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Abstract. We consider the problem of composing images by combining an arbi-
trary foreground object to some background. To achieve this we use a factorized
latent space. Thus we introduce a model called the “Background and Foreground
VAE” (BFVAE) that can combine arbitrary foreground and background from an
image dataset to generate unseen images. To enhance the quality of the gener-
ated images we also propose a VAE-GAN mixed model called “Latent Space
Renderer-GAN” (LSR-GAN). This substantially reduces the blurriness of BF-
VAE images.
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1 Introduction
Learning factorized representations of visual scenes is a challenging problem in com-
puter vision. Human brains can process the realistic scene as a whole and decompose it
into different parts using visual clues and prior knowledge. This cognitive ability also
enables humans to imagine different scenes. Objects form the basis of humans’ high-
level cognition [36]. Thus, learning good object representations could be an important
step towards making artificial intelligence closer to human intelligence. In visually in-
specting a scene, one object is often attended to as the foreground and the rest of the
scene is the background. There exists a considerable body of work learning represen-
tation for each object in a scene and achieve objects segmentation [3, 14, 28, 32]. We
argue that a good object representation should not only benefit the downstream tasks
such as classification, or segmentation, but also enable generative models to create im-
ages conditioned on the object representations.

Our aim is to build a generative model for classes of images that allows us to alter
the foreground objects independently of the background. This requires building a model
that factorizes and composites these two part representations of the image. Existing
works that can factorize the foreground and background of images are all based on
hierarchical Generative Adversarial Networks [26, 35, 41]. Here we introduce a new
VAE-based model that can be used to factorize the background and foreground objects
in a continuous latent space and composite factors of those training images to generate
new images in one shot. Compared to GAN-based models, our VAE-based models can
infer the latent representation of existing images in addition to performing generation.

We consider the decomposition of an image xxx into a set of foreground pixels fff and
background pixels bbb such that

xxx = fff �mmm+bbb� (1−mmm), (1)
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where mmm is the binary mask of the foreground and � denotes elementwise multiplica-
tion. Thus we require a mask or bounding box to crop the foreground object fff out, as
shown in Figure 1. Row C is the generated images of our model by combining different

A:

B:

C:

Fig. 1: Our model can disentangle the foreground and background of images and com-
bine factors from different images to generate new images. Row A is the original im-
ages. Row B is the decomposition of Row A. Row C is the generations of combining
different factors. Between row B and row C, the solid arrow means reconstruction and
dashed arrow means generation.

factors in row B. The background and foreground of images in row C are not totally the
same as images in row A and row B, this is due to a trade-off between the similarity and
reality in our model which will be addressed in the following section.

We name this model the Background and Foreground VAE (BFVAE). BFVAE con-
sists of two different VAEs: VAE-B and VAE-F. We train VAE-F on the foreground
object, fff , while the VAE-B encoder is given the full image, xxx, as input. We concate-
nate the latent representation for VAE-B with that of VAE-F before feeding it into the
decoder of VAE-B. This operation encourages the encoder in VAE-B to ignore infor-
mation about the foreground object as this is already encoded. It is crucial to use the
full image, xxx, and not just the background image, bbb, as the input of VAE-B since the
original information in xxx helps the model to generate pure background images without
a hole when we use a pure black image as the input of VAE-F. It also helps to fix the
hole when we exchange the foreground objects among images.

The drawback of VAE-based model is the generated images tend to be blurry, thus
we propose another VAE-GAN mixed model which can generate high-quality images
but also obtain an approximate latent space of a pre-trained VAE model (BFVAE in this
case). We name it Latent Space Renderer-GAN (or LSR-GAN). By feeding the output
of the generator to the encoder of a pre-trained VAE, LSR-GAN is more stable and
can avoid mode drops. In addition, we note that a different pre-processing operation of
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the images make a significant difference to the FID scores. Thus, we argue that it is
necessary to clarify how the FID score is computed.

The main contributions of our work are fourfold:

– We propose a new VAE-based model called BFVAE that can composite the fore-
ground and background of images and generate images by combining different
factors.

– We introduce a VAE-GAN mixed model called LSR-GAN which enables us to
generate high-quality images with the approximated disentangled latent space.

– We demonstrate that BFVAE can factorize the foreground and background repre-
sentation and generate high-quality images when combined with LSR-GAN. More-
over, We show our model can obtain FID scores that are comparable to the state-
of-the-art model.

– We demonstrate that BFVAE is able to factorize other factors when we have addi-
tional information available for training (like class labels).

2 Related Work
There are several papers on composition and decomposition of images [3, 9, 11, 12, 14,
27, 28, 34]. Genesis [12] tries to decompose image into object representations using a
recurrent neural network which builds a strong relationship among each objects. All the
models generate or reconstruct images part by part and stitch all the parts together.

Not many works focus on compositing images in a background-foreground man-
ner. The existing models are all GAN-based model that generate foreground and back-
ground separately and recursively, the generated images are stitched at the final stages
[26, 35, 41]. ReDO [5] can segment foreground objects from images by using a GAN
but it can not change the shape of the original foreground. Only MixNMatch [26] can
encode real data into discrete codes or feature maps (in the Feature-mode). Although
MixNMatch and FineGAN [35] do not require masks of images nevertheless they both
need bounding boxes and the number of categories for training. Our model generates
the whole image in one shot while it can still learn a continuous factorized latent space.
Moreover, the model can be trained either with or without supervision. And FBC-GAN
[10] is another GAN-based model that generates the foreground and the background
concurrently and independently.

There is a vast literature about learning disentangled representations based on deep
generative models. Many unsupervised generative models have developed disentangle-
ment in a latent space. GAN-type models are usually based on InfoGAN [7] while most
VAE-type models are based on β -VAE [17]. There is a trade-off in β -VAE between dis-
entanglement and reconstruction quality. There are many attempts to solve this trade-
off issue [6, 21, 42]. Both approaches modify the ELBO to avoid getting worse recon-
structions while keeping the disentanglement. Kumar et al. [25] propose a VAE-based
model that penalizing the covariance between latent dimensions without modifying the
β value.

In contrast to unsupervised models, it is easier for supervised models to learn a
factorized representation. VAEs have been used in a semi-supervised manner to fac-
torize the class information and other information [8], or combinations of VAE and
GAN aim to learn disentangled representations [29, 30, 38, 40]. ML-VAE [1] is another
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VAE-based model that requires weak-supervision. In their work, they propose group
supervision that uses a group of images with the same label instead of a single image to
learn a separable latent space. Esser et al. [13] combine the U-Net [33] with a VAE and
one extra encoder to learn a disentangled representation of human pose. Harsh et al.
[15] is the closest work to our model, we both have two VAEs and a pair of inputs,
while they use a different image with the same label and they also swap the factors
during training (something we do not require in our model).

The VAE and GAN mixed models has been explored for a long time, and almost
all the works train the VAE and GAN simultaneously [2, 4, 29, 37], while our LSR-
GAN requires a pre-trained VAE. Some methods feed the output of the decoder into the
encoder [2, 19, 37] which is similar to our model. VEEGAN [37] introduces an encoder
to the GAN and tries to train all the network simultaneously. However, only LSR-GAN
tries to map the sample space into a latent space of a pre-trained VAE by maximum
likelihood.

3 Model
In this section we describe the components of our model starting from the classic model
of VAEs.

3.1 VAE

The Variational Autoencoder (VAE) [23] is a deep generative model that learns a dis-
tribution over observed data, xxx, in terms of latent variables, zzz. The original VAE ap-
proximates the intractable posterior by using a variational approximation to provide a
tractable bound on the marginal log-likelihood called the evidence lower bound (ELBO)

log pθ (xxx)≥ Ezzz∼qφ (zzz|xxx)[log pθ (xxx|zzz)]−DKL
(
qφ (zzz|xxx)||p(zzz)

)
. (2)

Commonly, qφ (zzz|xxx) is the output of an inference network with parameters φ and pθ (xxx|zzz)
is generated by a decoder network with parameters θ .

3.2 BFVAE

Starting from a mask mmm of the foreground object we can extract the foreground fff from
the image xxx using fff = xxx�mmm. We use fff and xxx as inputs to our two VAEs. The architecture
of our model is shown in Figure 2. For simplicity, we omit symbols of the parameters.
The top network is VAE-F and it acts like a vanilla VAE. The encoder E f generates a
probability distribution, q(zzz f | fff ) that acts as a latent space representation of fff . A sample
from this distribution, zzz f , is used by the decoder D f to generate a reconstruction, f̂ff , of
the input fff . The top VAE ensures the zzz f contain representations of foreground objects.
The bottom network is VAE-B. The original image, xxx, is given to the encoder, Eb that
generates a probability distribution, q(zzzb|xxx). A latent variables zzzb, is sampled from this
distribution and concatenated with zzz f . This concatenated vector is sent to decoder Db
that must reconstruct the original image. Thus, we modify the ELBO for VAE-B to be

Lb = Ezzz∼q(zzz|xxx)
[
log p(xxx|(zzzb,zzz f ))

]
−DKL(q(zzzb|xxx)||p(zzzb)) . (3)

Since the input fff does not contain any information about the background, it is as-
sured that the latent variables zzz f only contain information about the foreground. For
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Fig. 2: The diagram of BFVAE, BFVAE with new encoder and the LSR-GAN which
we omits the discriminator.

VAE-B, the encoder can extract information about both foreground and background
from xxx. When we train the decoder with both zzz f and zzzb, it can force zzzb to discard the
information about the foreground and only leave information about background. This
also enable us to extract the pure background from images by using zzz f obtained from a
pure black image. In the initial stages of training, zzzb contain all the information about
the image. This makes the decoder of VAE-B prone to ignore zzz f especially when the
dataset is complicated. There are two methods to alleviate this issue. The first method
is to set the size of zzzb to be reasonably small, it forces the zzzb to discard information,
but this design makes it hard to find an accurate size for zzzb. Thus, we recommend the
second method which is turning the model into β -VAE,

Lb = Ezzz∼q(zzz|xxx)
[
log p(xxx|(zzzb,zzz f ))

]
−βDKL(q(zzzb|xxx)||p(zzzb)) (4)

It is well known (see, for example, Hoffman et al. [18] and Kim et al. [21]) that the
expected KL term in Equation (4) can be rewritten as

Epdata(x) [DKL(q(zzzb|xxx)||p(zzzb))] = DKL(q(zzzb)||p(zzzb))+ I(xxx,zzzb) (5)

By setting β > 1, we penalize both terms on the right side of Equation (5). Penalizing
DKL(q(zzzb)||p(zzzb)) encourages factorization of the latent space, while at the same time
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it pushes q(zzzb|xxx) towards a standard Gaussian distribution. But the most important part
in BFVAE is that we penalize the mutual information term I(xxx,zzzb) which helps zzzb to
discard information about the foreground.

3.3 LSR-GAN

A prominent problem of vanilla VAEs is the blurriness of the output. Thus we introduce
a VAE-GAN mixed model that can learn a latent space from BFVAE and generate high-
quality images. The idea is that we pass the output G(zzz) of the generator G into the two
encoders of BFVAE, and ask the two encoders to map G(zzz) to the latent vectors zzz that we
used to generate G(zzz). By doing this, the generator will generate an image with a latent
space encoding, zzz, of the pre-trained BFVAE. It can be seen as a simple regularization
term of the normal GAN loss function for the generator

LG = Ezzz∼pzzz(zzz)[log(D(G(zzz)))]+λ log(q(zzz|(Eb(G(zzz)),E ′f (G(zzz)))) (6)

where Eb means the encoder of VAE-B, and the (Eb(G(zzz)),E ′f (G(zzz)) in the second term
represents the concatenation of Eb(G(zzz)) and E ′f (G(zzz)). We train a new encoder E ′f that
can extract the zzz f from G(zzz), we freeze all the other parts of BFVAE and replace E f
with E ′f , then train the encoder with the original loss function. Note that when training
the LSR-GAN we freeze the weights of the Eb and E ′f . The constant λ is an adjustable
hyper-parameter providing a trade-off between how realistic the image looks and the
similarity between reconstructions and real images. Although the idea is simple, it pro-
vides a powerful method to improve the image quality of BFVAE. The generator G can
either be a new network or a pre-trained decoder of BFVAE. The pre-trained decoder
can be a strong initialization for the generator when the generator meets with model
collapse.

4 Experiments
In this section, we show that BFVAE can factorize the foreground and background
efficiently and can composite factors from different images to generate high-quality
images when we combine LSR-GAN with BFVAE. Our model achieves state-of-the-
art FID scores on images of size 64× 64 compared to baseline models. We show the
results quantitatively and qualitatively on natural images (CUB [39], Stanforddogs [20]
and Stanfordcars [24]). Moreover, we notice that our model can factorize other kinds
of attributes in the image as long as we change the input of VAE-F (See details in the
following context). We evaluate this on MNIST. We set β = 8 for Dogs dataset and β =
5 otherwise; λ is 1 for all datasets.

The architecture of the encoder is 4 layers CNN network with Batch Normalization
and 2 layers fully connected network, and decoder consists of 5 layers CNN network.
When we combine the BFVAE with LSR-GAN, we use 4 residual blocks in both en-
coder and decoder of BFVAE with downsampling and upsampling operation respec-
tively. And we add one extra linear layer at the end of the encoder and the beginning of
the decoder. The generator of LSR-GAN is similar to the decoder of BFVAE and the
discriminator consists of 4 residual blocks with a spectral norm [31]. We apply orthog-
onal initialization to both LSR-GAN and the new Encoder E ′f and optimize the model
using ADAM [22] optimizer with β1 = 0.5 and β2 = 0.999. We train the BFVAE and the
new encoder E ′f for only 100 epochs and train the LSR-GAN for 600 epochs.
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4.1 BFVAE with LSR-GAN

Due to the blurriness of images created by the VAE decoders, BFVAE cannot perform
well on natural images. Thus, we use the LSR-GAN described above to generate high-
quality images. We first train a new encoder E ′f before training the new generator. We
find it is better to choose the same β value for VAE-B and VAE-F when we combine
BFVAE with LSR-GAN. Our experiments use three datasets, the whole dataset of CUB,
the training set of Stanford cars and 12000 images from Stanford dogs (120 classes
×100 images).

Table 1: The FID scores (lower is better) of saving resized images (left part) and feeding
resized images directly (right part) at 64×64 scale.

FID (saved) FID (directly)
CUB Cars Dogs CUB Cars Dogs

SNGAN 41.63 42.67 54.85 53.45 43.83 69.54
LR-GAN 35.22 30.30 86.67 51.85 38.80 104.45
FineGAN 24.51 31.32 33.66 16.79 23.61 39.43

MixNMatch 28.25 37.42 36.62 20.63 25.53 44.42
LSR-GAN 19.12 18.01 44.22 28.15 18.99 61.54

BFVAE+LSR-GAN obtains superior FID scores [16] compared to previous models
for images of size 64× 64. It is well-known that the number of images and the im-
plementation (Pytorch or Tensorflow) we use to calculate FID can strongly affect the
results. Moreover, we notice an additional pre-processing operation that can make dif-
ferences to the results. Commonly, when we calculate the FID scores of the dataset we
need to resize the original images to the same size of our generated images, whether
we save the resized images and reload them or feed the resized images to the incep-
tion model directly makes a significant difference to the FID scores we obtain. Given
the extreme sensitivity of FID scores to these details, it is necessary for the process of
computing FID scores to be fully documented to make meaningful comparisons. Thus,
we report two FID results of feeding resized images directly and saving resized im-
ages. The outputs of our model are saved as PNG image. (Given these changes are not
noticeable to humans it raises some concerns about how seriously we should take FID
scores. However, given these are the standard metric in this field we present the results
as honestly as we can.)

Quantitative Results We evaluate FID on 10K randomly generated images of size
64× 64 for three different datasets. For LR-GAN, FineGAN and MixNMatch, we use
the authors’ publicly-available code. For a fair comparison, we use the same architecture
of our LSR-GAN to train a SNGAN. We also tried replacing the original discrimina-
tor of other models with the same discriminator we use in the LSR-GAN, but it does
not improve the results for either FineGAN or MixNMatch. Thus, we present results
with those models’ original architectures. As shown in Table 1, the results in the two
halves of the table are different even though the only difference is whether we saved
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the images or kept them in main memory (although saving images will introduce small
errors due to truncation, these are not observable to a human viewer). This shows that
the small difference in FID scores is not that meaningful. Comparing to previous mod-
els, our model is the best overall when we save the resized images while FineGAN
is the best one otherwise. But our model has, by a considerable margin, the smallest
number of parameters and training time. The size of LRGAN, FineGAN and MixN-
Match’s saved models are 65.6MB, 158.7MB and 336.7MB respectively. The size of
our BFVAE+LSR-GAN is only 22.1MB.

zzz f
zzzb

Fig. 3: Generation by swapping zzz f and zzzb. The top row and the first column are both the
input images of two encoders.

Conditional Generation In Figure 3 we show images generated by our method on
three datasets. The top row and the first column are both the input images of two en-
coders. The other images are generated by combining factors from the two different
images. As mentioned before, there is a trade-off between the realism and the similar-
ity of generated images when we train the LSR-GAN, so there is a slight difference
between reconstructions and input images. In the last row, some images are not pure
background images. Because the discriminator has never seen images without fore-
ground and can easily classify a pure background image as fake, this prevents the gen-
erator from generating a pure background image for some backgrounds especially pure
colour background (e.g. sky). For the same reason, the background changes a little bit
in the same column when the foreground is not harmonious with the background. This
demonstrates how the LSR-GAN reduces its similarity when it tries to learn an approx-
imate latent space of the pre-trained BFVAE. The nice part of this phenomena is the
generator can adjust details in the background, such as the orientation of branches, to
fit the foreground.

Continuous Latent Space We demonstrate the continuity of the latent space learnt by
BFVAE in Figure 4 where we show the interpolation between two images. The top-
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Fig. 4: Interpolation in the latent space, the left-top image and the right bottom image
are the original images, others are the interpolations between the two images.

left image and the bottom-right image are the original images. Other images are the
interpolations between the two images. As we move along the axes, we change zzz f or zzzb.
Both transitions between real images and fake images are smooth in the latent space, but
it is obvious that even if we do not change zzzb for each column, the birds (foreground)
are slightly changing, this also happens for background in each row. The two reasons
for this change are the same as above: firstly, the approximate latent space loses some
similarity; and secondly, the discriminator can classify the unreal images like waterbirds
on the branch or non-aquatic bird on the water as fake images, then the discriminator
forces the generator to generate non-aquatic bird on a branch or waterbirds with water,
which results in the slight change of both foregrounds and background even we do not
change one of zzz f and zzzb. This change is also a trade-off between reality and similarity.

4.2 Substitute Attributes for Foreground

Apart from factorizing the background and foreground in the latent space, our model is
also capable to factorize attributes such as style and content. The only thing we need to
do is to substitute foreground images fff with images that represent each different class,
and xxx should be images from the same class as fff . For example, if we want VAE-F to
learn the information about digit label of MNIST, we choose 10 images from 10 classes
randomly and use these 10 images as fixed input of VAE-F. This differs from previous
work on conditional image generation as we use images instead of one-hot vectors as
labels. Then the VAE-B will learn a latent space about the style of images. And Figure 5
shows images generated using MNIST analogous to Figure 4, where the top row is xxx
and the first column is fff . It can be observed that the generated images obtain class
information from the first column and the style information from the top row.
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zzz f

zzzb

Fig. 5: Generation by swapping zzz f and zzzb on MNIST. The top row is xxx and the first
column is fff .

5 Discussion
Although several works have shown great success by representing scenes using their
components [3, 14, 28], what defines a good object representation is still in discussion.
We argue that a good object representation should also benefit the image generation
task. We believe that enabling generative models to generate certain objects with ran-
dom backgrounds should also be a property of good object representations.

Moreover, conditional image generation tasks such as the one discussed here are
useful in clarifying what we require of a good image representation. After all the ability
of dreaming and imagining scenes seem to be an intrinsic human ability. In the mam-
malian visual system there is plenty of evidence that scenes are disentangled in different
areas of the visual cortex and later re-integrated to obtain a complete understanding of a
scene. Although very much simplified the BFVAE makes a step towards learning such
a disentangled representation of the foreground and background.
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