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ON BASE SIZES FOR ACTIONS OF FINITE

CLASSICAL GROUPS

TIMOTHY C. BURNESS

Abstract

Let G be a finite almost simple classical group and let Ω be a faithful primitive non-standard G-set. A base

for G is a subset B ⊆ Ω whose pointwise stabilizer is trivial; we write b(G) for the minimal size of a base for

G. A well-known conjecture of Cameron and Kantor asserts that there exists an absolute constant c such that

b(G) 6 c for all such groups G, and the existence of such an undetermined constant has been established by

Liebeck and Shalev. In this paper we prove that either b(G) 6 4, or G = U6(2).2, Gω = U4(3).22 and b(G) = 5.

The proof is probabilistic, using bounds on fixed point ratios.

1. Introduction

A base for a finite permutation group G on a set Ω is a subset B ⊆ Ω whose pointwise

stabilizer is trivial. Bases are of interest in several different fields. For example, they play an

important rôle in computational group theory because each element of G is uniquely determined

by its action on B and can therefore be stored as a |B|-tuple rather than a |Ω|-tuple. In this

respect, small bases are of particular interest. We write b(G) for the minimal size of a base for

G. Determining b(G) is a fundamental problem in permutation group theory.

In this paper we obtain upper bounds on base sizes for primitive actions of almost simple

classical groups. A main motivation comes from a conjecture of Cameron and Kantor [8, 9]

which was settled in the affirmative by Liebeck and Shalev [22]. The conjecture concerns

non-standard actions of finite almost simple groups.

Definition 1. Let G be a finite almost simple group with socle G0. Then a transitive

action of G on a set Ω is said to be standard if one of the following holds:

(i) G0 = An and Ω is an orbit of subsets or partitions of {1, . . . , n};

(ii) G is a classical group in a subspace action.

Naturally, an action of G which is equivalent to a standard action of an isomorphic group is

also said to be a standard action of G. Non-standard actions are defined accordingly. Roughly
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speaking, if G is a classical group with natural module V then a transitive action of G is

a subspace action if G permutes subspaces of V , or pairs of subspaces of complementary

dimension (see Definition 2).

The Cameron-Kantor Conjecture asserts that there exists an absolute constant c such that

b(G) 6 c for any almost simple primitive permutation group G in a faithful non-standard

action. In general, the orders of the groups in (i) and (ii) are not bounded from above by a

fixed polynomial function of their degree and thus b(G) is unbounded for standard actions.

The case G0 = An was settled by Cameron and Kantor [9]. By an elementary counting

argument they showed that almost every pair of points in a non-standard G-set form a base for

G as |G| tends to infinity. In recent work [14], Guralnick and Saxl have proved that b(G) = 2

if n > 12, and it quickly follows that b(G) 6 3 for all n. Combined with work of James [16],

the primitive actions of alternating and symmetric groups which admit a base of size two have

been completely determined.

For classical groups, the existence of an absolute constant c which satisfies the conclusion

of the Cameron-Kantor Conjecture is established in [22, 1.3] but the proof does not yield an

explicit value. However, some recent progress has been made in this direction. In [23, 1.11]

Liebeck and Shalev show that if G is a classical group in a non-subspace action then b(G) 6 3

as |G| tends to infinity. Although this asymptotic result relies on the additional hypothesis

that the dimension of the natural module is greater than fifteen, it is essentially best possible

because there exist non-standard primitive actions of classical groups of arbitrarily large rank

with b(G) > 2. In addition, some non-asymptotic results have been obtained in specific cases.

For example, the action of PGL2n(q) on the cosets of PGSp2n(q) is studied in [12] where it is

shown that b(G) = 3 if n > 3. Precise base size results for partition actions of linear groups

can be found in [17].

The main feature of Theorem 1 below is an explicit bound on b(G) which is valid for all

non-standard actions of finite almost simple classical groups. Here H = Gω denotes the point

stabilizer in G of an arbitrary element ω from the permutation domain.

Theorem 1. Let G be a finite almost simple classical group in a faithful primitive non-

standard action. Then either b(G) 6 4, or G = U6(2).2, H = U4(3).22 and b(G) = 5.

Remark 1. In the statement of Theorem 1, we omit any action of G which is equivalent

to a standard action of an isomorphic group. A list of these standard actions is presented in

Table 1.
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In the forthcoming paper [7] we consider base sizes for primitive actions of exceptional

groups. A concise version of our main result states that if G is a finite almost simple primitive

exceptional group of Lie type then b(G) 6 6 (see [7] for a more detailed statement). In view of

Theorem 1, we get

Corollary 1. If G is a finite almost simple group of Lie type in a faithful primitive

non-standard action then b(G) 6 6.

The proof of the Cameron-Kantor Conjecture for classical groups relies on an existence result

[22, Theorem (?)]. This theorem states that there exists an absolute constant ε > 0 so that if

G is any finite almost simple classical group in a primitive non-subspace action then

fpr(x, Ω) < |xG|−ε (1.1)

for all elements x ∈ G of prime order, where fpr(x,Ω) denotes the fixed point ratio of x, i.e.

the proportion of points in the permutation domain Ω which are fixed by x. The connection

to base sizes arises in the following way. If Q(G, c) denotes the probability that a randomly

chosen c-tuple in Ω does not form a base for G then

Q(G, c) 6
k∑

i=1

|xG
i | · fpr(xi,Ω)c, (1.2)

where x1, . . . , xk represent the distinct G-classes of elements of prime order in G. Of course,

G admits a base of size c if and only if Q(G, c) < 1. In the proof of [22, 1.3] it is shown that

b(G) 6 11ε−1, an undetermined bound since [22, Theorem (?)] is strictly an existence result.

The main theorem of [3] states that (1.1) holds with ε = 1/2 − 1/n − ι, where n is a

natural number associated to each almost simple classical group and ι > 0 is a known constant

depending on G and Ω with the property that ι → 0 as n → ∞ (the precise values of ι are

listed in [3, Table 1]). In general, n is simply the dimension of the natural G-module - see

Remark 2.

In applying (1.1) and (1.2), the zeta-type function

ηG(t) =
∑
C∈C

|C|−t

arises naturally in the proof of [22, 1.3], where t ∈ R and C is the set of conjugacy classes

in G of elements of prime order. Evidently there exists a real number TG ∈ (0, 1) such that

ηG(TG) = 1 and applying [3, Theorem 1] we deduce that G admits a base of size c if

TG < c(1/2− 1/n− ι)− 1. (1.3)
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In this way, we can bound b(G) by bounding the function TG. Indeed, Proposition 2.3 states

that TG < 1/3 if n > 6 and Theorem 1 quickly follows, with the exception of a short list of

cases. For these remaining cases we either establish a stronger upper bound for TG and obtain

the desired result via (1.3), or we derive an explicit upper bound Q(G, c) 6 F (q) via (1.2)

with the property that F (q) < 1 for all possible values of q. Here the computer package GAP

[11] is a useful tool when dealing with groups of small rank over small fields. In the proof of

Theorem 1 we provide detailed results for the cases G0 = PSp4(q)′ and PSLε
n(q) with n 6 5

(see Proposition 4.1 and Tables 5 and 6).

Layout. This paper is organized as follows. In the next section we record some preliminary

results which we require for the proof of Theorem 1. In particular, we show that G admits a base

of size c if (1.3) holds (Proposition 2.2) and we prove that TG < 1/3 if n > 6 (Proposition 2.3).

In Section 3 we establish Theorem 1 for n > 6; the remaining small rank cases are considered

in Section 4.

Notation. Our notation and terminology for classical groups is standard (see [20] and [3],

for example). In particular, we write PSL+
n (q) = PSLn(q) = Ln(q) and PSL−n (q) = PSUn(q) =

Un(q). We adopt the terminology of [13, 2.5.13] for the various automorphisms of simple groups

of Lie type. In addition, G′ denotes the derived subgroup of a group G; Gm is the direct product

of m copies of G; H.G denotes an (arbitrary) extension of a group H by G, while ir(G) is the

number of elements of order r in G. We write n or Cn for a cyclic group of order n, while pm

denotes an elementary abelian p-group of order pm for a prime p and Dn is the dihedral group

of order n. If F is a field then F̄ will denote the algebraic closure of F. Also, we write (a, b) for

the highest common factor of the integers a and b, while δi,j is the usual Kronecker delta. We

use log n to denote loge n and we write Fq = GF(q) for the field of q elements.

2. Preliminary results

Let G be a finite almost simple classical group over Fq, where q = pf and p is prime,

with socle G0 and natural module V . In studying actions of classical groups, it is natural to

distinguish between those actions which permute subspaces of the natural module and those

which do not. In this paper we are interested in bases for non-subspace actions. This notion

was introduced by Liebeck and Shalev in [22].

Definition 2. A subgroup H of G not containing G0 is a subspace subgroup if for each

maximal subgroup M of G0 containing H ∩G0 one of the following holds:
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(i) M is the stabilizer in G0 of a proper non-zero subspace U of V , where U is totally

singular, non-degenerate, or, if G0 is orthogonal and p = 2, a non-singular 1-space (U

can be any subspace if G0 = PSL(V ));

(ii) M = O±
2m(q) if (G0, p) = (Sp2m(q)′, 2).

A faithful transitive action of G on a set Ω is a subspace action if the point stabilizer Gω of an

element ω ∈ Ω is a subspace subgroup of G. Non-subspace subgroups and actions are defined

accordingly.

Recall the definition of a standard action from the Introduction (see Definition 1). Evidently,

every subspace action of G is standard, but the converse does not hold because a non-subspace

action of G may be equivalent to a standard action of an isomorphic group. The primitive

standard actions that arise in this way are listed in Table 1. Here H is the stabilizer in G of

an element in the permutation domain; following [20], the type of H provides an approximate

group-theoretic structure for H ∩ PGL(V ), where V is the natural G0-module. An l-subspace

is an l-dimensional subspace of the natural module for the relevant classical group isomorphic

to G0; an ε4-subspace for Ω5(q) is a non-degenerate 4-subspace whose stabilizer in Ω5(q) is an

orthogonal group of type Oε
4(q).

G0 type of H conditions equivalent action

PΩ+
8 (q) Ω7(q) H irreducible PΩ+

8 (q) on non-singular 1-subspaces

PΩ+
8 (q) Sp4(q)⊗ Sp2(q) PΩ+

8 (q) on non-singular 3-subspaces

PSLε
4(q) Sp4(q) PΩε

6(q) on non-singular 1-subspaces

L4(q) GL2(q2) q = 2 A8 on 3-element subsets of {1, . . . , 8}
L4(q) A7 q = 2 A8 on 1-element subsets of {1, . . . , 8}
PSp4(q)′ Sp2(q) o S2 Ω5(q) on + 4-subspaces

Sp2(q2) Ω5(q) on − 4-subspaces

24.O−
4 (2) q = 3 U4(2) on totally singular 2-subspaces

L2(q) GL2(q0) q = q2
0 Ω−

4 (q0) on non-singular 1-subspaces

22.O−
2 (2) q = 7 L3(2) on 1-subspaces

q = 5 A5 on 1-element subsets of {1, . . . , 5}
A5 q = 9 A6 on 1-element subsets of {1, . . . , 6}

Table 1. Some standard actions

The main theorem on the subgroup structure of finite classical groups is due to Aschbacher.

In [1], eight collections of subgroups of G are defined, labelled Ci for 1 6 i 6 8, and in general

it is shown that if H is a maximal subgroup of G not containing G0 then either H is contained

in one of these Ci collections or it belongs to a family of almost simple groups which act
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irreducibly on the natural G0-module. We refer the reader to [20] for detailed information

on these subgroup collections. Due to the existence of certain outer automorphisms, a small

additional collection arises when G0 = Sp4(q)′ (q even) or PΩ+
8 (q) (see [1, §14] and [18, §4]).

Roughly speaking, a maximal subgroup is non-subspace unless it is a member of the collection

C1 or is a particular example of a subgroup in C8, where we follow [20] in labelling the various

Ci collections.

In [3, 4, 5, 6] we studied fixed point ratios for non-subspace actions of finite classical groups.

Let Ω be a G-set and recall that the fixed point ratio of x ∈ G, which we denote by fpr(x, Ω),

is the proportion of points in Ω which are fixed by x. If G acts transitively on Ω then it is easy

to see that

fpr(x,Ω) =
|xG ∩H|
|xG|

, (2.1)

where H = Gω for some ω ∈ Ω. In [22], Liebeck and Shalev prove that there exists an absolute

constant ε > 0 so that if G is any finite almost simple classical group in a primitive non-

subspace action then fpr(x,Ω) < |xG|−ε for all elements x ∈ G of prime order. This result

plays a major rôle in their proof of the Cameron-Kantor Conjecture (see Section 1) and it finds

a wide range of other interesting applications in [22]. The main theorem of [3] states that the

Liebeck-Shalev result holds with an explicit constant ε ≈ 1/2.

Theorem 2.1 ([3, Theorem 1]). Let G be a finite almost simple classical group over Fq

and let Ω be a faithful primitive non-subspace G-set. Then

fpr(x, Ω) < |xG|− 1
2+ 1

n +ι

for all x ∈ G of prime order, where ι = ι(G, Ω) > 0 is a known constant.

Remark 2. In most cases ι = 0; the precise values are listed in [3, Table 1]. The integer

n in the statement of Theorem 2.1 is defined as follows: if G0 = Sp4(2)′ or L3(2) then n = 2,

otherwise n is the minimal dimension of a non-trivial irreducible KĜ0-module, where Ĝ0 is

a covering group of G0 and K = F̄q, i.e. n is the dimension of the natural module for G0,

whenever this is well-defined.

Next we associate a “zeta function” to G which encodes the sizes of the conjugacy classes of

elements of prime order.
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Definition 3. Let C be the set of conjugacy classes of elements of prime order in G. For

t ∈ R define

ηG(t) =
∑
C∈C

|C|−t

and fix TG ∈ (0, 1) such that ηG(TG) = 1.

Remark 3. We refer the reader to [23, 1.10] for results on the asymptotic behaviour of

ηG(t). Note that in summing over all conjugacy classes, the definition of ηG(t) in [23] differs

slightly from ours.

Proposition 2.2. If Ω is a faithful primitive non-subspace G-set and TG < c(1/2− 1/n−

ι)− 1 then b(G) 6 c.

Proof. We follow the proof of [23, 1.11]. Let x1, . . . , xk be representatives for the G-classes

of elements of prime order in G and let Q(G, c) be the probability that a randomly chosen

c-tuple of points in Ω is not a base for G. Evidently, G admits a base of size c if and only if

Q(G, c) < 1. Now, a c-tuple in Ω fails to be a base if and only if it is fixed by an element x ∈ G

of prime order. The probability that a random c-tuple is fixed by x is precisely fpr(x, Ω)c, and

since fixed point ratios are constant on conjugacy classes (see (2.1)) we deduce that

Q(G, c) 6
∑
x∈P

fpr(x,Ω)c =
k∑

i=1

|xG
i | · fpr(xi,Ω)c, (2.2)

where P is the set of elements of prime order in G. Hence Theorem 2.1 gives

Q(G, c) 6
k∑

i=1

|xG
i |c(−1/2+1/n+ι)+1 = ηG(c(1/2− 1/n− ι)− 1)

and the desired result follows since ηG(t) < 1 for all t > TG.

Definition 4. For x ∈ PGL(V ) let x̂ be a pre-image of x in GL(V ) and define

ν(x) := min{dim[V̄ , λx̂] : λ ∈ K∗},

where V̄ = V ⊗ K and K = F̄q. Note that ν(x) is equal to the codimension of the largest

eigenspace of x̂ on V̄ and thus ν(x) > 0 if x 6= 1.

The next result allows us to effectively apply Proposition 2.2.

Proposition 2.3. If n > 6 then TG < 1/3.
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Proof. Let Ḡ be a simple classical algebraic group over F̄q of adjoint type which admits a

Frobenius morphism σ such that the finite subgroup Ḡσ := {g ∈ Ḡ : gσ = g} has socle G0. In

the terminology of [13], Ḡσ is the group of inner-diagonal automorphisms of G0. For now, let

us assume G0 = PSpn(q). For 1 6 s 6 n− 1, let ks,u (respectively, ks,s) denote the number of

distinct G-classes of unipotent (respectively semisimple) elements x ∈ G of prime order with

ν(x) = s, and write c(s) for the size of the smallest G-class of elements x ∈ G of prime order

with ν(x) = s. In addition, let π be the set of distinct prime divisors of logp q and for r ∈ π

let Fr be the set of G-classes of field automorphisms of order r. Then

ηG(t) 6
∑
r∈π

∑
C∈Fr

|C|−t +
n−1∑
s=1

(ks,u + ks,s).c(s)−t.

Set d = (2, q − 1). We claim that the following bounds hold:

(i) |π| 6 log(logp q + 2) and |Fr| 6 d(logp q − 1) for all r ∈ π;

(ii) |C| > 1
2dq

1
4 n(n+1) for all C ∈ Fr;

(iii) ks,u < d.2s+
√

s;

(iv) ks,s < q
1
2 (s+1). 14n(n + 2) log q;

(v) c(s) > 1
4d (q + 1)−1qmax (s(n−s), 1

2 ns)+1 = d(s).

First consider (i). Any N ∈ N has fewer than log(N + 2) distinct prime divisors, so |π| 6

log(logp q + 2). Further, if r ∈ π then |Fr| 6 d(r− 1) (see [13, 4.9.1]) and hence (i) holds since

r divides logp q. Part (ii) follows immediately from [4, 3.48] and we observe that (i) and (ii)

imply that∑
r∈π

∑
C∈Fr

|C|−t < d(logp q − 1). log(logp q + 2).
(

1
2d

q
1
4 n(n+1)

)−t

= Γ1(n, q, t).

According to [4, (9)], there are fewer than 2s+
√

s distinct Ḡσ-classes of unipotent elements x

with ν(x) = s and thus (iii) holds since each Ḡσ-class can split into at most d = |Ḡσ : G0|

distinct G-classes. Next consider (iv). Fix a prime r 6= p which divides |Ḡσ|. By [4, 3.40], there

are at most q(s+1)/2 distinct G-classes of elements x ∈ G of order r with ν(x) = s and thus

it suffices to show that there are fewer than 1
4n(n + 2) log q possibilities for r. Since r 6= p, it

follows that r divides
∏n/2

i=1 (q2i − 1) < qn(n+2)/4 and thus (iv) holds since any integer N > 6

has fewer than log N distinct prime divisors. Finally, the bound in (v) follows at once from [4,

3.38] and we conclude that
∑

s (ks,u + ks,s).c(s)−t < Γ2(n, q, t), where

Γ2(n, q, t) =
n−1∑
s=1

[(
d.2s+

√
s + q

1
2 (s+1).

1
4
n(n + 2) log q

)
.

(
1
4d

(q + 1)−1qα

)−t
]
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and α = max (s(n− s), 1
2ns) + 1, hence ηG(t) < Γ1(n, q, t) + Γ2(n, q, t). For n > 8, one can

check that Γ1(n, q, 1/3) + Γ2(n, q, 1/3) < 1 with the exception of a short list of cases for which

both n and q are small (there are no exceptions if n > 30 or q > 43). Here we can calculate

ρ(n, q) precisely, where ρ(n, q) + 1 is the number of distinct prime divisors of |Spn(q)|, and

thus replace the term 1
4n(n + 2) log q by ρ(n, q) in the above bound (iv) for ks,s. Then the

subsequent bound for ηG(t) is sufficient with a much shorter list of exceptions; these cases can

be checked by hand with the aid of [4, §§3.2-3.5]. For example, if (n, q) = (8, 2) then G = Sp8(2)

and TG < .228 since the possibilities for |C| are as follows, where C is a conjugacy class in G

containing elements of prime order r.

r |C|

2 255, 5355, 16065, 64260, 321300, 963900

3 10880, 609280, 3655680, 12185600

5 13160448, 157925376

7 1128038400

17 2786918400 (2 classes)

If G0 = PSp6(q) then the more accurate bound

ηG(t) < 2
(

1
2
(q6 − 1)

)−t

+ (2 +
q

2
log(q2 − 1)).

(
1
4
(q + 1)−1q11

)−t

+ ((q2 + 1)(q6 − 1))−t + (6 +
q

2
log(q2 − 1)).

(
1
4
(q + 1)−1q13

)−t

+ q2 log(q2 + 1)
(

1
8
q14

)−t

+
1
3
q3 log(q6 − 1).

(
1
4
q18

)−t

+ 2(logp q − 1). log(logp q + 2).
(

1
4
q

21
2

)−t

is sufficient unless q = 2 or 3. These two cases can be checked directly; we find that TG < .307

when q = 2, while TG < .240 if q = 3.

A very similar argument applies when G0 = PSLε
n(q) or PΩε

n(q); we leave the details to the

reader (see [4, §3.5] for relevant information on graph and graph-field automorphisms).

Remark 4. For certain G we require a slightly stronger upper bound on TG. To be precise,

we need TG < 1/5 if G0 = PSLε
10(q), and TG < 4/15 if G0 = PΩε

n(q) and n > 12 is even. These

bounds can be established by arguing as in the proof of Proposition 2.3.

The next two basic lemmas will be useful in the proof of Theorem 1.

Lemma 2.4. Let G be a transitive permutation group on a finite set Ω and write H = Gω

for some ω ∈ Ω. Suppose x1, . . . , xm represent distinct G-classes such that
∑

i |xG
i ∩H| 6 A
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and |xG
i | > B for all 1 6 i 6 m. Then

m∑
i=1

|xG
i | · fpr(xi,Ω)c 6 B(A/B)c

for all c ∈ N.

Proof. Without loss we may assume |xG
i | > |xG

i+1|. For 1 6 i 6 m − 1 set ai = |xG
i ∩ H|

and bi = |xG
i | −B. Then in view of (2.1) we have

m∑
i=1

|xG
i | · fpr(xi,Ω)c 6 B

(
A−

∑
i ai

B

)c

+
∑

i

(B + bi)
(

ai

B + bi

)c

6 B1−c

(
(A−

∑
i

ai)c +
∑

i

ac
i

)
and the desired bound follows.

Lemma 2.5. Let G be a permutation group on a finite set Ω. Then b(G) > (log |G|)/(log |Ω|).

Proof. If B ⊆ Ω is a base then each element of G is uniquely determined by its action on

B, whence |G| 6 |Ω||B| and the result follows.

3. Proof of Theorem 1, Part I: n > 6

We begin the proof of Theorem 1 by assuming n > 6. We partition this section into three

subsections, according to the possibilities for G0.

3.1. G0 = PSpn(q)

Lemma 3.1. Suppose G0 = Sp6(q) and H is an irreducible subgroup of type G2(q), where

q is even. Then b(G) = 4.

Proof. Here G = G0.〈φ〉 and H = G2(q).〈φ〉, where φ is a (possibly trivial) field auto-

morphism of G0. Let ρ : Ω+
8 (q) → Ω+

8 (q) be an irreducible spin representation and view G0

as the stabilizer in Ω+
8 (q) of a 1-dimensional non-singular subspace of the natural module Ṽ

for Ω+
8 (q). Then the action of G on Ω is equivalent to the action of ρ(G0).〈φ〉 on the set of

1-dimensional non-singular subspaces of Ṽ . Therefore, it suffices to show that there exist four

non-singular vectors v1, . . . , v4 in Ṽ such that
⋂

i G〈vi〉 = {1}, while the intersection of any

three such stabilizers is non-trivial. In the proof we adopt the notation of [2] for labelling

representatives of unipotent classes of involutions in orthogonal groups.

Fix non-singular vectors v1, . . . , v4 which span a−4-subspace W of Ṽ , so W is a 4-dimensional

non-degenerate subspace and the restriction of the corresponding quadratic form on Ṽ to W
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has defect − 1. By carefully choosing the vi, we may assume that the subspaces 〈vi〉 are not

simultaneously fixed by a field automorphism of G0. We claim that
⋂

i G〈vi〉 = {1}. Seeking a

contradiction, suppose x ∈
⋂

i G〈vi〉 has prime order r. Then x ∈ G0 and Lagrange’s Theorem

implies that r divides |Ω−
4 (q)| = q2(q4 − 1) since x fixes the decomposition Ṽ = W ⊕ W⊥

and acts trivially on W . If r = 2 then the proof of [6, 2.7] implies that x acts on W⊥ as an

a2-involution, a contradiction since there are no such involutions in O−
4 (q). Now assume r is

odd. Let i > 1 be minimal such that r divides qi − 1, so i ∈ {1, 2, 4}. We can rule out i = 4

since G0〈v1〉 = G2(q) and q2 +1 does not divide |G2(q)|. If i ∈ {1, 2} then [4, 3.29] implies that

ν(x) = 2 (with respect to Ṽ ) but it is clear from the proof of [6, 2.7] that there are no such

elements in ρ(G0). We conclude that b(G) 6 4.

It remains to show that
⋂

i G〈vi〉 is non-trivial for any non-singular vectors v1, v2 and v3

which span a 3-dimensional subspace U of Ṽ . If x ∈ G0〈v1〉 = G2(q) is a long root involution

then x lies in the a2-class of G (see [6, 2.7, 2.13]) and thus some conjugate y of x fixes the

decomposition Ṽ = U ⊕U⊥, acting trivially on U and as an a2-involution on U⊥. We conclude

that y ∈
⋂

i G〈vi〉.

Lemma 3.2. Suppose G0 = PSp8(q) and H is of type Sp4(q)oS2 or Sp4(q2). Then b(G) = 3.

Proof. If q < 4 then the claim is easily checked using the computer package GAP so we will

assume q > 4. Let Ḡ be a simple algebraic group over F̄q which admits a Frobenius morphism

σ such that Ḡσ has socle G0. As before, let x1, . . . , xk represent the G-classes of elements of

prime order in H and let Q(G, c) be the probability that a randomly chosen c-tuple of points

in Ω does not form a base. Now Lemma 2.5 implies that b(G) > 3 and according to (2.1) and

(2.2) we have

Q(G, c) 6 Q̂(G, c) :=
k∑

i=1

|xG
i | · fpr(xi,Ω)c =

k∑
i=1

|xG
i | · (|xG

i ∩H|/|xG
i |)c. (3.1)

(Note that we need only sum over G-classes of elements in H since fpr(x,Ω) = 0 if xG ∩ H

is empty.) Therefore, it suffices to show that there exists a function F (q) such that Q̂(G, 3) 6

F (q) < 1 for all q > 4.

To avoid unnecessary repetition, we will assume H is of type Sp4(q) oS2 since a very similar

argument applies when H is of type Sp4(q2). We proceed by inspecting the proof of [5, 2.8].

(To deal with the case Sp4(q2), the reader should consult the proof of [5, 3.3].) First suppose

x ∈ H ∩ PGL(V ) is a semisimple element of odd prime order r and let i > 1 be minimal such

that r divides qi − 1, so i ∈ {1, 2, 4} and we consider each possibility for i in turn. We note

that |xG| > |xḠσ | by [13, 4.2.2(j)]. If i = 4 then r divides q2 +1 and CG(x) is of type GU2(q2),
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Sp4(q) × GU1(q2) or GU1(q2)2 (see [4, 3.30], for example). Now, if CG(x) is of type GU2(q2)

then

|xḠσ ∩H| =
(
|Sp4(q)|
|GU1(q2)|

)2

= q8(q2 − 1)4,

|xḠσ | = |Sp8(q)|
|GU2(q2)|

= q14(q2 − 1)2(q4 + 1)(q6 − 1)

and there are precisely 1
4 (r− 1) 6 1

4q2 distinct Ḡσ-classes of such elements. We also note that

there are fewer than log(q2 + 1) distinct odd prime divisors of q2 + 1. In this way we deduce

that the contribution to Q̂(G, 3) from semisimple elements of odd prime order dividing q2 + 1

is at most
∑3

j=1 njbj(aj/bj)3, where

j nj aj bj

1 1
4
q2 log(q2 + 1) q8(q2 − 1)4 q14(q2 − 1)2(q4 + 1)(q6 − 1)

2 1
4
q2 log(q2 + 1) 2q4(q2 − 1)2 q12(q2 − 1)(q4 + 1)(q6 − 1)

3 1
32

q4 log(q2 + 1) 2q8(q2 − 1)4 q16(q2 − 1)3(q4 + 1)(q6 − 1)

The contribution from elements of odd prime order dividing q2−1 can be estimated in a similar

fashion. For example, if CG(x) is of type GLε
2(q)

2 then r divides q − ε,

|xḠσ ∩H| = 2
(

|Sp4(q)|
|Sp2(q)||GLε

1(q)|

)2

+
(
|Sp4(q)|
|GLε

1(q)2|

)2

= a4, |xḠσ | = |Sp8(q)|
|GLε

2(q)2|
= b4

and there are precisely
(
(r−1)/2

2

)
< 1

8q2 distinct Ḡσ-classes of such elements for each fixed

prime r. Since there are fewer than log(q− ε) odd prime divisors of q− ε we conclude that the

contribution to Q̂(G, 3) from these elements is at most n4b4(a4/b4)3, where n4 = 1
8q2 log(q−ε).

We leave the reader to examine the other possibilities for CG(x).

Next we consider unipotent elements. If p > 2 then Lemma 2.4 and [4, 3.18, 3.20] imply that

the contribution to Q̂(G, 3) from unipotent elements of order p is at most
∑6

j=1 dj(cj/dj)3,

where the terms cj and dj are defined as follows:

j λ cj dj

1 (2, 16) 2(q4 − 1) 1
2
(q8 − 1)

2 (22, 14) 2q2(q4 − 1) + (q4 − 1)2 1
2
q(q2 − q + 1)(q3 − 1)(q8 − 1)

3 (23, 12) 2q2(q4 − 1)2 1
2
q2(q2 + 1)(q6 − 1)(q8 − 1)

4 (24) q4(q4 − 1)2 1
2
q4(q2 − 1)(q6 − 1)(q8 − 1)

5 (4, 14) 2q2(q2 − 1)(q4 − 1) 1
2
q6(q6 − 1)(q8 − 1)

6 (42) q4(q2 − 1)2(q4 − 1)2 1
2
q9(q − 1)(q4 − 1)(q6 − 1)(q8 − 1)

In the second column we list the partitions of 8 which correspond to the possible Jordan normal

forms on V of unipotent elements in H. The entries in the table are easily verified. For example,

suppose x ∈ H has corresponding partition λ = (22, 14). Now, λ can be written as a sum of
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two partitions of 4 in essentially two distinct ways, namely (22)⊕ (14) and (2, 12)⊕ (2, 12), and

applying [4, 3.18] we deduce that

|xG ∩H| 6 2
|Sp4(q)|

|SO+
2 (q)|q3

+
(

|Sp4(q)|
|Sp2(q)|q3

)2

= c2, |xG| > |Sp8(q)|
|Sp4(q)||O−

2 (q)|q11
= d2.

We can estimate the contribution from semisimple and unipotent involutions in the same way.

Finally, suppose x is a field automorphism of prime order r. Then r divides logp q and

the proof of [5, 2.8] gives |xḠσ ∩ H| < 4q20(1− 1
r ) and |xG| > 1

2dq36(1− 1
r ) = f(r, q), where

d = (2, q − 1). Therefore fpr(x, Ω) < 8dq−16(1− 1
r ) = g(r, q) and so Lemma 2.4 implies that the

contribution to Q̂(G, 3) from field automorphisms is less than∑
r∈π

(r − 1).h(r, q) < h(2, q) + 2h(3, q) + 4h(5, q) + logp q.q36g(7, q)3,

where h(r, q) = f(r, q)g(r, q)3 and π is the set of distinct prime divisors of logp q.

In this way we obtain a function F (q) which satisfies Q̂(G, 3) 6 F (q) < 1 for all q > 4. We

conclude that b(G) = 3 for all values of q.

Proposition 3.3. If G0 = PSpn(q) and n > 6 then b(G) 6 4.

Proof. By applying Propositions 2.2 and 2.3 we see that b(G) 6 c if

c(1/2− 1/n− ι)− 1 > 1/3. (3.2)

In particular, if ι = 0 then b(G) 6 4 for all n > 6 so assume ι > 0. If ι ∈ {1/n, 1/(n + 2)} then

n ≡ 0 (4) and H is of type Spn/2(q) o S2 or Spn/2(q2) (see [3, Table 1]). Here (3.2) implies that

b(G) 6 4 if n > 12, while Lemma 3.2 applies if n = 8. According to [3, Table 1] it remains to

deal with the following cases:

G0 type of H ι b(G)

(i) Sp8(2) A10 .062 3

(ii) Sp6(q) G2(q), p = 2 .084 4

(iii) Sp6(2) U3(3) .054 4

In (i) and (iii) we use GAP [11] to calculate b(G). See Lemma 3.1 for (ii).

3.2. G0 = PΩε
n(q)

Now suppose G0 is an orthogonal group. Note that we may assume n > 7 and that q is odd

if n is odd.

Lemma 3.4. Suppose G0 = PΩ+
8 (q) and H is of type GLε′

4 (q), or G0 = PΩε
10(q) and H is

of type GLε′

5 (q). Then b(G) ∈ {3, 4}.
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Proof. First note that Lemma 2.5 gives b(G) > 3. For the upper bound we proceed as

in Lemma 3.2: close inspection of the proof of [5, 3.3] yields a function F (q) which satisfies

Q̂(G, 4) 6 F (q) < 1 for all values of q, where Q̂(G, 4) is defined as in (3.1). This implies that

b(G) 6 4. The details are left to the reader.

Proposition 3.5. If G0 = PΩε
n(q) and n > 7 then b(G) 6 4.

Proof. If ι = 0 then (3.2) implies that b(G) 6 4 so assume ι > 0. If H is of type GLε′

n/2(q)

then ι = 1/(n − 2) and the conclusion b(G) 6 4 follows via Proposition 2.2 and Remark 4 if

n > 12; the cases n ∈ {8, 10} were considered in Lemma 3.4 (note that we may assume ε = +

if n = 8 - see [20, Table 3.5.F], for example). According to [3, Table 1] it remains to deal with

the cases listed in the next table. Here we omit the irreducible embedding Ω7(q) < PΩ+
8 (q)

since the corresponding action is equivalent to a subspace action - see Table 1.

G0 type of H ι b(G)

(i) Ω−
10(2) A12 .087 3 + α

(ii) PΩ+
8 (3) Ω+

8 (2) .081 3 + α

(iii) Ω+
8 (2) O−

4 (2) o S2 .001 3

(iv) Ω+
8 (2) A9 .124 4

(v) Ω7(q) G2(q), p > 2 .108 4

(vi) Ω7(3) Sp6(2) .065 3

The results for (i)-(iv) and (vi) can be checked using GAP [11]; here α = 0 if G = G0, otherwise

α = 1.

For (v) we argue as in the proof of Lemma 3.1. Here G = G0.〈φ〉 and H = G2(q).〈φ〉, where

φ is a (possibly trivial) field automorphism of G0; the action of G on Ω is equivalent to the

action of ρ(G0).〈φ〉 on the set of 1-dimensional non-singular subspaces of the natural module

Ṽ for J , where ρ is an irreducible spin representation of J = PΩ+
8 (q). Seeking a contradiction,

suppose x ∈
⋂4

i=1 G〈vi〉 has prime order r, where the vi are non-singular vectors which span a

− 4-subspace W of Ṽ and have the property that the subspaces 〈vi〉 are not simultaneously

fixed by a field automorphism of G0. Then x fixes the decomposition Ṽ = W ⊕W⊥ and acts

trivially on W . If r > 2 we get a contradiction precisely as in the proof of Lemma 3.1 so we

may assume r = 2. Then [4, 3.55] implies that CJ(x) is of type GLε
4(q), O+

4 (q)2 or O+
4 (q2),

and this contradicts the fact that x fixes the above decomposition and acts trivially on W .

We conclude that b(G) 6 4. To see that equality holds, let v1, v2 and v3 be any non-singular

vectors which span a 3-dimensional subspace U of Ṽ and let x ∈ G0〈v1〉 = G2(q) be a long root

element. Then x has order p and the proof of [6, 2.13] implies that x has Jordan form [J2
2 , J4

1 ]
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on Ṽ , where Ji denotes a standard Jordan block of size i. In particular, some conjugate y of x

fixes the decomposition Ṽ = U ⊕ U⊥ and acts trivially on U . This implies that y ∈
⋂

i G〈vi〉

and thus b(G) > 3.

3.3. G0 = PSLε
n(q)

We begin with the exceptional case referred to in the statement of Theorem 1.

Lemma 3.6. Suppose G0 = U6(2) and H is an irreducible subgroup of type U4(3). Then

b(G) = 5 if G = G0.2, otherwise b(G) = 4.

Proof. With the aid of the Online Atlas of Finite Groups, one can construct G and H in

GAP and the desired result is easily checked.

Lemma 3.7. Suppose G0 = PSLε
n(q) and H is of type Spn(q), where n ∈ {6, 8}. Then

b(G) ∈ {3, 4}.

Proof. First observe that Lemma 2.5 implies that b(G) > 3. If (n, q) = (6, 2) then using

GAP [11] we calculate that b(G) = 3 + α, where α = 1 if G = U6(2).2, otherwise α = 0. For

(n, q) 6= (6, 2) we proceed as in Lemma 3.2; by inspecting the proof of [4, 8.1] we derive a

function F (q) such that Q̂(G, 4) 6 F (q) < 1 for all values of q.

Proposition 3.8. If G0 = PSLε
n(q) and n > 6 then b(G) 6 4.

Proof. As before, we quickly reduce to the case ι > 0. Suppose H is of type Spn(q), in

which case ι = 1/n. Now, if n > 12 then (3.2) holds with c = 4; the case n = 10 follows from

Proposition 2.2 since TG < 4/15 (see Remark 4), while the cases n ∈ {6, 8} are handled in

Lemma 3.7. According to [3, Table 1], it remains to deal with the case G0 = U6(2) with H an

irreducible subgroup of type U4(3). This is the content of Lemma 3.6 above.

4. Proof of Theorem 1, Part II: n < 6

In this final section we complete the proof of Theorem 1 by dealing with the remaining groups

of small rank. Here Theorem 2.1 is less useful and we proceed by considering each maximal

non-subspace subgroup of G in turn. As before, we use the proof of [3, Theorem 1] in [4, 5,

6] and the bounds on fixed point ratios therein. Again, the computer package GAP is a useful

tool when the underlying field is small.
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Our detailed results are recorded in Tables 5 and 6. The maximal non-subspace subgroups are

determined in [19] and can be verified using a combination of [1], [15] and [24]. As before, we

exclude any subgroup for which the corresponding primitive action is equivalent to a standard

action of an isomorphic group (see Table 1). The third column lists certain necessary, but not

always sufficient, conditions for the corresponding action to be primitive and non-standard. In

the column headed ‘b(G)’ we record the possibilities for b(G). Where more than one possibility

is listed, we mean that b(G) always takes one of the listed values, but we do not claim that

each possibility is attainable.

The next proposition follows from the results in Tables 5 and 6 and completes the proof of

Theorem 1. In Table 2 we adopt the notation of [10] for labelling representatives of G0-classes

of involutions when G0 = U4(3).

Proposition 4.1. Let G be a finite almost simple group with socle G0, where G0 =

PSp4(q)′ or PSLε
n(q) with n 6 5. If Ω is a faithful primitive non-standard G-set then either

b(G) 6 3, or b(G) = 4 and (G, H) is listed in Table 2, where H = Gω.

The cases in Table 2 can be checked using GAP. For the remainder, we use the proof of [3,

Theorem 1] to define a function F (q) such that Q̂(G, c) 6 F (q) < 1 (see (3.1)), with c = 2 or 3

as required. For small values of q, precise base size calculations are often possible using GAP.

Below we provide some details when G0 = PSp4(q)′ and L2(q). (Note that the case G0 = L2(q)

was not considered in [3] since Theorem 2.1 is trivial in this case.)

4.1. G0 = PSp4(q)′

Let G be a finite almost simple group with socle G0 = PSp4(q)′. We use the symbol (↔)

to denote the additional hypothesis “p = 2 and G contains graph-field automorphisms”. (Note

that some authors favour the term graph automorphism here.)

G0 type of H remarks

U4(3) 24.Sp4(3) G = G0.〈2B, 2D〉
L3(4)

Sp4(2)′ O−
2 (2) o S2 G = Aut(G0)

U3(3) L3(2) G = G0.2

Table 2. n < 6: The cases with b(G) = 4
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Proposition 4.2. Let G be a finite almost simple group with socle G0 = PSp4(q)′ and let

Ω be a faithful primitive non-standard G-set. Then the possibilities for H = Gω are listed in

Table 3.

Proof. The maximal subgroups of G are listed in [19, Chapter 5] and [1, 14.2] (also see

[20, Table 3.5.C]). The subgroups in Aschbacher’s C1 collection can be omitted since they are

subspace subgroups. In addition, each action corresponding to a subgroup of type Sp2(q) o S2,

Sp2(q2) or 24.O−
4 (2) (q = 3) is equivalent to a C1-action of an isomorphic classical group

and so these subgroups are excluded too (see Table 1). The second column records necessary

conditions for the relevant action to be primitive and non-standard.

Lemma 4.3. If H is of type 24.O−
4 (2) then b(G) = 3 if G = PGSp4(5), otherwise b(G) = 2.

Proof. Here q = p > 3 and H 6 24.O−
4 (2) = H̃ is a subgroup in Aschbacher’s C6 collection.

If q < 17 then the result can be checked using GAP so we will assume q > 17. Now the prime

divisors of |H̃| are 2, 3 and 5, and the proof of [4, 6.6] gives ir(H̃) 6 nr, where n5 = 384,

n3 = 80 and n2 = 155, and ir(H̃) is the number of elements of order r in H̃. Therefore

Q̂(G, 2) 6 (3842 + 802)a−1
1 + 1552a−1

2 , where

a1 =
|Sp4(q)|
|GU2(q)|

= q3(q − 1)(q2 + 1), a2 =
|Sp4(q)|
|Sp2(q2)|2

=
1
2
q2(q2 − 1),

and thus Q̂(G, 2) < 1 for all q > 17.

Lemma 4.4. If H is of type Sz(q) then b(G) = 3.

type of H conditions

GL2(q).2 q odd

GU2(q) q odd

Sp4(q0) q = qk
0 , k prime

24.O−
4 (2) q = p > 3

Sz(q) p = 2, log2 q > 1 odd

L2(q) p > 3

A6 q = p > 3

A7 q = 7

Oε
2(q) o S2 (↔) holds, ε = − if q = 2

O−
2 (q2).2 (↔) holds

Table 3. G0 = PSp4(q)
′: Maximal non-subspace subgroups
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Proof. Here q is even, log2 q > 1 is odd and H ∩ PGL(V ) = Sz(q) is the centralizer in G0

of an involutory graph-field automorphism, where V is the natural G0-module. Now, if G 6= G0

then

log |G|
log |Ω|

>
log(2q4(q2 − 1)(q4 − 1))
log(q2(q + 1)(q2 − 1))

> 2

for all q > 8 and thus Lemma 2.5 implies that b(G) > 3. The case G = G0 is studied in [21];

the subdegrees of G are listed in [21, Table 1] and we immediately deduce that b(G) > 3.

Therefore, it suffices to show that there exists a function F (q) such that Q̂(G, 3) 6 F (q) < 1

for all values of q.

Suppose x ∈ H ∩ PGL(V ) has prime order r. If r = 2 then x is G-conjugate to c2 (see [2]

and [4, 2.56]) and thus

|xG ∩H| = (q2 + 1)(q − 1) = a1, |xG| = (q2 − 1)(q4 − 1) = b1.

Now assume r > 2. Then [4, 2.56] implies that r > 5, ν(x) = 3 (see Definition 4) and i ∈ {1, 4},

where i > 1 is minimal such that r divides qi − 1. If i = 1 then r > 7 and [4, 2.56] gives

|xSp4(q) ∩H| 6 1
r
|Sz(q)| = 1

r
a2, |xSp4(q)| = |Sp4(q) : GL1(q)2| = b2.

In addition, there are precisely 1
2 (r − 1) possibilities for x up to Sp4(q)-conjugacy and so the

contribution to Q̂(G, 3) from semisimple elements whose order divides q − 1 is at most

b2(a2/b2)3
1
2

∑
r∈Λ

r − 1
r3

,

where Λ is the set of distinct prime divisors of q − 1. Now

1
2

∑
r∈Λ

r − 1
r3

<
1
2

∞∑
m=3

(
1

2m + 1

)2

=
1
16

π2 − 1
2
− 1

18
− 1

50
= n2

and so the contribution here is less than n2b2(a2/b2)3. Similarly, the elements of prime order

dividing q2 + 1 contribute less than n3b3(a3/b3)3, where

a3 = q2(q2 + 1)(q − 1), b3 = q4(q2 − 1)2, n3 =
1
32

π2 − 1
4
− 1

36
.

Now, if x ∈ G is an involutory graph-field automorphism then we may assume x centralizes

H ∩ PGL(V ) and thus

|xG ∩H| = i2(Sz(q)) + 1 = (q2 + 1)(q − 1) + 1 = a4, |xG| = q2(q + 1)(q2 − 1) = b4.

Finally, if x is a field automorphism of prime order r then

|xG| = q4(q2 − 1)(q4 − 1)
q

4
r (q

2
r − 1)(q

4
r − 1)

= f(r, q), fpr(x,Ω) =
q

2
r (q

1
r + 1)(q

2
r − 1)

q2(q + 1)(q2 − 1)
= g(r, q)
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and so the contribution here is at most∑
r∈Γ

(r − 1).h(r, q) < 2h(3, q) + log2 q.q4(q2 − 1)(q4 − 1).g(5, q)3 = F1(q),

where h(r, q) = f(r, q)g(r, q)3 and Γ is the set of distinct prime divisors of log2 q. We conclude

that

Q̂(G, 3) <
4∑

j=1

njbj(aj/bj)3 + F1(q) = F (q)

(where n1 = n4 = 1) and one can check that F (q) < 1 for all q > 8.

The remaining cases in Table 3 are dealt with in a similar fashion and we present our results

in Table 6.

4.2. G0 = L2(q)

Finally, suppose G is an almost simple group with socle G0 = L2(q). Note that we may

assume q > 4 since L2(2) ∼= S3, L2(3) ∼= A4 and L2(4) ∼= L2(5). The maximal subgroups of G

are well-known; in Table 4 we list the ones which correspond to faithful non-standard actions.

Lemma 4.5. If H is of type GL1(q2) then b(G) ∈ {2, 3}.

Proof. If q = 5 then a calculation with GAP gives b(G) = 3 if G = PGL2(5), otherwise

b(G) = 2. For the remainder let us assume q > 7. Let V denote the natural G0-module and

observe that H ∩ PGL(V ) 6 Cq+1.2 ∼= D2(q+1). Define Q̂(G, 3) as in (3.1) and let x ∈ H ∩

PGL(V ) be an element of prime order r. If r = p then p = 2 and we have |xG∩H| = q+1 = a1

and |xG| = q2 − 1 = b1. Next assume r 6= p. If r = 2 and CG(x) is of type GL1(q)2 then

|xG ∩H| = 1
2 (q + 1) = a2 and |xG| = 1

2q(q + 1) = b2, otherwise CG(x) is of type GL1(q2) and

we have |xG∩H| = 1
2 (q+3) = a3 and |xG| = 1

2q(q−1) = b3. If r 6= p is odd then r divides q+1

and it is easy to see that |xG̃∩H| = 2 = a4 and |xG̃| = q(q−1), where G̃ = PGL2(q). For such

a prime r, there are precisely 1
2 (r − 1) 6 1

2q possibilities for x up to G̃-conjugacy and we note

type of H conditions

GL1(q) o S2 q > 5

GL1(q2)

GL2(q0) q = qk
0 , k > 2 prime

22.O−
2 (2) q = p > 7

A5 q ≡ ±1 (10), q 6= 9

Table 4. G0 = L2(q): Maximal non-subspace subgroups
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that q + 1 has fewer than log(q + 1) odd prime divisors. We conclude that the contribution to

Q̂(G, 3) from H ∩ PGL(V ) is at most

F1(q) =
3∑

i=1

bi(ai/bi)3 + n4b4(a4/b4)3,

where n4 = 1
2q log(q + 1).

Finally, suppose x ∈ H is a field automorphism of G0 of prime order r. Here q = qr
0 and we

note that r is odd since x ∈ H − PGL(V ). Now |xG ∩H| 6 q + 1 since xG ∩H ⊆ Cq+1x, and

we have

|xG| > 1
d
|xG̃| = 1

d

q(q2 − 1)
q

1
r (q

2
r − 1)

= f(r, q),

where d = (2, q − 1). Therefore fpr(x,Ω) 6 (q + 1)f(r, q)−1 = g(r, q) and thus

Q̂(G, 3) 6 F1(q) +
∑
r∈Λ

(r − 1).h(r, q)

6 F1(q) + α
[
2h(3, q) + 4h(5, q) + logp q.q(q2 − 1).g(7, q)3

]
= F (q),

where h(r, q) = f(r, q)g(r, q)3 and Λ is the set of distinct odd primes which divide logp q. We

set α = 1 if Λ is non-empty, otherwise α = 0. The reader can check that F (q) < 1 for all q > 7.

A similar argument applies when H is of type GL1(q) oS2 or GL2(q0) (note that in the former

case we have b(G) = 2 if G 6 PGL2(q) - see [17, 2.1]). It remains to consider the final two

cases in Table 4.

Lemma 4.6. If H is of type 22.O−
2 (2) then b(G) = 2.

Proof. First observe that H ∩ PGL(V ) 6 S4. According to Table 1, we may assume q > 7.

If q < 17 then the result is easily checked via GAP so we will assume q > 17. Define Q̂(G, c) as

in (3.1) and let x ∈ H be an element of prime order r. Then |xG| > 2−δ2,rq(q − 1) and thus

Q̂(G, 2) 6
1
2
q(q − 1)

(
18

q(q − 1)

)2

+ q(q − 1)
(

8
q(q − 1)

)2

= F (q)

since i2(S4) = 9 and i3(S4) = 8, where ir(S4) is the number of elements of order r in S4. We

conclude that b(G) = 2 since F (q) < 1 for all q > 17.

Lemma 4.7. If H is of type A5 then b(G) = 2 + δ11,q + δ19,q.

Proof. Here q 6 p2 and the maximality of H implies that (G, H) = (G0, A5) if q = p. We

will assume q > 49 since the other cases can be checked using GAP (note that q 6= 9 - see Table
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1). Now, if x ∈ H ∩PGL(V ) = A5 has prime order r then |xG| > 2−δ2,rq(q− 1) and so Lemma

2.4 implies that the contribution to Q̂(G, 2) from H ∩ PGL(V ) is at most

F1(q) =
1
2
q(q − 1)

(
30

q(q − 1)

)2

+ q(q − 1)
(

20
q(q − 1)

)2

+ 2q(q − 1)
(

12
q(q − 1)

)2

since i2(A5) = 15, i3(A5) = 20 and i5(A5) = 12. Finally, if q = p2 and x ∈ H − PGL(V ) is an

involution then |xG ∩H| = 10, |xG| > 1
2q1/2(q + 1) and thus

Q̂(G, 2) 6 F1(q) + (logp q − 1).q
1
2 (q + 1).

(
20

q1/2(q + 1)

)2

= F (q).

The reader can check that F (q) < 1 for all q > 49.
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G0 type of H conditions b(G) remarks

L5(q) GL1(q) o S5 q > 3 2 see [17]

GL1(q5) 2

GL5(q0) q = qk
0 , k prime 2, 3 b(G) = 2 if k > 2

52.Sp2(5) q = p ≡ 1 (5) 2

O5(q) q odd 2, 3

U5(q0) q = q2
0 2, 3

L2(11) q = p ≡ 1, 3, 4, 5, 9 (11) 2

M11 q = 3 2

U5(q) GU1(q) o S5 2 + δ2,q

GU1(q5) 2

GU5(q0) q = qk
0 , k > 2 prime 2

52.Sp2(5) p ≡ 2, 3, 4 (5), q ≡ 4 (5) 2

O5(q) q odd 2, 3

L2(11) q = p ≡ 2, 6, 7, 8, 10 (11) 2

U4(2) q = 5 2

L4(q) GL1(q) o S4 q > 3 2 see [17]

GL2(q) o S2 q > 2 3− δ2,p see [17]

GL2(q2) q > 2 2, 3 b(G) = 3 if q = 3

GL4(q0) q = qk
0 , k prime 2, 3 b(G) = 2 if k > 2

24.Sp4(2) q = p ≡ 1 (4) 2

O+
4 (q) q odd 2, 3

O−
4 (q) q odd 2, 3

U4(q0) q = q2
0 2, 3 b(G) = 3 if q = 4

A7 q = p ≡ 1, 2, 4 (7), q > 2 2

U4(2) q = p ≡ 1 (6) 2

U4(q) GU1(q) o S4 2, 3 b(G) = 2 if q > 3

GU2(q) o S2 2, 3

GL2(q2) 2, 3

GU4(q0) q = qk
0 , k > 2 prime 2

24.Sp4(2) q = p ≡ 3 (4) 2, 3, 4 b(G) = 2 if q > 3

O+
4 (q) q odd 2, 3

O−
4 (q) q odd 2, 3

A7 q = p ≡ 3, 5, 6 (7) 2 + δ3,q

L3(4) q = 3 4

U4(2) q = p ≡ 5 (6) 2

Table 5. Base sizes for non-standard actions, I



ON BASE SIZES FOR ACTIONS OF FINITE CLASSICAL GROUPS 23

G0 type of H conditions b(G) remarks

PSp4(q)′ GL2(q).2 q odd 2, 3

GU2(q) q odd 2, 3

Sp4(q0) q = qk
0 , k prime 2, 3 b(G) = 2 if k > 2

24.O−
4 (2) q = p > 3 2, 3 b(G) = 3 iff G = PGSp4(5)

Sz(q) p = 2, log2 q > 1 odd 3

L2(q) p > 3 2

A6 q = p > 3 2

A7 q = 7 2

Oε
2(q) o S2 (↔) holds, ε = − if q = 2 2, 3, 4 b(G) = 4 iff G = Sp4(2)′.22

O−
2 (q2).2 (↔) holds 2, 3

L3(q) GL1(q) o S3 q > 3 2 see [17]

GL1(q3) 2, 3 b(G) = 2 if q > 3

GL3(q0) q = qk
0 , k prime 2, 3 b(G) = 2 if k > 2

32.Sp2(3) q = p > 5, p ≡ 1 (3) 2

O3(q) q odd 2, 3

U3(q0) q = q2
0 2, 3

A6 q = 4 3

L3(2) q = p ≡ 1, 2, 4 (7) 2

U3(q) GU1(q) o S3 2, 3 b(G) = 2 + δ3,q + δ4,q

(q > 2) GU1(q3) 2

GU3(q0) q = qk
0 , k > 2 prime 2

32.Sp2(3) q = p ≡ 2 (3) 2

O3(q) q odd 2, 3

A6 q = 5 3

A7 q = 5 4

L3(2) q = p ≡ 3, 5, 6 (7) 2, 3, 4 b(G) = 2 if q > 5

L2(q) GL1(q) o S2 q > 5 2, 3

(q > 4) GL1(q2) 2, 3

GL2(q0) q = qk
0 , k > 2 prime 2

22.O−
2 (2) q = p > 7 2

A5 q ≡ ±1 (10), q 6= 9 2, 3 b(G) = 2 + δ11,q + δ19,q

Table 6. Base sizes for non-standard actions, II
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