Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers

Schlotterbeck, U., Aymonier, C., Thomann, R., Hofmeister, H., Tromp, M., Richtering, W. and Mecking, S. (2004) Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers. Advanced Functional Materials, 14, (10), 999-1004. (doi:10.1002/adfm.200400053).


Full text not available from this repository.

Original Publication URL:


Despite the broad interest in such materials, the synthesis of defined structures in the size range of 10 nm to ca. 1 micrometer ("mesoscopic") is challenging. Few routes shape-selectively afford geometrically regular structures other that the typical spherical metal particles of 1 to 10 nm. Moreover, these few routes are largely restricted to aqueous systems, however, for catalysis and other applications dispersions in organic solvents are desirable. Carbon monoxide reduction of a palladium(II) compound in combination with stabilization by (readily available) amphiphilic hyperbranched ploymers surprisingly affords dispersions of hexagonal platelets selectively with average sizes of thirty to several hundred nanometers in toluene. The size can be controlled by the polymer compositions. Transmission electron microscopy (TEM), electron diffraction, and extended x-ray absorption fine structure (EXAFS) spectroscopy demonstrate these palladium(0) platelets to be extremely thin (1 - 2 nm). Despite this high aspect ratio, the platelets prove quite shear resistant.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1002/adfm.200400053
ISSNs: 1616-3028 (print)
Related URLs:
Keywords: hyperbranched polymers, nanoparticles, palladium, synthesis, shape controlled
Subjects: T Technology > TP Chemical technology
Q Science > QD Chemistry
Divisions : University Structure - Pre August 2011 > School of Chemistry
ePrint ID: 46691
Accepted Date and Publication Date:
Date Deposited: 16 Jul 2007
Last Modified: 31 Mar 2016 12:22

Actions (login required)

View Item View Item