 ratio. Although
errors may be large, they represent a minimum which is still a sizeable proportion of
the primary flux. Consumption of carbon for growth should not be considered a
direct loss provided animals are included in the flux. However, growth within the
trap can transfer the settling organic carbon to different periods in time biasing the
results obtained.

The serious problem for the sediment trap technique described above will not be
experienced in all regions of the ocean. Although ophiuroids are found throughout
the marine environment, including shallow and deep water (Piepenburg & von
Juterzenka, 1994), populations of a number of species are particularly abundant at
slope depths in many different areas (Gage & Tyler, 1981a, Fujita & Ohta, 1989,
1990, Shin & Koh, 1993). Post-larval ophiuroids result from normally abundant
planktotrophic larvae present in the plankton, which take advantage of seasonal
increases in primary production as an energy source. Planktotrophy is a very
common mode of development among brittle stars and the settlement of post-
metamorphosed ophiuroids in heavily populated areas are likely to occur in order to
maintain the high levels of abundance in source populations (Gage & Tyler, 1981aq,
present study). These areas may be considered as potentially problematic during

certain periods of the year when these animals are breeding and care should be taken.
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Post-larval ophiuroids, whenever found in traps, should be considered as part of
the total flux of carbon and be included in the calculation. The losses of organic
carbon through remineralisation are a direct loss from the primary flux and in future,

results from sediment trap studies should be enhanced to take such losses into

account.
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Chapter Seven - General discussion

In deep-sea benthic organisms reproduction and dispersal act together to assure a
supply of recruits to the next generations and, in many instances, they have to be in
synchrony with the short and, in some places, variable food resources (Tyler et al.,
1994q). Although still fragmentary, the knowledge of the reproductive and larval
ecology have benefitted a great deal from indirect studies based on preserved samples
(see Table 1.1). Experimental work carried out with larvae during the past 10 years is
an important contribution (Young & Cameron, 1989; Young et al., 1989; Young &
Eckelbarger, 1994).

Post-larval biology and ecology are probably the least known aspects of the life
cycle of deep-sea invertebrates. As already stressed in previous chapters, the early
events occurring in the sediments are probably of crucial importance to recruitment
to the adult population (Gosselin & Qian, 1997; Hunt & Scheibling, 1997). The post-
larval development of thirty species of deep-sea echinoderms was described in the
present thesis. The adults of most of these species have been known since the last
century, but not much is known about their juvenile biology and ecology. The
present thesis repreéents the first step to the understanding of the early post-
metamorphic life of deep-sea echinoderms, allowing an accurate identification and
inferences about the life style. Because those species comprise possibly most of the
more common echinoderm species in the North-east Atlantic and juveniles are
usually found in samples, it was intended to produce a ‘guide’ to help the
identification of such stages. Chapter six examines the life history of Ophiocten
gracilis and serves as a case study, showing the importance and some ecological
aspects of post-larval life. The approach used, describing growth series based on
morphology, is probably the most feasible way of treating the problem of
identification in view of the difficulties with culture methods. However, the use of
molecular techniques may come to play an important role for the identification of

such stages (Metz et al., 1991; Miller et al., 1991; Medeiros-Bergen et al., 1995).
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7.1. The importance of morphological studies of post-larval echinoderms

Despite the prospect of the use of molecular techniques for the identification of
post-larval stages, morphological studies are still needed to understand development.
A comprehensive view of the morphological development allows the study of
functional morphology, which may lead to many important inferenc;s about the
ecology of very early stages. Some asteroid species examined in the present study
appears to undergo an ecological transition during the juvenile life. Such shifts in diet
and habitat occur during the juvenile period of other aquatic animals (Werner &
Gilliam, 1984; Gosselin, 1997), but were unknown for deep-sea species. This
approach is crucial for deep-sea species, which are mostly remotely sampled and
preserved, because of the difficulty of in sifu or laboratory work on live animals.

Another important aspect of the study of ontogenesis is that it provides clues to
evolutionary processes (Gould, 1977; McKinney & McNamara, 1991). Klingenberg
(1998) stresses that ontogeny and evolution are intimately and reciprocally
interrelated, since evolutionary changes in morphological characters require changes
in the developmental processes that produce the structures of interest. Many of such
modifications during the evolution of ontogenesis are thought to occur through
heterochrony (McKinney & Gittleman, 1995). Heterochrony may be defined as
changes in the relative time of appearance and rate of development of characters
already present in ancestors (Gould, 1977; McNamara, 1986; McKinney &
McNamara, 1991). A good example is the migration of the periproct away from the
apical system during the evolution of spatangoid echinoids (see section 5.3.2;
McKinney, 1988). Heterochronal changes appear to have also played an important
role during the early development of echinoderms (Wray, 1995).

Beside providing clues to processes that may have generated evolutionary
novelties and, consequently, speciation, post-larval morphology may provide data on
the taxonomic and phylogenetic affinities among extant species. Morphological
affinities were found among early stages of ophiuroids anéiyéed in chapter three,
being important for the assignment of a different generic status of an ophiuroid.
Furthermore, morphology of post-larvae may strengthen phylogenetic schemes

through the addition of new characters, in the same fashion as the relatively recent
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introduction of DNA data in phylogenetic analysis (Littlewood & Smith, 1995; Lafay
et al., 1995; Smith ez al., 1995; Littlewood et al., 1997).

7.2. Post-larvae and the colonization of the deep-sea _

At different spatial and temporal scales, dispersal is thought to influence gene
flow between populations; increase species longevity; facilitate the location of
temporally or spatially variable resources and the coexistence with disturbance; allow
colonization of new areas and maintain local population structure and diversity
(Scheltema, 1974; Strathmann, 1974b; Hansen, 1978; Sebens, 1981; Palmer &
Strathmann, 1981; Todd & Doyle, 1981; Scheltema, 1986; Wilson & Hessler, 1987;
Carlon & Olson, 1993; Young et al, 1997b). Dispersal may also have
disadvantageous effects, carrying individuals to areas unsuitable to survival (Gage &
Tyler, 1981a; Strathmann et al., 1981). Etter & Caswell (1994) suggest that, at low
levels of disturbance, both long and short dispersal are advantageous, but at
intermediate levels, long distance dispersal appears to be better.

In benthic marine invertebrates with complex life cycles, dispersal is carried out
mostly by larval stages. The extent of the dispersal potential has been associated with
the type of larva produced (Scheltema, 1986). In general, planktotrophic larvae are
long-lived and, therefore, have a larger dispersal power (Scheltema, 1986).
Lecithotrophic larvae, on the other hand, depend on food reserves stored in the egg,
which are depleted during the larval development and metamorphosis. Because of the
limited energy content of lecithotrophic eggs and inability of larvae to feed, larval
life is shorter, with a lower dispersal potential (Millar, 1971). Nevertheless, such
generalizations are not completely true. Planktotrophic larvae may show a high
variability in the length of planktonic life and, consequently, dispersal potential
(Strathmann, 1978a). Lecithotrophic larvae, likewise, may show unexpectedly long
life and dispersal potential (Olson, 1985; Scheltema, 1986). Shilling & Manahan
(1994) point out that some Antarctic echinoderms with lecithotrophic larvae may live
for months to years and relate this with the lower temperatures and uptake of
dissolved organic matter (DOM). It is expected that, in the deep-sea, the cold
temperatures would have similar effects on the physiology, increasing the longevity

of lecithotrophic larvae (Young e al., 1996c¢). Indeed, Young er al. (1997b) argue
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Chapter Seven

that lecithotrophic development does not necessarily constrain dispersal in the deep-
sea.

In the present thesis, it was found that a common phenomenon is a wider
bathymetric distribution of juveniles than adults, for both planktotrophic (chapter 6;
Gage & Tyler, 1981a; Tyler & Gage, 19844) and lecithotrophic (chapter 4; Gage er
al., 1984) species. The dispersal into deeper areas by shallow water fauna may have
been the key factor for the colonization of the deep-sea and subsequent speciation in
that environment (Tyler & Young, 1998). Tyler & Young (1998) found that the sea
urchin Echinus acutus var. norvegicus has two forms, a shallower and a deeper water
types, which have larvae with different resistance to pressure. Tyler & Young (1998)
suggest that these two types may be in the process of speciation. The gradual increase
in the bathymetric ranges through widespread dispersal may have played an
important role for the selection of pressure-adapted animals and, consequently,
speciation in a different environment.

At present, it seems that recently-metamorphosed individuals advected to deeper
areas do not survive to full adulthood, although some initiate gametogenesis (chapter
6). Physical and biological processes, as e.g. pressure, competition and predation,
may be acting as key factors for the mortality of such stages. Post-larvae of the
ophiuroid Ophiura ljungmani and the echinoid Brissopsis lyrifera appear to be
predated upon by juveniles of the asteroid species Brisingella coronata and Psilaster
andromeda, respectively (personal observations). In the case of Ophiocten gracilis,
dispersal of post-larval stages appears to be random (chapter 6). Some ophiuroid
species retain active larval arms after metamorphosis, probably being able of some
substratum selection through the use of the juvenile podia (Burke, 1983). Although
larval arms were not found attached to recently-metamorphosed benthic O gracilis
post-larvae, post-larvae collected in the water column show evidence of residual
larval arms (J.D. Gage, personal communication). It is more likely, however, that
settlement of O. gracilis is driven by hydrography, as evidence from the widespread
settlement and settlement in sediment traps suggests.

On the other hand, many asteroid larvae have the ability to test the substratum,
delaying metamorphosis if needed (Strathmann, 1974a). In this case, settlement in

unsuitable areas may not be entirely related to environmental variables, unless
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Chapter Seven

currents carry larvae too far away from the adult range and metamorphosis occurs
after a long delay in settlement. This suggests that biological processes occurring
during the juvenile phase may be playing an important role in the zonation of
echinoderms and maintenance of local population structure and diversity._

Over larger time scales, however, changes in the community structure driven by
different processes (e.g. glaciation or catastrophic events such as sediment slides)
may create or vacate a niche by removing a stronger competitor or predator and/or by

altering the physical conditions, allowing such stages to establish themselves and

Speciate.
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