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ABSTRACT
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Doctor of Philosophy

ADAPTIVE MESH REFINEMENT FOR COMPUTATIONAL

AEROACOUSTICS

by Xun Huang

This thesis describes a parallel block-structured adaptive mesh refinement (AMR)

method that is employed to solve some computational aeroacoustic problems with the

aim of improving the computational efficiency. AMR adaptively refines and coarsens

a computational mesh along with sound propagation to increase grid resolution only

in the area of interest.

While sharing many of the same features, there is a marked difference between

the current and the established AMR approaches. Rather than low-order schemes

generally used in the previous approaches, a high-order spatial difference scheme is

employed to improve numerical dispersion and dissipation qualities. To use a high-

order scheme with AMR, a number of numerical issues associated with fine-coarse

block interfaces on an adaptively refined mesh, such as interpolations, filter and

artificial selective damping techniques and accuracy are addressed. In addition, the

asymptotic stability and the transient behaviour of a high-order spatial scheme on an

adaptively refined mesh are also studied with eigenvalue analysis and pseudospectra

analysis respectively. In addition, the fundamental AMR algorithm is simplified in

order to make the work of implementation more manageable.

Particular emphasis has been placed on solving sound radiation from generic

aero-engine bypass geometry with mean flow. The approach of AMR is extended

to support a body-fitted multi-block mesh. The radiation from an intake duct is

modelled by the linearised Euler equations, while the radiation from an exhaust duct

is modelled by the extended acoustic perturbation equations to suppress hydrody-

namic instabilities generated in a sheared mean flow. After solving the near-field

sound solution, the associated far-field sound directivity is estimated by solving the

Ffowcs Williams–Hawkings equation. The overall results demonstrate the accuracy

and the efficiency of the presented AMR method, but also reveal some limitations.

The possible methods to avoid these limitations are given at the end of this thesis.
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Chapter 1

Introduction

1.1 Overview

The high level of nuisance noise generated by the take-off and landing of aircrafts has

a significant impact on the communities near airports [1]. With a reduction target of

perceived noise level of 50% by 2020 [2], computational aeroacoustics (CAA) is being

used with increasing frequency in studying the physics of aerodynamically generated

noise. Various attempts have been made to apply CAA methods to airframe/engine

noise study both in the EU countries and in the US [3, 4]. The general objectives of

CAA focus on the prediction of aerodynamic sound sources and the propagation of

the generated sound. It has progressed considerably during the last decade and offers

greater advantages over traditional methods such as computational fluid dynamics

methods, in terms of accuracy and scope. However, a CAA method includes the use

of long time accurate temporal integration strategies and high-order spatial schemes,

which leads to high demands on computational resources [5]. More often than not

its applications are still restricted to idealised geometries of aircraft components due

to limited computational resource. The development of a cost effective and efficient

computational method is essential.

Many aeroacoustic problems involving near-field sound generation and sound

propagation include multiple spatial and temporal scales [6]. A generic problem

is high-order spinning mode sound radiation from an aero-engine intake, where high

level short wavelength sound pressures hug the wall posing a severe challenge to the

grid resolution requirement. Preliminary studies have found that the size of the near

wall grid must be an order of magnitude smaller than other areas of the duct depend-

ing on the local radial wavenumber [7, 8]. It requires a sufficient resolution of the

computational grid in the near-field. The costs of such a computation could be pro-
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1. INTRODUCTION

hibitive using a uniformly fine grid. To meet the problem imposed by the disparate

scales, one could use a highly stretched grid. However, the dispersion and dissipation

characters of numerical schemes may be affected and it is highly likely that spurious

waves will be generated by the numeric procedure [9]. Highly orthogonal and weakly

stretched grids are therefore preferred to meet the grid requirements in the acoustic

near- and far-fields [10].

The method of adaptive mesh refinement (AMR) attracts interests mainly due to

its potential of reducing both the computational and storage cost over an equivalent

static uniform mesh, as it increases grid resolution only in the area of interest [11]. A

given spatial error tolerance is achieved by recursively refining meshes. Subsequently

a localized mesh of high grid resolution is distributed within an otherwise coarse

mesh. AMR has been actively applied to the computation of many different research

areas, such as aerodynamics [11, 12, 13], plasma [14, 15, 16], combustion [17, 18],

cosmology [19, 20], image processing [21], material analysis [22], and so forth. At

present these large multi-physical problems are typically solved on distributed mem-

ory computers [23]. It requires the computational domain to be decomposed amongst

parallel processors in a load-balanced manner. The strongly inhomogeneous grids of

AMR pose a serious challenge to the design of a parallel load balancing algorithm,

which has been studied and partially solved using either parallel software abstractions

[24, 25, 26] with distributed dynamic data-structures [27] or a global memory model

[28, 29, 30]. However, a general solution is still not available.

In this work AMR is employed with the aim of improving computational and

memory efficiency in solving a class of CAA applications. The focus is particularly

placed on the problem of sound propagation and radiation from an aero-engine na-

celle. To achieve the aim, there are still gaps in both the established AMR programs

and numerical issues which call for further work. Therefore the overall objectives are:

• to develop a parallel AMR framework to adaptively refine and coarsen a mesh

and to balance the relevant computational loads dynamically;

• to design an appropriate approach that is capable of implementing high-order

spatial schemes straightforwardly on an adaptively refined mesh;

• to test the proposed AMR method against CAA benchmark problems;

• to solve the practical problem of sound radiation from a generic aero-engine

bypass duct by using the proposed AMR method.

The whole design is subjected to the principles of simplicity and portability.
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1.2 Literature Review

AMR and CAA methods relevant to this work are surveyed below. With respect to

each topic there are different methods that are compared through the review, which

helps to identify the most suitable methods to be employed in the rest of this work.

1.2.1 Adaptive Mesh Refinement

AMR method can be performed on either unstructured or structured meshes. The

technique of AMR working on unstructured meshes is especially suitable for appli-

cations with complex geometries. It has been used extensively in solving biomedical

flow [31], aerodynamics [32, 33] and nonlinear dynamic systems [34]. By contrast,

the technique of AMR working on structured meshes represents the corresponding

computational domain as hierarchal refinement levels and increases mesh resolution

mainly according to solution gradients [35] or immersed boundary curvatures [36, 37].

In addition, some other problem-specific adaptation indicators for the corresponding

physical problems have been reported in [38, 39, 40]. Truncation error is also em-

ployed in [11]. Generally speaking, structured AMR has several distinctive advantages

over unstructured AMR. Firstly, structured AMR is capable of treating problems not

only in multiple spatial scales but also in multiple temporal scales [11]. Secondly, a

structured mesh can be adaptively refined and coarsened without leading to skewness

problems [10]. Thirdly, and the most important to this work, structured AMR can

support high-order spatial schemes straightforwardly [18, 41, 42]. Hence the method

of structured AMR is used here. For the sake of convenience, unless otherwise ex-

plicitly indicated, the name of AMR only applies to structured meshes in the rest of

this work.

The AMR algorithm was firstly introduced by Berger and Oliger to solve un-

steady Euler equations [11]. With this method there was an extensive improvement

of computational efficiency for solving shock hydrodynamic problems [13]. Combined

this AMR method with an adaptive mesh-moving algorithm a time-dependent prob-

lem of moving shock along a flat wall was simulated efficiently too [43]. It was also

extended to solving applications governed by the Navier-Stokes equations [44]. An

overall summary of AMR for both the Euler and Navier-Stokes Equations was pre-

sented in several publications [45, 46, 47]. In addition to studying numerical schemes

on an adaptively refined mesh, the most recent interests were focused on improving

AMR parallel efficiency [48, 49, 50, 51, 52], applying AMR to practical problems

[53, 54, 55, 56] and presenting new AMR frameworks [57, 58, 59].

Along with the evolution of software and hardware techniques, the AMR algorithm
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has developed many variants, which can be categorized into: cell-based [60], patch-

based [11] and block-based AMR [57] algorithms. Although the fundamental idea

behind these algorithms is roughly the same, there are marked distinctions between

their implementations particularly in terms of the granularity. In general granularity

is a measure of computation power to communication overheads [61]. In this work

it specifically implies the required memory size and the complexity of the relevant

algorithm. A coarser model granularity denotes a smaller memory size and a simpler

AMR operation and vice versa.

x

x x

x

x

x x

(a) Identification. (b) Cell-wise refinement.

xx

x

x

xx

x

(c) Clustering.

(d) Patch-wise refinement.

x

x

x

x

xx

x

(e) Identification. (f) Block-wise refinement.

Figure 1.1: The refinement operation of: (a-b) cell-based AMR; (c-d) patch-based
AMR; (e-f) block-based AMR, where the thin lines denote meshes while the bold
lines denote block boundaries.

The conceptual overview is indicated by several sketches in Figure 1.1, where

the refinement operation is displayed as an example. Firstly, in the cell-based AMR

refinement operation, the identified cells are refined directly. It is easy to see that its

granularity is fine-grained, i.e. a detailed data structure has to be maintained for each

cell [60]. Secondly, in the patch-based AMR refinement operation, the identified cells

are clustered together to be several big patches with a clustering operation [11]. The

refinement operation is operated on a relatively high level, on which a simpler data

4



1. INTRODUCTION

structure is maintained for each patch. Finally, in the block-based AMR refinement

operation, a computational domain consists of blocks with a predefined number of

cells, e.g. 4×4 cells in each block for the example. If any cell in one block is identified,

the whole block is refined [57]. As a result the data structure is only maintained

for blocks. Comparing to cell-based and patch-based algorithms, it shows that the

granularity of block-based AMR is the coarsest.

In some works [27, 58] patch-based AMR algorithm was also regarded as a gener-

alization of block-based AMR algorithm considering the similar organisation of data

structures. In spite of that these two algorithms have been described here respectively

in order to illustrate the differences between both AMR ideas more exactly.

It is easy to see that theoretically the highest efficiency and the most flexibility

can be gained through a cell-based AMR algorithm. Nevertheless, its memory and

communication cost is also the highest and its fine-grained algorithm is error-prone

and difficult to implement. By contrast, in patch-based AMR algorithm some of

irregularities in the algorithm have been removed by using a clustering operation to

organize the identified cells in patches. The required cost is reduced accordingly.

Block-based AMR algorithm is certainly the most homogeneous and its data struc-

ture and the corresponding algorithm are the simplest. It allows the most feasible

parallel implementation while still increases computational efficiency by reducing the

required cells count. The price to pay for the simplicity is the loss of some efficiencies

comparing to cell-based and patch-based AMR algorithms [57].

Although the mentioned block-based AMR algorithm is conservative and includes

a tradeoff between programming complexity and computational cost, it has been

found that the efficiency of block-based AMR is still quite satisfactory in solving

practical applications [62, 63]. Therefore, in this work the algorithm of block-based

AMR is employed for its simplicity, which allows the main effort to be focused on

implementing CAA schemes and studying practical CAA problems. The most part

of the following survey is exclusively about block-based AMR algorithm, unless oth-

erwise stated.

Fundamental ideas of AMR data structures and the corresponding implementa-

tions are scattered in several publications [26, 57, 64, 65]. No matter for cell-based, for

patch-based or for block-based AMR, data structures can be implemented in the form

of a tree [66], i.e. a binary tree for one-dimensional, a quadtree for two-dimensional

and an octree for three-dimensional problems [67, 68, 69]. Two approaches have been

developed. The first approach used traditional programming methodology, where

the AMR data structure was described with the structure of C or was organized

within modules of Fortran [57]. The other approach employed object-oriented design
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methodology [70] because the highly object-oriented idea of AMR could be fairly

represented with Java [29] or C++ [71, 72]. It was especially popular in the imple-

mentation of parallel AMR [26, 65]. Specific design details within object-oriented

models could be found in [73] where the data structures and the related operations of

AMR had been encapsulated in several classes. To combine with numerical compu-

tation efficiently, it has been implied that a mixed-language model could be a better

choice to hide the details of AMR from numerical parts [74] using C++ to manage

higher-level data structures while using Fortran for mathematic calculations. There

were also some efforts trying to implement AMR with a parallel language [75], such as

using the recently emerging High Performance Fortran [76]. In this work, although

the relatively advanced object-oriented design methodology attracts more interest,

the traditional approach is followed in order to be consistent with the previous work

of the group.

Other than the mentioned two approaches for designing AMR data structure,

there are several issues of AMR that have been studied by many researchers holding

with three different point of views. The details are discussed below.

Firstly, from the perspective of high performance computing, the parallel imple-

mentation of AMR algorithm leads to a significant challenge on distributed memory

machines. The dynamic nature of AMR operations, e.g. parallel mesh construction

and runtime management, require more extensive and flexible memory operations.

The whole computational domain of solutions has to be decomposed periodically

amongst parallel processors to achieve load balancing dynamically [77, 78]. Fun-

damentally it is a problem of distributing AMR data structures evenly to parallel

machines [57, 79]. One algorithm was presented to make load distribution evenly

using grid-splitting and direct grid movements [80]. In the other algorithm, a suit of

space-filling curves were employed to form an application-centric partitioning method

that could select a proper partitioning strategy at runtime depending on the running

application and system states [81]. Both algorithms are problem-specific and can not

be applied to this work directly.

In addition, the improvement of the parallel AMR computational efficiency is

also a major concern. Several algorithm issues affecting parallel scaling have been

discussed, where the particular attention was paid to the cost and efficiency of com-

munication libraries [82]. It was proved the AMR method behaved well when scaling

up to thousands of processors [83]. Nevertheless, the test case employed was idealised.

The parallel performance for practical applications is still problem-specific and relies

heavily on the code optimization. In this work the parallel algorithm is to be designed

specifically for simplifying the code, which parallel performance associated with CAA
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applications is also to be discussed.

Secondly, from the perspective of numerical analysis, the correct treatment around

fine-coarse interfaces associated with an adaptively refined mesh has been actively

studied for both the finite volume [11, 44, 84] and finite difference methods [85, 86].

Within finite volume methodology, a flow solver consisting of a linear reconstruc-

tion method and an approximate Riemann solver was described for applications on

an adaptively refined mesh [66]. Another numerical scheme was described to model

chemical reaction over overlapped adaptive meshes using 2nd-order Godunov method

for convective fluxes and working in a predictor-corrector fashion [87]. Some efforts

have also been done combining AMR with the multigrid method [88]. To keep the

divergence-free property of some physical problems, e.g. magnetohydrodynamics,

several methods were presented in [89] and references therein. Special treatments

including revised interpolations and flux updating between fine and coarse grids were

employed to enforce conservation laws at fine-coarse interfaces between blocks of

different refinement levels [57].

Within finite difference methodology, a 2nd-order centered spatial differential

scheme was employed to solve a wave propagation problem [85]. The numerical reflec-

tion coefficient with regard to the wavenumber at fine-coarse interfaces was studied. It

was indicated that wave with smaller wavelength had higher reflection coefficient, i.e.

high wavenumber part was more susceptible to be unstable. Short wavelength spu-

rious reflection wave was discovered as wave propagated across fine-coarse interfaces

with a 2nd-order linear interpolation method. To mitigate the problem, a 3rd-order

quadratic interpolation method was used around a fine-coarse interface. Conservative

smoothing method was also used in the other work [86] to allow the Lax-Wendroff

scheme freeing of spurious oscillations around interfaces.

Although both finite volume and finite difference methodologies have been em-

ployed successfully on an adaptively refined mesh, the latter is preferred herein in

that it is relatively easy to handle.

Thirdly, from the perspective of grid generation, AMR algorithm has potential to

generate a structured hierarchical mesh around solid boundaries [60, 66, 90] working

with an immersed boundary method [91]. The number of grids surrounding a solid

boundary is increased to simulate the immersed boundary to an expected exactness,

while the number of grids in the region away from that boundary is reduced to

save computation resource. Subsequently the tedious task of producing a body-fitted

mesh can be saved [36, 92]. Several approaches have been presented to compute

spatial differentials of grids near immersed boundaries [91], including: reshaping finite

volumes near the body to a mosaic of body-fitted trapezoidal cells [62], imposing a
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feedback forcing [36] or a direct forcing [93, 94] and using a ghost-cell (cut-cell finite-

difference) method [94] to simulate the existence of boundaries.

However, the advantage of automatic grid generation with AMR was mainly man-

ifested in solving the Euler equations due to its difficulty in solving problems with

viscous boundary layers. One method approached the problem with an anisotropic

mesh adaptation managing the Cartesian grid cells and faces with an unstructured

data structure [92]. Nevertheless, the parallel implementation of this approach is

difficult due to its highly inhomogeneous memory allocation.

Some others proposed using AMR on a body-fitted mesh [12, 62]. This approach,

by refining and coarsening a body-fitted multi-block mesh, gives up much of the

simplicity of the immersed boundary method and the elegance of the Cartesian grid

method. By contrast, a method of hybrid mesh was presented using overlapping grids

to solve viscous boundary layers on body-fitted grids and otherwise to solve flow fields

on Cartesian grids [95]. The method has evolved to a huge framework, OVERTURE

[96], including: grid generation, AMR, solvers, data base, graphical display and so

forth. Other than reducing the required cell number besides boundaries, both meth-

ods also supported high-order spatial schemes straightforwardly [97, 98]. In this work

the former method, body-fitted multi-block AMR, is employed for its simplicity of

the code.

The above paragraphs summarise several design aspects associated with AMR.

The attention here is restricted to solving CAA applications with AMR. Two specific

issues appear.

Firstly, with respect to numerical issues, high-order finite difference schemes are

generally preferred to ensure accurate performance [5]. Potential methods consist

of two options: compact (implicit) and explicit schemes. A detailed survey of their

numerical properties is to be given in the next section. The following discussion only

concerns their potential usage on an adaptively refined mesh.

Normally, a compact scheme is more accurate than its explicit counterpart of

the same order [99]. However, a special treatment is required around the interfaces

between blocks for the proper working of a compact scheme across the whole domain.

Several approaches have been presented. The first approach was based on a mesh

with overlapped blocks, on which solutions of grids near one side of a block interface

are exchanged with solutions on the other side after each computational step [9, 100].

The other approach designed a high-order explicit scheme specifically for the grids

around block interfaces [101, 102]. For the reason that both approaches can not

be applied on an adaptively refined mesh straightforwardly, compact scheme is not

recommended in this work in spite of its numerical merit.
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High-order explicit schemes are hold more attentions here. A primitive method of

high-order mesh refinement multigrid computation with explicit schemes was given

in [103]. Recently work was done at Sandia National Laboratories combining high-

order methods and the AMR algorithm together for simulating reacting flow [18, 42,

63, 104]. An initial work investigated several centered spatial stencils (2nd- and 4th-

order), the corresponding interpolations and their overall effect on the convergence

order [104]. It was demonstrated that the order of the interpolation method employed

in the computation should be higher than the order of the selected spatial scheme

to keep the order of accuracy on an adaptively refined mesh. Up to 8th-order spatial

schemes were tested and the same result was still kept [18, 63]. A complete description

of high-order discretization schemes, interpolation and filters for AMR has been given

[42]. It was discovered that the computational efficiency of 4th-order approaches was

higher on an adaptively refined mesh comparing to 2nd-order schemes [104]. More

efficiency may be achieved if higher order spatial schemes were to be used. However,

the corresponding high-order interpolation methods may become cumbersome and

difficult to code. As a result of performing a tradeoff between computational efficiency

and programming effort, 4th-order schemes gains more interests in the work.

Other than the numerical issues, developing an AMR code with reasonable efforts

poses a challenge. Several frameworks implementing AMR algorithm have been es-

tablished, involving: Gerris [60] for cell-based AMR; AMRCLAW [105], BoxLib [106],

DAGH [71] and SAMRAI [58] for patch-based AMR; and Chombo [74] and PARA-

MESH [57] for block-based AMR. These tools were generally designed for a particular

research community, most in the area of computer science [27, 79, 107, 108]. When

applying AMR to CAA applications, two disadvantages prevent the direct using of

one established framework. First, a public accepted mature flexible AMR framework

on a distributed memory machine is still not available. Second, those existing frame-

works are always too big to be accessible and not convenient enough to accommodate

a group of CAA schemes while the overall efficiency is still kept. Hence a simplified

AMR framework is constructed in this work, although the code from some existing

frameworks, especially PARAMESH, is extensively referred.

1.2.2 Computational Aeroacoustics

Generally speaking, CAA applications fall into three stages: sound generation, sound

propagation and sound radiation. In this work the main concern is sound propagation.

Some of the relevant computational methods are surveyed below. The technique used

to predict far-field sound radiation is also discussed briefly at the end of this section.

High-order methods are generally preferred to ensure accurate performance when
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simulating aeroacoustic propagation problems [5]. For finite difference schemes, ei-

ther explicit or implicit schemes have been studied and employed. A commonly used

explicit dispersion-relation-preserving (DRP) scheme was developed by Tam et al, in

which the coefficients of the scheme were optimized to reduce the dispersion error

[109]. The scheme was also extended to a predefined multi-size mesh [110]. In addi-

tion to the DRP scheme, standard explicit schemes whose coefficients were given by

matching to the corresponding Taylor series could be used on an adaptively refined

mesh too [42]. One of these schemes was employed in solving a problem of duct

propagation [97] for the reason that its single-side stencil was simpler to implement

than the DRP counterpart was.

Other than the relatively simple explicit schemes, implicit type high-order com-

pact schemes are studied and employed in CAA applications as well. A complete de-

scription of compact finite difference schemes with spectral-like resolution was given in

[99]. Such schemes allow the amplitude and phase of radiating waves to be accurately

determined using a smaller points per wavelength grid resolution, yielding a marked

improvement in accuracy and efficiency compared to the explicit counterparts. How-

ever, a tridiagonal matrix has to be solved to apply the method. To mitigate the

difficulty, a prefactored compact scheme was presented in [101], where the tridiag-

onal matrix was partitioned to a lower triangular and an upper triangular matrix

that could be solved more efficiently. To minimize dispersion errors an optimization

process was introduced in prefactored compact scheme adjusting its coefficients [102].

With respect to temporal integration method, a multi-step low dispersion Adams-

Bashforth method has been employed successfully in some CAA applications [110].

However, multi-stage Runge-Kutta methods gain more preference mainly due to their

simplicity. A low-dissipation and low-dispersion Runge-Kutta method was developed

particularly for CAA applications [111]. In case development stage the choice be-

tween multi-step and multi-stage method depends to a large extent on memory al-

location costs and implementation efforts. Generally the former Adams-Bashforth

method requires more memory costs and design efforts than the latter Runge-Kutta

method. Moreover, Runge-Kutta method has been proved to behave well with both

the compact and DRP schemes and it is self-starting. Hence a low-dissipation and

low-dispersion Runge-Kutta method is to be employed in applications throughout

this work.

A high-order method does provide the attractive properties of less dissipation

and less dispersion than its low-order counterpart. However, it is more susceptible to

numerical errors [85]. A range of methods, including: an explicit filter [101], a group of

implicit filters [9, 112] and an artificial selective damping method [109, 110], were used

10



1. INTRODUCTION

in CAA applications to remove the accompanied high frequency numerical nuisance.

Generally speaking, an explicit filter is easy to implement. However its performance is

worse than an implicit filter of the same order. Meanwhile, artificial selective damping

method differs a little from its predecessor: artificial dissipation model [113, 114]. It

was optimized to eliminate unresolved high wavenumber components as well as to

keep resolved parts [115]. In a computation with a multi-stage temporal integration

method, filtering should only be employed after the whole step integration is finished

[42]. By contrast, artificial selective damping can be used in each stage.

It was found that sound generated by aerodynamic flows could be described by

a wave equation that was an exact rearrangement of the Euler or the Navier-Stokes

equations [116, 117]. This so-called acoustic analog theory allows solving sound source

mechanisms and sound propagation separately. One common form of the acoustic

analogy is Ffowcs Williams–Hawkins (FW–H) equation [118]. Therefore, once a sound

solution of the near-field is obtained the corresponding far-field directivity can be

estimated via an integral surface solution of FW–H equation. The details relevant to

the numerical implementation of FW–H equation can be found in [119].

1.2.3 Sound Radiation from Ducts

In order to learn more about the advantages of the AMR method for CAA appli-

cations and about techniques could be used to mitigate the possible disadvantages,

several aeroacoustic problems are to be solved in this work. The propagation and

radiation of discrete frequency tones generated by fan rotor-stator interactions in air-

craft engine ducts are of particular concern in the work. The source model is assumed

to be independent of the propagation and radiation so that it is usually considered

to be a known input. It has been described in the classical work of Tyler and Sofrin

[120], where an analytical relationship determined the sound frequency and the cir-

cumferential mode number in terms of the blade passing frequency and the number

of rotor blades and stator blades is presented.

The majority of research applying theoretical analysis to acoustic radiation from

turbofan engine has modelled the engine duct as a straight duct. A relative simple

asymptotic equation simulated a high frequency sound radiation out of a jet pipe

based on Kirchhoff approximation [121]. As a benchmark problem, it is used in the

work to testing against numerical solutions solved on an adaptively refined mesh.

More details of the asymptotic equation are presented in Appendix B.

In practical numerical computations, the duct is generally simplified to be ax-

isymmetric. The source is decomposed to separate components with different pair

of circumferential mode and frequency. For the reason that the magnitude order of

11



1. INTRODUCTION

sound is much smaller than the mean flow field in the duct, each component of sound

can be described by a group of two-dimensional linearised Euler equations (LEE)

[122], which contain terms with complex number. To avoid the operation of com-

plex number and reduce required memory, a new variable: the temporal difference

of the circumferential sound velocity, was introduced to reorganize the original gov-

erning equations to so-called two-and-a-half dimensional linearised Euler equations

(2.5D LEE) without complex terms [7, 123]. The method has been applied to generic

aero-engine intake duct [8, 124, 125] and exhaust duct [126] problems and proved its

efficiency and convenience.

1.3 Thesis Structure

A code applying the simplified AMR algorithm to CAA applications is developed

as a part of this PhD work. It consists three parts: AMR library, CAA library

and applications code. The AMR library defines the overall data structures and

provides subroutines to support AMR operations. The high-order computational

solver, including spatial and temporal schemes, explicit filters and artificial selective

damping, are organized together in the CAA library. Applications code contains

several CAA benchmark problems to verify the AMR and CAA libraries.

The rest of the paper is organized as follows. Firstly in Chapter 2, various AMR

algorithms and their essential ideas are introduced, followed by the details of the

algorithm employed in this work. After that, in Chapter 3 several numerical issues

associated with the AMR method are addressed. In Chapter 4 preliminary results

of some benchmark problems are presented, where a problem of wave propagation

demonstrates the working of the distributed parallel AMR framework, a benchmark

problem of sound scattering from a cylinder shows the working of the immersed

boundary method and a benchmark problem of a spinning modal sound radiation

out of an unflanged duct is computed and tested against the asymptotic solution

[121], to show the accuracy and efficiency of the AMR method. After that, in Chap-

ters 5–6 the approach developed in this work is applied to practical problems of

sound radiation from an aero-engine intake duct and exhaust duct respectively. A

summary of the overall PhD work on AMR and recommendations for future research

are made in Chapter 7. Finally, a number of appendices have been written to pro-

vide the relevant information at the end of this work, including: the coefficients of

the employed schemes; several demonstration codes; and a Fourier pseudospectral

time-domain method applying to some CAA benchmark problems.
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Chapter 2

The AMR Algorithm

This chapter presents the fundamental features of AMR. The first section gives an

overall description of AMR by introducing its basic principles. The second section

outlines the block-based AMR algorithm that is employed in this work. It then

discusses its parallel implementation in more detail. At the end, the algorithm com-

plexity of the block-based AMR method is analysed qualitatively.

2.1 Introduction

AMR improves the storage and computational costs by refining cells only in places

where a high grid resolution is desired as well as coarsening cells in places with an

unnecessary high resolution. The fundamental algorithm has been presented for more

than twenty years and developed to various algorithms. It was firstly presented in the

form of patch-based AMR to solve the Euler equations, where the Berger and Oliger

algorithm operated on each cell of the relevant computational domain [11]. The basic

procedure of the Berger and Oliger algorithm, from initiating the computation on a

rectangular coarse mesh, is:

• estimating local truncation errors at all grid points with either Richardson’s

extrapolation [11] or using a problem specific criterion to identify areas with

excessive and unnecessary resolutions;

• organizing these areas into rectangular patches by using a clustering algorithm

to set up connection information and improve communication efficiency;

• regridding (refining and coarsening) these clustered patches by superimposing

or removing sub-grids to accommodate changes in flow dynamics.

The procedure is operated recursively until either a given regridding level is reached

or a predefined local truncation error level has been met.

13



2. THE AMR ALGORITHM

//Pseudo code for regridding operation.

for(cell in the domain){

if(RefineFlag(cell)==TRUE)

Refine(cell); //Refine the cell.

elseif(CoarseFlag(cell)==TRUE){ //Need coarsen operation?

if(CoarseFlag(cell->siblings)==TRUE) //Siblings status.

Coarse(cell); }} //Coarse the cell.

Need
refine

If do not need
finer patches,
delete connection

Generate finer area
and superimpose
on base mesh

Figure 2.1: Regridding operation of AMR.

The regridding operation is illustrated in Figure 2.1. After this operation, the

computational domain consists of a set of nested patches. Initial solutions on the

newly generated patches are inherited from the base mesh as illustrated in Figure 2.2.

This operation is referred to as prolongation. Conversely, solutions on the sub-grids

update solutions of the corresponding base grids to keep accuracy consistently be-

tween refinement levees. This is known as restriction. It is easy to see that both

prolongation and restriction operations in AMR are similar to the corresponding

operations in multigrid methods [127].

In short, the Berger and Oliger algorithm contains: clustering, regridding, prolong

and restriction operations. It is quite flexible: the superimposed rectangular sub-grid

is allowed to rotated relative to the coordinates’ axes or merged with other sub-grid to

generate a bigger patch to save the relevant communication cost; and the refinement

ratio between hierarchical levels can be adjusted, generally, but not limited by, from

two to four [11]. It asks for extra efforts in the code implementation, especially on

a parallel machine. To decrease the programming complexity, several simplifications

were presented in the literature.
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2. THE AMR ALGORITHM

//Pseudo code for prolongation and restriction operations.

for (cell in the domain){

if (after regridding operation){

if(NewGenerated(cell)==TRUE) //Newly generated?

Prolong(cell); } //Initialize its solutions.

if (after each computing step){

if(HaveParent(cell)==TRUE) //Have parent?

Restriction(cell); }} //Update parent’s solutions.

Restrict solution to
update base mesh

Prolong to initialize
new patches

Figure 2.2: Prolongation and restriction operations of AMR.

Siblings

Child 1 Child 2 Child 3 Child 4

Parent

Figure 2.3: Quadtree represents the hierarchical relation of AMR.

The first simplification used a fixed refinement ratio of two by only bisecting re-

quired cells and maintained a quadtree data structure for two-dimensional hierarchal

adaptive meshes [66]. A simple example of the data structure is displayed in Fig-

ure 2.3, where the relationships between refinement levels are named as parent and
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2. THE AMR ALGORITHM

children. Cells that have the same parent are described as siblings. The quadtree

data structure stores the connection information and locates cells during computa-

tion. From any cells the whole tree can be accessed.

The second simplification employed block-based AMR method [57]. In block-

based AMR method, the previously discussed AMR operations of the Berger and

Oliger algorithm were operated on blocks that contained a predefined number of

cells, e.g. Nx × Ny cells in a block for two-dimensional problems. There are some

favorable properties of this method, e.g. tree-type data structure is maintained for

regular hierarchical blocks only, parallel communications become simple and cluster-

ing operation is saved.

Both simplifications are employed in this work. A typical workflow involves the

following steps:

(1) setting up the computational parameters according to an input file and con-

structing the mesh with the finest grids;

(2) regridding the computational domain according to a selected regridding crite-

rion;

(3) assigning solutions to the newly generated meshes with the AMR prolongation

operation;

(4) preparing solutions to compute spatial difference with the AMR ghost construc-

tion operation;

(5) starting the general computation procedure;

(6) updating solution on the coarse refinement level with the AMR restriction op-

eration;

(7) repeating steps (4) to (6) if necessary;

(8) computing the regridding criterion according to the solutions on the adaptively

refined mesh and going back to step (2).

All AMR operations have been discussed before except a new one, the AMR ghost

construction operation, appearing in step (4). Its details are introduced in the next

paragraph. Figure 2.4 shows these steps in a flow diagram.

An extra area surrounding each block is prepared in step (4) to solve partial

differences of those cells located near a block boundary. That extra area was called

ghost area or guard cells. Subsequently the operation of preparing solutions for

the extra area was called ghost construction or guard cell filling interchangeably.

To be consistent in this work, the names of ghost area and ghost construction are

used. Figure 2.5 demonstrates the ghost construction operation on a vertex-centered

mesh as an example. In this figure the deep gray area represents a ghost area,
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Parsing

Input File


AMR

Regridding


Regrid mesh and

update connection


info
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and filter/damping
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Figure 2.4: The flowchart of AMR.

where solutions are provided from a shallow gray area of the neighbouring block in

two different ways depending on the refinement level difference. If the neighbouring

blocks have the same refinement level, solutions are copied directly. Otherwise, either

a restriction or an interpolation operation is executed before copying solutions.

In addition to the mentioned fundamental algorithm, several issues affecting the

performance are considered in designing the code for this work. They are summarised

below in more detail.

Firstly, a compromise between the computational load balancing and the commu-

nication efficiency is made to determine the number of cells, Nc (e.g. Nx × Ny in a
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//Pseudo code for ghost construction operation.

//Copy_solution(src,dst) //Protocol of the function.

for (block in the domain){

neigh=neighbour(block); //Get neighbour block id.

if (level(block)==level(neigh))

Copy_solution(neigh,block);

elseif (level(block)<level(neigh)) //Block is coarser?

Restriction(neigh);

Copy_solution(neigh,block);

elseif (level(block)>level(neigh)) //Block is finer?

Interpolation(neigh);

Copy_solution(neigh,block); }

Direct copy

Ghost

(a)

Ghost

By interpolation

By restriction

Fine-coarse interface

(b)

Figure 2.5: Ghost construction operation of AMR, where the neighbour-
ing blocks have: (a) the same refinement level; (b) different refinement
levels.

two-dimensional block), of each block. Generally, the difference of computational load

between processors is proportional to the size of one block. A smaller Nc, therefore,

gives a better balanced computational load amongst parallel processors. However,

it also introduces more communications between processors according to several nu-

merical experiments that have been done in this work. In addition, for the purpose

of reducing the potential code complexity, every block in the computational domain

have the same cell number. The value is problem specific. For some two-dimensional

benchmark problems appearing in Chapter 4 each block contains 8×8 cells to achieve

good load balancing. For other practical problems appearing in Chapters 5–6 each

block contains 20× 40 cells to simplify the task of grids generation.
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Secondly, an appropriate time interval, Tamr, between the consecutive operations

of regridding has to be set to assure the successful capturing of instantaneous physics

on an adaptively refined mesh. In short, a small Tamr has to be used for applications

with a rapid physical movement and vice versa.

Thirdly, the numerical scheme employed in CAA applications affects the width,

Wg, of a ghost area: Wg is at least 3 for a 4th-order DRP scheme; at least 5 for a

4th-order prefactored compact scheme. The value of Wg also affects the value of Tamr.

It was discovered that with a wider width (Wg), a bigger regridding interval (Tamr)

could be used without losing capturing ongoing physics. An empirical relation of

Tamr 6 Wg∆x/(|v|∆t) based on several numerical experiments should be satisfied to

solve wave propagation problems, where ∆x is the size of spatial discretization, ∆t

the integration temporal step, v the propagation speed, | | the amplitude. Otherwise

the instantaneous physical phenomena may be lost on the finest level of blocks.

//Pseudo code for ghost construction operation.

//Copy_solution(src,dst) //Copy solutions.

//Copy_difference(src,dst) //Copy spatial differences.

for (block in the domain){

Copy_solution(block,tmp_block);

Ghost_construction(tmp_block); //Do ghost construction.

Compute_difference(tmp_block); //Get d/dx.

Copy_difference(tmp_block,block);}

Direct copy

Ghost

By interpolation

Temporary block

Part of
block B

Block A

Figure 2.6: The compact memory model of the AMR ghost construction operation.

Finally, a compact memory model is chosen to reduce the storage burden at the

cost of some computational efficiency. Actually, the underlying memory model of
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the previous example (Figure 2.5) is not compact. For example, in two-dimensional

cases its overall storage cost is proportional to [Nblock × (Nx + Wg) × (Ny + Wg)],

where Nblock is the block number in the domain. In contrast, the storage cost of the

compact memory model, which is much smaller than the previous one, is proportional

to [Nblock×Nx×Ny+(Nx+Wg)×(Ny+Wg)]. An extra temporary block (located at the

top level in Figure 2.6) of size [(Nx + Wg)× (Ny + Wg)] is introduced to computing

spatial differences. The whole procedure is indicated in the pseudocode listed in

Figure 2.6. With this compact memory model, the storage cost is reduced whereas

some extra computational costs managing memory movements between a smaller

block and the bigger temporary block have to be incurred. It reflects a tradeoff

between the storage cost and the computational cost. The quantitative analysis of

the increased computational cost is performed in a benchmark case study that is

given in the next chapter.

Figure 2.7: A CAA application of block-based AMR.

Figure 2.7 provides an overall view of the AMR method employed in this work.

It shows a problem of sound scattering off a cylinder that is solved on a body-fitted

multi-block mesh, where each block contains 20 × 20 cells. The overall mesh con-

sisting of three refinement levels is created at the start of the computation. The

refinement ratio between two consecutive coarse and fine levels is 2. The AMR re-

gridding operation defines the relationships between blocks as parents/children or

sibling according to the means they are connected. It stores the hierarchy informa-

tion in the data structure of quadtree and refines and coarsens the hierarchy mesh

based on the gradient of the velocity perturbation. As the simulation progresses, the

mesh is dynamically updated to reflect the evolving physics. Meanwhile, the prolon-
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gation operation provides initial solutions to newly generated blocks. The restriction

operation updates solutions of coarse blocks. The diagram is displayed with the aim

of showing the hierarchy of the adaptively refined mesh clearly. In reality fine levels

are superimposed on coarse meshes directly. In addition, block boundaries are dis-

played whereas cells are not visible in order to display the figure clearly. The same

figure style is followed throughout this work.

2.2 Parallel AMR

This section introduces the background information and the underlying algorithms

for implementing the aforementioned body-fitted AMR on a parallel machine. Firstly

it discusses the features of two parallel development methodologies based on shared

memory and distributed memory models. The latter one is used in this work for its

portability. It then introduces the operation that is dynamically balancing computa-

tional load. Several examples are given to explain the principle behind the operation.

Finally, it introduces a simplified parallel communication part employed in this work.

This section requires previous knowledge of the loosely coupled parallel programming

applications [128] and the message passing interface (MPI) [129].

2.2.1 Parallel Methodologies

The distributed memory machines are increasingly adopted as a cost effective alterna-

tive to classical supercomputers for running large scale numerical simulations. Either

shared memory or distributed memory model can be applied on these machines [130].

From a programmer’s point of view, shared memory model is more desirable in that

a memory location can be both read from and written to by multiple processors

directly and transparently with this model. It allows programmers to focus on al-

gorithm design rather than on managing tedious low-level memory communications.

Prevalent machines offering this model, via particular combination of software and

shared memory hardware, include the quite expensive SGI Onyx and IBM SMPs.

For economical distributed memory machines, e.g. Beowulf cluster [131], which

are built directly with commercial off-the-shelf products such as personal computers

connected by high-speed network, several software projects are developing to fulfill a

distributed shared memory model [130]. Some most promising options, including the

Global Arrays toolkit [28], Titanium [29] and Unified Parallel C [30], have demon-

strated their functions by providing primitive examples of AMR applications. The

first option, Global Arrays toolkit, helps programmers to access distributed global
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arrays transparently as if they were residing in a shared memory. The other two

options, Titanium and Unified Parallel C, extend Java and C languages respectively

by adding features to supply a global address space for the underlying distributed

parallel machines. These tools are promising because of their potential to ease pro-

gramming effort extensively in developing AMR. However, these programs are as yet

to be tested, not mature enough to match its pervasive counterpart, MPI that has

manifested its success in numerous applications [132].

An application based on MPI generally has multiple threads on multiple address

space, distinctively different from that on shared memory model with multiple threads

on a single address space. In addition, although the parallel debugging is still quite

difficult, an application based on MPI is more portable on both distributed and

shared memory machines. MPI is therefore employed herein to implement the AMR

algorithm with a distributed memory model.

Most established parallel AMR frameworks employed the block-based AMR al-

gorithm [57, 62, 74, 106]. Following the same way, an AMR framework has been

developed in this work. Other than the mentioned AMR operations, it consists of a

dynamic load balancing operation to distribute computational load evenly amongst

parallel processors [27, 108]. Details are described below.

2.2.2 Dynamic Load Balancing

Dynamic load balancing is the most complex part in the parallel implementation

of the AMR method in terms of the required programming efforts. It has to be

used after each regridding operation. The operation repartitions and reconstructs a

tree data structure on each processor and transfers proper number of blocks from

overloaded processors to underloaded processors. Different methodologies have been

presented, which generally belong to two types: diffusion-based method and scratch-

and-remap method [80, 133]. The diffusion-based method adjusts the computational

loads between adjacent processors and the scratch-and-remap method repartitions

and distributes workload globally. The latter method is adopted here giving the fact

that the computational load changes dynamically throughout the whole computa-

tional domain.

Moreover, two algorithms have been developed for the scratch-and-remap method.

The first algorithm contains several steps:

(1) mapping the computational domain to a one-dimensional array by space-filling

curves;

(2) partitioning and migrating the array evenly amongst processors;

22



2. THE AMR ALGORITHM

(3) storing new memory addresses and reconstructing the tree data structure to

complete the load balancing operation.

Figure 2.8 indicates the procedure of the load balancing with a simple two-dimensional

test case solving on two processors. First of all, there are five blocks distributed within

two processors. As soon as a regridding operation is finished, four new blocks (block

3–block 6) are generated over their parent block 2 leading to the load imbalance

(Figure 2.8(a)). By using a space-filling curve, these blocks are ranked to form a

one-dimensional array, in which load balancing can be done straightforwardly. It is

easy to see that the final two blocks in the CPU 1 is required to move to CPU 2 to

distribute the load more evenly (Figure 2.8(c)–2.8(d)). At the same time the quadtree

data structure on each processor is updated accordingly (Figure 2.8(e)–2.8(f)). This

algorithm is called space-filling load balancing in this work.

The other algorithm doing the same job is the so-called max-min load balancing

that transfers computational load from the most overloaded processor to the most

underloaded processor [80]. Theoretically max-min load balancing works more ef-

ficiently than space-filling load balancing does because its potential communication

cost is minimal. For example, if the computational load shown in Figure 2.8 is redis-

tributed amongst three processors, three migrations are required for max-min load

balancing(Figure 2.9(b)), whilst five migrations are required for space-filling load

balancing (Figure 2.9(c)).

However, max-min load balancing method has some drawbacks such as increased

parallel communication cost in the ghost construction operation. The domain in

Figure 2.8 is used as an example again to explain the problem. Two parallel com-

munications are used for constructing ghost areas of block 3–block 6 using space-

filling load balancing (Figure 2.9(c)). In contrast, four parallel communications are

required for max-min load balancing due to the irregularly distribution of blocks

(Figure 2.9(b)). This difference is also evident in the relevant data structures. The

quadtree generated by space-filling load balancing is regular and well-ordered amongst

processors, whereas the quadtree generated by max-min load balancing is quite messy

(Figure 2.10). The same phenomena are also discovered for case studies with more

blocks and processors. Space-filling load balancing, therefore, is preferred to improve

the overall AMR communication efficiency for the ghost construction operation is

operated more frequently than the dynamic load balancing operation does.

The construction of a space-filling curve in N -Dimensional (N = 2, 3) space ap-

pears to be the core part in space-filling load balancing. The construction procedure

is shown in Figure 2.8(a), where a curve passes through the midpoint of each block

in the solution domain. The curve is self-similar and recursive, maintaining locality

23



2. THE AMR ALGORITHM

3

1

2

9
8

7

6
5

4

CPU 1

CPU 2

(a) Mesh.

3

1

2

9
8

7

6
5

4

CPU 1

CPU 2

(b) Mesh.

7521 43 6 98

(c) Memory.

7521 43 6 98

(d) Memory.

2

1

987

3 654

(e) Quadtree.

2

1

987

3 654

(f) Quadtree.

Figure 2.8: A dynamic load balancing example: (a)(c)(e) before balanc-
ing; (b)(d)(f) after balancing, where (99K) represents space-filling curves.

of the original domain. In other words, the neighbouring blocks on the original N -

Dimensional (N = 2, 3) domain are still located closely in the relevant space-filling

curve.

The curve index can be obtained by computing either Peano-Hilbert order (U-

Order) [134] or Morton-order (N-order) [135]. In this work both computational meth-

ods have little difference in terms of computational efficiency. Morton-order is selected

herein. Figure 2.8(b) has illustrated the working procedure of a Morton-order curve

that maps a hierarchical two-dimensional domain to a one-dimensional array. The
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Figure 2.9: The procedure of load migration: (a) initial imbalance state; (b)
balancing by max-min load balancing; (c) balancing by space-filling load bal-
ancing.
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Figure 2.10: The reconstruction of the quadtree with: (a) max-min load bal-
ancing; (b) space-filling load balancing.

basic algorithm implementing this curve resembles a depth-first tree traversal, where

the tree represents the relationship of blocks between refinement levels. The algo-

rithm to do tree traversal can be found in many textbooks about programming data

structures. Nevertheless, a mature parallel implementation of a tree data structure is

not available. Hence, the parallel Morton-order in this work is set up by computing

and sorting the Morton number of each block [136].

The algorithm computing the Morton number is summarised below. It works for

two-dimensional cases, from which a three-dimensional algorithm also can be devel-

oped easily. First of all, these two definitions of even-dilated and odd-dilated repre-

sentation are defined for an unsigned integer represented by binary numeral system,

i.e. i =
∑w−1

k=0 ik2
k, where w is the number of bits. The even-dilated representation
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is

−→
i =

w−1∑

k=0

ik4
k, (2.1)

and the odd-dilated representation is

←−
i = 2

−→
i . (2.2)

Consequently the Morton number of any integer index (m,n) is

M(m,n) =
−−−→
m− 1 +

←−−−
n− 1 + 1. (2.3)

where (m,n) is the integer index of a block in two-dimensional domain. It applies

to the Cartesian grids directly. After getting the Morton number of each block, the

whole domain is mapped into a one-dimensional array orderly by using a quicksort

algorithm [137]. A practical problem solved with the AMR method has been given in

Figure 2.11 as an example, where a jet flow is developed from the left boundary and

the mesh is subsequently adaptively refined with respect to a measure of the fluid

vorticity and a space-filling curve is constructed as soon as the regridding operation

is finished.

In this work, the method is revised a little to allow for multi-block body-fitted

meshes. The following example of a mesh surrounding an engine intake illustrates

the working procedure (Figure 2.12). In the first step, the physical domain in Fig-

ure 2.12(a) is transferred to square blocks, as shown in Figure 2.12(b). The con-

nection relation is kept while the physical length is replaced with the dimensionless

unit. In addition, the coordinate indices of child blocks relate to parent block only

(Figure 2.12(b)). In the second step, the Morton number of each block is gained with

Eq. (2.3) according to the corresponding coordinate indices. Finally, plus the Morton

number of its parent, the overall Morton number of a block in an adaptively refined

multi-block body-fitted mesh is obtained.

Once regridding and dynamic load balancing operations are finished, a tree data

structure storing the relations between blocks enables the subsequent parallel commu-

nications associated with other AMR operations. It is discussed in the next section.

2.2.3 Parallel Communications

Figure 2.13 shows the various types of parallel communications of an AMR applica-

tion on three processors, where unidirectional communications are operated for the

restriction and prolongation operations and unidirectional/bidirectional communica-
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Figure 2.11: A space-filling curve of a jet flow case solved with the AMR code:
(a) vorticity contours; (b) space-filling curve.

tions are used for the ghost construction operation. For example, some blocks being

computed on CPU 1 have neighbouring blocks located remotely on CPU 2 and vice

versa. Therefore, bidirectional communications between them are triggered to con-

struct ghost areas surrounding the blocks. In contrast, the child blocks on CPU 3

do not have neighbouring blocks holding with the same refinement levels on other

processors. There is no need for these child blocks to provide ghost area information

to any other processors. Hence unidirectional communications are enough to set up

the ghost areas for blocks on CPU 3.

In addition to the various types of communications, different AMR operations

also have different communication costs. For example, in Figure 2.13 prolongation
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Figure 2.12: Computing Morton number for an engine intake case: (a) the
computational domain with sound solutions; (b) the corresponding abstract
blocks on which the top number is the Morton number and the bottom pair is
the block coordinate indices.
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Figure 2.13: The parallel communication of AMR operations.

and restriction operations working on a block transport the whole block’s solutions,

whilst a ghost construction operation transports a part of the block’s solutions.

In short, with respect to different AMR operations the corresponding parallel

communications are different in terms of communication size and communication type

(bidirectional or unidirectional). For that reason, the established AMR frameworks

generally designed and optimized parallel communications specifically for each AMR
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operation in order to maximise communication efficiency [57, 71]. However, these

AMR frameworks implementing various parallel communication subroutines tended

to be complex due to the existence of many logical operations and branching. In

addition, in this work it has been found that the developing and debugging of the

AMR communication code by using MPI are especially difficult and time-consuming

on distributed memory machines. In order to make the development task of this work

more manageable, the parallel communications associated with AMR operations are

simplified. It is introduced below.

MPI_SEND

5
4

3
2

6

1

Bu
ffe

r

CPU 2

CPU 1

AMRoperations

MPI_RECV

Figure 2.14: The simplified parallel communication of AMR operations.

To achieve a simple parallel implementation, the parallel communications of the

prolongation, restriction and ghost construction operations are combined together.

The case shown in Figure 2.12 is studied as an example again. For simplicity the

blocks are assumed to be distributed on two processors (CPU 1 and CPU 2) as shown

in Figure 2.14, where the computation on block 1 requires the restriction operation

from block 2–block 5 and the ghost construction operation from block 6. Rather

than issuing several communications for both AMR operations, the AMR code sets

up a local buffer on CPU 1 to receive the solutions of blocks 2-6 on CPU 2. In other

words, all solutions on one processor that are required by the other processor will be

bundled together firstly and then will be send to a local buffer located on that remote

processor.

The previous simplified procedure is called communication setup, or Comm Setup

in the code for brevity. The simplification does reduce logical options and help
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to make code concise. It obviously incurs some overhead costs in communication

and memory, what is called false sharing. The term has appeared in the area of

memory and cache management of operating system for years [138]. In this work

false sharing denotes the transfer of unnecessary data across the network. It happens

where solutions of a whole block are transferred while some solutions are actually

useless. To clarify the concerns over the efficiency penalties, the cost of each AMR

operation is revealed by profiling the whole code in the next chapter. It justifies that

the collective penalty introduced by the false sharing is affordable in solving problems

included in this work.

AMR

Regridding


Regrid mesh and

update connection


info


AMR

Prolongation


Set up solutions

of the newly


generated blocks


AMR

Comm_Setp


Set up parallel

communications


buffers


AMR

Comm_Setp


Set up parallel

communications


buffers


(a)

AMR

Ghost


Construction


Prepare ghost

area for the

computing


Computing

Computing of


CAA/CFD


AMR

Comm_Setp


Set up parallel

communications


buffers


AMR

Comm_Setup


Set up parallel

communications


buffers


AMR

Restriction


Updating solutions

of coarse blocks


(b)

Figure 2.15: The flowchart of parallel AMR, where two parts correspond to:
(a) steps (3)–(4) and (b) steps (5)–(8) of Figure 2.4.

Finally, it is worth emphasizing that when developing an application code based

on the parallel AMR framework, the flowchart is slightly different from that shown

in Figure 2.4, especially for the prolongation operation and the computing process.

Parallel communications are required to set up local buffer correctly before and after

some AMR operations. The main part of the flowchart is displayed in Figure 2.15.
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2.3 Summary

Prior to applying the AMR code to CAA applications, there are some concerns raised

over its required programming effort and the relevant computational cost. To address

the first concern of the programming effort, the most complex elements of parallel

AMR: dynamic load balancing and parallel communications, have been summarised

in this chapter to demonstrate that the required programming workload is reasonable.

In addition, several simplifications are tried to make the code complexity minimal

and subsequently to reduce the required programming effort. To answer the second

concern of the computational cost, both analysis and numerical experiment are to be

operated. First of all, a brief qualitative analysis compares the cost of the AMR al-

gorithm and the cost of the underlying CAA computation here. The AMR algorithm

employs a tree data structure so that the computational cost of each AMR operation

is O(Nblog(Nb)), where Nb is the number of blocks and O() is the O-notation that

is usually used in algorithm analysis to represent the asymptotic upper bound of the

computational cost. At the same time, the cost of a CAA computation in a single

time step is generally O(Nc), where Nc is the number of cells. Obviously, Nb ¿ Nc. It

is therefore clear that the cost introduced by the AMR algorithm is only a fractional

part of CAA computational cost. This analytical conclusion is confirmed with a nu-

merical experiment in Chapter 4, where an acoustics benchmark problem is solved to

provide quantitative information.

In this chapter, Section 2.1 introduces the basic principles of the AMR algorithm

and Section 2.2 discusses the parallel implementation method. Several different im-

plementation methods have been mentioned and compared. The implementation

method employed in this work is selected according to the principles of simplicity

and portability. Its fundamental parts are described, whereas other parts shared the

same features as established AMR methods are either omitted or only introduced

briefly.
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Chapter 3

Numerical Issues

This chapter provides underlying numerical issues associated with this work. The

governing equations employed throughout this work are introduced firstly. A partic-

ular attention is then paid to characteristics of high-order schemes at a fine-coarse

interface on an adaptively refined mesh. Several aspects such as stencils, stability

and accuracy are discussed below in more detail.

3.1 Governing Equations

Several governing equations are used to verify the AMR code and the employed CAA

schemes and to solve practical CAA problems, where the problem of a spinning mode

sound radiation from a duct is of particular interest. These equations are summarised

in the following sections in the form of Cartesian and cylindrical coordinate system

formulations respectively. All variables appeared in the equations throughout this

work are nondimensionalised using a reference length L∗, a reference sound speed a∗,

a reference pressure ρ∗a∗2 and a reference density ρ∗. For the numerical examples

presented in the paper, these have been taken as 1 m, 340 m/s, 141610 N/m2 and

1.225 kg/m3, respectively.

3.1.1 One-dimensional Advection Equation

The one-dimensional advection equation is,

∂u

∂t
+

∂u

∂x
= 0, (3.1)

which describes the advection of a scalar u(x, t) with a nondimensional uniform speed,

where x is the Cartesian coordinate, t is time. It is employed to assess the effect of
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x

Advection direction

(a)

x

y
Propagation
direction

(b)

θ

r

x

Acoustic
radiation

(c)

Figure 3.1: Benchmark applications: (a) advection; (b) wave propagation; (c)
duct acoustic radiation.

interpolation methods and the performance of spatial discretization stencils associ-

ated with AMR mainly because of its simplicity for a rapid testing. A diagram in

Figure 3.1(a) indicates the case.

3.1.2 Two-dimensional Wave Equations

The two-dimensional wave equations describe an initial Gaussian pulse propagating

in a stationary medium, as illustrated in Figure 3.1(b). It is mainly employed to verify

the AMR code herein. For the reason that the case problem is symmetrical in either

coordinate direction it is convenient to rapidly find out potential bugs, especially

those in the ghost construction operation. In addition, it is helpful to studying the
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effect of the CAA schemes employed in this work.

The equations are:

∂u

∂t
+

∂p

∂x
= 0,

∂v

∂t
+

∂p

∂y
= 0, (3.2)

∂p

∂t
+

∂u

∂x
+

∂v

∂y
= 0,

where x and y are the Cartesian coordinates, t is time, u and v are velocity pertur-

bation in the x and y directions respectively and p is pressure perturbation.

3.1.3 Spinning Mode Radiation Equations

The problem of a spinning mode radiation of a duct is of particular interest in this

work. A diagram in Figure 3.1(c) shows the basic problem. The case is also extended

to simulate acoustic radiations of an aircraft engine intake and exhaust duct. The

relevant discussion is given in the later chapters.

In order to simplify the problem with a subsonic mean flow, viscous diffusion,

viscous dissipation and heat conduction are neglected. Hence the compressible Euler

equations in cylindrical coordinates are used to model fluids around an axisymmetric

duct, written in the conservative form as follows:

∂ρ

∂t
+

∂(ρu)

∂x
+

(
∂

∂r
+

1

r

)
(ρv) +

1

r

∂(ρw)

∂θ
= 0,

∂ρu

∂t
+

∂(ρu2)

∂x
+

(
∂

∂r
+

1

r

)
(ρuv) +

1

r

∂(ρuw)

∂θ
+

∂p

∂x
= 0,

∂ρv

∂t
+

∂(ρuv)

∂x
+

(
∂

∂r
+

1

r

)
(ρv2) +

1

r

∂(ρvw)

∂θ
+

∂p

∂r
= 0, (3.3)

∂ρw

∂t
+

∂(ρuw)

∂x
+

(
∂

∂r
+

1

r

)
(ρvw) +

1

r

∂(ρw2)

∂θ
+

1

r

∂p

∂θ
= 0,

∂e

∂t
+

∂((e + p)u)

∂x
+

(
∂

∂r
+

1

r

)
((e + p)v) +

1

r

∂((e + p)w)

∂θ
= 0,

where ρ is the density, p the pressure, u the axial velocity, v the radial velocity, w the

azimuthal velocity, e the energy, defined by e = p/(γ − 1) + ρ(u2 + v2 + w2)/2, x and

r are axial and radial coordinates and θ is the azimuthal angle. These equations are

taken to solve sound propagation from ducts with an axisymmetric mean flow field.

Assuming small perturbations are about a steady mean flow, acoustic wave propa-

gation can be described by the LEE that are given below. To be concise, the variables
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in this paragraph are represented in the form of vectors. For example, the velocity

u denotes (u, v, w), satisfying u = u0 + u′, where u0 = (u0, v0, w0) is the mean flow

velocity, u′ = (u′, v′, w′) is the velocity perturbation. Subsequently, the momentum

equations of the LEE can be described in the vector form of:

∂u′

∂t
+ (u0.∇)u′ + (u′.∇)u0 +

ρ′

ρ0

(u0.∇)u0 = − 1

ρ0

∇p′. (3.4)

The preceding three-dimensional equations are still too expensive to solve. For

that reason a further simplified assumption is taken. If the acoustic disturbances

are restricted to the multiples of the blade passing frequency and propagate on an

axisymmetric mean flow field without swirl, it is possible to write the disturbances

in terms of a Fourier series. For example, the series of the pressure disturbance p′ at

a single frequency k is:

p′ =
∞∑

m=0

p′m(x, r)e[i(kt−mθ)], (3.5)

where x is the axial coordinate, r the radial coordinate, t is time, m is the circumfer-

ential mode and θ the circumferential angle. Consequently, there are two important

relations for the circumferential velocity disturbance w′ and the pressure disturbance

p′ correspondingly. They are:

∂w′

∂θ
= −m

k

∂w′

∂t
,

∂2p′

∂t∂θ
= mkp′. (3.6)

By using Eq. (3.6) the general LEE in the cylindrical coordinates can be simplified

to a set of two-dimensional equations that were generally called 2.5D LEE [7]. For

convenience it is also called LEE in this work. The complete governing equations in

the cylindrical coordinates for a single blade passing frequency k are:

∂ρ′

∂t
+

∂(ρ′u0 + ρ0u
′)

∂x
+

∂(ρ′v0 + ρ0v
′)

∂r
− mρ0

kr
w′

t +
ρ′v0 + ρ0v

′

r
= 0,

∂u′

∂t
+ u0

∂u′

∂x
+ v0

∂u′

∂r
+ (u′ +

ρ′

ρ0

u0)
∂u0

∂x
+ (v′ +

ρ′

ρ0

v0)
∂u0

∂r
+

∂p′

ρ0∂x
= 0,

∂v′

∂t
+ u0

∂v′

∂x
+ v0

∂v′

∂r
+ (u′ +

ρ′

ρ0

u0)
∂v0

∂x
+ (v′ +

ρ′

ρ0

v0)
∂v0

∂r
+

∂p′

ρ0∂r
= 0, (3.7)

∂w′
t

∂t
+ u0

∂w′
t

∂x
+ v0

∂w′
t

∂r
+

mk

ρ0r
p′ +

w′
tv0

r
= 0,

where superscript (′) and subscript (0) denote perturbation and mean properties

respectively; u′ and v′ are velocity perturbations in the x and r directions respectively;

w′
t = ∂w′/∂t. The fluid is modelled as a perfect gas. p′ = C2

0ρ
′, where C0 is sound
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speed. The boundary treatment for w′
t is the same as that for w′.

The incident wave is defined as follows:

ρ′(x, r, θ, t) = a[Jm(krr) + c1Ym(krr)]cos(kt− kax−mθ),

u′(x, r, θ, t) =
ka

k − kaMj

p′,

v′(x, r, θ, t) = − a

k − kaMj

d[Jm(krr) + c1Ym(krr)]

dr
sin(kt− kax−mθ),

wt
′(x, r, θ, t) = −amk[Jm(krr) + c1Ym(krr)]

r(k − kaMj)
sin(kt− kax−mθ), (3.8)

w′(x, r, θ, t) =
am

r(k − kaMj)
[Jm(krr) + c1Ym(krr)]cos(kt− kax−mθ),

p′(x, r, θ, t) = a[Jm(krr) + c1Ym(krr)]cos(kt− kax−mθ),

where Mj is nondimensional velocity inside the duct; a is fixed at 10−4 to ensure

small relative changes in density (as required for LEE); Jm is the mth-order of first

kind Bessel function; Ym is the mth-order of second kind Bessel function. The nth

radial wavenumber kr is the nth solution of the following equation determined by the

hard-wall boundary conditions of the duct

d[Jm(youterkr)]

dr

d[Ym(yinnerkr)]

dr
− d[Jm(yinnerkr)]

dr

d[Ym(youterkr)]

dr
= 0, (3.9)

where youter and yinner are the height of the inlet duct inner wall and the inner hub

radii in the inflow boundary. The axial wavenumber ka is calculated from

ka =
k

1−M2
j


−Mj ±

√
1− k2

r(1−M2
j )

k2


 , (3.10)

where the selection of plus or minus (±) in the parenthesis is determined by the

direction of the spinning wave. The constant c1 satisfies the following relation

c1 = −
d
dr

[Jm(youterkr)]

d
dr

[Ym(youterkr)]
(3.11)

and

c1 = −
d
dr

[Jm(yinnerkr)]

d
dr

[Ym(yinnerkr)]
. (3.12)

On the centerline boundary where r = 0 a singularity exists. The singularity is

36



3. NUMERICAL ISSUES

A-4A-6 AA-2
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A-2 A-1
g A2A1
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Figure 3.2: Two approaches to compute spatial differences around a fine-coarse
interface: (a) a multi-size DRP stencil; (b) a stencil with interpolation, where
the shadowed side is the ghost cells area; (◦) the original solutions on the block;
(¨) the interpolated solutions of ghost cells.

treated by using l’Hopital’s rule to approximate 1/r by ∂/∂r at the singularity.

The above equations can be solved numerically by replacing the partial derivatives

with finite differences on a discrete numerical grid and advancing the solution in

temporal axis via a time-marching algorithm.

3.2 Spatial Discretization at Fine-Coarse Interfaces

On an adaptively refined mesh, there are interfaces between blocks with different

refinement levels. They are called fine-coarse interfaces or fine-coarse block interfaces

interchangeably herein. The original spatial difference schemes employed on a uni-

formly fine mesh do not work correctly at grids around interfaces anymore. There

are two approaches to obtain spatial differences of grid points around fine-coarse

interfaces. The first approach is designing special stencils based on wavenumber op-

timizations [110]. For example, in Figure 3.2(a), the stencil from A−6 to A3 is used

to compute the horizontal derivative at grid point A. The second approach is con-

structing a layer of ghost points that have the same cell size as the surrounded block

[42]. Figure 3.2(b) shows an example of the approach. The solution at grid point

g is obtained by an interpolation method whose coefficients have been listed in Ap-

pendix A. The second approach is employed in this work in order to keep the code

uniform.

To assess the performance of the second approach, the problem of one-dimensional
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(c) The compact scheme.
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Figure 3.3: Gaussian pulse propagation through a fine-coarse block interface
at x=250.

advection (Eq. (3.1)) is considered. It is subjected to the following initial condition:

u(x, 0) = 0.5e−ln(2)(x−230)2/4. (3.13)

It is solved over the domain 0 ≤ x ≤ 750 using a combination of two fine and coarse

meshes. A fine-coarse interface is placed at x = 250. The cell size to the left of

the interface is set at ∆x = 0.5 and to the right ∆x = 1.0. A classical 4th-order

Runge-Kutta method with the same time step ∆t = 0.3 across the mesh is selected

to ensure that the numerical errors are essentially caused by the employed spatial

scheme. Both the DRP [109] and the prefactored compact schemes [101] have been

tested. The test code with the DRP scheme is included in Appendix A.

Solutions at t = 30 are shown in Figure 3.3, with either a 2nd- or a 4th-order
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interpolation method. Coefficients of the employed spatial schemes and interpola-

tion methods are given in Appendix A. No matter which scheme is used, a similar

phenomenon is discovered. It can be seen that the presence of a fine-coarse inter-

face induces short wavelength spurious waves propagating in the domain. Comparing

to the approach with the 2nd-order interpolation method, the DRP scheme working

with the 4th-order interpolation method reduces the amplitude of the spurious wave

remarkably (Figure 3.3(b)). However, the effect of higher order interpolation is not

so distinctive if the compact scheme is used (Figure 3.3(d)). It may be caused by the

larger boundary stencils of the prefactored compact scheme [101] which lead to more

numerical errors and higher amplitude of spurious waves.

The techniques to remove spurious waves are discussed in Section 3.4. Other

important issues including stability and accuracy of the spatial schemes employed

under the AMR environment are also discussed below.

3.3 Stability Analysis

By using an eigenvalue analysis, asymptotic stability of compact schemes on a uni-

form mesh was proved in [99, 101]. The same approach is followed over the whole

hierarchical mesh to analyse asymptotic stability of the proposed treatment at a

fine-coarse block interface. It works for both the explicit and the compact schemes.

For the sake of simplicity, only the DRP and the standard explicit schemes [42] are

analysed here. The coefficients of the employed schemes are given in Appendix A.

Eq. (3.1) is solved on a computational domain of x ∈ [0, 1] and inflow boundary

condition u(0, t) = g(t). It is assumed that there are only two refinement levels in the

analysed mesh. The domain is divided into N cells. A fine-coarse interface is located

at the center of the domain, where the left spatial discretization size ∆xl and the right

spatial discretization size ∆xr are uniform and satisfy the relation ∆xl = ∆xr/2.

After applying an explicit spatial discretization stencil to Eq. (3.1), it yields a

system of ordinary differential equations, which may be written in the vector form:

dU

dt
= MU + Bg(t), (3.14)

where M ∈ RN×N. It is obtained from a 4th-order central difference schemes coupled

with biased stencils at the inflow boundary. A quantitative example of the matrix M

used in the analysis is given in Appendix A. U is an N-dimensional vector representing

solutions at the nodal points. B is a vector of dimension N. For the convenience of

stability analysis g(t) is set to 0 with little loss of generality [99].
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Figure 3.4: Eigenvalue spectra of 4th-order: (a) DRP and (b) standard explicit
schemes, working on a uniform mesh with single-side stencils near domain
boundaries, (o) N=50, (x) N=100, (+) N=200.

The eigenvalues E of M obtained with the help of MATLAB determine the as-

ymptotic stability of the ordinary differential equations. In general, these values are

complex numbers depending on the size of M, an interior spatial differential scheme

and a boundary scheme. All eigenvalues E of M should lie on the left half of the

complex plane to ensure the numerical stability.

Eigenvalues of the example of Eq. (3.1) on a uniform mesh is displayed in Fig-

ure 3.4 that illustrates the effect of increasing N for a matrix M. Either a 4th-order

DRP or a 4th-order standard explicit scheme is tested. All eigenvalues are on the left

half plane, indicating the spatial scheme used in this experiment is asymptotic stable.

Following the same approach, the eigenvalues of Eq. (3.1) on a hierarchical mesh

with a fine-coarse interface is solved and displayed in Figure 3.5, where N=50. It

shows the distribution pattern of eigenvalues E change on the hierarchical mesh. In

addition, the real parts of some eigenvalues E become bigger. In spite of that, these

values still lie on the left half of the complex plane. For example, max(real(E)) is

−8.5e−4 if N=50, −1.0e−4 if N=100 and −1.3e−4 if N=200.

In the previous experiments, a 4th-order interpolation is used around the fine-

coarse interface. It is worth emphasizing that a 2nd-order interpolation is preferred

in some situations, e.g. in the case of computing a Jacobian matrix in coordinates

transform. The asymptotic stability for the matrix M with a 2nd-order interpolation

has been tested as well and the similar results are obtained. For the sake of brevity

they are omitted.
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Figure 3.5: Eigenvalue spectra of 4th-order: (a) DRP and (b) standard explicit
schemes, working on a hierarchical mesh with single-side stencils near domain
boundaries, using a 4th-order interpolation method around the fine-coarse in-
terface, N=50.

The mentioned eigenvalue analysis only provides sufficient stability conditions for

normal matrix M that satisfies M∗M = MM∗, where M∗ is the conjugate transpose

of M [139, 140]. However, M of any high-order spatial scheme used in this work

is non-normal. For a non-normal matrix, ε-pseudospectra analysis has been used to

measure the stability margin of high-order methods [139]. It was also applied to

analyse a wave equation [141]. The same technique is employed herein.

According to the definition 2 given by Embree and Trefethen [140], ε-pseudospectra

are defined in terms of eigenvalues of perturbed matrices:

Eε(M) = {z ∈ C : z ∈ E(M+D) for some D with ‖D‖ 6 ε}, (3.15)

where D is disturbance, ‖ ‖ is L2-norm, ε denotes the supremum of disturbance

magnitude.

Using this definition, the mentioned example Eq. (3.1) is solved again with either

a DRP or a standard explicit scheme on either a uniform mesh or a hierarchical mesh

to find out the corresponding ε-pseudospectra. The result of the matrix M (with

N=50) is illustrated in Figures 3.6-3.7, where the eigenvalues are plotted as black

dots on the complex plane and the solid lines mark the possible distribution areas

of pseudospectra values with respect to different ε. The coloured bar on the right of

the figure denotes log10(ε). In other words, the distribution of the ε-pseudospectra
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Figure 3.6: Spectrum (black dots) and ε-pseudospectra distribution boundaries
(coloured lines) of an operator matrix obtained from a 4th-order standard ex-
plicit scheme on: (a) a uniform mesh; (b) a hierarchical mesh with a fine-coarse
interface around which a 4th-order interpolation method is employed.
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Figure 3.7: Spectrum (black dots) and ε-pseudospectra distribution boundaries
(coloured lines) of an operator matrix obtained from a 4th-order DRP scheme
on: (a) a uniform mesh; (b) a hierarchical mesh with a fine-coarse interface
around which a 4th-order interpolation method is employed.

42



3. NUMERICAL ISSUES

corresponds to ε = 10−1, 10−2 and 10−3 accordingly.

In Figures 3.6-3.7, it is clear that the potential ε-pseudospectra may lie on the

right half plane. It implies the high-order spatial schemes employed in this work,

no matter on a uniform mesh or a hierarchical mesh, have a transient behavior that

differs from the asymptotic behavior suggested by the aforementioned eigenvalues

analysis. In other words, these schemes admit spurious numerical solutions induced

by disturbances, such as truncation error, in the computational procedure [140, 141].

Generally, the spurious numerical solutions are in the form of a short wavelength

spurious wave. Obviously, both the explicit and the compact schemes are central

difference schemes and do not provide numerical dissipation to absorb spurious waves.

The presence of the fine-coarse block interfaces in an adaptively refined mesh makes

the situation worse by introducing nonlinearity to a computational domain. If left

unchecked, the spurious waves could ruin solutions or destroy the process of adaptive

refinement. To suppress the spurious waves, either a filter or an artificial damping

method has been used. The relevant details are given in the next section.

3.4 Artificial Selective Damping and Filters

Several methods can be used to remove spurious waves appeared in the process of

computation. The first method is the artificial dissipation that was designed for

capturing shock as well as giving sufficient numerical stability to a central difference

scheme [114]. The method is generally leading to excessive dissipation for the time-

dependent CAA problems. In contrast, the methods of artificial selective damping

[110] and implicit/explicit filters [9, 142] absorb spurious numerical waves in the

unresolved high wavenumber, whilst kept the resolved wave components unaffected.

Among these methods, an implicit filter provides better performance than an explicit

filter. However, it is too complicated to implement on an adaptively refined mesh.

Artificial selective damping and an explicit filter are therefore used in this work.

An explicit filter is operated over the original solutions. It generally takes the

form:

ui = ui − β

K∑

k=0

ak(u(i + k) + u(i− k)), (3.16)

where u is the original variable, u the filtered variable, ui is the solution at the

ith gridpoint. Besides, single-side biased filters are used near the boundaries of a

computational domain. Details of a 10th-order explicit filter employed in this work

are given in Appendix A.

The original governing equations remain in the event of using the explicit filter. In
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Figure 3.8: One-dimensional Gaussian pulse propagation with a 10th-order explicit
filter and a 4th-order Compact scheme.

contrast, an extra viscous term is introduced to the governing equations when using

the artificial selective damping method. Taking Eq. (3.1) as an example, by including

artificial selective damping terms [110] and assuming discretization over a uniform

grid, the discrete form of the scalar wave equation at gridpoint i can be rewritten as:

(∂u

∂t

)
i
+

(∂u

∂x

)
i
= − υa

(∆x)2

3∑
j=−3

dju(i + j), (3.17)

where u is the original variable, u the damped variable, υa an artificial kinematic

viscosity, j the damping stencil index, dj damping coefficients and ∆x the spatial

discretization size. The specific coefficients are also given in Appendix A.

Several benchmark cases are used to test the effect of the mentioned methods,

including Gaussian pulse propagation in both one-dimensional and two-dimensional

spaces.

The first case of the one-dimensional problem solves Eq. (3.1) with the initial

condition given by Eq. (3.13). At the fine-coarse interface (x = 250), both the 2nd- and

the 4th-order interpolations are tested. A 10th-order explicit filter is used throughout

the computational procedure. The result is displayed in Figure 3.8. Compared to

Figure 3.3, it is clear that the spurious waves generated in the computational domain

are suppressed with both interpolation methods applied at the fine-coarse interface.

The second test case is the two-dimensional acoustic propagation problem, which
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Figure 3.9: Two-dimensional Gaussian pulse propagation with an artificial selective
damping method and a 4th-order DRP scheme, where pressure contours with 6 levels
between ±0.05 are displayed.

is governed by Eq. (3.2). The initial conditions are:

p(x, y, 0) = e−a(x2+y2

0.1
), u(x, y, 0) = 0, v(x, y, 0) = 0, (3.18)

where the computational domain covers an area of −8 ≤ x ≤ 8 and −8 ≤ y ≤ 8.

The problem is solved under the AMR environment. The two-dimensional problem

is solved on an adaptive mesh that contains two refinement levels. Initial Gaussian

pulse is located at the center of the mesh, only on which the finer mesh is super-

imposed to increase the resolution. After several computing time steps, the existing

mesh is tested and regridded to capture the propagation of the wave. The spatial

discretization is performed by the 4th-order DRP scheme and the temporal integra-

tion by the 4-6 low-dissipation and low-dispersion Runge-Kutta method [111]. The

4th-order interpolation is employed around the fine-coarse interfaces. The 4th-order

artificial selective damping is used throughout the computational procedure. With-

out using the damping method, spurious waves are generated at the fine-coarse block

interfaces and will cumulate towards the centre of the computational domain. If

not treated properly, the centre area of the computational domain may be refined

improperly or will not be coarsened. Introducing the damping method removes the

spurious disturbances and allows the refinement process to run smoothly. A sample

of the pressure waves is shown in Figure 3.9.
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Figure 3.10: Pressure contours: (a) t=0.1; (b) t=4, where there are sixteen
contour levels between ±0.05. Gray lines are blocks’ borders. Solutions on the
centre dark line in (b) are compared to the analytical solution.

3.5 Convergence Rate

To examine the global convergence rate on an adaptive mesh, the previous case is

used again. Figure 3.10 illustrates the setup. The case has been tested with several

different schemes (coefficients are listed in Appendix A). The 4-6 low-dissipation and

low-dispersion Runge-Kutta [111] is used for temporal integration. The 10th-order

filter [143] is employed throughout the domain to remove spurious waves. In the

ghost construction operation, several interpolation methods ( 2nd-/4th-order linear

interpolations and a 6th-order polynomial interpolation) have been tested. In order

to guarantee that the wave is always contained in the finer mesh, the interval of

mesh regridding (Tamr) is five computing steps, which is set in accordance with the

temporal step (∆t) and the length of the ghost area (Wg) used in this test case.

The L2-norm errors of pressure are plotted in Figure 3.11, where the cells number

N of each block is increased from 20 × 20 up to 50 × 50, i.e. the total cells number

ranges from 6,400 to 200,000.

The results show that different interpolation methods may affect the convergence

rate. A 2nd-order interpolation keeps the 2nd-order convergence rate when working

with a 2nd-order explicit scheme. It may, however, degrade the convergence rate

below 3 when a 4th-order explicit scheme is employed. In general cases, a 6th-order

interpolation method is suggested to work with a 4th-order spatial scheme to keep

the 4th-order convergence rate. For example, a two-dimensional interpolation with a
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Figure 3.11: L2-norm error of the pressure solution, where N is the number of cells
on each block border. Several schemes employed are: (4) the 2nd-order standard
explicit scheme and the 2nd-order interpolation; (X) the 4th-order standard explicit
scheme and the 2nd-order interpolation; (¦) the 4th-order standard explicit scheme
and the 6th-order interpolation; (+) the 4th-order DRP scheme and the 6th-order
interpolation; (-.-) the 2nd-order ideal slope; (- -) the 4th-order ideal slope.

36-points stencil was used in [18]. However, it is too cumbersome to implement. By

contrast, in this work a 6th-order polynomial interpolation [137] is operated in each

coordinates direction separately. The convergence rate is increased to around 3.7 as

N increases.

3.6 Summary

In this chapter numerical issues associated with this work are introduced. The first

section summarises the governing equations used to solve CAA problems in this work.

The second section studies the spatial schemes applied at a fine-coarse interface that is

associated with AMR. The third section discusses the stability of the spatial schemes

employed on either a uniform mesh or a mesh with a fine-coarse interface. Both

asymptotic and transient behaviours are analysed by computing the eigenvalues and

the ε-pseudospectra of the operator matrix. The results suggest that spurious waves

will be generated in the computational domain for both meshes. The fourth section
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then introduces the techniques to remove spurious waves in the computation. A 10th-

order explicit filter and a 4th-order artificial selective damping method are tested.

Both methods remove spurious waves satisfactorily. Finally, the fifth section presents

the overall accuracy results of the mentioned methods on an adaptively refined mesh.

The convergence rates of the 4th-order standard explicit scheme and the 4th-order

DRP scheme are around 3.7 when working with the 6th-order interpolation method.

Hence both schemes are used in the following case studies.
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Chapter 4

Results of Benchmark Problems

This chapter solves some benchmark problems with the AMR method, which function

and efficiency are validated against analytical solutions.

4.1 Introduction

When applying the AMR method to CAA applications, there are several potential

problems/issues worried by most people. The first one is whether the AMR method

requires reasonable programmer effort. The second one is whether the parallel AMR

operations require reasonable cost. The third one is whether the original accuracy

of solutions on a uniformly fine mesh is still kept on an adaptively refined mesh.

The first question has been answered in Chapter 2 by discussing the details of the

implementation. To answer the latter two questions, the algorithm of the paral-

lel block-based AMR method is decomposed and analysed in this chapter. Several

benchmark problems are solved under the AMR environment. Results are compared

with available analytic solutions.

The parallel test environment includes a cluster running Red hat Linux 9, with

seven nodes connected by a Gigabit switch; each node contains four Intel XeonTM

3.06GHz CPU sharing 2GBytes memory. The portability of the code is satisfactory,

which can be compiled with any popular compiler, e.g. Intel, PGI and GNU G95

Fortran Compiler, and is working fine with either MPICH or LAM/MPI. The profiling

data are given by using a GNU profiler, gprof [144].
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4.2 Two-dimensional Acoustic Wave Propagation

In order to verify the AMR code, the first problem of category 4 defined at the first

computational aeroacoustics workshop [145] is considered. This benchmark problem

also validates the parallel performance of the code.

In this case two-dimensional wave equations (Eq. (3.2)) appeared in Chapter 3

are used. A 4th-order DRP scheme [109] is employed to compute the spatial deriva-

tives and a 4th-order low-dissipation and low-dispersion Runge-Kutta method scheme

[111] is employed for the temporal integrations. The initial computational domain is

defined to contain 4 refinement levels with 100 cells per each block, where the whole

domain is adaptively refined by using the regridding operation so as to capture the

acoustic propagation. Subsequently the blocks number develops from 16 to 1, 360. In

other words the cells number increases from 1, 600 to 136, 000.

In this work, the refinement criterion employed in an application is designed indi-

vidually to suit the specific physical and computational requirements. For the reason

that the amplitude of the gradient of pressure, ‖∇p‖, reflects the sound propagation

procedure, it is employed in this and the next case studies. The regridding flag ζ,

therefore, is constructed in the form of:

ζ =
Dblock

Dglobal

, (4.1)

where Dblock and Dglobal are the local block maximum and global maximum of the

‖∇p‖ respectively. A block will be: (a) refined if ζ is larger than a predefined refine-

ment threshold τr; (b) coarsened if ζ is smaller than a preset coarsening threshold τc;

and (c) retained if τc < ζ < τr. The mesh is regridded in every Tamr time steps. The

bigger this interval is the higher computation efficiency. However there is a tradeoff

between efficiency and accuracy in terms of the computational cost. In the following

experiments the width of the ghost area is generally set to 5 and the CFL number

is always less than 1. Tamr is subsequently set to 5 to always resolve the interested

sound solutions on the finest mesh.

The instantaneous pressure contours with six levels between ±0.05 are displayed

in Figure 4.1(a). The dynamic load balancing operation is executed after each regrid-

ding operation, by which the total computational load is distributed evenly amongst

processors over the whole computational procedure. An example of the load bal-

ancing result amongst six processors is shown in Figure 4.1(b), where the whole

computational domain is partitioned evenly.

Although the AMR algorithm provides the potential of increasing the compu-
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Figure 4.1: Parallel computational results of two-dimensional acoustic prop-
agation: (a) pressure perturbation contours; (b) the load distribution among
six CPUs.
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Figure 4.2: The computational time percentage of the code in the case study of
two-dimensional acoustic propagation working on a single CPU.

tational efficiency, it incurs an extra computational cost. A qualitative analysis of

the cost of AMR has been given in the previous chapter. In this chapter the code

is profiled in order to examine the cost of AMR quantitatively. Firstly, the test is

operated on a single processor. The result of this benchmark case is displayed in

Figure 4.2. It shows that the total costs of AMR operations are around 34%, in
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which the most part is consumed by the operation of ghost construction, whereas the

costs of regridding, prolongation and restriction operations are trivial. Meanwhile,

the CAA computation consumes 64% CPU time and the collective communications,

memory management and file input-output consume the other 2% CPU time.
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Figure 4.3: Time percentage of every subroutine in the case study of two-dimensional
acoustic propagation.

Secondly, the test is operated on up to eight processors to indicate the parallel

performance. The results are displayed in Figures 4.3–4.4, where values in the time

axis are shown in the log scale. Figure 4.3 shows that the percentages of the CAA

computing and most AMR operations keep constant along with the increase of the

processors number. However, the percentage of the prolongation operation is re-

duced slightly, whereas the parallel communication associated with AMR operations

is increased from an insignificant part to a fairly big part. The rapid increase on

the communication cost percentage is caused by the increased communication in the

computational procedure with the AMR method.

The parallel speedup results are plotted in Figure 4.4, where the term of speedup

refers to how much an algorithm working on a parallel machine is faster than the

corresponding algorithm working on a single processor machine. To show the figure

clearly, only the main results are displayed. It shows that the regridding opera-

tion gains the poorest speedup performance because it has to maintain a parallel

tree representing hierarchical meshes throughout parallel processors. The speedup

performance of others is affected by the communication cost extensively.
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Figure 4.4: Performance speedup in the case study of two-dimensional acoustic prop-
agation.

Generally speaking, in AMR operations most costs are spent on the ghost con-

struction operation, which consumes from 20% to 30% of the total computing costs.

Not only for AMR, the same operation is also required for computing spatial dif-

ferences of gridpoints around block interfaces on a uniformly fine mesh. It is also

expensive and generally costs 5% to 15% of the total computing costs in the es-

tablished SotonLEE code [7], depending on the specific case conditions. The ghost

construction operation in this AMR method consumes more computing resources for

its simplified algorithm that has false sharing, which has been introduce in Chapter 2,

to reduce the programming efforts whereas to increase the communication costs. In

order to mitigate the costs of this operation, the ghost construction operation should

be rewritten to reduce the false sharing communications in the future work.

Although all results provided here are for the case study of two-dimensional

acoustic propagation only, another parallel speedup result presented in the next chap-

ter gives the similar information that confirms the quantitative discussion herein.

4.3 Acoustic Wave Scattering from Cylinder

For applications with general geometries, the generation of a body-fitted mesh is

always a tedious task. The use of boundary non-conforming grids with the immersed

boundary method is a potential solution [91].
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Figure 4.5: A schematic of the immersed boundary method.

Figure 4.5 displays the working procedure that flags grids surrounding the geom-

etry automatically. First of all, all grids inside of the immersed boundary are found

and identified. The inside boundary grids are then identified as the ghost points if

at least one of their neighbouring grids is outside of the immersed boundary. After

that the neighbouring grids of the ghost points are flagged as near-ghost grids if they

are located in the flow domain. Finally the total domain is divided into four areas:

‘pure’ boundary grids, ghost grids, near ghost grids and ‘pure’ flow grids.

The solid boundary condition is then enforced by setting the values of ghost points

according to the solutions of surrounding near-ghost grids. Either a 0th- or a 1st-order

interpolation method is employed to simulate a slip-wall boundary condition. Higher

order interpolations constructing an immersed boundary condition are too complex

to employ here. For the x-axis direction, the simpler 0th-order interpolation used in

the work is:

ug = −u1 , pg = p1. (4.2)

The 1st-order interpolation employed is:

ug = −(x2 − xc)u2

(xc − xg)
, pg =

(x2 − xc)p2

(xc − xg)
, (4.3)
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where u is velocity in that direction and p is the pressure. xc is the cut-through

position in x-axis. x2 is the second nearest points to ghost in the flow. The reason to

use x2 rather than the nearest ghost point, i.e. x1, is to keep numerical stability. It is

noted that by the 0th-order interpolation a cut-cell boundary is actually degenerated

to a stepwise boundary. It avoids the problem of stability, whereas increases the

numerical error. The mentioned interpolation methods have been analysed by com-

paring L2-norm results to show their performance in the immersed boundary method

[146]. The same analysis of the convergence result is not repeated here.

Figure 4.6: The two-dimensional acoustic scattering off a cylinder.

To study the presented approach under the AMR environment, the two-dimensional

acoustic scattering problem from the second CAA workshop [122] is solved here. It

is sketched in Figure 4.6. A cylinder with the radius of 0.5 is located at the ori-

gin, whilst an initial acoustic wave propagates towards and scatters off the cylinder.

The problem asks for the unsteady pressure time history at three observer points

A(x = 0, y = 5), B(x = −
√

5
2

, y =
√

5
2

) and C(x = −5, y = 0), over the time interval

t = 5 → 10. The solution is found by solving the LEE, Eq. (3.2). The initial sound

pressure is given by

p(x, y, 0) = e−log(2.0)((x−4)2+y2))/0.04. (4.4)

All variables are nondimensionalised with reference values mentioned in Chapter 3.

Spurious reflection waves from the outflow boundaries of the domain are absorbed

by an explicit form of the buffer zone technique [147]. The solution vector is explicitly

damped after each time step in the buffer zone using:

F(x, y, t + ∆t) = F(x, y, t + ∆t)− σ(F(x, y, t + ∆t)− F0(x, y)), (4.5)
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Figure 4.7: Sound pressure contours and dynamic load balancing in the case
study of two-dimensional acoustic scattering off a cylinder, where (a-b) t =
6.125, (c-d) t = 8.75.

where F(x, y, t + ∆t) is the solution vector after each time step. The damping coef-

ficient, σ, varies according to the function:

σ(x, y) = σmax

∣∣∣∣
Lbz − χbz

Lbz

∣∣∣∣
β

, (4.6)

where Lbz is the width of the buffer zone, χbz is the distance between the damping

position and the outer boundary of the buffer zone. σmax and β are coefficients that

determine the exact nature of the damping and set to 1.0 and 3.0 respectively. The

target solution F0 is set as zero. The size of the buffer zone is set at 10, which proves

to be enough in the study.

In the vicinity area of the solid wall boundary, a 4th-order single-side spatial
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Figure 4.8: The AMR regridding flag of the two-dimensional acoustic scatter-
ing off a cylinder.

scheme [148] is employed combining with the aforementioned 0th- or the 1st-order

interpolation methods. In other area a 4th-order DRP scheme is used. The resulted

pressure contours are displayed in Figure 4.7(a) and Figure 4.7(c) with six level con-

tours between ±0.02. A hierarchical mesh with three refinement levels is constructed

prior to the computation and is regridded and redistributed amongst parallel proces-

sors in the subsequent process of computation (Figs 4.7(b) and Figs 4.7(d)). The

corresponding regridding flags are displayed in Figure 4.8.

Finally, Figure 4.9 compares the time history results with analytical solutions at

three observer points. There are visible dissipations for AMR results at all points,

especially evident at point C, which are partially contributed by the artificial viscosity

terms added to governing equations to suppress the high-frequency spurious wave and

partially contributed by the distortion of the low-order interpolations employed in the

immersed boundary method. Therefore, in the following chapter the existing AMR

code is extended to support a body-fitted multi-block mesh as was used in [62].

4.4 Spinning Mode Duct Radiation

The spinning mode acoustic radiation from a duct is of the particular interest in

this work. Firstly, a benchmark case, the spinning mode acoustic radiation from an

unflanged duct described by Homicz & Lordi [149], is solved to verify the performance

of the AMR code. A schematic of the problem is shown in Figure 4.10. Only half

of the complete geometry is displayed as the problem is axisymmetric. A spinning
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Figure 4.9: The pressure history at three observer points demonstrates the per-
formance of several cut-cell finite-difference approaches of the immersed boundary
method.

mode acoustic wave is introduced into the computational domain at the left bottom

inlet area. It propagates inside and radiates from the duct. An absorbing condition

is applied on the outflow boundary to remove numerical reflections.

As mentioned in the previous chapter, assuming small perturbations (ρ′, u′, v′, w′)

about a steady mean flow (ρ0, u0, v0, w0), acoustic wave propagation is described by

the LEE, Eq. (3.7), that can be simplified further if the steady mean flow considered

is (ρ0, u0, 0, 0), where ρ′ is density perturbation, ρ0 density, (u′, v′, w′) axial, radial

and azimuthal velocity perturbations, (u0, v0, w0) axial, radial and azimuthal velocity.

Moreover, y denotes radial axis here in order to be differentiable with the far-field

observer radius. Subsequently, the governing equations for a single frequency k are:

∂ρ′

∂t
+ u0

∂ρ′

∂x
+ ρ0

(
∂u′

∂x
+

∂v′

∂y
+

kv′ −mw′
t

ky

)
= 0,

∂u′

∂t
+ u0

∂u′

∂x
+

∂p′

ρ0∂x
= 0,
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Figure 4.10: Schematic of the computation domain for the case study of sound radi-
ation from an axial symmetrical duct.

∂v′

∂t
+ u0

∂v′

∂x
+

∂p′

ρ0∂y
= 0, (4.7)

∂w′
t

∂t
+ u0

∂w′
t

∂x
+

mk

ρ0y
p′ = 0,

where x and y are axial and radial coordinates; p′ is pressure perturbation; w′
t is the

time derivative of azimuthal perturbation velocity, w′
t = ∂w′/∂t; m is the azimuthal

mode number. In this case study the nondimensional radius of the duct is 1. Two

computation domains are used: (a) 8 × 8 to test the AMR code and (b) 16 × 16 to

give the far-field solutions.

Boundary conditions include slip-wall, inflow and non-reflecting boundary con-

ditions. The wall of the duct is regarded as an infinitely thin hard wall. Spurious

reflection waves are absorbed by an explicit form of the buffer zone technique applied

in the surrounding outflow area [147]. The solution vector is explicitly damped after

each time step in the buffer zone using Eqs. (4.5)–(4.6). The target solution F0 is

also set as zero. The size of the buffer zone is set at 13 for this case problem.

A single (m,n) mode, where m is the azimuthal mode number and n is the radial

mode order, propagating and radiating from a semi-infinite unflanged duct with thin

rigid walls is taken as the incident acoustic perturbation with the form of Eq. (3.8).

In the present study (m = 4, n = 1) mode is used. Assuming u0 = 0 the incident
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wave is defined as follows:

u′(x, y, θ, t) =
akx

k
Jm(kyy)cos(kt−mθ − kxx),

v′(x, y, θ, t) = −a

k

dJm(kyy)

dy
sin(kt−mθ − kxx),

w′(x, y, θ, t) =
am

ky
Jm(kyy)cos(kt−mθ − kxx), (4.8)

p′(x, y, θ, t) = aJm(kyy)cos(kt−mθ − kxx),

where the dimensionaless spinning mode amplitude a is set to 10−4 to ensure small

relative changes in density (as required by LEE). Jm is the mth-order Bessel function

of the first kind. The radial wavenumber ky is determined by computing the turning

points of the Bessel function. The axial wavenumber kx is calculated using kx =√
k2 − ky

2.

At the lip of the duct, a special treatment is applied to guarantee consistency

between computational blocks. More details can be found in the description of the

trailing edge singularity of an airfoil [142].

For the results presented here, the 4th-order DRP scheme is used to compute the

spatial derivatives and the 4th-order low-dissipation and low-dispersion Runge-Kutta

method is used for the temporal integration.
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Figure 4.11: The spinning mode sound radiation from an unflanged duct solved
on a uniform mesh: (a) contours of pressure perturbation; (b) contours of radial
velocity perturbation, where m = 4, n = 1, k = 10.

For this spinning mode radiation (m = 4, n = 1), the radiation pattern at a

frequency of k = 10, ky = 5.3176 is displayed in Figure 4.11. The computation is
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performed on a uniform mesh of 104× 104 grid points. From the figure, it is evident

that fine spatial resolution is not necessary in large areas of the computational domain

except in the area around the duct. Accordingly, AMR can be used to reduce the

cost of computation by refining the mesh to track the propagation and radiation of

sound. In the following case studies a hierarchical mesh with three refinement levels

is therefore used and the same time step is applied to advance the solutions. The

regridding criterion employed in this case depends on the amplitude of the gradient

of the radial velocity perturbation, ‖∇v′‖. More precisely, the regridding flag ζ is:

ζ =
Dblock

Dglobal

, (4.9)

where Dblock and Dglobal are local block maximum and global maximum of ‖∇v′‖
respectively. A block will be: (a) refined if ζ is larger than a predefined refinement

threshold τr; (b) coarsened if ζ is smaller than a preset coarsening threshold τc; and

(c) retained if τc < ζ < τr. The mesh is regridded in every Tamr time steps, which is

set to 5 empirically in this study.

For the same spinning mode radiation (m = 4, n = 1), an AMR computation

is performed. Figure 4.12 shows the corresponding development of the adaptively

refined mesh. When the incident waves are inside the duct only the blocks in the

immediate vicinity of the duct are refined; blocks located away from the duct remain

coarse. The process of wave diffraction at the lip and propagation outside the duct

is captured by the AMR method. Some reflections on the fine-coarse block interfaces

can be detected in Figures 4.12(b)-4.12(c). However either the damping or the filter

reduces the amplitude of spurious waves in the iteration loop and guarantees that

these oscillations will not grow up to corrupt the computation process.

Several values of thresholds τr and τc are tested. The result presented in Fig-

ure 4.13(a) is obtained with τr = 0.15 and τc = 0.1. The AMR process fails to

capture the process of wave diffraction at the lip and the sound propagation pattern

does not have satisfactory details. By contrast, in Figure 4.13(b) result is obtained

with τr reduced to 0.015 and τc to 0.01. The diffraction at the lip and the radiation

pattern are captured correctly.

The directivity of the radiated sound is also used to assess the performance of the

current AMR algorithm. The cases employed are: (a) 104 × 104 uniform mesh; (b)

AMR with τr = 0.15, τc = 0.1; and (c) AMR with τr = 0.015, τc = 0.01. Figure 4.14

compares instantaneous pressure of three cases at a nondimensional observer distance

of 12 . It shows that, although case (b) has the best computational efficiency, the

computation does not predict the wave diffraction at the lip correctly. The secondary
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Figure 4.12: Contours of pressure perturbation of the spinning mode sound
radiation from an unflanged duct on an adaptively refined mesh, where m = 4,
n = 1, k = 10.
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Figure 4.13: Pressure perturbation of the spinning mode sound radiation from
an unflanged duct with two regridding thresholds: (a) τr = 0.15, τc = 0.1; (b)
τr = 0.015, τc = 0.01, where m = 4, n = 1, k = 10, t = 14.67.
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Figure 4.14: Instantaneous pressure perturbation of the spinning mode sound radia-
tion from an unflanged duct: (-.-) solution computed by the big threshold; (o) solution
computed by the small threshold; (–) solution computed in the finest uniform mesh,
where m = 4, n = 1, k = 10, t = 14.67.

radiation peak and interference dip angle expected for this problem do not appear in

the prediction. For case (c), a good agreement with the uniform mesh computation

is achieved. Both the main and the secondary radiation peaks and the interference
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Figure 4.15: Comparison of sound directivity patterns between AMR prediction and
analytical solution for the case of the spinning mode sound radiation from an un-
flanged duct, where m = 4, n = 1, k = 10.

dip angle are predicted accurately. In Figure 4.15 the predicted directivity of p′rms

at a nondimensional observer distance of 8 is compared with Cargill’s asymptotic

solution [121], which will be described in Appendix B. For most of the observer angle

range, the result agrees well with the asymptotic solution.

In terms of the computational efficiency, case (c) uses nearly one-third of the

time required for the uniform mesh computation. The testing environment is a 1.2

GHz Pentium III PC with 512 MBytes memory. To arrive at the far-field directivity

estimation, the computation requires 2191 seconds with the finest uniform mesh, 426

seconds for case (b) and 830 seconds for case (c).

4.5 Summary

This chapter has tested several CAA benchmark problems against analytical solutions

using the AMR method. In Section 4.2 a symmetrical two-dimensional acoustic

propagation problem is employed to verify the working of the AMR method, where

parallel performance is also profiled. In Section 4.3 the immersed boundary method

is applied to an acoustic scattering problem working with the AMR method. The

evident difference between AMR results and analytical solutions implied that the low

order immersed boundary method is not suitable for CAA problems discussed in this
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work. To solve the problem, a body-fitted multi-block AMR method will be developed

in the next chapter. In Section 4.4 a more complex case, spinning mode sound

radiation from an unflanged duct, is solved with the AMR method. The particular

techniques that will be employed in the following chapters are applied in this case

study firstly. Other than that, it also shows that there are tradeoffs between the

accuracy and efficiency in an AMR computation, implying the importance of setting

the regridding parameters appropriately. These case studies validate the successful

working of the AMR method in solving benchmark problems with simple geometries.

It will be applied to practical problems in the forthcoming chapters.
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Chapter 5

Acoustic Radiation from Engine

Intake Duct

In the earlier chapter the AMR method was verified and validated. From now on the

main attention is focused on the particular problem of spinning mode sound radiation

from a generic aero-engine intake duct. This chapter begins with the introduction

of a physical model of an aero-engine intake duct. The method of AMR is then

extended to solving cases with a general geometry, around which the radiation of

realistic acoustic modes generated by the engine fan and fan-stator flow interactions is

calculated. Combining the 2.5D LEE and the FW–H equation together, the problem

of axisymmetric spinning mode sound radiation from the aero-engine intake duct is

solved. The far-field solution is compared with the result obtained with an established

finite element method (FEM) solver to validate the presented AMR approach.

5.1 Introduction

Stringent noise regulation requirements for modern aircraft have promoted research

into efficient and accurate numerical methods capable of predicting aircraft noise. A

simple sketch of an aero-engine is plotted in Figure 5.1, where spinning mode sound

radiation from the intake duct is a major concern. The physical process of acoustic

generation and radiation is governed by the Navier-Stokes equations. At present,

a full numerical solution of acoustic generation, propagation and radiation process

using the Navier-Stokes equations is not feasible. However, certain aspects of the

acoustic propagation and radiation process can be modelled by linearised equations.

For example, in the duct upstream of the rotor-stator region of an aero-engine, where

nonlinear and viscous noise generation effects are minimal, the propagation of the
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5. ACOUSTIC RADIATION FROM ENGINE INTAKE DUCT

rotor-stator noise can be studied using the inviscid linearised equations about the

mean flow. A significant amount of research has been undertaken to develop the-

oretical and computational methods to predict engine tone noise propagation and

radiation. However, the development of a cheap and quick computational method is

still a challenging job. Of the three main numerical approaches for engine duct noise

propagation and radiation problems, boundary element methods (BEM) [150] are

confined to problems of acoustic noise through uniform mean flows; finite/infinite ele-

ment (FE/IE) methods [151] are generally restricted to acoustic propagation through

irrotational mean flows; and computational aeroacoustic methods based upon the

Euler equations or LEE are more general in terms of governing physics [125].

1
 2


Acoustic

radiatio
n


Intake


Acoustic

radiatio
n


Outer nozzle


Figure 5.1: Schematic of noise radiation off an aero-engine bypass duct, where: 1 is
rotor and 2 is stator.

Computational aeroacoustic methods are generally more expensive. Hence the

AMR method is applied here with the aim of reducing the computational cost. In

order to solve aeroacoustic problems of practical significance, e.g. acoustic radiation

from a general aero-engine intake, the previous mentioned AMR method is extended

to support body-fitted meshes. The calculation is based upon the radiation of realistic

acoustic modes generated by the engine fan and fan/stator flow interactions [120].
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5.2 Problem Setup

5.2.1 Numerical Issues

The acoustic radiation of this case is described by LEE (Eq. (3.7)). The computa-

tional schemes applied here include ingredients such as high-order spatial stencils,

temporal schemes, inflow/outflow and surface conditions. More specifically, a 4th-

order explicit scheme [42] is used to compute the spatial differences, a 4th-order

low-dissipation and low-dispersion Runge-Kutta scheme [111] is used for the time

integration and an explicit form of buffer zone techniques [152] is used as the outflow

condition. A 10th-order filter [143] is applied throughout the domain to remove spuri-

ous waves. In the ghost construction operation, a 4th-order interpolation is used. The

interval of mesh regridding is 5 computing steps, which is set according to the tem-

poral step and the length of the ghost area, to guarantee that the wave propagation

is always contained in the finest mesh.
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Figure 5.2: Mach number contours of the mean flow around an aero-engine intake:
free stream Mach number is 0.25; ambient pressure is 94250 Pa; intake Mach number
is set to 0.55 and intake pressure is 79687 Pa.

In the previous chapter the method of AMR was used in the computation of

acoustic radiation along and away from an unflanged cylindrical duct. Here the

method is extended to a generic aero-engine intake with a realistic background mean
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flow. An example mean flow field is shown in Figure 5.2, where a high engine power

setting is used. This flow field is referred to as sideline condition in the rest of this

work. In addition, the mesh is generated by the Gridgen software and the mean flow

field is computed by the Fluent software.

Inflow conditions are set according to Eq. (3.8). The basic parameters of several

case studies solved in this chapter are summarised in Table 5.1, where one case has

sideline condition and others have stationary medium.

Table 5.1: Summary of the incoming waves for the case of an intake duct.

m n f(Hz) k Mj kr ka

4 1 1082.3 20 0 5.31 -19.28
12 1 1082.3 20 0 13.88 -14.40
12 2 1082.3 20 0 18.75 -6.97
13 1 903.7 16.7 0.57 14.93 -30.91
26 1 2267.3 41.9 0 28.42 -30.79

5.2.2 Curvilinear Coordinate System

In the last chapter it was shown that a Cartesian mesh with low-order immersed

boundary method [91] performed more poorly than a body-fitted mesh does in solv-

ing acoustic propagation problems with curved geometries. To improve the accuracy

there were attempts of using AMR for body-fitted multi-block meshes [12, 62], where

curved geometries were allowed to be transformed into a uniform computational do-

main. It is achieved by using the coordinate transformation given by Eqs. (5.1)–(5.3),

which represent a transformation from the physical to the computational coordinates.

For simplicity only equations for two-dimensional problems are given and the time

variance of both coordinate systems is not considered.

ξ = ξ(x, r), η = η(x, r). (5.1)

The first order spatial derivatives of the governing equations are evaluated using the

chain rule:

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
,

∂

∂r
=

∂ξ

∂r

∂

∂ξ
+

∂η

∂r

∂

∂η
, (5.2)
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with the transformation metrics defined as

∂ξ

∂x
= J

(
∂r

∂η

)
,

∂ξ

∂r
= J

(
−∂x

∂η

)
,

∂η

∂x
= J

(
−∂r

∂ξ

)
,

∂η

∂r
= J

(
∂x

∂ξ

)
. (5.3)

J is the transformation Jacobian relating the geometric properties of the physical

space to the uniform computational space and is given by

J =

[
∂x

∂ξ

∂r

∂η
− ∂x

∂η

∂r

∂ξ

]−1

. (5.4)

5.2.3 Far-field Directivity Prediction Method

Observers

FW-H
Surface

Engine
Duct

Figure 5.3: Three-dimensional FW–H integral surface around an engine duct.

For CAA methods, a finite computational domain is used so that a radiation

model and a non-reflective acoustic boundary condition are required. The former

one estimates the far-field directivity and is generally in the form of an integral

representation. More precisely, the FW–H equation is solved on an integral surface

in the computational domain to predict the far-field directivity [118]. An established
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solver, which was implemented numerically to allow both the near- and far-field noise

levels to be determined efficiently [119], is applied in this work. The integral surface

configuration and sensitivity test are discussed below.

Figure 5.3 displays a three-dimensional FW–H integral surface around the engine

duct. The three-dimensional solutions on the surface are extended from the two-

dimensional solutions of Eq. (3.7) using Eq. (3.5), i.e. p′(θ, t) = p′(0, t − mθ/k).

The three-dimensional solutions are then provided to the established FW–H solver,

along with the geometry information of the integral surface, to predict the far-field

directivity.

X

r
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0

1

2

3

Surface 2

Surface 1

Figure 5.4: Two integral surfaces are placed in the computational domain for the
sensitivity study of the FW–H solver.

Generally the placement of the integral surface and the resolution of azimuthal

grid points Znum will affect the accuracy of the prediction result. With respect to

this intake case several numerical experiments have been done to test the sensitivity

of the FW–H solver in terms of the integral surface position and the grid resolution.

As shown in Figure 5.4, two positions of integral surface are tested. The number

of azimuthal grid points (Znum) varies from 11 to 61. The prediction results of a

spinning mode sound (m = 4, n = 1, k = 20) are displayed in Figure 5.5. It shows

that for a smaller number of Znum, e.g. 11, the results of directivity computed

on both integral surface are not consistent. In contrast, if the resolution of Znum

satisfies Znum ≥ 10×m, the directivities agree well with each other, no matter which

integral surface is used. The results suggest either integral surface can be used if a
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sufficient grid resolution is selected. Therefore, in the following studies the resolution

of Znum = 10×m and integral surface 1 are used to predict the far-field solutions.
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Figure 5.5: Directivity plot for different FW–H surface placements and azimuthal
grids number (Znum) in the case of the general intake: (4) surface 1 and Znum = 11;
(-) surface 1 and Znum = 41; (- -) surface 1 and Znum = 61; (¦) surface 2 and
Znum = 11; (-.-) surface 2 and Znum = 41; (-..-) surface 2 and Znum = 61, where
m = 4, n = 1, k = 20 with the stationary mean flow.

5.2.4 Absorbing Numerical Noise

By using ε-pseudospectra analysis [141], it was found that a high-order, e.g. 4th-order,

spatial scheme is more susceptive to numerical errors than its low-order counterpart

on an adaptively refined mesh. Either a 10th-order explicit filter [101] or an artificial

selective damping [110] is used in this study to absorb high-frequency numerical

nuisance. The effects of filter and damping methods are compared in Figure 5.6, where

an AMR mesh with two refinement levels is adaptively refined to capture a spinning

mode sound radiation from the general aero-engine intake with m = 12, n = 1, k = 20.

In the first experiment with the damping technique, the damping coefficients that

were used in a cavity flow simulation [110] are used here directly. Figures 5.7(a)-

5.7(b) show the damping method works fine when sound wave propagates inside the
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(a) Damping, t = 1.25.
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(c) Filter, t = 1.25.
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Figure 5.6: Effect of spurious wave treatment methods for a spinning
mode sound radiation from an aero-engine intake duct, where perturba-
tion pressure contours are displayed around the lip of the intake, gray
lines denote the boundaries of blocks on the adaptively refined mesh;
m = 12, n = 1, k = 20.

intake, whereas it fails to absorb numerical noise generated around the lip of the

intake. It reveals the fact that the coefficients of artificial selective damping have to

be adjusted case by case. By contrast, the filter technique is not problem specific and

more general. It is applied in the second experiment. Figures 5.6(c)-5.6(d) indicate

that the filter method removes spurious waves effectively, although above the lip there

is still a small wiggle which is caused by the spurious wave generated in the adaptively

refinement mesh that is not fully removed by the filter. Therefore, in the rest of this

chapter the 10th-order explicit filter is applied to remove the spurious waves.
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5.3 Results

5.3.1 Near-field Propagation and Far-field Directivity

With the aforementioned techniques, the acoustic propagation in and radiation from

the aero-engine intake is solved with AMR. In the computation, typically two to

three refinement levels are used. Once the waves reach the outflow boundary of the

computation domain, the finest blocks span the whole computational domain and

the regridding operation is stopped to improve efficiency. Two background mean

flow configurations have been used. One is the stationary medium and the other is

the sideline mean flow.

Firstly, a comparison is made between the result of AMR and the result computed

on a uniformly fine mesh. The mean flow is the stationary medium. The near-

field solutions of the whole domain are compared in Figure 5.7, which indicates that

both meshes generate similar wave patterns, validating the working of the AMR

method for this study. More precisely, a comparison is made in Figure 5.8, where the

instantaneous pressure perturbations agree well with each other on a selected line (as

shown in Figure 5.7(b)). It confirms the working of the proposed AMR method.

Secondly, Figures 5.9-5.10 compare the result of instantaneous perturbation pres-

sures computed on an adaptively refined mesh with the previous result computed on

a fixed uniformly fine mesh that was presented in Richard’s work, using a high-order

CAA scheme [153]. Once again, there are little differences between these two results

in the case of the stationary medium, whereas for the sideline mean flow case the

radiation pattern is slightly influenced by the AMR method. In order to show the

differences much more clearly, the far-field directivity results computed with various

strategies are compared in Figure 5.11. The integration surfaces used in this case

study are displayed in Figures 5.9-5.10.

In the case with the stationary medium, an adaptively refined mesh with two

refinement levels is set up. The filter method is applied to absorb the spurious waves

at the coarse and fine block interfaces. It appears that both the peak level and the

peak radiation angle agree well with the results of Richards [153]. The peak radiation

is predicted at 47.0deg (Figure 5.11(a)). This compares well with the prediction

(47.27deg) of Richards’s work [153]. The dynamic range of the prediction is typically

higher than 60dB which is good enough for most of the engineering applications.

Using the filter alone in the computation, the peak radiation level is 0.55dB lower

than the result of Richard’s work. It reflects the fact that the filter introduces an

excessive level of dissipation surrounding the lip of the aero-engine intake. Meanwhile,

the prediction does not follow the decaying envelope at low observation angles to the
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Figure 5.7: The pressure perturbation contours around the aero-engine intake
duct, computed on either an adaptively refined mesh or a uniformly fine mesh,
where: (a) shows the whole domain; (b) is an enlarged part; (−.−) the AMR
result; (−) the result computed on the uniform mesh, m = 12, n = 1, k = 20,
t = 2.8. The bottom bold line displayed in (b) is for Figure 5.8.

axisymmetrical axis (φ ≤ 25 deg). The dynamic range of the prediction is somewhat

smaller than the prediction of Richard. This is as expected as the order of the spatial
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Figure 5.8: Comparing instantaneous pressure perturbations on a selected line (as
shown in Figure 5.7(b)) for the intake case, where: (−.−) denotes the AMR result;
(−) is the result on a uniformly fine mesh.

scheme on an adaptively refined mesh is demonstrated earlier to be less than 4. This

particular feature might also be influenced by the spurious waves generated at the

fine-coarse interfaces in the AMR operations. The accuracy suffers slightly as the

observation angle approaches 120deg, the discrepancy in pressure level being at most

2.2dB.

For the sideline case, the results are presented in Figure 5.11(b). The main peak

angle and the peak level of the AMR result match the other two solutions well. The

peak radiation angle is at 59.9deg (Figure 5.11(b)) which compares favourablely with

59.4deg predicted by Richard who solved LEE on a uniformly fine mesh and 60.8deg

by using an established FEM solver [153]. The differences of the peak radiation

level between these results are less than 0.5dB, whilst the peak radiation angles

differ from each other by less than 0.7deg. Towards the low observation angle range

(φ ≤ 22 deg), the discrepancy in the pressure level increases again. The reason of

this feature is the same as that explained in the previous case. The dynamic range

of the prediction is also about 60dB. Nevertheless, the prediction deteriorates toward

the high observation angles, especially around the shadow interference dip angles at

88.3deg, where there is 7dB difference between the AMR and the FEM results and

5dB between the AMR and Richard’s predictions on a fixed mesh. It could be caused

by the spurious wave generated above the lip of the intake, as indicated by the wiggles
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(a)

(b)

Figure 5.9: Perturbation pressure contours around the aero-engine intake duct,
where m = 26, n = 1, k = 41.9, with the stationary medium and (a) LEE on a
fixed mesh [153]; (b) LEE on an adaptively refined mesh.

shown in the perturbation pressure contours (Figure 5.6(d)).

In the AMR computation of the stationary medium case, the total number of

cells increases from 13872 to 41616 as the wave propagates out of the intake. The
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(a)

(b)

Figure 5.10: Perturbation pressure contours, where m = 13, n = 1, k = 16.7,
with the sideline mean flow and (a) LEE on a fixed mesh [153]; (b) LEE on
an adaptively refined mesh.

computing time is 3463 seconds on a desktop computer (Pentium IV 1.3GHz, 768MB).

In contrast, the computing time is 5400 seconds with the same AMR code working

on a uniformly fine mesh without running the regridding operation. In an earlier
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Figure 5.11: Far-field directivities for the aero-engine intake radiation. (a):
m = 26, n = 1, k = 41.9 with the stationary medium and (b) m = 13, n = 1,
k = 16.7 with the sideline mean flow.

computation with the SotonLEE code which also solves LEE [7], 7560 seconds is

required to achieve the same results on a uniform mesh consisting of 81600 cells.

It suggests that on a uniform mesh, the efficiency of the AMR code is around 26%
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lower than the efficiency of the SotonLEE code due to the introduction of the AMR

data structure management and the additional AMR operations, such as the ghost

construction operation. In the next section the parallel performance of the AMR

code for the case studies is discussed in more detail.

5.3.2 Parallel Performance

(a) 20 blocks, t = 0.566. (b) 32 blocks, t = 1.698.

(c) 52 blocks, t = 2.83. (d) 60 blocks, t = 11.32.

Figure 5.12: Perturbation pressure contours, m = 12, n = 2, k = 20.
The computing load is distributed over 4 processors, which are denoted
by different coloured areas.

Figure 5.12 illustrates the process of regridding and dynamic load balancing within

four processors which are represented by different coloured areas. It can be seen that

the computational load is redistributed evenly among processors along with the sound

propagation and radiation. In Figure 5.13 the parallel speedup performance of the

AMR code is compared with the parallel speedup performance of the SotonLEE code
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Figure 5.13: The parallel speedup of the case of spinning mode sound radiation from
an aero-engine intake with the sideline condition: (–) ideal speedup; (4) the result
of the SotonLEE code; (¦) the result of the AMR code.

on a Beowulf PC cluster that consists of twenty-eight processors distributing on seven

nodes connected by a Gigabit Ethernet. It is discovered that the communication cost

of the AMR code is generally one to three times higher than the communication cost of

the SotonLEE code. The cost is mainly contributed by the expensive communication

cost of the AMR ghost construction operation. That operation consists of a lot of

memory movements and network communications. Its performance is then limited by

the present memory and network technology. Therefore, the speedup performance of

the AMR method deteriorates slightly along with the increase of the communications.

More precisely, the performance of the computation and communication costs with

respect to both mean flow configurations (stationary medium and sideline condition)

are recorded by the Complete System Performance Monitor [154], a graphical tool

monitoring the system performance under Linux environment. Table 5.2 presents

the results working on one to eight processors. When the processor number is less

than eight, each node will have one working AMR process. Otherwise, the first node

will have two working AMR process. To save space, only information on the first

processor on the PC cluster is given. It is indicated that the communication costs

for both case studies are roughly the same for the reason that the transported flow
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solutions, e.g. (ρ′, u′, v′, w′, p′), are of the same size. In addition, both communication

costs grow slightly as the processors number increases from two to four. Furthermore,

when the processors number reaches eight, there are two AMR processes working on

the first node coincidentally so that the communication cost of the first node jumps

abruptly accordingly. It subsequently affects the parallel speedup performance. In

the meantime, the computation costs in Table 5.2 reveal that the case study with

the stationary mean flow is simpler than the sideline case in terms of computational

complexity. However, both case studies with different mean flow fields, as mentioned

before, have similar communication costs. For that reason the parallel speedup of the

first case study with the stationary mean flow is worse than the second case study

with the sideline condition.

Table 5.2: The parallel communication and computation costs of the AMR compu-
tation of the aero-engine intake radiation.

1CPU 2CPUs 4CPUs 8CPUs
Communication costs of
Stationary mean flow N.A. 7.06MB 8.90MB 27.10MB
Sideline mean flow N.A. 7.01MB 7.68MB 27.05MB

Computation costs of
Stationary mean flow 610s 500s 469s 477s
Sideline mean flow 1040s 555s 310s 270s

5.4 Summary

In this chapter the AMR method is applied to the prediction of spinning mode sound

radiation from a generic engine intake. To model curved geometries, the AMR code

is extended to support body-fitted grids. Both the explicit filter and artificial selec-

tive damping methods are applied to absorb spurious waves generated in the AMR

computation. Their effects are compared and the filter method is shown to be the

preferred method for the problem studied here. The accuracy of the AMR method is

demonstrated by the predicted far-field directivity, which agrees well with the LEE

result computed on a uniformly fine mesh and the FEM result. In terms of com-

putation efficiency, the adaptively refined mesh represents a saving of up to 40%

compared with a uniform mesh. Relied on MPI, the computation loads are shown

to be distributed evenly within the processors by MPI. However, the relevant com-

munication cost increases along with the increase of the number of processors. The
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parallel speedup performance deteriorates accordingly. In order to attain a higher

efficiency on the current parallel machines, it is suggested to separate the parallel

communication of the ghost construction operation from the other AMR operations

to obtain an optimal performance in the future work.
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Chapter 6

Acoustic Radiation from Engine

Exhaust Duct

This chapter studies a spinning mode sound radiation from a generic aero-engine

exhaust duct. The governing equations used here are extend acoustic perturbation

equations (APE). The reason of using APE rather than the original LEE is explained

in the second section along with the associated numerical issues. The AMR method

is still applied in the computation. The associated mesh adaption procedure is dis-

played and discussed in the third section. The near- and far-field solutions are then

presented. Finally, a summary is given.

6.1 Introduction

In the case of radiation from either a bypass exhaust duct or a core nozzle, there

are issues associated with the presence of a background mean flow with a shear layer

between the exhaust flow and the external stream. Once again, Figure 5.1 displayed

in the previous chapter shows the problem. Refractive effects due to the presence

of a sheared flow may change noise radiation pattern. The physical process is still

governed by the Navier-Stokes equations. As mentioned before, a full numerical

solution of noise generation, propagation and radiation process using the Navier-

Stokes equations is not feasible due to limited computational resources. However, in

the duct downstream of the rotor-stator region of an aero-engine, where nonlinear

and viscous noise generation effects are minimal, the propagation of the rotor-stator

noise can be studied using the inviscid linearised equations about the mean flow.

Block-structured AMR has been applied to studying the radiation of spinning

modes from a unflanged duct and aero-engine intake duct problems to establish far-
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field directivities in the earlier chapters. The same work was also reported in [41, 97].

The results of AMR were verified by comparing to both analytical solutions and FEM

results. In this chapter the block-structured AMR is applied to the general case of

noise radiation from a realistic high bypass ratio engine exhaust geometry with a back-

ground mean flow. A computational model used to determine the propagation and

radiation of acoustic waves is outlined firstly. The computational scheme described

here allows acoustic waves, propagating inside the bypass duct of a generic aircraft

engine, to be admitted into a computational domain that comprises the aft duct sec-

tion, the exit plane of the duct and the jet flow immediately downstream. The wave

admission is realised through an absorbing non-reflecting boundary treatment which

admits incoming waves and damps spurious waves generated by the numerical solu-

tions. The exhaust geometry is axisymmetric and the mean flow axisymmetric with

no swirl component. The acoustic disturbances are represented by a Fourier series

in the circumferential direction. Subsequently, the wave propagation and diffraction

can be calculated through solutions of LEE, Eq. (3.7), using a range of high-order

schemes [126].

However, hydrodynamic shear layer instabilities associated with the presence of

the sheared background mean flow induce unstable solutions in the computation of

LEE, corrupting the desired acoustic solutions. To stabilize the solutions, it is a com-

mon practice to remove some mean shear terms containing ∂u0/∂r in LEE, Eq. (3.7).

The approach was validated against Munt’s analytical solution of semi-infinite duct

radiation problem [155] in previous works [123, 126]. Further tests against other

comparable methods are necessary on realistic geometry and flow conditions.

A set of new governing equations, APE [156, 157], are used in this work as an

alternative way to validate the previous approach in computing problems with a

sheared mean flow. To solve the aero-engine case problem, APE have been extended

to the cylindrical coordinates. In short, the solutions of APE are compared to the

previous solutions of LEE [126] through a case study of single spinning mode sound

radiation from a generic engine bypass duct. The far-field directivity is estimated

via an integral surface solution of the FW–H equation [118]. More details are given

below.
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6.2 Problem Setup

6.2.1 Extended Acoustic Perturbation Equations

In the past chapters, LEE have been used to solve the problem of a spinning mode

radiation from a unflanged duct or from an aero-engine intake duct. However, in

the cases with a shear layer, the LEE solver also admits hydrodynamic instabilities

that can overwhelm the desired acoustic solutions. In order to suppress this type of

unbounded growth of instabilities, APE have been proposed to the computation of

the acoustic wave convection and refraction under Cartesian coordinates. The fun-

damental principle is to remove flow instability from the acoustic computation by

filtering the original LEE. An in-depth discussion of the relevant theoretical back-

ground can be found in the work of Ewert and Schröder [156]. To be complete, the

original APE-2 system under two-dimensional Cartesian coordinates [156] is given

here:

∂ρ′

∂t
+

∂(ρ′u0 + ρ0u
′)

∂x
+

∂(ρ′v0 + ρ0v
′)

∂y
= Sρ,

∂u′

∂t
+

∂(u0u
′ + v0v

′)
∂x

+
∂

∂x

(
p′

ρ0

)
= Su, (6.1)

∂v′

∂t
+

∂(u0u
′ + v0v

′)
∂y

+
∂

∂y

(
p′

ρ0

)
= Sv,

where the definitions of variables are the same as in Eq. (3.7), S{ρ,u,v} represents

sound source generated in the shear layer, as illustrated in Figure 6.1(a)

In order to extend APE to the axisymmetrical duct radiation case, several as-

sumptions are made. The first assumption regards the sound source of S{ρ,u,v} as

zero for the reason that the subject studied here is only the spinning mode sound.

The similar assumption was also used in the first test case described in [156]. The

second assumption is that there is no unstable flow dynamics generated in the az-

imuthal direction. For that reason the original LEE in the azimuthal axis is still

kept. The filter removing hydrodynamic instabilities is therefore only operated in the

axial–radial space, as shown in Figure 6.1(b). Other than these two assumptions, a

further simplification is made to extend APE to the cylindrical coordinates. To be

succinct, the following derivation takes the vector form. Some terms in Eq. (6.1) are

replaced in accordance with the following derivation:

∇
(

p′

ρ0

)
=
∇p′

ρ0

− p′

ρ2
0

∇ρ0 =
∇p′

ρ0

− ρ′γ
ρ2

0

∇p0, (6.2)
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Figure 6.1: The schematics of APE: (a) two-dimensional domain; (b)
axisymmetrical three-dimensional domain.

where the acoustic compression is assumed to be of small amplitude and isentropic,

whilst the mean flow compression is adiabatic for a perfect gas.

The final form of APE employed in this work are:

∂ρ′

∂t
+

∂(ρ′u0 + ρ0u
′)

∂x
+

∂(ρ′v0 + ρ0v
′)

∂r
− mρ0

kr
w′

t +
ρ′v0 + ρ0v

′

r
= 0,

∂u′

∂t
+

∂(u0u
′ + v0v

′)
∂x

+
∂p′

ρ0∂x
+

γρ′

ρ0

(u0
∂u0

∂x
+ v0

∂u0

∂r
) = 0,
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∂v′

∂t
+

∂(u0u
′ + v0v

′)
∂r

+
∂p′

ρ0∂r
+

γρ′

ρ0

(u0
∂v0

∂x
+ v0

∂v0

∂r
) = 0, (6.3)

∂w′
t

∂t
+ u0

∂w′
t

∂x
+ v0

∂w′
t

∂r
+

mk

ρ0r
p′ +

w′
tv0

r
= 0,

where the first and last equations of Eq. (3.7) are kept.

6.2.2 Numerical Issues

In this case study the aforementioned 4th-order explicit schemes [42], the 4th-order

4-6 low-dissipation and low-dispersion Runge-Kutta [111] temporal scheme, the 4th-

order linear interpolation and the 10th-order filter [143] are employed again. Other

numerical issues associated with the AMR method on CAA applications have been

addressed in the foregoing chapters.
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Figure 6.2: Mean Mach number distribution of the aero-engine exhaust test case.

The basic problem is illustrated in Figures 6.2-6.3 that show the computational

domain on which the near-field CAA propagation calculation is performed. The

specific configuration resembles the previous effort [126]. The illustrated background

mean flow is in terms of Mach number, which is set to 0.338 at the inflow boundary

inside both the exhaust duct and the core nozzle. The exhaust stream is issued into

a stationary environment. Inside the exhaust duct, a buffer zone [152] is used to

absorb the reflective spurious waves as well as to accommodate the incoming modal

waves, which are of the form given by Eq. (3.8), where Mj is nondimensional velocity

inside the duct; a is fixed at 10−4 again to ensure small relative changes in density

(as required by both LEE and APE). Other related parameters have been introduced
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Figure 6.3: The problem setup of the aero-engine exhaust geometry that is displayed
with thick lines.

before and their definitions are remained here. In this case problem, four radial modes

are solved in the incoming waves. They are summarised in Table 6.1.

Table 6.1: Summary of the incoming spinning mode waves for the exhaust duct
radiation.

n(m = 13) f(Hz) k Mj kr ka

1 1562.7 28.3179 0.338 10.60 19.11
2 1562.7 28.3179 0.338 14.01 17.49
3 1562.7 28.3179 0.338 16.50 15.93
4 1562.7 28.3179 0.338 19.71 13.35

A buffer zone is also placed around the outer boundaries of the domain and inside

the core exhaust nozzle. The target solutions of this buffer zone is set to zero to

absorb spurious numerical reflections.

The far-field directivity is estimated through an integral solution of the FW–H

equation [118]. For simplicity the FW–H equation integral surface shown in Figure 6.3

is located at the borders of blocks surrounding the engine exhaust. The procedure

of its three-dimensional extension has been presented in the previous chapter. The

far-field observers are located at the nondimensional length of 100 from the conical
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rear of the exhaust geometry.

6.3 Results

6.3.1 AMR Working Procedure
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Figure 6.4: The evolution of the adaptively refined mesh with the propagation
of acoustic waves from the engine exhaust, where gray lines represent the block
boundaries of the adaptively refined mesh, (a) t=1, (b) t=2, (c) t=4, and (d) t=6.

AMR could provide higher computational efficiency and more flexibility than a

uniform mesh. Figure 6.4 illustrates the procedure of the adaptively refined mesh as

the acoustic waves propagate and radiate out of the engine exhaust. The outer buffer

zone is not displayed fully to save space. In the whole procedure, the total number

of grid points increases from 36, 000 to 180, 000.
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The computation is executed and tested on a computer with a Pentium IV 3.0GHz

CPU and 2GBytes memory. Table 6.2 shows that the computation time of AMR is

increased along with the increase of grid points. In the initial stage (i.e. t < 5) the

computation time of AMR is around 100% faster than the computation time on the

uniform mesh. After that, the computational efficiency of AMR gradually decreases.

Finally it reaches the same level of the computational efficiency on the uniform mesh,

due to the extended span of the acoustic wave in the whole computational domain

(see Figure 6.4(d)), where the adaptively regridding operation is no use anymore.

Table 6.2: Computation time comparison for the exhaust duct radiation.

Grids t = 1 t = 2 t = 5 t = 8
AMR 1478s 3401s 13460s 26670s

Uniform mesh 3971s 8002s 20120s 31920s

6.3.2 Near-Field Propagation

Figure 6.5 compares the near-field wave propagation predicted by either LEE or

APE. Two refinement levels are used. The coarse level mesh consists of 36, 000

grid points, whilst the fine level mesh is adaptively updated and the number of

grid points varies accordingly. In this case, after t = 12, hydrodynamic instabilities

developed in the shear layer are evident with the LEE method (see Figure 6.5(a)),

where the original LEE (Eq. (3.7)) are used and terms containing ∂u0/∂r are still

kept to induce instabilities. These instability waves will develop to overwhelm the

desired acoustic solutions completely. The APE method, Eq. (6.3), are also applied

to the case. Figure 6.5(b) shows perturbation pressure contours computed by the

APE method. It indicates that the numerical instabilities are avoided, whereas the

near-field propagation pattern retains the same key features as the LEE solutions:

wave diffraction off the lip of the bypass duct and reflections off the surface of the

afterbody of the engine exhaust. It should be noted that, for the present test case

computation, the mean flow conditions in the core nozzle are the same as those in

the bypass duct. Upstream traveling waves now appear inside the core nozzle and

are visible in Figure 6.5(b).

Figure 6.6 shows the near-field sound pressure level, SPL = 20log10(p
′
rms/(2 ×

10−5)), where the selected time to compute p′rms satisfies t < 12, in which the hydro-

dynamic instabilities appeared in the LEE computation still do not overwhelm the

acoustic solutions. It shows that propagation patterns predicted by both methods
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(a)

(b)

Figure 6.5: Perturbation pressure contours computed by LEE and APE, where
m=13, n=1, k=28.3179. (a) LEE with AMR, t=12, (b) APE with AMR , t=20.

agree well in most parts, whereas the sound pressure level of the APE solution is a bit

higher at high and low angles than the LEE prediction. By using the APE method,

several other spinning mode waves (n = 2− 4) are solved as well. Figure 6.7 displays

the results of the perturbation pressures and sound pressure level contours.
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(a)

(b)

Figure 6.6: SPL contours computed by LEE and APE, where m=13, n=1,
k=28.3179, (a) LEE, 9.5 < t < 10, (b) APE, 15 < t < 15.5.

6.3.3 Far-Field Directivity

Through an integral surface solution of the FW–H equation, the far-field directivities

of the four spinning mode radiation are predicted based on the near-field solutions of

APE. The outcomes are compared with the LEE prediction [126] in Figure 6.8. To

avoid the potential effect of the hydrodynamic instabilities in the computation with

LEE, the terms containing ∂u0/∂r were omitted in the governing equations [158].
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Results in Figure 6.8 show that the patterns predicted by both sets of equations are

similar. The main peak angle and the peak level of the APE prediction match the

solutions of LEE well. The differences in the peak radiation level between both results

are less than 0.5dB, whereas the peak radiation angles differ from each other by less

than 1.4 deg. In other parts of the directivity prediction the patterns are also similar.

Nevertheless, the shape of the results of the APE method is generally smoother than

the curve of the results of the LEE solution. It implies that in this case study the

APE method may introduce some kind of dissipations, which may also operate to

suppress the hydrodynamic instabilities. Another finding is that the amplitude of

the results of the APE method is generally higher than that of the LEE method. In

Figure 6.6 the same finding is discovered by comparing SPL results, especially in the

area besides the lip. In addition, the maximal difference appears in the case of n = 4,

where the difference at the high observation angles (φ > 60 deg) is up to 5.0dB.

Generally speaking, both results match well with each other. It validates the

previous approach that removed some terms in the original LEE to stabilise the

computation. However, there is still difference between two results, especially in the

magnitude. To further validate both methods, other experiments, such as solving the

case with three-dimensional Navier-Stokes equations, should be set up.

6.4 Summary

In this work the body-fitted multi-block AMR method is applied to the prediction

of spinning mode radiation from a generic engine exhaust with a sheared mean flow

field. To model curved geometries, the AMR code is extended to support body-fitted

grids. The mean flow field is assumed to be axisymmetric. Inside the duct, a spin-

ning mode of m = 13 with several different radial modes (n = 1 − 4) is admitted

into the propagation region as input on the boundary of the computation domain.

To suppress hydrodynamic instabilities developed in the exhaust mean flow, APE

are employed and are extended to the cylindrical coordinates. The results obtained

through solutions of APE agree well with the previous results of LEE solutions by

comparing the near-field propagation patterns and far-field directivities. The compu-

tation efficiency varies along with the propagation of the acoustic waves. In the initial

stage, the adaptively refined mesh represents a saving of up to 160% compared with

a uniform mesh. After the acoustic waves spanning the whole computation domain

the efficiency of AMR is the same as that on a uniformly fine mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: The APE prediction of perturbation pressures and SPL contours of
several single spinning mode waves, where m=13, n=2− 4, k=28.3179, 12.4 < t <
12.9 for SPL; (a) perturbation pressures, n=2; (b) SPL, n=2; (c) perturbation
pressures, n=3; (d) SPL, n=3; (e) perturbation pressures, n=4; (f) SPL, n=4.
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Figure 6.8: Far-field directivity of the engine exhaust duct radiation, m=13,
k=28.3179, (a) n=1, (b) n=2, (c) n=3, and (d) n=4.
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Chapter 7

Conclusions and Future Work

In this final chapter the main results of this work are summarised and suggestions

for future research are presented.

7.1 Concluding Remarks

The objective of this work was to investigate the applications of AMR for CAA

problems. This was achieved by developing a computational method, which mainly

consisted of three parts: an AMR framework to manage an adaptively refined mesh; a

range of 4th-order schemes to compute the near-field acoustic propagation and radia-

tion; and several CAA applications to validate and verify the code. The layered design

provided the necessary flexibility to experiment with different numerical schemes on

an adaptively refined mesh. The computational technique was proved to yield higher

efficiency on an adaptively refined mesh than other methods working on a uniformly

fine mesh.

In the first part of this work, the algorithm of the block-structured AMR was

described. The essential idea of AMR was straightforward, whereas an appropri-

ate implementation on a distributed memory machine was far from a trivial task.

In addition, it was discovered that the parallel programming of AMR was prone to

subtle errors in the process of the code development. Meanwhile, the absence of

a convenient parallel debugging tool exacerbated the difficulty of the development.

To facilitate the development, the code was developed based on the existing PARA-

MESH framework. Codes in CLAWPACK and Chombo frameworks were suggestive

as well. Furthermore, a couple of simplifications were made to the fundamental AMR

algorithm to reduce the potential difficulty of developing and debugging on a paral-

lel machine. The first simplification was to transport solutions of the whole block,

rather than transfer solutions of a part of a block, to the corresponding processor
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for the ghost construction operation. The second simplification was to combine all

parallel communications of the AMR operations such as the ghost construction, re-

striction, prolongation and regridding operations together. The simplifications were

justified on the discovery of the current electronic technology: the improvement of

the communication performance was around two times faster than the increase of the

computational performance in the last twenty years. Using the simplified algorithm,

the communication cost was increased by two to three times, whilst the messy pro-

gram with numerous conditional judgments was refined to a more elegant one. At

the same time the simplified code still satisfied the requirements that were vital for

scientific computation: portability and software re-usability.

In the second part of this work, a number of numerical issues were addressed

in order to apply high-order schemes to obtain time accurate numerical solutions

pertinent to aeroacoustic problems on an adaptively refined mesh. A range of high-

order spatial schemes were tested, including: a standard 4th-order explicit scheme,

whose coefficients were obtained by matching the corresponding Taylor series; a 4th-

order explicit DRP scheme; and a 6th-order implicit compact scheme. It was found

that an explicit scheme was easier to implement under the AMR environment than

an implicit scheme, whilst the performance was still satisfactory in that the grid

resolution could be increased easily in the desired area with the AMR method.

The most prominent problem in the present work was how to handle the innate

fine-coarse block interfaces on an adaptively refined mesh. For example, in order

to get the spatial differentials at the fine-coarse block interfaces, interpolations were

used for the ghost construction operation. Several interpolation methods (from 2nd-

to 6th-order) were tested. It was found that the type of interpolation at the fine-

coarse block interfaces played an important role to preserve the favorable accuracy

of high-order schemes. A combination of a 4th-order explicit scheme and a 6th-order

interpolation resulted in a convergence rate of around 3.7 for a two-dimensional wave

propagation case. At the same time, the stability of the employed spatial schemes

combined with several interpolation methods at a fine-coarse interface was proved

through spectral analysis. In addition, the transient behaviour was provided through

pseudospectra analysis, which indicated that a short wavelength spurious wave could

be generated at a fine-coarse block interface due to potential numerical uncertainties,

such as numerical truncation errors. To remove this type of nuisance, either an

explicit filter or an artificial selective damping technique was used. Their effects were

discussed and compared in several case studies.

As for the temporal integration, rather than doing multi-step integrations on

an adaptively refined mesh, a relatively simple 4th-order low-dissipation and low-
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dispersion Runge-Kutta method was employed. Otherwise, high-order interpolations

on temporal solutions would be required, which will introduce more numerical com-

plexities and uncertainties to this work. In terms of its efficiency, the penalty of the

Runge-Kutta scheme with the same time step on the overall mesh was regarded as

acceptable for the case studies throughout this work in that generally only two to

three refinement levels were set to the relevant hierarchical meshes. A multi-step

time integration method may be introduced to the code as a subroutine in the future

work.

In the third part of this work, some benchmark problems were solved to verify

and validate the AMR code. Through these case studies, the efficiency of AMR com-

putations was found to be affected by a number of factors, such as the updating time

interval, the block size and the regridding thresholds. The tradeoff between efficiency

and accuracy was assessed in a case study of sound propagation and radiation from

an unflanged duct, where two different regridding threshold were used to simulate the

near-field sound propagation on an adaptively refined mesh. Solutions computed on

an adaptively refined mesh were compared to solutions computed on a uniform mesh

through two steps. In the first step, the instantaneous perturbation pressures were

studied. It showed that the AMR computation with the bigger regridding thresh-

old was much faster than either the AMR computation with the smaller regridding

threshold or the computation on a uniformly fine mesh. However, its solution failed to

match the other two solutions. By contrast, the solution computed with the smaller

regridding threshold matched the solution computed on the uniform mesh well. Its

computational time was around 30% of the computational time on the uniform mesh.

In the second step, a comparison was made between the far-field directivity computed

with the AMR method and the Cargill’s analytical approximation. Once again, the

directivity computed with the bigger regridding threshold did not agree with the

analytical approximation. By contrast, the prediction computed with the smaller

regridding threshold matched the analytical approximation well. It confirmed that

a properly selected regridding threshold was required to obtain accurate solutions in

using the AMR method.

In this work some of the test cases that modelled by LEE were profiled. In the

benchmark case of the two-dimensional acoustic propagation with a Gaussian pulse,

the computation loads were distributed evenly among the processors of a cluster by

MPI. The cost of each AMR operation was profiled. It showed the AMR operations

consumed around 30% of the total computational cost. In a more complex case

of a spinning mode sound propagation and radiation through a general aero-engine

intake, the parallel scale-up performance was deteriorated along with the increase of
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the processor number, due to the continuous increase of the communication cost. By

contrast, the parallel scale-up of the well tuned SotonLEE code was a little better,

where exact parts of the neighboring blocks were exchanged for the ghost construction

operation and the subsequent communication cost was therefore cheaper.

In the final part of this work, the validated AMR code was applied to some general

aeroacoustic applications, i.e. spinning mode sound radiation from aero-engine intake

and exhaust ducts, where the AMR method was extended to support body-fitted

multi-blocks to allow for the solutions of problems with general geometries. The

sound radiation problems were solved in two steps.

Firstly, in the case of an intake duct, propagation inside the duct, diffraction at

the lip of the duct and propagation into the near-field was modelled by LEE. The

result was compared to the solution computed on a uniformly fine mesh and the

solution of a FEM solver. It was found that the near-field solution computed on

an adaptively refined mesh agreed well with the solutions computed by the other

two methods. Meanwhile, the far-field radiation directivity was predicted, based on

the near-field solution, by using a previously developed code to calculate the FW-H

equation in the integral form. The far-field result showed that both peak amplitude

and peak angle computed with the AMR method were matched well with the far-field

solutions of the other two methods.

Secondly, in the case of an bypass duct, the associated exhaust mean flow gener-

ated shear layer instabilities that were failed to be suppressed by LEE. The unbounded

instabilities overwhelmed the acoustic solutions. In order to inhibit this type of in-

stabilities, LEE were replaced with APE, which were extended to the cylindrical

coordinates. The suitability of the governing equations and the quality of the pro-

posed AMR method were validated through this case study of single spinning mode

radiation from a generic engine bypass duct. The far-field prediction of the APE

solution was compared to the far-field results of the LEE solution. Both peak ampli-

tude and peak angle were well agreed with these two methods, whilst the amplitudes

of the APE prediction were up to 5dB higher in other lobes.

Finally, as part of this PhD thesis research, in Appendix C a Fourier based

pseudospectral time domain (PSTD) method was studied and applied to some aeroa-

coustic benchmark problems. A new algorithm, for linear wave propagation problem,

was developed and tested. A hard-wall boundary condition was supplied for simple

geometry and was validated. Combined with the buffer zone technique to reduce

contamination due to wave rewrap, the algorithm was fully-fledged to some linear

wave propagation problems. For general problems with nonlinear terms, the original

algorithm of the Fourier pseudospectral time domain method was proved to be an
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alternative to high-order finite difference methods.

7.2 Future Work

To make the AMR code more robust and flexible, some further works may be neces-

sary. They are listed below.

(1) Improve the efficiency of the ghost construction operation. In this work the

operation was applied on a temporary buffer to reduce the required memory

costs. The method, however, incurred a lot of extra communication costs. The

profile results showed the cost of the ghost construction operation consumed up

to 30% of the whole computation cost. It is therefore worthwhile to optimize

the ghost construction operation by assigning extra memory buffer for each

block.

(2) Make each block configuration more flexible to contain different number of

cells. In this work each block contained the same cell number for the reason

of simplicity. Unfortunately, it made the mesh generation around a general

geometry much more difficult, as was shown in the aero-engine case studies.

More programming efforts, as a remedy, are required to make the code suit

to blocks with variable cell numbers. The AMR operations and the parallel

communication subroutine should be revised accordingly.

Finally, other aeroacoustic applications with more complex geometries are ex-

pected to be tackled under the AMR environment to demonstrate its suitability and

flexibility as well as to demonstrate its efficiency.
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Appendix A

Coefficients of Numerical Schemes

A.1 Numerical Schemes

Assuming there are n gridpoints in each direction of the coordinates, the sketch is

displayed in Figure A.1. The coefficients of several spatial discretization schemes and

interpolation methods used in this work are listed here, where single-side stencils are

employed for grid points besides computational domain and solid boundaries, whilst

central stencils are used for other grid points.

1 2 3 4 i− 2 i− 1 i i + 1 i + 2 nn− 1n− 2n− 3

Figure A.1: A stencil in the one-dimensional coordinate.

A.1.1 The DRP Scheme

The following stencils are obtained from [159] and given here to complete this work.

The notation of any coefficient has the format as alr
index, where the subscript is the

index of coefficients, and the superscript lr denotes the number of gridpoints located

in the left and right of the computed gridpoint respectively. To keep the global

consistency in this work, the superscript and subscript are not the same as [159].
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Table A.1: The coefficients of a 4th-order DRP scheme.

Index 33 06 15 24
a0 -0.0208431427703 -2.192280339 -0.209337622 0.049041958
a1 0.166705904415 4.748611401 -1.084875676 -0.468840357
a2 -0.7708823805180 -5.108851915 2.147776050 -0.474760914
a3 0 4.461567104 -1.388928322 1.273274737
a4 0.7708823805180 -2.833498741 0.768949766 -0.518484526
a5 -0.166705904415 1.128328861 -0.281814650 0.166138533
a6 0.0208431427703 -0.203876371 0.048230454 -0.026369431

The coefficients of the following stencils are listed in Table A.1.

A.1.1.1 The Central Stencil

f ′i =
a33

0 fi−3 + a33
1 fi−2 + a33

2 fi−1 + a33
3 fi + a33

4 fi+1 + a33
5 fi+2 + a33

6 fi+3

∆x
. (A.1)

A.1.1.2 The Single-side Stencil at Boundaries

f ′1 =
a06

0 f1 + a06
1 f2 + a06

2 f3 + a06
3 f4 + a06

4 f5 + a06
5 f6 + a06

6 f7

∆x
, (A.2)

f ′2 =
a15

0 f1 + a15
1 f2 + a15

2 f3 + a15
3 f4 + a15

4 f5 + a15
5 f6 + a15

6 f7

∆x
, (A.3)

f ′3 =
a24

0 f1 + a24
1 f2 + a24

2 f3 + a24
3 f4 + a24

4 f5 + a24
5 f6 + a24

6 f7

∆x
, (A.4)

f ′n =
a60

0 fn + a60
1 fn−1 + a60

2 fn−2 + a60
3 fn−3 + a60

4 fn−4 + a60
5 fn−5 + a60

6 fn−6

∆x
, (A.5)

f ′n−1 =
a51

0 fn + a51
1 fn−1 + a51

2 fn−2 + a51
3 fn−3 + a51

4 fn−4 + a51
5 fn−5 + a51

6 fn−6

∆x
, (A.6)

f ′n−2 =
a42

0 fn + a42
1 fn−1 + a42

2 fn−2 + a42
3 fn−3 + a42

4 fn−4 + a42
5 fn−5 + a42

6 fn−6

∆x
, (A.7)

where a06
0−7 = −a60

0−7, a
15
0−7 = −a51

0−7, a
24
0−7 = −a42

0−7.
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Table A.2: The coefficients of a 4th-order standard explicit scheme.

Index 22 04 13
a0 1/12 -11/6 -1/3
a1 -2/3 3 -0.5
a2 0 -3/2 1
a3 2/3 1/3 -1/6
a4 -1/12

A.1.2 The Standard Explicit Scheme

The following stencils are obtained by matching Taylor series [18]. A typographical

error appeared in that paper has been corrected here. The meaning of subscript

and superscript are the same as with the previous section. The coefficients are in

Table A.2.

A.1.2.1 The Central Stencil

f ′i =
a22

0 fi−2 + a22
1 fi−1 + a22

2 fi + a22
3 fi+1 + a22

4 fi+2

∆x
. (A.8)

A.1.2.2 The Single-side Stencil at Boundaries

f ′1 =
a04

0 f1 + a04
1 f2 + a04

2 f3 + a04
3 f4

∆x
, (A.9)

f ′2 =
a13

0 f1 + a13
1 f2 + a13

2 f3 + a13
3 f4

∆x
, (A.10)

f ′n =
a40

0 fn + a40
1 fn−1 + a40

2 fn−2 + a40
3 fn−3

∆x
, (A.11)

f ′n−1 =
a31

0 fn + a31
1 fn−1 + a31

2 fn−2 + a31
3 fn−3

∆x
, (A.12)

where a04
0−3 = −a40

0−3, a
13
0−3 = −a31

0−3.

A.1.3 Interpolations

fi = Σ5
j=0ai(fi−j + fi+j), (A.13)

where f represents a solution variable. The coefficients of a 2nd- and 10th-order

interpolation methods are in Table A.3. To save space, other interpolations, such as
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Table A.3: The coefficients of several explicit interpolations.

Order a0 a1 a2 a3 a4 a5

2nd 0.25 0.25 0 0 0 0
10th 0.37695 0.205 -0.117 0.0439 -0.009765 0.0009765

6th-order and single-side interpolations used in the code, are not included here.

A.2 Operator Matrix in Eigenvalue Analysis

The operator matrixes M used in section 3.3 have the form as follows:

M =




b 0 . . . 0

a 0 . . . 0

0 a . . . 0
...

0 0 . . . M′ . . . 0 0
...

0 0 . . . 0 0.5a 0

0 0 . . . 0 0 0.5a

0 0 . . . 0 0 0.5a′




, (A.14)

where b is a coefficients matrix of single-sided boundary stencils, a is a coefficients

matrix of interior stencils, M′ is a coefficients matrix of stencils on the fine-coarse

interface, a′ is a truncated coefficients matrix of central stencils. A simple example

of M with the dimensional size 8 is listed here for readers’ reference.




−11/6 3 −1.5 1/3 0 0 0 0

−1/3 −0.5 1 −1/6 0 0 0 0

1/12 −2/3 0 2/3 −1/12 0 0 0

0 1/12 −2/3 0 5/8 −1/24 0 0

0 0 1/12 −2/3 1/3 0.25 0 0

0 0 1/24 0 −1/3 0 1/3 −1/24

0 0 0 0 1/24 −1/3 0 1/3

0 0 0 0 0 1/24 −1/3 0




, (A.15)
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this is derived using the aforementioned 2nd-order interpolation and 4th-order explicit

scheme. To save space other operator matrixes are not listed.
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Appendix B

Asymptotic Solution of Sound Out

of Jet

In this appendix an asymptotic solution of a high frequency sound radiating out of a

jet is presented for the completeness of this work.

B.1 Introduction

Duct

Shear layer

Shear layer

ρ
0, C0, U0, M0

ρ
j, Cj, Uj, Mj

Figure B.1: Setup of an idealised jet case.
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This problem is idealised as a jet issuing from a semi-infinite cylindrical pipe in

which there is a uniform mean flow, as shown in Figure B.1. Munt has solved the

problem exactly by using the Wiener-Hopf technique [155] that is rather complicated.

Cargill presented a simpler asymptotic solution, which resembled Munt’s solution in

the peak lobe for high frequency sound, based on Kirchhoff approximation [121].

In this work numerical results of a spinning mode sound radiation case are tested

against Cargill’s asymptotic solution. However, it is noticeable that there are some

small errors in [121]. To prevent possible confusions, revised equations used in the

work are listed here, in which symbols and their meanings used by Cargill are kept,

although some are not consistent with those symbols that have been employed in this

work. To save space only the most important symbols are introduced here, others

can be found in [121].

B.2 Equations

The sound pressure of a given incident duct mode is in the form of:

pi = Jm(
j′mnr

a
)e(−ik0x−imφ+iωt), (B.1)

where the radial wavenumber j′mn satisfies the hard wall boundary condition Jm(j′mn) =

0, a is the radius of the cylindrical pipe, k0 is streamwise wavenumber in x axis di-

rection, m is azimuthal mode, φ is azimuthal angle, ω is sound frequency, t is time.

The far-field pressure is:

p = −(
a

4R
)e

(−i(ωR
c0

)+iωt+im(π
2
)−imφ)

DIT, (B.2)

D = −ia(χ + χ0), (B.3)

I =
−2vaJ ′m(va)Jm(j′mn)

(va)2 − (j′mn)2
, (B.4)

T = T (k0) = − 2

(πva)(J ′m(va)H
(2)
m (wa)− αJm(va)H

(2)′
m (wa))

, (B.5)

where R is distance between the far-field observer and the origin position of the pipe
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exit, c0 is ambient sound speed, J ′m is the differential of the corresponding argument,

and

χ = k0 +
Uj(ω − Ujk0)

c2
j

, (B.6)

χ0 =
ω

cj

(1− (1−M2
j )

j′2mnc
2
j

ω2a2
), (B.7)

v2 = (
(ω − Ujk0)

2

c2
j

)− k2
0, w2 = (

(ω − U0k0)
2

c2
0

)− k2
0, (B.8)

α =
ρjD

2
jw

ρ0D2
0v

, D0 = (ω − U0k0), Dj = (ω − Ujk0), (B.9)

where v, w should be chosen to satisfy Im(v) < 0 and Im(w) < 0. There are also

some equations do not appear in Cargill’s paper, but are deserved to be mentioned,

e.g. the fluid is modelled as a perfect gas and c2
0 = γp0/ρ0, c2

j = γpj/ρj, assuming

p0 = pj, the relation of ω and k is ω = kc0, and the relation of densities inside and

outside of jet is ρj/ρ0 = c2
0/c

2
j .

B.3 Results and Discussion
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Figure B.2: Comparison of asymptotic and numerical solutions, where
(m,n) = (4, 1),Mj = 0.14, k = 11.7, (a)M0 = 0, (b) M0 = 0.14.

The equations are programmed by the script language and computed in MATLAB
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B. ASYMPTOTIC SOLUTION OF SOUND OUT OF JET

to get the asymptotic solution, which are tested against previous numerical solutions.

Results are compared and shown in Figure B.2. In Figure B.2(a) the asymptotic

solution matches the numerical results [123] satisfactory. It illustrates that the far-

field pressure is simulated reliably when the ambient flow velocity equals to zero.

In case of a nonzero ambient flow velocity, the angles of the first peak lobe of both

solutions do not match exactly, as demonstrated in Figure B.2(b), but the amplitude

and shape are still similar. Further validation should depend on experiment data.
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Appendix C

Fourier Based Pseudospectral

Method

This appendix introduces a Fourier based pseudospectral time-domain (PSTD) method

that is applied to wave propagation problems pertinent to CAA [160]. This chap-

ter has little connection with the previously presented AMR work. The relevant

information and governing equations are therefore provided to make this chapter

self-contained.

The original algorithm of the Fourier based pseudospectral time-domain method

works for periodical problems without the interaction with physical boundaries. In

this appendix a slip wall boundary condition is developed, combined with buffer

zone technique, to solve some non-periodical problems. For a linear sound propaga-

tion problem whose governing equations could be transferred to ordinary differential

equations in pseudospectral space, a new algorithm only requiring time stepping is

developed and tested. For other wave propagation problems, the original algorithm

has to be employed and the developed slip wall boundary condition still works. The

accuracy of the presented numerical algorithm is validated by benchmark problems

and the efficiency is assessed by comparing with high-order finite difference methods.

It is indicated that the Fourier based pseudospectral time-domain method, time step-

ping method, slip wall and absorbing boundary conditions combine together to form

a fully-fledged computational algorithm.
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C.1 Introduction

Pseudospectral time-domain methods were developed to achieve spectral level accu-

racy in numerical solutions of the partial differential equations. So far, a number

of attempts were made to apply numerical algorithms based on the pseudospectral

time-domain methods to simulate various wave phenomena such as electromagnetic,

seismic and acoustic waves [161, 162, 163, 164], with various degrees of success. It

is accepted that pseudospectral time-domain methods have high spatial resolution

that meets the requirements of numerical simulation of aeroacoustic phenomena. In

this work, we apply a class of pseudospectral time-domain method based on the

Fourier transformation to sound propagation problems commonly encountered in

aeroacoustics.

The basic idea of pseudospectral time-domain method is to represent the spatial

derivatives in the spectral domain by a set of basis functions. There are two categories

of orthogonal functions which are commonly used as the basis functions. One is the

Fourier series that can be used in periodical problems [161]. The other and more com-

monly used function is the Chebyshev polynomials. The advantage of the Chebyshev

pseudospectral time-domain method lies in its ability to deal with non-periodic prob-

lems on non-uniform and multi-domain computational grids [165, 166] at the cost

of computational efficiency. On the other hand, the Fourier based pseudospectral

time-domain method is simple to implement and has comparatively low computing

cost. It does though have certain restrictions, e.g. solutions should satisfy Lipschitz

condition; the method has to work on a uniform grid and is only applicable to pe-

riodical problems. The current work addresses some of these issues/restrictions in

the development of numerical algorithms based on the Fourier based pseudospectral

time-domain method, under the context of computational aeroacoustics.

In the implementation of a Fourier based pseudospectral time-domain method,

discrete Fourier transforms are applied to the perturbation variables, resulting in a

spectral pair of the original variables. The spatial derivatives of the original variables

can then be calculated analytically through multiplications of the spatial sampling

frequency and spectral pair of the variables. In the case of a one-dimensional prob-

lems, the spectral pair of the original variable y(x, t) are Y (kx, t), and the spectral

pair of its derivative, ∂y(x, t)/∂x, are jkxY (kx, t), where kx in the above expressions

is the wavenumber rather than the meaning of sampling frequency in the temporal

sequence. According to the Nyquist criteria, only two points-per-wavelength are re-

quired to obtain exact and dispersion free results [167]. This compares with other

high-order finite difference methods, such as compact schemes, where typically eight
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or more points-per-wavelength are required to meet the dispersion requirement.
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Figure C.1: A schematic of scaling of computation counts with grid size.

Comparing to a typical high-order finite difference compact scheme, a potential

performance limiting factor in applying the Fourier based pseudospectral time-domain

method is the relative deterioration in computation efficiency as larger grids are used.

For a one-dimensional problem, the cost of performing discrete Fourier transform is

proportional to O(mlogm), where m is the number of the discrete spatial points.

Typically, a high-order finite difference method requires O(km) counts to obtain the

derivative, where k is a constant for a specific scheme and generally has a value less

than 6. Figure C.1 gives an illustration of the relative computation counts for one

derivative scaled to the size of the computation domain. For a large computation

domain, a pseudospectral time-domain method could potentially have lower com-

putation efficiency than some high-order finite difference methods. However, it is

worth emphasizing that this one-dimensional case represents the worst case scenario.

For partial differential equations with multiple variables and derivatives, the discrete

Fourier transforms only need to be calculated once at each time step. The relative

computational performance improves accordingly.

The linear wave propagation problems are simulated using an algorithm that al-

leviates the performance limiting problem described above. This algorithm reduces

the discrete Fourier transform operations at each time step. Details are described

in Section 2 of the paper. In Section 3, issues of the points-per-wavelength require-

ment, a slip wall boundary condition and a buffer zone technique are addressed. In

Section 4 the Fourier based pseudospectral time domain method is applied to two

computational aeroacoustics benchmark problems, such as the linear problem of the

propagation of a two-dimensional Guassian pulse with reflections off a hard wall and
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the sound propagation of an open rotor [145, 168]. A summary of the present work

is provided in Section 5.

C.2 Governing Equations and Algorithm

C.2.1 Governing Equations

The governing partial differential equations used to describe linear wave propagation

phenomena in a uniform medium are given below. Various forms of the equations are

employed. The one-dimensional convection equation takes the form of

∂u′

∂t
+

∂u′

∂x
= 0. (C.1)

The one-dimensional linearised Euler equations for acoustics wave propagation is

given as:
∂u′

∂t
+

∂p′

∂x
= 0, (C.2)

∂p′

∂t
+

∂u′

∂x
= 0. (C.3)

The two-dimensional linearised Euler equations for acoustics wave propagation

are given as:
∂u′

∂t
+

∂p′

∂x
= 0, (C.4)

∂v′

∂t
+

∂p′

∂y
= 0, (C.5)

∂p′

∂t
+

∂u′

∂x
+

∂v′

∂y
= 0. (C.6)

In the above equations, t is the time, x and y are the Cartesian coordinates, u′

and v′ are velocity perturbations and p′ is the pressure perturbation. For the rest of

the paper, the prime sign will be dropped for convenience. The fluid is modelled as

a perfect gas and all variables are nondimensionalised using a reference length L∗, a

reference sound speed a∗ and a reference density ρ∗.
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C.2.2 Governing Equations in The Pseudospectral Domain

With the assumption that the spatial domain is periodical, the one-dimensional con-

vection equation, Eq. (C.1) can be transformed to:

dU(kx, t)

dt
+ jkxU(kx, t) = 0, (C.7)

where U(kx, t) is the pseudospectral pair for u(x, t) and kx is the wavenumber in the

x direction. By employing a suitable Runge-Kutta time-stepping scheme, e.g. a low-

dissipation and low-dispersion scheme [111], Eq. (C.7) can be stepped directly to the

new time step t + k∆t as an ordinary differential equation to yield U(kx, t + k∆t). A

solution in the spatial domain is obtained by applying an inverse Fourier transform

to U(kx, t + k∆t), producing an updated solution u(x, t + k∆t).

The one-dimensional linear wave equations are transformed by the Fourier based

pseudospectral time-domain method to:

∂U(kx, t)

∂t
+ jkxP (kx, t) = 0, (C.8)

∂P (kx, t)

∂t
+ jkxU(kx, t) = 0, (C.9)

where P (kx, t) and U(kx, t) are the pseudospectral pair for the pressure perturbation

p(x, t) and velocity perturbation u(x, t) respectively.

The transformed two-dimensional linear wave equations are as follows:

∂U(kx, ky, t)

∂t
+ jkxP (kx, ky, t) = 0, (C.10)

∂V (kx, ky, t)

∂t
+ jkyP (kx, ky, t) = 0, (C.11)

∂P (kx, ky, t)

∂t
+ jkxU(kx, ky, t) + jkyV (kx, ky, t) = 0. (C.12)

In Eqs. (C.10-C.12), U(kx, ky, t), V (kx, ky, t) and P (kx, ky, t) are the two-dimensional

Fourier transforms of the velocity perturbations u(x, y, t) and v(x, y, t) and pressure

perturbation p(x, y, t) respectively.

The above procedures can be applied to linear wave propagation equations with
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an mean flow to obtain the transformed equations in pseudospectral domain.

C.2.3 Performance Analysis

The original algorithms of Fourier based pseudospectral time domain method [166,

167] has the following form:

∂ui

∂t
+ IDFT(jkxi

DFT(fi(xi))) = 0, (C.13)

where DFT and IDFT denote forward and inverse discrete Fourier transforms. This

procedure works fine for general cases. But the forward and inverse discrete Fourier

transforms will have to be used at every time step to obtain the spatial derivatives.

For the linear problems discussed in Section C.2.2, after the Fourier transforms

are applied to Eqs. (C.1- C.6), the transformed governing equations are solved as

ordinary differential equations, Eqs. (C.7-C.12). The approach adopted in this work

is to apply the discrete Fourier transform at the beginning of each time stepping

operation. The time stepping operation is then applied to the resulting ordinary

differential equations. The updated solution in the time domain is obtained by an

indirect discrete Fourier transform operation in the spatial domain. The computation

cost for the spatial derivatives at each time step is reduced with this procedure.

In the case of a one-dimensional computational domain of m grid points, the

fast Fourier transform algorithm requires operations in the order of O(mlog(m)), a

typical low-dissipation and low-dispersion Runge-Kutta scheme requires operations

in the order of O(4m) and a typical prefactored compact scheme’s computational

complexity is in the order of O(6m) [102]. It can be estimated that for each time step,

the prefactored compact scheme’s computational counts are in the order of O(10m)

and the Fourier based pseudospectral time domain method of the original algorithm

[167] needs computation counts in the order of O(mlogm + 4m). By comparison, the

new computation procedure presented in this paper requires operations in the order of

O(4m). In fact it was acknowledged that for some applications the early algorithm for

the Fourier based pseudospectral time domain method had a comparable computing

speed to an efficient finite difference scheme [169], even if a coarser grid was employed.

C.3 Issues and Solutions

There are several issues in applying Fourier based pseudospectral time domain method

to computational aeroacoustics problems, such as resolution requirement and bound-
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ary conditions. These are discussed in this section. The discussions apply to both

algorithms of the pseudospectral time domain method.

C.3.1 Points-per-wavelength Requirement

For the Fourier based pseudospectral time domain method a grid resolution of two

points-per-wavelength is enough. Results in Figure C.2 demonstrate this point. In

this exercise, a one-dimensional Gaussian pulse is again employed. The initial condi-

tion is defined by uinit = 0.5e(−4log(2)(x−50)2). Two resolutions are employed: points-

per-wavelength of 4 and 2. The computed pulses compare well with the analytical

results.
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Figure C.2: One-dimensional Gaussian pulse propagation with low points-per-
wavelength. (a) PPW=4, ∆t/∆x = 0.1, steps=200; (b) PPW=2, ∆t/∆x = 0.2,
steps=100.

C.3.2 Hard-wall Boundary Condition

The Fourier based pseudospectral time domain method can effectively solve compu-

tational aeroacoustics problems with no dispersion errors. The same property can be

found in Schulten’s characteristic method [170]. However, the characteristic method

could not solve problems with the presence of solid bodies and simulate the resulted

sound reflection.

Based on the idea of generalized function [171], a hard-wall condition can be

supplied now. For simplicity the one-dimensional wave propagation Eqs. (C.2)-(C.3)
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Figure C.3: One-dimensional Gaussian pulse reflected by a left hard-wall and without
using buffer zone: (a) steps=10; (b) steps=150.

are used in the derivation. A stationary hard-wall condition is assumed on the left

boundary of the computation domain at x = 0. The hard-wall condition suggests

zero normal velocity at the wall. To ensure a correct velocity field, the following

condition needs to be enforced:

u(0) =
u(0+) + u(0−)

2
= 0. (C.14)

Eq. (C.3) can be re-casted using the idea of generalized derivative for functions with

discontinuities [171] to:

∂p(x, t)

∂t
+

∂u(x, t)

∂x
+ (u(0+, t)− u(0−, t))δ(x) = 0. (C.15)

Eq. (C.15) is transferred by the discrete Fourier transform to:

∂P (kx, t)

∂t
+ jkxU(kx, t) +

2u(0+, t)

∆x
= 0, (C.16)

where u(0+, t) is approximated by u(0, t), which is obtained from an inverse discrete

Fourier transform operating on U(kx, t) in each step.

An example of the application with hard-wall condition is shown in Figure C.3,

where a one-dimensional wave is reflected from a hard wall at the left boundary. The
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initial condition is a Gaussian pulse defined by pinit = 0.5e(− log(2)(x−50)2/9), uinit = 0.

Eqs. (C.8) and (C.16) are used to obtain the solutions. Comparison is made with

a dispersion-relation-preserving (DRP) scheme [109]. In the most part, two results

agree well, but a rewrap wave appears when the Fourier based pseudospectral time

domain method is used. It is generated by the periodical boundary condition and

can be absorbed by the technique described in the next section.

C.3.3 Absorbing Condition for The Rewrap Waves

The original Fourier based pseudospectral time domain method works for problems

with periodical boundaries. When the periodical assumption is not satisfied, wave

rewrap phenomenon will appear and contaminates the solutions in the computation

domain. In this work, an explicit form of buffer zone techniques [147] is applied to

absorb the reflected waves. The buffer zone technique works in the spatial domain,

consequently the new algorithm for the Fourier based pseudospectral time domain

method requires more operation counts. The exact number depends on the width of

the buffer zone; there is therefore a tradeoff between memory and speed.

In the implementation, the solution vector is explicitly damped after every several

time step by:

F(x, t + ∆t) = F(x, t + ∆t)− σ(F(x, t + ∆t)− F0(x)), (C.17)

where F(x, t + ∆t) is the solution vector computed after regular time steps. The

damping coefficient, σ, varies according to the function,

σ(x) = σmax

∣∣∣∣1−
x− L

L

∣∣∣∣
β

, (C.18)

where L is the width of the buffer zone, x is the distance from the inner boundary

of the buffer zone and σmax and β are set to 1.0 and 3.0 respectively. The target

solution F0 is set as zero.

C.4 Applications to Benchmark Problems

The aforementioned method is applied to two benchmark test cases. Results and

discussions are given here. In the first case, a two-dimensional Gaussian pulse prop-
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agation problem with hard-wall and absorbing boundaries was computed, employing

temporal integration directly on pseudospectral space. In the second case, the al-

gorithm in the form of Eq. C.13 was used to solve for an open rotor problem with

nonlinear terms.

C.4.1 Wave Propagation and Reflection
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Figure C.4: The propagation of a two-dimensional Gaussian pulse: (a) t = 0.25,
without buffer zone; (b) t = 0.4, without buffer zone; (c) t = 0.25, with buffer zone;
(d) t = 0.4, with buffer zone.

The case is the first problem of category 4 that is defined at first computational

aeroacoustics workshop. The initial condition is a Gaussian acoustic pulse given by:

pinit = e−log(2.0)(x2+(y+0.6)2))/0.006, (C.19)

uinit = 0, (C.20)
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vinit = 0, (C.21)

Eqs. (C.10)-(C.12) are used to solve the problem. Results are presented in Figure C.4.

The hard-wall boundary condition on the bottom boundary appears to have repro-

duced the reflected waves off the bottom wall. In this exercise, the length of the

buffer zone is set to 10 grid points. In the current computation, the buffer zone is not

updated at each time step. Instead, the solutions inside the buffer zone are updated

at regular step intervals, e.g. once every two or four steps, to save computing time

furthermore. The algorithm employed for this exercise can be found at the end of

this appendix.
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Figure C.5: A comparison of two-dimensional Gaussian pulse propagation predicted
by the Fourier based pseudospectral method and the prefactored compact scheme,
where pressures are along the x = 0 axis, t = 0.4: (a) without buffer zone; (b) with
buffer zone.

The pressure distribution along the x = 0 axis is given in Figure C.5 and compared

with prediction given by a prefactored compact scheme [102]. The computing time

t and L2 error against to an analytical solution of linearised Euler equations [109]

are listed in Table 1, where the spatial resolution is low, from around 3 points-per-

wavelength to 12 points-per-wavelength.

It has been discovered that with Fourier based pseudospectral time domain method,

if a buffer zone is not applied, wave rewrapping will contaminate the solutions. How-

ever, if the rewrap wave is not considered in computing L2 errors over two grids,

they are 0.0107 and 0.00083 correspondingly, indicating the pseudospectral method

is actually more exact than the compact scheme. Figure C.4(c-d) and Figure C.5(b)

illustrate that a buffer zone keeps removing the rewrap wave. The agreement is gen-
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Table C.1: Computing time t and L2 error of the first benchmark problem.

Schemes 16× 16 64× 64
Compact scheme t = 1.55s, Err = 0.0425 t = 91s, Err = 0.0013

Pseudospectral (no buffer zone) t = 0.44s, Err = 0.0938 t = 26s, Err = 0.0825
Pseudospectral ( buffer zone) t = 0.48s, Err = 0.0275 t = 28s, Err = 0.0075
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Figure C.6: A comparison of two-dimensional Gaussian pulse propagation after 110
time steps, where the pressure contours of (a) the Fourier PSTD method and (b) the
compact scheme are displayed.

erally good as well. However, the buffer zone affects the spectra of the solution near

the hard wall as it absorbs the rewrap wave. It has been found that this difference

will remain stable as the solution develops. L2 error results in Table 1 also indicate

that the buffer zone does affect the accuracy of the Fourier based pseudospectral

method. But for the majority of the domain, there are no significant differences in

the solutions (see Figure C.5(b)). Figure C.6 also presents a comparison between

the Fourier based pseudospectral time domain method and the prefactored compact

scheme after 110 time iterations.

In terms of computation efficiency, the Fourier based pseudospectral method,

with or without a buffer zone, represents a saving of up to 200% compared with the

prefactored compact scheme.
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C.4.2 Open Rotor

The second test case is that of the open rotor noise defined in category 2 bench-

mark problem at third computational aeroacoustics workshop [168]. It has nonlinear

source terms. The original algorithm in the form of Eq. (C.13) is used to show its

effectiveness for general problems.

The governing equations in cylindrical coordinates and problem definition are as

follows:
∂u

∂t
= −∂p

∂x
+ Sx, (C.22)

∂v

∂t
= −∂p

∂r
+ Sr, (C.23)

∂w

∂t
= −1

r

∂u

∂Φ
+ SΦ, (C.24)

∂p

∂t
+

∂u

∂x
+

1

r

∂vr

∂r
+

1

r

∂w

∂Φ
= 0, (C.25)

where x is the axial coordinate, r the radial coordinate and Φ the azimuthal angle.

u, v, w are the velocity perturbations in the x, r, Φ directions respectively and p is the

pressure perturbation. The no-linear terms are defined as:

S(x) = e−(ln2)(10x)2 , (C.26)

Sr = 0, (C.27)

∣∣∣∣
SΦ(r, Φ, x, t)

Sx(r, Φ, x, t)

∣∣∣∣ = Re

{
S̃Φ(r, x)

S̃x(r, x)

}
eiM(Φ−Ωt), (C.28)

S̃x(r, x) =

{
S(x)JM(λ(M,N)r), r ≤ 1

0, r > 1
(C.29)

S̃Φ(r, x) =

{
S(x)rJM(λ(M,N)r), r ≤ 1

0, r > 1
(C.30)

where JM is the Mth-order Bessel function of first kind, λMN is the Nth root of J ′M
or J ′M(λMN) = 0. The parameters are M = 8, N = 1, λ(8,1) = 9.64742 and Ω = 0.85.

The computation domain covers [-5,5] in the axial direction and the radial direction.

The size of the grid ∆x and the time step ∆t obey the relation ∆t/∆x = 0.5. Φ is

set to 0. The governing equations are solved by the algorithm given in (C.13). The
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time integration algorithm is the 4-6 low-dissipation and low-dispersion Runge-Kutta

Scheme. The length of the buffer zone is 15 grid points.
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Figure C.7: Pressure contours generated by an open rotor.
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Figure C.8: Pressure time history generated by an open rotor at (x = −0.1, r = 1.9).

Figure C.7 shows the pressure contours after 80 time steps. The monitored time

history shown in Figure C.8 suggests that a time periodic state is reached. In spherical

coordinates (r, θ, Φ) the directivity of the radiated sound is defined as:

D(θ) = lim
r→∞

r2P 2(r, Φ, θ),

where r, φ and θ are radius, azimuthal angle and polar angle respectively. P 2(r, Φ, θ)

is the time average of P 2(r, θ, Φ). The predicted directivity of rotor noise is compared

with analytical solution [172] in Figure C.9. Here the radius r is set to 3. Although

the radius is not large enough, two results still match well. The computing time t
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Figure C.9: Prediction and analytical solution of the directivity of an open rotor
acoustic radiation, where r = 3.0 and θ is the polar angle.

and error Err of DRP, Compact and the Fourier based pseudospectral schemes are

compared in Table 2, where

Err = {Σ8
i=1|D(θi)−Danalytical(θ)|, θ ∈ [20o − 160o]}.

Table C.2: Computing time t and L1 error of the second benchmark problem.

Schemes 100× 100 200× 200
DRP scheme t = 21.6s, Err = 7.9e−6 t = 186s, Err = 6.1e−6

Compact scheme t = 34.1s, Err = 6.8e−6 t = 557s, Err = 5.9e−6

Pseudospectral t = 20.7s, Err = 2.7e−6 t = 180s, Err = 2.0e−6

In this case, the pseudospectral method is only employed to obtain the spatial

differential terms. The numerical error affiliated with the buffer zone and the slip

wall boundary condition does not exist. Consequently, results in Table 2 indicate

that the Fourier based pseudospectral time domain method can obtain more accurate

solutions with smaller points-per-wavelength numbers. It is also much more efficient

than other high-order finite difference methods.

C.4.3 Summary

The Fourier based pseudospectral time domain method has been applied to some

benchmark problems pertinent to computational aeroacoustics. For linear wave prop-
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agation problems, a new algorithm has been developed and tested. The updated time

stepping method relaxes time stepping restrictions. A hard-wall boundary condition

is supplied for simple geometry and has been validated. Combined with the buffer

zone technique to reduce contamination due to wave rewrap, the algorithm becomes

fully-fledged to some linear wave propagation problems. For general problems with

nonlinear terms, the original algorithm of the Fourier based pseudospectral time do-

main method is shown to be an alternative to high-order finite difference methods.

*Simplified Code for Two-dimensional Wave Equations

function [x,y,u,v,p,clocka,clockb]=Wave2DFreqBCRewrap2(dx,ntsteps)

%********************************************************************%

% x,y:grid; u,v,p:velocity and pressure;

% dx:spatial step; ntsteps:operation steps;

%********************************************************************%

RK_dt=dx*0.3; %CFL, RK_dt=0.1, 0.05,and 0.025 have been tested before.

[x,y]=meshgrid(-0.8+dx:dx:0.8); %make grids.

dimen=size(x); dimen=dimen(1);

u=0*x;v=0*x;p=exp(-log(2.0)*(x.^2+(y+0.6).^2)/0.006);

Uifft=u;Vifft=v;

omegaT1=[0.25,0.33333333333,0.5,1.0]*RK_dt; %Runge-Kutta coef

inv_dimen=1/dimen; inv_dx=1/dx;max_half=dimen/2;

tmp=-sqrt(-1)*2*pi*inv_dimen*inv_dx;

Vall=zeros(1,dimen); %Vall is used for hard wall reflection.

totalstep=0; clocka=clock;

P=fft2(p,dimen,dimen);U=fft2(u,dimen,dimen);V=fft2(v,dimen,dimen);

U=fftshift(U);V=fftshift(V);P=fftshift(P); P0=P;U0=U;V0=V;

while(totalstep<ntsteps)

for s=1:1:1

126



C. FOURIER BASED PSEUDOSPECTRAL METHOD

for subit=1:1:4

for m=1:1:dimen

for n=1:1:dimen

Tmp_Px=tmp*(n-max_half-1)*P(m,n);

Tmp_Py=tmp*(m-max_half-1)*P(m,n);

Tmp_Ux=tmp*(n-max_half-1)*U(m,n);

Tmp_Vy=tmp*(m-max_half-1)*V(m,n)-2*Vall(1,n)*inv_dx;

U(m,n)=U0(m,n) + Tmp_Px*omegaT1(subit);

V(m,n)=V0(m,n) + Tmp_Py*omegaT1(subit);

P(m,n)=P0(m,n) + (Tmp_Ux+Tmp_Vy)*omegaT1(subit);

end

end

Vifft=ifft2(V);Vall=fft(Vifft(1,:));

end

U0=U;V0=V;P0=P;totalstep=totalstep+1 %Update all

end

end clockb=clock; U0=fftshift(U0);V0=fftshift(V0);P0=fftshift(P0);

Uifft=ifft2(U0);Vifft=ifft2(V0);Pifft=ifft2(P0); %inverse FFT

u=real(Uifft);v=real(Vifft);p=real(Pifft);
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