Involvement of human basal ganglia in off-line feed-back control of voluntary movement


Brown, Peter, Chen, Chiung Chu, Wang, Shouyan, Kühn, Andrea A., Doyle, Louise, Yarrow, Kielan, Stein, John, Nuttin, Bart and Aziz, Tipu (2006) Involvement of human basal ganglia in off-line feed-back control of voluntary movement. Current Biology, 16, (21), 2129-2134. (doi:10.1016/j.cub.2006.08.088).

Download

Full text not available from this repository.

Description/Abstract

Practice makes perfect, but the neural substrates of trial-to-trial learning in motor tasks remain unclear. There is some evidence that the basal ganglia process feedback-related information to modify learning in essentially cognitive tasks 1, 2, 3 and 4, but the evidence that these key motor structures are involved in offline feedback-related improvement of performance in motor tasks is paradoxically limited. Lesion studies in adult zebra finches suggest that the avian basal ganglia are involved in the transmission or production of an error signal during song 5, 6 and 7. However, patients with Huntington's disease, in which there is prominent basal ganglia dysfunction, are not impaired in error-dependent modulation of future trial performance [8]. By directly recording from the subthalamic nucleus in patients with Parkinson's disease, we demonstrate that this nucleus processes error in trial performance at short latency. Local evoked activity is greatest in response to smallest errors and influences the programming of subsequent movements. Accordingly, motor parameters are least likely to change after the greatest evoked responses so that accurately performed trials tend to precede other accurate trials. This relationship is disrupted by electrical stimulation of the nucleus at high frequency. Thus, the human subthalamic nucleus is involved in feedback-based learning.

Item Type: Article
ISSNs: 0960-9822 (print)
Related URLs:
Keywords: sysneuro
Subjects: R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
T Technology > TA Engineering (General). Civil engineering (General)
Q Science > QP Physiology
Divisions: University Structure - Pre August 2011 > Institute of Sound and Vibration Research > Human Sciences
ePrint ID: 46600
Date Deposited: 12 Jul 2007
Last Modified: 27 Mar 2014 18:30
URI: http://eprints.soton.ac.uk/id/eprint/46600

Actions (login required)

View Item View Item