Predictive haemodynamics in a one-dimensional human carotid artery bifurcation. Part I: application to stent design


Kolachalama, V.B, Bressloff, N.W., Nair, P.B. and Shearman, C.P. (2007) Predictive haemodynamics in a one-dimensional human carotid artery bifurcation. Part I: application to stent design. IEEE Transactions Biomedical Engineering, 54, (5), 802-812. (doi:10.1109/TBME.2006.889188).

Download

[img]
Preview
PDF - Post print
Download (2663Kb)
Original Publication URL: http://dx.doi.org/10.1109/TBME.2006.889188

Description/Abstract

A diagnostic technique is proposed to identify patients with
carotid stenosis who could most benefit from angioplasty followed by stent implantation. This methodology involves performing a parametric study to investigate the haemodynamic behaviour due to alterations in the stenosis shapes in the internal carotid artery (ICA). A pulsatile one dimensional Navier-Stokes solver incorporating fluid-wall interactions for a Newtonian fluid which predicts pressure and flow in the human carotid artery bifurcation is used for the numerical simulations. In order to assess the performance of each individual geometry, we introduce pressure variation factor as a metric to directly compare the global effect of variations in the geometry. It is shown that the probability of an overall catastrophic effect is higher when the stenosis is present in the upstream segment of the ICA. Furthermore, maximum pressure is used to quantify
the local effects of geometry changes. The location of the peak and extent of stenosis are found not to influence maximum pressure. We also show how these metrics respond after stent deployment into the stenosed part of the ICA. In particular, it is found that localised pressure peaks do not depend on the length of a stent. Finally, we demonstrate how these metrics may be applied to cost-effectively predict the benefit of stenting.

Item Type: Article
ISSNs: 0018-9294 (print)
Related URLs:
Keywords: 1D blood flow, carotid artery, stent design, parametric study, diagnostic techniques
Subjects: Q Science > Q Science (General)
R Medicine > R Medicine (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences > Computational Engineering and Design
ePrint ID: 46208
Date Deposited: 01 Jun 2007
Last Modified: 27 Mar 2014 18:30
URI: http://eprints.soton.ac.uk/id/eprint/46208

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics