Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust


Nielsen, S.G., Rehkamper, M., Teagle, D.A.H., Butterfield, D.A., Alt, J.C. and Halliday, A.N. (2006) Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth and Planetary Science Letters, 251, (1-2), 120-133. (doi:10.1016/j.epsl.2006.09.002).

Download

Full text not available from this repository.

Description/Abstract

Hydrothermal fluids expelled from the seafloor at high and low temperatures play pivotal roles in controlling seawater chemistry. However, the magnitude of the high temperature water flux of mid-ocean ridge axes remains widely disputed and the volume of low temperature vent fluids at ridge flanks is virtually unconstrained. Here, we determine both high and low temperature hydrothermal fluid fluxes using the chemical and isotopic mass balance of the element thallium (Tl) in the ocean crust. Thallium is a unique tracer of ocean floor hydrothermal exchange because of its contrasting behavior during seafloor alteration at low and high temperatures and the distinctive isotopic signatures of fresh and altered MORB and seawater.

The calculated high temperature hydrothermal water flux is (0.17–2.93) × 1013 kg/yr with a best estimate of 0.72 × 1013 kg/yr. This result suggests that only about 5 to 80% of the heat available at mid-ocean ridge axes from the crystallization and cooling of the freshly formed ocean crust, is released by high temperature black smoker fluids. The residual thermal energy is most likely lost via conduction and/or through the circulation of intermediate temperature hydrothermal fluids that do not alter the chemical budgets of Tl in the ocean crust.

The Tl-based calculations indicate that the low temperature hydrothermal water flux at ridge flanks is (0.2–5.4) × 1017 kg/yr. This implies that the fluids have an average temperature anomaly of only about 0.1 to 3.6 °C relative to ambient seawater. If these low temperatures are correct then both Sr and Mg are expected to be relatively unreactive in ridge-flank hydrothermal systems and this may explain why the extent of basalt alteration that is observed for altered ocean crust appears insufficient to balance the oceanic budgets of 87Sr/86Sr and Mg.

Item Type: Article
ISSNs: 0012-821X (print)
Related URLs:
Keywords: ocean crust; hydrothermal fluids; fluid fluxes; thallium; basalt alteration
Subjects: Q Science > QE Geology
Divisions: University Structure - Pre August 2011 > School of Ocean & Earth Science (SOC/SOES)
ePrint ID: 44108
Date Deposited: 15 Feb 2007
Last Modified: 27 Mar 2014 18:28
URI: http://eprints.soton.ac.uk/id/eprint/44108

Actions (login required)

View Item View Item