
A Primer for Neural Arithmetic Logic Modules

A Primer for Neural Arithmetic Logic Modules

Bhumika Mistry bm4g15@soton.ac.uk
Department of Vision Learning, and Control
Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, United Kingdom

Katayoun Farrahi k.farrahi@soton.ac.uk
Department of Vision Learning, and Control
Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, United Kingdom

Jonathon Hare jsh2@ecs.soton.ac.uk

Department of Vision Learning, and Control

Electronics and Computer Science

University of Southampton

Southampton, SO17 1BJ, United Kingdom

Abstract

Neural Arithmetic Logic Modules have become a growing area of interest, though remain a
niche field. These units are small neural networks which aim to achieve systematic general-
isation in learning arithmetic operations such as {+,−,×,÷} while also being interpretive
in their weights. This paper is the first in discussing the current state of progress of this
field, explaining key works, starting with the Neural Arithmetic Logic Unit (NALU). Focus-
ing on the shortcomings of NALU, we provide an in-depth analysis to reason about design
choices of recent units. A cross-comparison between units is made on experiment setups
and findings, where we highlight inconsistencies in a fundamental experiment causing the
inability to directly compare across papers. We finish by providing a novel discussion of
existing applications for NALU and research directions requiring further exploration.

Keywords: Neural Arithmetic Logic Module, Interpretability, Systematic Generalisation,
Extrapolation

1. Introduction

The ability to learn by composition of already known knowledge is a form of systematic
generalisation Fodor et al. (1988), also termed as compositional generalisation Lake (2019).
Humans can learn such generalisations for arithmetic. For example, combining primitive
operations such as addition (a + b) and multiplication (a × b) to produce more complex
expressions (such as (a + b) × (c + d)). Humans can also transfer their skills in applying
operations on simple numbers (e.g. between 1-10) to other various ranges of numbers (e.g.
50-100) which are outside the range they were taught on. This ability to extrapolate, i.e.
generalise to out-of-distribution (OOD) data, is a desirable property for neural networks.

Research suggests neural networks struggle to extrapolate even for the simplest of tasks
such as learning the identity function Trask et al. (2018). Rather than generalising, networks

1

ar
X

iv
:2

10
1.

09
53

0v
1

 [
cs

.N
E

]
 2

3
Ja

n
20

21

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

lean towards memorization in which the model memorises the training labels Zhang et al.
(2020).

To address this issue, Trask et al. (2018) introduce the first in a new class of neural
modules which we term Neural Arithmetic Logic Modules (NALMs). Their unit, the
NALU, aims to learn systematic generalisation for arithmetic computations. For example,
learning the relation between input [x1, x2, x3, x4] and output o1 where the input elements
are real numbers and output is expression x1 + x3 − x2. To achieve this they incorporate
an inductive learning bias such that discrete weight values can be interpreted as different
primitive arithmetic operations. This form of interpretability is comparable to the definition
of decomposable transparency by Lipton (2016). Though NALU shows promising improve-
ments over networks such as Multilayer Perceptrons (MLPs) for extrapolation, the unit still
presents various shortcomings in architecture, convergence, and transparency. These areas
for improvement inspired the design of other units Heim et al. (2020); Madsen and Johansen
(2020); Schlör et al. (2020); Rana et al. (2019). Due to the growing interest of NALMs,
we believe it is important to have a resource, this paper, to explain current motivations,
strengths, weaknesses and gaps in this line of research.

Contributions:

1. We provide the first definition to describe this research field by defining a NALM to
be a Neural Network with the ability to model arithmetic in a generalisable manner
which encourages the weights of the network to be interpretable.

2. We explain how recent modules are designed to overcome various shortcomings of
NALU including: inability to process negative inputs and outputs, lack of convergence
and adhering to its inductive bias, weak modelling of the division operation, and lack
of compositionality.

3. We highlight how a popular experiment for testing modules arithmetic capabilities is
inconsistent between different papers with regards to hyperparameters and experiment
setup.

4. We show the usefulness of NALUs in larger differentiable applications which require
arithmetic and extrapolation capabilities, while also making aware situations in which
NALU is sub-optimal.

5. We outline possible research directions regarding modelling division, robustness across
diving training ranges, compositionality of modelled expressions, and affect when
trained along with other types of neural architectures.

Outline:

In this paper we begin by defining a NALM, motivating their aim and uses in Section 2.
Section 3 and 4 explains the definitions of key NALMs: NALU, iNALU, NAU, NMU, and
NPU to build understanding. Using the first NALM, the NALU, as a focal point, Section 5
provides an in-depth analysis of the shortcomings of NALU to understand the motivation
behind design choices for more recent NALMs. Section 6 highlights inconsistencies in ex-
periment setup and compares findings across existing modules. Additionally, we outline

2

A Primer for Neural Arithmetic Logic Modules

all experiments used to currently evaluate the modules. Section 7 shows the diversity in
NALU’s use in applications, while also indicating situations in which NALU is sub-optimal.
Section 8 considers all discussed issues and outlines remaining gaps, suggesting possible
research directions to take as a result.

2. What are NALMs and Why use them?

We begin by defining NALMs. More specifically, before we detail instances of NALMs, we
first answer three questions: 1. What is a NALM? 2. What is the aim of a NALM? 3. Why
is a NALM useful?

2.1 What is a NALM?

NALM stands for Neural Arithmetic Logic Module. Neural refers to neural networks. Arith-
metic refers to the ability to learn to model arithmetic operations such as addition. Logic
refers to the ability to learn operations such as selection, comparison and logic. Module
refers to the neural units which model arithmetic. The term module encompasses both a
single (sub-)unit and multiple (sub-)units combined together.

What kind of operations can be learnt? Existing work has tried to model arith-
metic operations including addition, subtraction, multiplication, division, square, and square-
root. Other operations include logic (e.g. conjunction) Reimann and Schwung (2019) and
control (e.g. <=) Faber and Wattenhofer (2020). Selection of relevant inputs to the modules
is also learnt.

How are operations learnt? Because a NALM is a neural network, a module can
model the relation between input and output vectors via supervised learning which trains
weights through backpropogation. To learn the relation between input and output, re-
quires learning to select relevant elements of the input and apply the relevant arithmetic
operation/s to the selected input to create the output.

How is data represented? The input and outputs are both vectors. Each vector
element is a floating point number. Each output element can learn a different arithmetic
expression. For a single data sample, this can be illustrated in Figure 1 where we assume
that the NALM used (made from two stacked sub-units) can learn addition, subtraction
and multiplication. In practice data would be given in batch form.

2.2 What is the Aim of a NALM?

The main aim of NALMs is to be utilised in larger systems while remaining interpretable.
A by-product of the interpretability enables NALMs to achieve systematic generalisation in
learning arithmetic expressions and be extrapolative on OOD data.

What does Interpretability mean for NALMs? Currently, we say a NALM is
interpretable if it has decomposable transparency Lipton (2016). Transparency means to
understand how the model works. Decomposability is transparency at component level de-
fined by Lipton (2016) as ‘each part of the model - each input, parameter, and calculation
- admits an intuitive explanation’. So far, only Heim et al. (2020) has considered their
NALMs in terms of decomposable transparency. A consequence of NALMs achieving this
form of interpretability results in parameters being discrete values and calculations being

3

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

Neural
Arithmetic
Logic
Module

Generalised Explicit

Neural
Arithmetic
Logic
Module

Figure 1: High-level example of the input output structure into a NALM. Both networks
are the same. The generalised network defines the notation of each element in the
input and output. The explicit network is an example of valid input and output
values.

compositions of arithmetic operations. The discrete parameter values result in exact solu-
tions which are valid regardless of the data distribution, enabling generalisation on OOD
data.

What does Extrapolation on OOD data mean for NALMs? Once trained, a
NALM should be able to predict the output of the input data which comes for a range
outside the training range. Any loss in predictive accuracy will only occur due to numerical
imprecisions due to hardware limitations.

2.3 Why is a NALM useful?

The ability to learn arithmetic seems trivial in comparison to other architectures such as
LSTMs, CNNs or Transformers which can be used as standalone networks which learn tasks
such as arithmetic, object recognition and language modeling. So, why care about NALMs?

Learning arithmetic, though it may seem a simple task, still remains unsolved for neural
networks. To solve this problem requires precisely learning the underlying rules of arithmetic
such that failure cases will not occur on cases of OOD data. Therefore, before considering
more complex tasks, solving the simple tasks seems reasonable. Even though NALMs
specialise in arithmetic there is no restriction in using them as part of larger end-to-end
neural networks. For example, attaching a NALM to a CNN. In Section 7, we show a vast
array of applications in which NALMs are being utilised. Being used as a sub-component
in a larger network implies that the sub-component has the ability to learn regardless of
the data distribution. Therefore, the ability to extrapolate is essential.

3. Overview of the NALU Architecture

The NALU, illustrated in Figure 2, provides the ability to model basic arithmetic operations,
specifically: addition, subtraction, multiplication, division. NALU requires no indication of
which operation to apply, and aims to learn weights that provide extrapolation capabilities
if correctly converged. NALU comprises of two sub-units, a summative unit which models
{+,−} and a multiplicative unit which models {×,÷}. Following the notation of Madsen

1. The learned gate matrix (R3×4) is mistakenly drawn as a vector R3 (the 3 vertical circles in blue).

4

A Primer for Neural Arithmetic Logic Modules

Figure 2: Original NALU architecture, taken from Trask et al. (2018)1.

and Johansen (2020) we denote the sub-units as NAC+ and NAC• respectively. Formally,
NALU is expressed as:

W = tanh(Ŵ)� sigmoid(M̂) (1)

NAC+ : a = Wx (2)

NAC• : m = expW (log(|x|+ ε)) (3)

g = sigmoid(Gx) (4)

NALU : ŷ = g � a + (1− g)�m (5)

where Ŵ ,M̂ ∈ RI×O are learnt matrices (where I and O represent input and output
dimension sizes). A non-linear transformation is applied to each matrix and then both are
combined via element-wise multiplication to form W (equation 1). Due to the range values
of tanh and sigmoid, W aims to have a inductive bias towards values {−1, 0, 1} which
can be interpreted as selecting a particular operation within a sub-unit (i.e. intra-sub-
unit selection). For example, in NAC+ +1 is addition and -1 is subtraction, and in NAC•
+1 is multiplication and -1 is division. In both sub-units, 0 represents not selecting (i.e.
ignoring) an input element. A sigmoidal gating mechanism (equation 4) enables selection
between the sub-units (inter-sub-unit), where an open gate, 1, selects the NAC+ and closed
gate, 0, selects the NAC•. Once trained the gating should ideally select a single sub-unit.
G is learnt, and the gating vector g represents which sub-unit to use for each element in
the output vector. Finally, equation 5 gates the sub-units and sums the result to give the
output. NALU’s gating only allows for each output element to have a mixture of operations
from the same sub-unit. Therefore, each output element is an expression of a combination
of operations from either {+,−} or {×,÷} but not {+,−,×,÷}. This issue is fixed by
stacking NALUs such that the output of one NALU is the input of another. Next, we
overview architectures of some recent units.

5

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

4. NALU Influenced Units

NALU has inspired the creation of other units/ sub-units including: Improved NALU (iN-
ALU) Schlör et al. (2020), Neural Addition Units (NAU)/ Neural Multiplication Units
(NMU) Madsen and Johansen (2020), Neural Power Units (NPU) Heim et al. (2020),
Golden Ratio NALU (G-NALU) Rana et al. (2019), Neural Logic Rules (NLR) Reimann
and Schwung (2019) and Neural Status Registers (NSR) Faber and Wattenhofer (2020).
Existing unit illustrations are found in Appendix 10.

iNALU identifies key issues in NALU and modifies the unit to incorporate solutions
(detailed in Section 5). They introduce methods to improve convergence and stability
during training through regularisation, clipping, and decouple previously shared parameters
between sub-units.

NAU and NMU are sub-units for addition/subtraction and multiplication respectively.
Architecture and initialisations of the units have strong theoretical justifications and em-
pirical results to validate design choices. The NAU and NMU definitions for calculating an
output element indexed at o is:

NAU : ao =
I∑

i=1

(Wi,o · xi) (6)

NMU : mo =

I∏
i=1

(Wi,o · xi + 1−Wi,o) (7)

Prior to applying the weights of a sub-unit to the input vector, each element of W is
clamped between [-1,1] if using the NAU, or [0,1] if using the NMU.

The NPU, equation 8, focuses on improving the division ability of the NAC• by applying
a complex log transformation and using real and complex weight matrices. A relevance
gate (g) is also combined. g learns to convert values close to 0 to 1 to avoid the output
multiplication becoming 0.

NPU := exp(W (r) log(r)−W (i)k) � cos(W (i) log(r) + W (r)k) (8)

where

r = g � (|x|+ ε) + (1− g), (9)

and

ki =

{
0 xi ≥ 0

πgi xi < 0
. (10)

Additionally a simplified version of the NPU exists, named RealNPU, considering only real
values of equation 8

RealNPU := exp(W (r) log(r)) � cos(W (r)k). (11)

G-NALU replaces the exponent in the tanh and sigmoid operations when calculating
NALU’s weight matrix with the golden ratio value.

6

A Primer for Neural Arithmetic Logic Modules

NLR, influenced by inductive biases in Trask et al. (2018), creates a unit to express logic
rules and simple arithmetic operations via modelling AND (conjunction), OR (disjunction)
and NOT (negation).

NSR, models comparison based control logic: <, >, ! =, =, >=, <=. The NSR also
use the inductive bias idea in Trask et al. (2018) to constrain the parameter space, and
regularisation like Madsen and Johansen (2020) to enforce the biases.

5. NALU’s Shortcomings and Existing Solutions

We detail the weaknesses of NALU and explain existing solutions. We focus on the iNALU,
NAU, NMU and NPU when looking at solutions, as these modules focus on overcoming the
shortcomings of NALU.

5.1 Mixed Sign Inputs and Negative Outputs

The NAC• cannot deal with mixed sign inputs/negative outputs. Equation 3 requires
converting negative inputs into their positive counterparts because the log transformation
cannot evaluate negative values. Therefore the sign of the input is lost, causing the NAC•
to be unable to have negative target values. The use of an exponent also causes the inability
to have negative outputs, as the range of an exponent is R>0. To allow for negative targets,
a unit can incorporate logic to deal with assigning the correct sign to the output such as
the iNALU’s sign correction mechanism Schlör et al. (2020) or the NPU’s inherent sign
retrieval Heim et al. (2020). The sign correction mechanism creates a mixed sign vector
(msv)2 ∈ RO×1,

msv =

I∏
i=1

(sign(xi) · |Wi,o|+ 1− |Wi,o|) , (12)

consisting of elements {−1, 1} (assuming W has converged to integers {−1, 0, 1}), where
each element represents the correct sign for each output element. The msv is multiplied to
the end of equation 3, regaining the lost signs. The +1− |Wi,o| gives non-selected inputs a
msv value of 1 to avoid effecting the final sign value. In the case of a RealNPU, the latter
half of its definition i.e. � cos(Wrk) can be interpreted as a sign retrieval mechanism. k
represents positive inputs as 0 and negative inputs as 1 (assuming the gate value converged
to select the input). Assuming convergence, Wr values are {1,−1} representing {×,÷}.
Two outcomes are possible from evaluating the expression: –cos(±π) = −1 or cos(0) = 1
where the output value represents the sign of the input value.

Alternatively, it is possible to remove the need for transformations in the log/exponent
space in equation 3, as Madsen and Johansen (2020) does for defining the NMU (equation 7).
This means negative targets can be expressed because the sign is no longer removed from
the input.

2. Notice the similarity in calculation between the NMU (equation 7) and iNALU’s msv (equation 12).

7

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

5.2 Gating Parameter Convergence

The NALU gate, responsible for selection between the NAC+ and NAC• units, is unable
to converge reliably. This is due to the different convergence properties of the NAC+ and
NAC• Madsen and Johansen (2020). Partial convergence of gate values lead to a leaky gate
effect, noted by Schlör et al. (2020), where the gate allows for the unit to incorrectly take
both a multiplicative and summative route which can lead to exploding outputs. This issue
is amplified when additional NALU layers are stacked. In cases where the correct gate is
selected, the NALU unit still fails to converge consistently Madsen and Johansen (2020)
implying additional architectural issues for the unit. Even with using the improved NAU
and NMU sub-units, gating still leads to inferior results. Madsen and Johansen (2020)
replace unit gating with unit stacking. Schlör et al. (2020) suggests using separate weights
for the iNALU sub-units to improve convergence, and independent gating (removing x
from equation 4) so learning G is no longer influenced by input. However this provides only
minimal improvements for simple arithmetic tasks.

5.3 Convergence and Inductive Biases

Good initalisations are crucial for convergence. Assuming the Madsen and Johansen (2020)
implementation of NALU is used for initialisation, then weight matrices are from a uniform
distribution with the range calculated from the fan values3, and the gate matrix from
a Xavier uniform initialisation with a sigmoid gain4. This results in difficultly for both
optimisation and robustness. Fragility results in the expected inductive bias of weight values
converging to {−1, 0, 1} to be difficult to achieve Madsen and Johansen (2020). Unsparse
solutions result in a lack of transparent and hence ungeneralisable solutions.

The weight biases are achieved by adding a regularisation term for sparsity Madsen
and Johansen (2020); Schlör et al. (2020) and using weight clamping Madsen and Johansen
(2020). Regularisation encourages weights to converge to the discrete values, activating and
warming-up for a predefined period of time to avoid overpowering the main MSE loss term.

Madsen and Johansen (2020) use sparsity regularisation to enforce the relevant biases
for both NAU {−1, 0, 1} and NMU {0, 1}:

Rsparse =
1

I ·O

O∑
o=1

I∑
i=1

min (|Wi,o|, 1− |Wi,o|) . (13)

Note that the absolute of Wi,o is not necessary when using NMU. Clamping is applied to
the weights beforehand, which clamps to the ranges of the desired biases. A scaling factor

λ = λ̂max

(
min

(
iterationi − λstart
λend − λstart

, 1

)
, 0

)
, (14)

is multiplied to Rsparse to get the final value, where regularisation strength is scaled by a

predefined λ̂.

3. https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/
stable_nalu/layer/nac.py#L22

4. https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/
stable_nalu/layer/_abstract_nalu.py#L90

8

https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/nac.py#L22
https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/nac.py#L22
https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/_abstract_nalu.py#L90
https://github.com/AndreasMadsen/stable-nalu/blob/2db888bf2dfcb1bba8d8065b94b7dab9dd178332/stable_nalu/layer/_abstract_nalu.py#L90

A Primer for Neural Arithmetic Logic Modules

Figure 3: Figure taken from Rana et al. (2019). Left: NAC+ W values over the domain of
Ŵ and M̂ . Right: NALU where the base value for non-linear functions (tanh
and sigmoid) uses the golden ratio rather than exponential resulting in smoother
value transition.

iNALU uses a piece-wise function for regularisation on weight (Ŵ , M̂) and gate pa-
rameters (G),

Rsparse =
1

t
max(min(−w,w)) + t, 0) (15)

to encourage discrete values that do not converge to near-zero values. Rather than a warmup
period, regularisation occurs only once the loss is under a pre-defined threshold and stops
once a discretisation threshold t (=20) is met.

These methods alone would restrict the parameter space, but not the unit’s output
scale. To address this, Madsen and Johansen (2020) use a linear weight matrix construc-
tion (removing the need of non-linear transformations), allowing for easier optimisation,
while Schlör et al. (2020) use clipping of the NAC• weights and gradients. The weights in
equation 3 would be clipped between [log(max(|x|, 10−7)), 20] before the exp is applied.

Rana et al. (2019) modify the non-linear activations, using G-NALU, for the weight
matrices for smoother gradient propagation as shown by Figure 3. In contrast, in attempts
to avoid falling into a local optima, iNALU allows multiple reinitialisations of a model during
training. Through a grid search they find having the mean of the gate and NALU weight
matrices M̂ , Ŵ initialised to be 0, -1 and 1 respectively, results in the most stable units.
However, even when using such initialisations, the stability problem remains for division.

5.4 Division

Division is NALU’s weakest operation Trask et al. (2018). Having both division and multi-
plication in the same sub-unit causes optimisation difficulties. Madsen and Johansen (2020)
highlight the singularity issue (division by 0 or values close to 0 bounded by an epsilon value)
in the NAC• which causes exploding outputs (see Figure 4). This issue is amplified due to
operations being applied in log space. NMU removes the use of log, therefore is not epsilon
bound. Furthermore, the NMU is only designed for multiplication. NPU takes Madsen
and Johansen (2020)’s interpretation of multiplication (using products of power functions),

9

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

Figure 4: Taken from Madsen and Johansen (2020). Illustration of singularity issue arising
in the NAC•.

but applies it in a complex space enabling division and multiplication Heim et al. (2020).
Though the NPU cannot fully solve the singularity issue as a log transformation is still
applied to the inputs, the relevance gate aids in smoothing the loss surface. Schlör et al.
(2020) observe that reinitialising units numerous times during training can still lead to fail-
ure, implying that the issue lies in unit architecture as well as initialisation. Hence, division
remains an open issue.

5.5 Compositionality

A single NALU is unable to output expressions whose operations are from both {+,−} and
{×,÷}, e.g. x1 + x2 ∗ x3. Bogin et al. (2020) hint at NALU’s inflexibility to learn different
expressions from same weights. Rana et al. (2019) develop CalcNet, a parsing algorithm,
to decompose expressions before applying the NALU sub-units. However decomposition
requires fixed rules and pre-trained sub-units which are undesirable.

5.6 Summary

A summary of the discussed NALU issues and proposed solutions is given in Table 1.

6. Experiments and Findings of Units

To understand the evaluation of units, we go through the experiments used in the papers for:
NALU, iNALU, NAU, NMU, and NPU. We indicate inconsistencies across papers for the
two-layer arithmetic task setup, encouraging the need of task standardisation. Inter-unit
comparison using existing findings is made to infer the best unit per operation.

10

A Primer for Neural Arithmetic Logic Modules

Table 1: Summarised NALU shortcomings and existing proposed solutions.
Shortcoming NMU iNALU NPU CalcNet

NAC• cannot
have negative
inputs/targets

Remove log-
exponent
transformation

Sign correction
(mixed sign
vector)

Sign re-
trieval

Fixed rules
and sign
parsing

Convergence of
gate parameters

Stacking Separate gate
and weights
per sub unit

- -

Fragile initialisa-
tion

Theoretically
valid initialisa-
tion scheme

Reinitialise
model

- -

Weight inductive
bias of {-1,0,1}
not met (non-
discrete solutions)

Regularisation
loss term

Regularisation
loss term
and weight
clipping

- -

Unrestricted out-
put scale

Linear weight
matrix

Weight and
gradient clip

- -

Gradient propa-
gation

- Reinitialise
model

Relevance
gating

Replace
sigmoid
and tanh
exponent’s
with golden
ratio

Singularity (val-
ues close to 0)

Remove log-
exponent
transformation

- Complex
space trans-
formation
and rel-
evance
gating

-

Compositionality - - - Parsing al-
gorithm

6.1 Why the Square and Square-Root Operations are not included in this
Discussion?

Though mentioned in Trask et al. (2018) that NALU can learn to model square and square-
rooting, we will purposefully avoid analysing the ability of the multiplicative units to do
square (a2) and square-root (

√
a) operations.

The squared operation can be solved when using a multiplication unit. Firstly, there
could be two input elements with the same value resulting in the operation a×a. Secondly,
the unit can set the weight value corresponding to the input to 2. The first way is a
multiplication operation (which is separately tested), and the second requires breaking the

11

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

inductive bias assumption of discrete weights with a magnitude up to 1. Therefore, we
avoid analysing the square operation.

For a multiplicative unit to solve the square-root operation such that the weights are
interpretable requires a weight value of 0.5. Though this allows to model square-rooting as
a

1
2 , it contradicts the inductive bias of discrete weights with a magnitude up to 1. Therefore,

we avoid analysis square-root operation.

6.2 Two Layer Arithmetic Task

A task consistently used in all papers is the ‘Static Simple Function Learning ’ experi-
ment Trask et al. (2018), which evaluates the ability of a unit to learn a trivial two-operation
function. Madsen and Johansen (2020) renames this task ‘Arithmetic Datasets’ and intro-
duce their own experiment setup (including details for reproducibility). Specifically, given
an input vector R100 of floats, the first (addition) layer should learn to output two val-
ues (denoted a and b) which are the sums of two different partially overlapping slices (i.e.
subsets) of the input, and the second layer should perform an operation on a and b. Fig-
ure 5 illustrates such an example. Due to the rigorous setup, evaluation metrics,
and available code, we strongly suggest this experiment be used to test and
compare new units. iNALU’s experiments 4 (‘Influence of Initalization’) and 5 (‘Simple

Figure 5: Taken from Madsen and Johansen (2020). Illustration on how to get from input
vector to target scalar for the Dataset Arithmetic Task.

Function Learning Task ’) is a copy of the task but is different to the original. Experiment
4 calculates a and b differently to Madsen and Johansen (2020) by not allowing for overlap
between the slices which form a and b, and experiment 5 use different interpolation and
extrapolation ranges to the original experiments. Heim et al. (2020)’s claims that their
‘Large Scale Arithmetic’ task is equivalent to the Arithmetic Dataset task. However, as
shown in Table 2 there are key distinctions between the two meaning the results from the
two papers are not directly comparable.

6.3 Additional Experiments

The papers also carry out experiments on top of the two-layer arithmetic task. Trask et al.
(2018) carries out a recurrent version of their static task experiment to test the NAC+,

12

A Primer for Neural Arithmetic Logic Modules

Table 2: Differences in the‘Large Scale Arithmetic’ task used in the papers Madsen and
Johansen (2020) and Heim et al. (2020). ‘a’ and ‘b’ represent summed slices of
the input, and are the expected output values for the addition unit.

Property Madsen and Jo-
hansen (2020)

Heim et al. (2020)

Hidden size 2 100

Iterations for one
run

5,000,000 50,000

Number of seeds 100 10

Learning rates 1e-3 1e-2 for addition and 5e-3 for all other op-
erations

Subset and over-
lap ratios

0.25 and 0.5 0.5 and 0.25 (for addition, subtraction,
and multiplication)

Division a/b 1/a

Interpolation and
extrapolation
ranges

Uniform distributions,
using U[1,2) for train-
ing all operations, test-
ing on U[2,6).

Sobol(-1,1) for training addition, subtrac-
tion, and multiplication, Sobol(0,0.5) for
division. Testing uses Sobol(-4,4) for
addition, subtraction and multiplication,
Sobol(-0.5,0.5) for division.

Regularisation
penalty

Biasing weight discriti-
sation

L1 on all parameters

Programming
language

Python 3 Julia

where the subsets a and b are accumulated over multiple timesteps. The purpose of this
task is to generate much larger output values to test NALU on. As well as pure arithmetic
tasks, Trask et al. (2018) tests NALU in other settings such as: translating numbers in text
form into the numerical form (e.g. ‘two hundred and one’ to 201), a block grid-world which
requires travelling from point A to B in exactly n timesteps, and program evaluation for
programs with arithmetic and control operations. MNIST is also used to evaluate NALU’s
abilities on being part of end-to-end applications. This includes exploring counting the
occurrence of different digits, addition of a sequence of digits, and parity prediction.

Madsen and Johansen (2020) also use MNIST for testing the unit’s abilities to act as a
recurrent unit for adding/ multiplying the digits. Madsen and Johansen (2020) additionally
provide experiments to express the validity of their units. This includes modifying the
number of redundant units, ablation on multiplication, stress testing the stacked NAU-
NMU against difference input sizes, overlap ratios and subset ratios, showing the failure of
gating in convergence, and parameter tuning regularisation parameters.

Schlör et al. (2020) provide three additional experiments. Experiment 1 (‘Minimal Arith-
metic Task’) uses a single-layer to do a single operation with no redundancy to see the effect
of different input distributions. Experiment 2 (‘Input Magnitude’) sees the effect of training
data by controlling the magnitude of the interpolation data. NALU fails on magnitudes

13

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

greater than 1. iNALU remains unaffected for addition and subtraction. Multiplication
performance is coupled to magnitude where extrapolation error increases with magnitude.
Division is uncorrelated to the input magnitude. To increase problem difficulty, experiment
3 (’Simple Arithmetic Task’) introduces redundancy where from 10 inputs only 2 are rele-
vant. NALU improves on performance for exponentially distributed data when redundant
inputs are introduced. iNALU show improvements for multiplication where the unit is able
to succeed on previously failed training ranges such as an exponential distribution with a
scale parameter of 5 (i.e. lambda 0.2), but worsens for division.

Heim et al. (2020) highlights the relevance gate’s use via a toy experiment to select one
of the two inputs. Additionally, they demonstrate an application of a stacked NAU-NPU
unit for equation discovery for an epidemiological model.

6.4 Cross Unit Comparison

We compare existing findings across units. NALU is no longer considered the state-of-the-
art for neural arithmetic operation learning. For each operation the best sub-unit is as
follows - addition or subtraction: NAU, multiplication: NMU, division: NPU (or
RealNPU if the task is trivial).

iNALU generally outperforms NALU at the cost of additional parameters and complex-
ities to the model. The magnitude of iNALU’s improvement varies, as Schlör et al. (2020)
claims vast improvements, while Heim et al. (2020) claim minor. For division both the
iNALU and NALU performances remain comparable. Success on multiplication is depen-
dent on the input training range. Heim et al. (2020) states the NMU outperforms iNALU
on multiplication (as expected), but also addition and subtraction. The reason lies in the
architecture used. The model is a stacked NAU-NMU meaning the addition/subtraction
would be modelled by the NAU. Therefore, the NMU would only be required to act as
a selector, selecting the output of the summation (i.e. have a single weight at 1 and the
rest a 0). Therefore, if two NMUs are stacked together we expect the failure in a pure
addition/subtraction task as shown in the Appendix C.7 in Madsen and Johansen (2020).
Surprisingly the 2-layer NMU was able to get 56% success for subtraction, though 0% suc-
cess for addition Madsen and Johansen (2020). Heim et al. (2020) is the only work (at the
time of writing this paper) to experimentally compare the main units mentioned. Results
show NPU outperforms iNALU for multiplication and division. When stacked on top of a
NAU, the NPU performs similar to the NMU for addition and subtraction. The NPU is
outperformed by the NMU for multiplication, however it is more consistent in convergence
against different runs. For addition and subtraction, the NAU-NMU is the sparsest unit
(having the least number of non-zero weights). Interpretive units require the weight and
gate values to be discrete. Regularisation penalties have been a popular approach Madsen
and Johansen (2020); Schlör et al. (2020) to achieve this. NPU uses L1 regularisation for
arithmetic tasks, encouraging sparsity over discretisation. This may explain results from
Heim et al. (2020) where NMU models are generally sparser than NPUs for multiplication.

7. Applications of NALU

This section describes uses of NALU as a sub-component in architectures to tackle practical
problems outside the domain of solving arithmetic on numeric inputs. Success and failure

14

A Primer for Neural Arithmetic Logic Modules

cases are mentioned. We choose to focus on NALU applications on the basis that the
improved units discussed above can be applied in place of NALU to provide additional
performance gains to the mentioned applications.

7.1 Existing Applications

Before discussing applications, we raise awareness of a case where the NALU is not utilised
for its capabilities as a NALM. The Language to Number Translation task in Trask et al.
(2018) converts numbers in their string form to their numerical form (such as ‘twenty one’ to
‘21’). The NALU is applied to an LSTM’s hidden state vector; therefore it is questionable
on if the arithmetic capabilities of NALU is being used, as the NALU may also have to
decode the numerical values from the LSTM vector.

Xiao et al. (2020) insert a NALU layer between a two-layer Gated Recurrent Unit
(GRU) and dense layer to predict vehicle trajectory of complex road sections (containing
constantly changing directions). NALU improves extrapolation capabilities to deal with
abnormal input cases outside the range of the GRU hidden states output.

Raj et al. (2020) combine NAC+ sub-units before LSTM cells for fast training in the
extraction of temporal features to classify videos for badminton strokes. They further ex-
periment in using NAC+ units with a dense layer to learn temporal transformations, finding
better performance than the LSTM based module and the dense modules being quicker to
train. They justify the use of the NAC+ as a way to produce sparse representations of
frames, as non-relevant pixels would not be selected by the NAC+ resulting in 0 values,
while relevant pixels accumulate.

Zhang et al. (2019a) use deep reinforcement learning to learn to schedule views on
content-delivery-networks (CDNs) for crowdsourced-live-streaming (CLS). NALU’s extrap-
olative ability alleviates the issue of data bias (which is the failure of models outside the
training range) by using NALU to build a offline simulator to train the agent when learning
to choose actions. The simulator is composed of a 2-layer LSTM with a NALU layer at-
tached to the end. Zhang et al. (2019b) propose a novel framework (named Livesmart) for
cost-efficient CLS scheduling on CDNs with a quality-of-service (QoS) guarantee. Two com-
ponents required in Livesmart contain models using NALU. The first component (named
new viewer predictor) uses a stacked LSTM-NALU to predict workloads from new viewers.
The second component (named QoS characterizer) predicts the QoS of a CDN provider.
This component uses a stack of Convolutional Neural Networks (CNNs), LSTM and NALU.
Both components use NALU’s ability to capture OOD data to aid in dealing with rare
events/ unexpected data.

Wu et al. (2020) combines layers of NAC+ to learn to do addition and subtraction on
vector embeddings to form novel compositions for creating analogies. Units are applied to
the output of an attention module (scoring candidate analogies) that is passed through a
MLP. The output of the NAC+ units is passed to a LSTM producing the final analogy
encoding.

NALU has also been used with CNNs. Rajaa and Sahoo (2019) applies stacked NALUs
to the end of convolution units to predict stock future stock prices. Rana et al. (2020)
utilises the NAC+/NALU as residual connections modules to larger convolutional networks
such as U-Net and a fully convolutional regression networks for cell counting in images.

15

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

Such connections enable better generalisation when transitioning to data with higher cell
counts to the training data. However, no observations are made to what the units learn
which lead to an improvement on cell counting over the baseline models.

Chennupati et al. (2020) uses NALU as part of a larger architecture to predict the
runtime of code on different hardware devices configured using hyperparameters. NALU
predicts the reuse profile of the program, keeping track of the count of memory references
accessed in the execution trace. NALU outperforms a Genetic Programming approach for
doing such a prediction.

Teitelman et al. (2020) explores the problem domain of cloning black-box functionality
in a generalisable and interpretable way. A decision tree is trained to differentiate between
different tasks of the black box. Each leaf of the tree is assigned a neural network comprising
of stacked dense layers with a NALU layer between them. Each neural network is able to
learn the black-box behaviour for a particular task. Like Xiao et al. (2020), results showed
that NALU is required to learn the more complex tasks.

Finally, Sestili et al. (2018) suggests NALU has potential use in networks which predict
security defects in code. This is due to the unit’s ability to work with numerical inputs
in a generalisable manner, instead of limiting the application to be bound to a fixed token
vocabulary requiring lookups.

7.2 Applications Where NALU Is Inferior

There exist situations where alternate architectures are favoured over NALU. Madsen and
Johansen (2020) show that the NAU/NMU outperforms NALU in the MNIST sequence
task for both addition and multiplication. Dai and Muggleton (2020) show the arithmetic
ability (named background knowledge) of NALU is incapable in performing the MNIST task
for addition or products when combined with a LSTM. Instead, they show a neural model
for symbolic learning, which learns logic programs using pre-defined rules as background
knowledge, can perform with over 95% accuracy. However, we question whether the failure
is a result of NALU or due to the misuse of its abilities from combining it with a LSTM.
Jacovi et al. (2019) show that in black box cloning for the Trask et al. (2018) MNIST
addition task, their EstiNet model which captures non-differentiable models outperforms
NALU. Though it can be argued that a more relevant comparison would test the NAC+

or the NAU which are solely designed for addition. Joseph-Rivlin et al. (2019) show that
although the NAC• can learn the order for a polynomial transformation to a high accuracy,
it is still outperformed by a pre-defined order two polynomial model. Results suggest that
the NAC• may not have fully converged to express integer orders. Dobbels et al. (2020)
found NALU was unable to extrapolate for the task of predicting far-infrared radiation
fluxes from ultraviolet-mid-infrared fluxes. Though no clear reason was stated, the lack of
extrapolation could be attributed to the co-dependence of features because of applying a
fully connected layers prior to the unit. Jia et al. (2020) considers NALU as a hardware
component concluding that NALU has too high an area and power cost to be feasible for
practical use. Implementing for addition costs 17 times the area of a digital adder, and the
memory requirements for weight storage is energy inefficient for doing CPU operations.

16

A Primer for Neural Arithmetic Logic Modules

8. Remaining Gaps

This section discusses areas which remain to be fully addressed. We focus on: division,
robustness, compositionality, and interpretability of more complex architectures.

Division remains a challenge. To date no unit has been able to reliably solve division.
Currently the NPU by Heim et al. (2020) is the best unit to use, though it would struggle
with input values close to zero. Madsen and Johansen (2020) argues modelling division is
not possible due to the singularity issue. One suggestion for dealing with the zero case is
to take influence from Reimann and Schwung (2019) which can have an option for showing
an output which is invalid (or in their case all off values).

One goal of these units is to be able to extrapolate. To achieve this, a unit should be
robust to being trained on any input range. Madsen and Johansen (2020) show that units
are unable to achieve full success of all tested ranges (with the stacked NAU-NMU failing
on a training range of [1.1,1.2), being unable to obtain a single success). Reinitialisation of
weights Schlör et al. (2020) during training could provide a solution, however this seems to
be a unlikely given Madsen and Johansen (2020) tests against 100 model initialisations.

Compositionality is desirable. A model should be flexible, having the option to select
different types of operations and model complex mathematical expressions. Currently the
two popular approaches are gating and stacking. Gating has been found to not work as
expected and give convergence issues. Stacking, though more reliable, has less options in
operation selection than gating. Deep stacking of units (in a non-recurrent fashion) remains
untested.

It remains to be understood how units influence learning of other modules (such
as recurrent networks and CNNs) in their representations. For example, seeing if represen-
tations are more interpretable because of being trained with a unit.

9. Related Work

We outline alternate research in neural models for solving arithmetic tasks. Such works re-
quire components such as convolutions Kaiser and Sutskever (2016), or Transformers Saxton
et al. (2019); Lample and Charton (2020). Neural GPUs can extrapolate to long sequence
lengths (2000) from being trained on length 20 inputs, but use binary inputs rather than
real numbers Kaiser and Sutskever (2016). Furthermore only a few models generalise to
such a long sequence, but this has been improved on in Freivalds and Liepins (2017). Even
more complex architectures such as Transformers which can process numerical values, re-
main unsuccessful for extrapolation tasks which are simple e.g. arithmetic using multipli-
cation Saxton et al. (2019), or complex e.g. integration Lample and Charton (2020). Other
approaches which can process raw numerical inputs include using reinforcement learning
or non-specialised architectures. The Chen et al. (2018) hierarchical reinforcement learn-
ing approach requires arithmetic operation/s to be defined in the input. Non-specialised
architectures from Nollet et al. (2020) trains using task decomposition and active learning
but is not fully robust to noisy redundant inputs. In short, though various alternates to
NALMs exist, each have their own shortcomings in regard to input format, extrapolation,
and robustness.

17

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

10. Conclusion

NALMs are a promising area of research for systematic generalisation. Focusing on the
first Neural Arithmetic Unit, NALU, we explained the unit’s limitations along with existing
solutions from other units: iNALU, NAU, NMU, NPU, and CalcNet. There exists a range
of applications for NALU, though some uses remain questionable. Cross-comparing units
suggest inconsistencies with experiment methodology and limitations existing in the cur-
rent state-of-the-art units. Finally, we outline remaining research gaps regarding: solving
division, robustness, compositionality and interpretability of complex architectures.

Acknowledgments

We would like to thank Andreas Madsen for informative discussions and explanations re-
garding the Neural Arithmetic Units.

Unit Illustrations

Table 3 displays unit illustrations given in their respective papers, displayed chronologically.

References

Ben Bogin, Sanjay Subramanian, Matt Gardner, and Jonathan Berant. Latent composi-
tional representations improve systematic generalization in grounded question answering.
arXiv preprint arXiv:2007.00266, 2020. URL https://arxiv.org/pdf/2007.00266.

pdf.

Kaiyu Chen, Yihan Dong, Xipeng Qiu, and Zitian Chen. Neural arithmetic expression
calculator, 2018. URL https://arxiv.org/pdf/1809.08590.pdf.

Gopinath Chennupati, Nandakishore Santhi, Phill Romero, and Stephan Eidenbenz. Ma-
chine learning enabled scalable performance prediction of scientific codes. arXiv preprint
arXiv:2010.04212, 2020. URL https://arxiv.org/pdf/2010.04212.pdf.

Wang-Zhou Dai and Stephen H. Muggleton. Abductive knowledge induction from raw data,
2020. URL https://arxiv.org/pdf/2010.03514.pdf.

Wouter Dobbels, Maarten Baes, Sébastien Viaene, S Bianchi, JI Davies, V Casasola, CJR
Clark, J Fritz, M Galametz, F Galliano, et al. Predicting the global far-infrared sed
of galaxies via machine learning techniques. Astronomy & Astrophysics, 634:A57, 2020.
URL https://arxiv.org/pdf/1910.06330.pdf.

Lukas Faber and Roger Wattenhofer. Neural status registers. arXiv preprint
arXiv:2004.07085, 2020. URL https://arxiv.org/pdf/2004.07085.pdf.

Jerry A Fodor, Zenon W Pylyshyn, et al. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2):3–71, 1988. URL https://uh.edu/~garson/F&P1.

PDF.

18

https://arxiv.org/pdf/2007.00266.pdf
https://arxiv.org/pdf/2007.00266.pdf
https://arxiv.org/pdf/1809.08590.pdf
https://arxiv.org/pdf/2010.04212.pdf
https://arxiv.org/pdf/2010.03514.pdf
https://arxiv.org/pdf/1910.06330.pdf
https://arxiv.org/pdf/2004.07085.pdf
https://uh.edu/~garson/F&P1.PDF
https://uh.edu/~garson/F&P1.PDF

A Primer for Neural Arithmetic Logic Modules

Karlis Freivalds and Renars Liepins. Improving the neural gpu architecture for algorithm
learning. arXiv preprint arXiv:1702.08727, 2017. URL https://arxiv.org/pdf/1702.

08727.pdf.

Niklas Heim, Tomáš Pevnỳ, and Václav Šmı́dl. Neural power units. Advances in Neural
Information Processing Systems, 33, 2020. URL https://papers.nips.cc/paper/2020/

file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf.

Alon Jacovi, Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and
Jonathan Berant. Neural network gradient-based learning of black-box function inter-
faces. In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=r1e13s05YX.

T. Jia, Y. Ju, R. Joseph, and J. Gu. Ncpu: An embedded neural cpu architecture on
resource-constrained low power devices for real-time end-to-end performance. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1097–1109, 2020. doi: 10.1109/MICRO50266.2020.00091. URL https://ieeexplore.

ieee.org/document/9251958.

M. Joseph-Rivlin, A. Zvirin, and R. Kimmel. Momenêt: Flavor the moments in learning
to classify shapes. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pages 4085–4094, 2019. URL https://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=9022223.

 Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.
International Conference on Learning Representations, ICLR, 2016. URL http://arxiv.

org/abs/1511.08228.

Brenden M Lake. Compositional generalization through meta sequence-to-
sequence learning. In Advances in Neural Information Processing Systems, pages
9791–9801, 2019. URL https://proceedings.neurips.cc/paper/2019/file/

f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=S1eZYeHFDS.

Zachary C. Lipton. The Mythos of Model Interpretability. Communications of the ACM,
61(10):35–43, jun 2016. URL http://arxiv.org/abs/1606.03490.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/

forum?id=H1gNOeHKPS.

Bastien Nollet, Mathieu Lefort, and Frédéric Armetta. Learning arithmetic operations with
a multistep deep learning. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2020. URL https://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=9206963.

19

https://arxiv.org/pdf/1702.08727.pdf
https://arxiv.org/pdf/1702.08727.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
https://openreview.net/forum?id=r1e13s05YX
https://openreview.net/forum?id=r1e13s05YX
https://ieeexplore.ieee.org/document/9251958
https://ieeexplore.ieee.org/document/9251958
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9022223
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9022223
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.08228
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
http://arxiv.org/abs/1606.03490
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=H1gNOeHKPS
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9206963
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9206963

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

Aditya Raj, Pooja Consul, and Sakar K Pal. Fast neural accumulator (nac) based bad-
minton video action classification. In Proceedings of SAI Intelligent Systems Conference,
pages 452–467. Springer, 2020. URL https://link.springer.com/chapter/10.1007/

978-3-030-55180-3_34.

Shangeth Rajaa and Jajati Keshari Sahoo. Convolutional feature extraction and neural
arithmetic logic units for stock prediction. In International Conference on Advances
in Computing and Data Sciences, pages 349–359. Springer, 2019. URL https://link.

springer.com/chapter/10.1007/978-981-13-9939-8_31.

Ashish Rana, Avleen Malhi, and Kary Främling. Exploring numerical calculations with
calcnet. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), pages 1374–1379. IEEE, 2019. URL https://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=8995315.

Ashish Rana, Taranveer Singh, Harpreet Singh, Neeraj Kumar, and Prashant Singh Rana.
Systematically designing better instance counting models on cell images with neural arith-
metic logic units, 2020. URL https://arxiv.org/pdf/2004.06674.pdf.

Jan Niclas Reimann and Andreas Schwung. Neural logic rule layers. arXiv preprint
arXiv:1907.00878, 2019. URL https://arxiv.org/pdf/1907.00878.pdf.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathe-
matical reasoning abilities of neural models. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1gR5iR5FX.

Daniel Schlör, Markus Ring, and Andreas Hotho. inalu: Improved neural arithmetic logic
unit. Frontiers in Artificial Intelligence, 3:71, 2020. ISSN 2624-8212. doi: 10.3389/
frai.2020.00071. URL https://www.frontiersin.org/article/10.3389/frai.2020.

00071.

Carson D Sestili, William S Snavely, and Nathan M VanHoudnos. Towards security defect
prediction with ai. arXiv preprint arXiv:1808.09897, 2018. URL https://arxiv.org/

pdf/1808.09897.pdf.

Daniel Teitelman, I. Naeh, and Shie Mannor. Stealing black-box functionality using the
deep neural tree architecture. ArXiv, abs/2002.09864, 2020. URL https://arxiv.org/

pdf/2002.09864.pdf.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural
arithmetic logic units. In Advances in Neural Information Processing Systems, pages
8035–8044, 2018. URL https://openreview.net/pdf?id=H1gNOeHKPS.

Bo Wu, Haoyu Qin, Alireza Zareian, Carl Vondrick, and Shih-Fu Chang. Analogical reason-
ing for visually grounded language acquisition. arXiv preprint arXiv:2007.11668, 2020.
URL https://arxiv.org/pdf/2007.11668.pdf.

Zhu Xiao, Fancheng Li, Ronghui Wu, Hongbo Jiang, Yupeng Hu, Ju Ren, Chenglin Cai, and
Arun Iyengar. Trajdata: On vehicle trajectory collection with commodity plug-and-play

20

https://link.springer.com/chapter/10.1007/978-3-030-55180-3_34
https://link.springer.com/chapter/10.1007/978-3-030-55180-3_34
https://link.springer.com/chapter/10.1007/978-981-13-9939-8_31
https://link.springer.com/chapter/10.1007/978-981-13-9939-8_31
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8995315
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8995315
https://arxiv.org/pdf/2004.06674.pdf
https://arxiv.org/pdf/1907.00878.pdf
https://openreview.net/forum?id=H1gR5iR5FX
https://www.frontiersin.org/article/10.3389/frai.2020.00071
https://www.frontiersin.org/article/10.3389/frai.2020.00071
https://arxiv.org/pdf/1808.09897.pdf
https://arxiv.org/pdf/1808.09897.pdf
https://arxiv.org/pdf/2002.09864.pdf
https://arxiv.org/pdf/2002.09864.pdf
https://openreview.net/pdf?id=H1gNOeHKPS
https://arxiv.org/pdf/2007.11668.pdf

A Primer for Neural Arithmetic Logic Modules

obu devices. IEEE Internet of Things Journal, 2020. URL https://ieeexplore.ieee.

org/document/9115028.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C. Mozer, and Yoram Singer. Identity
crisis: Memorization and generalization under extreme overparameterization. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/

forum?id=B1l6y0VFPr.

Rui-Xiao Zhang, Tianchi Huang, M. Ma, Haitian Pang, Xin Yao, Chenglei Wu, and L. Sun.
Enhancing the crowdsourced live streaming: a deep reinforcement learning approach.
Proceedings of the 29th ACM Workshop on Network and Operating Systems Support for
Digital Audio and Video, 2019a. URL https://dl.acm.org/doi/10.1145/3304112.

3325607.

Ruixiao Zhang, M. Ma, Tianchi Huang, Haitian Pang, X. Yao, Chenglei Wu, J. Liu, and
L. Sun. Livesmart: A qos-guaranteed cost-minimum framework of viewer scheduling for
crowdsourced live streaming. Proceedings of the 27th ACM International Conference on
Multimedia, 2019b. URL https://dl.acm.org/doi/10.1145/3343031.3351013.

21

https://ieeexplore.ieee.org/document/9115028
https://ieeexplore.ieee.org/document/9115028
https://openreview.net/forum?id=B1l6y0VFPr
https://openreview.net/forum?id=B1l6y0VFPr
https://dl.acm.org/doi/10.1145/3304112.3325607
https://dl.acm.org/doi/10.1145/3304112.3325607
https://dl.acm.org/doi/10.1145/3343031.3351013

Bhumika Mistry, Katayoun Farrahi and Jonathon Hare

Table 3: Units architecture illustrations take from the original papers.

NALU Trask et al. (2018)

NLR Reimann and Schwung
(2019)

G-NALU Rajaa and Sahoo
(2019)

(No figure exists)

NAU Madsen and Johansen
(2020)

(No figure exists)

NMU Madsen and Johansen
(2020)

NSR Faber and Wattenhofer
(2020)

iNALU Schlör et al. (2020)

NPU Heim et al. (2020)

22

	1 Introduction
	2 What are NALMs and Why use them?
	2.1 What is a NALM?
	2.2 What is the Aim of a NALM?
	2.3 Why is a NALM useful?

	3 Overview of the NALU Architecture
	4 NALU Influenced Units
	5 NALU's Shortcomings and Existing Solutions
	5.1 Mixed Sign Inputs and Negative Outputs
	5.2 Gating Parameter Convergence
	5.3 Convergence and Inductive Biases
	5.4 Division
	5.5 Compositionality
	5.6 Summary

	6 Experiments and Findings of Units
	6.1 Why the Square and Square-Root Operations are not included in this Discussion?
	6.2 Two Layer Arithmetic Task
	6.3 Additional Experiments
	6.4 Cross Unit Comparison

	7 Applications of NALU
	7.1 Existing Applications
	7.2 Applications Where NALU Is Inferior

	8 Remaining Gaps
	9 Related Work
	10 Conclusion

