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ABSTRACT:

National Mapping agencies (NMA) are tasked with providing highly accurate geospatial data for a range of customers. This
challenge has traditionally been met by combining remote sensing data gathering, field work and manual interpretation and
processing of the data. This is a significant logistical undertaking which requires novel approaches to improve potential feature
extraction from the available data. Using research undertaken at Great Britain’s NMA, Ordnance Survey (OS) as an example, this
paper provides an overview of recent advances in the use of artificial intelligence (Al) to assist in improving feature classification
from remotely sensed aerial imagery, describing research using high level neural network architecture to image classification that

utilises convolutional neural network learning.

1. INTRODUCTION

National mapping agencies (NMA) of the world are typically
tasked with producing geospatial data and topographic maps of
their respective countries. Due to the enormity of the task
coupled with the requirement to produce high quality data,
many NMA utilise a combination of remote sensing data
capture with field survey activities to capture an extensive range
of real-world features and characteristics. The remote sensing
activities are predominantly for the acquisition of highly
detailed aerial imagery, for example at 25cm pixel resolution
resulting in several thousand rows and columns per image
(Sargent et al., 2019). Resultingly, these images contain greater
levels of detail and information than it is possible for NMA’s to
extract and make available for their customers by using manual
processing methods (Holland & Marshall, 2004, Cygan, 2019,
Sargent et al., 2019). Like many other NMA’s, Great Britain’s
Ordnance Survey (OS) is embracing opportunities to move
evermore towards automation, to enable the delivery of
authoritative geospatial data and topographic mapping (Cygan,
2019). Typical for NMAs who also provide the geospatial
infrastructure for their respective countries, OS provides
mapping services for UK government, businesses and
individual consumers and produces products and services that
rely upon a data capture and processing workflow that costs tens
of millions of pounds to operate. Until recently, the capture and
maintenance of geospatial data was predominantly a manual
process. However, OS research interests have turned to
optimising the information flow from the source data and
identifying the potential of artificial intelligence (Al)
automation in the workflow for enhancing the product offerings
to customers. Through using OS as an example NMA, this
review briefly describes the development of past, present and
future Al projects within an NMA.
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2. ISSUES OF LARGE-SCALE GEOSPATIAL DATA
COLLECTION FOR AN NMA

Producing products for NMA customers is a massive
undertaking. For example, OS captures aerial imagery covering
approximately 80-90,000km? of the United Kingdom annually,
resulting in a weekly workflow of 100,000 (change) updates,
which are iterated over 650,000,000 features (Ordnance Survey,
2020). This task, therefore, presents the significant problem of
how to manage the assessment and correction of such high
numbers of features. In attempts to tackle this problem, OS
undertook a sustained period of research into the automation of
the change detection process (Holland, Gladstone et al., 2012).
Subsequently, OS developed a rule-based automation process
utilising eCognition (eCognition Essentials, Trimble, 2015) for
improving efficiencies within the change detection workflow.
These improvements detected change to a 92% correctness
value (Holland, Gladstone et al., 2012). In addition, processing
time savings were made, ~50% reduction when compared to the
equivalent manual process (Holland, Gladstone et al., 2012).
Other work producing robust automatic methods of extracting
attribution such as building heights have been successfully
added to the production pipelines (Sargent et al., 2015) and have
expanded OS’s product portfolio. These improvements
highlight the potential of a more efficient processing strategy
for an NMA, where service improvements can be made through
time-based efficiency savings or facilitating more geospatial
data being pushed through the workflow. These have direct
benefits for both the business and the customer and have driven
OS towards increasing the use of machine learning (ML) and Al
within the operational workflow.



3. EARLY EXPLORATION OF Al CAPABILITIES AT
oS

OS research into the Al field began in 2015, where the research
focus was on understanding the capabilities of the techniques.
At the time, advances in machine learning had predominantly
been achieved using limited, specialised datasets e.g. ImageNet
(Deng et al., 2009), therefore, OS explored how representational
learning could be applied to NMA dataset (Sargent, 2019).
Early research applying machine learning techniques focussed
on unsupervised approaches to categorising roof shapes from
digital surface models (Sargent et al., 2015). Some simple roof
shapes and building shapes were identified, as well as artefacts
such as overhanging vegetation which are useful to identify to
reduce the instances of label misclassification. This initial
research provided a series of opportunities that would inform
the Al research direction of the OS from this point forward.

4. ENHANCING FEATURE RECOGNITION WITH Al

In order to further the potential of Al use for feature
recognition, a protype two-phase DL algorithm, trained using
aerial imagery and OS topographical data, has been developed
at OS to enable the extraction of attribute information from the
remotely sensed data. The first phase creates a general-purpose
model for pre-processing imagery. The outputs from this phase
are subsequently used as inputs to intuitively model the required
product, for example, building attributes (Sargent et al., 2019).
This method, TopoNet, is a deep neural network which
identifies characteristic, repeated patterns from large scale aerial
imagery (Sargent et al., 2019). Similar to other classification
works that utilise computer vision and DL (Branson et al., 2018,
Griffiths & Boehm 2019), TopoNet utilises a deep
convolutional neural network (DCNN) to act as a feature
extractor, where multiple layers of convolutional filters are
learned using back-propagation using a Keras framework
(Chollet, 2018). This approach to the processing of aerial
imagery permits the fluid manipulation of pre-constructed
network architecture. Initially the 13 layer AlexNet (Krizhevsky
2012) was tested, and when the architecture was exploited to its
maximum, ResNet-50 was utilised, which, as the name suggests
provides a 50-layer network which also has the ability to use
‘skip connection’ instead of simply stacking convolution layers
one after another (He et al., 2015).

The secondary phases of TopoNet uses the techniques of
‘inference’ and ‘discovery’, where inference utilises shallow
machine learning approaches to response to bespoke requests
from customers and discovery is an investigation ways of better
understanding the landscape (Sargent et al., 2017). This two-
phase approach means that deep learning can be performed less
frequently than customer requests are typically received. By
performing discovery as well as inference, it is hoped that
deeper and more meaning landscape understanding can be
obtained to address longer-term customer requirements (Sargent
et al., 2017). The various phases of the TopoNet approach are
identified at Figure 1.
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Figure 1. A model of the core components for the TopoNet deep
learning method used at Ordnance Survey, UK.



TopoNet was developed using a process where the error of
prediction was tested and forward propagated through to the
final layer that predict the image label. Throughout an iterative
process, the error was adjusted with network weightings,
therefore, promoting increased classification accuracies in
detecting building features (Figure 2). As the initial network
architecture was based on ImageNet, the weightings were
developed and used on the ResNet-50 architecture to enable a
comparison. This approach provided an opportunity for a two-
phase comparison, where in one approach the ResNet-50 was
fine-tuned from the initial ImageNet weighting (Fine Tuned
Weights), and secondly ResNet-50 weightings were defined
from scratch (ScratchTrained Weights) (Figure 2). This
provided the opportunity to utilise methods to interrogate the
decision process within the neural network, and subsequently
make improvements to the network that resulted in the accuracy
improvements visualised as TopoNet V2 and V3 (Figure 2).
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Figure 2. Comparison of classification accuracy from features
extracted by the deep neural network, TopoNet. a. overall
classification accuracy of TopoNet (orange and blue) when
compared against other common deep learning networks. b.
accuracy for inference of roof types, and c. accuracy for
inference of roof material, comparing both ImageNet and
TopoNet methods. Legend (b & c): Pink line: ImageNet
features, Green line: TopoNet features

5. THE FUTURE OF Al IN AN NMA

OS has also undertaken several exploratory experiments
assessing whether the trained deep network has learned
meaningful representations of the landscape. In these
experiments, there is an appearance that broad land use and land
cover categories are separated (e.g. industrial, residential, water,
grassland), and OS are currently validating this by establishing
if the separation is based on less semantic details, such as object

colour or texture. It is believed that Al can identify repeated
patterns in the landscape with clear visual signatures and is seen
a key research area for the future recognition of broad land-use
categories. In addition, OS has initiated a collaboration with the
National Physical Laboratories and Science and Technology
Facilities Council, in efforts to gain better understanding of
landscape representations that are learned by deep networks
using remotely sensed imagery. It is envisaged that using the
TopoNet approach, OS and other NMAs will be able to learn
new ways to discover features within the landscape (Sargent et
al., 2019).

This perspective has enabled OS to contribute to novel projects
for exploiting geospatial data to its maximum potential. A new
concept of utilising object-based convolutional neural network
(OCNN) has been developed in partnership with Lancaster
University. The OCNN approach has achieved classification
accuracies at ~90% overall accuracy, which is a significant
improvement over other established classification methods
(Zhang, Sargent et al., 2018) (Table 1).

Class MRF OBIA Pixel- OCNN OCNN OCNN

-SVM wise 48+ 128 128+48*
CNN

Commercial 70.09 72.87 73.26 76.4 81.13 82.46

Highway 77.23 78.04 76.12 78.17 74.35 79.69

Industrial 67.28 69.01 71.23 78.24 83.87 84.75

High-density 81.52 80.59 80.05 81.75 85.35 86.43

Residential

Medium 82.54 84.42 85.27 87.28 90.34 90.59

density

Residential

Parks and | 91.05 93.14 92.34 92.59 96.41 97.09

Recreation

Parking 80.09 83.17 84.76 86.02 85.59 88.83

Railway 88.07 90.65 86.57 89.51 87.28 91.92

Redeveloped 89.13 90.02 89.26 89.71 94.57 94.69

Area

Harbour 97.39 98.43 98.54 98.62 98.75 98.95

and Sea

Overall 78.67%  79.54%  81.62% 84.23%  87.31%  89.52%

Accuracy

(0A)

Kappa 0.76 0.78 0.8 0.82 0.86 0.88

Coefficient

K

Table 1. Classification accuracy comparison amongst MRF,
OBIA-SVM, Pixel-wise CNN, OCNN48*, OCNN128, and the
proposed OCNN128+48*. Overall accuracy (OA) and Kappa
coefficient (k) are stated with ‘bold’ highlighting the greatest

classification accuracy per method

Furthermore, OCNN has recently been used within a novel Joint
Deep Learning (JDL) approach that utilises Markov iteration,
that updates between land cover (LC) and land use (LU)
classifications. Initial research shows that this approach results
in further classification accuracies and has the potential to
enhance the generalised processing workflows of NMAs at a
range of data levels or topographic scales (Zhang et al., 2019). It
is suggested that a key advantage of the JDL method is the
move away from a 2-part classification process, specifically the
utilisation of both LC and LU data, and provides opportunities
for a move towards a unified representation of geographical
space (Zhang et al., 2019), which could achieve higher
classification accuracies and improved workflows for NMAs.

6. CONCLUDING REMARKS
It is understood that to maximise the potential for Al use in

NMAs, that robust systems of network training and
interrogation will need to be developed in order to understand




where Al supported discoveries are meaningful and to what end
these could be applied in an operational sense (Sargent et al.,
2019). It is understood that there is value in utilising Al and ML
in the operational workflows of NMAs, and this can lead to
significant business efficiencies, greater product consistency
and an enhanced series of products available for the customer.
Throughout their exploration of developing Al use within the
workflow, OS has taken the opportunity to learn the unique
requirements of a suitable computational infrastructure which
will enable the handling of the Al data flow and permits the
robust development of workflow automation. These initial
forays into Al automation have provided great insights into the
potential application of Al for a NMA and therefore, OS plans
to further maximise the benefits of developing Al capabilities in
the near future, which it is envisaged will lead to greater uptake
and application of Al use within the NMA sector.
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