
Exploration of Decision Sub-Network Architectures
for FPGA-based Dynamic DNNs
Anstasios Dimitriou1, Mingyu Hu2, Jonathon Hare3, Geoff V. Merrett4
School of Electronics and Computer Science, University of Southampton, UK

Email: {1ad1r20, 2mh1u20}@soton.ac.uk, { 3jsh2, 4gvm}@ecs.soton.ac.uk

Abstract—Dynamic Deep Neural Networks (DNNs) can achieve
faster execution and less computationally intensive inference by
spending fewer resources on easy to recognise or less informa-
tive parts of an input. They make data-dependent decisions,
which strategically deactivate a model’s components, e.g. layers,
channels or sub-networks. However, dynamic DNNs have only
been explored and applied on conventional computing systems
(CPU+GPU) and programmed with libraries designed for static
networks, limiting their effects. In this paper, we propose and
explore two approaches for efficiently realising the sub-networks
that make these decisions on FPGAs. A pipeline approach targets
the use of the existing hardware to execute the sub-network, while
a parallel approach uses dedicated circuitry for it. We explore the
performance of each using the BranchyNet early exit approach on
LeNet-5, and evaluate on a Xilinx ZCU106. The pipeline approach
is 36% faster than a desktop CPU. It consumes 0.51 mJ per
inference, 16x lower than a non-dynamic network on the same
platform and 8x lower than an Nvidia Jetson Xavier NX. The
parallel approach executes 17% faster than the pipeline approach
when on dynamic inference no early exits are taken, but incurs
an increase in energy consumption of 28%.

Index Terms—dynamic DNNs, hardware architecture for ma-
chine learning, FPGA

I. INTRODUCTION

Deep Neural Networks (DNNs) have become popular due
to their effectiveness and accuracy in solving many real-life
machine learning problems including computer vision [1] and
voice recognition [2]. Their success, however, comes at the
cost of increased depth, complexity and computational burden,
leading to very high energy demands. Dynamic inference is an
emerging approach that utilises information from the input data
to selectively execute only important subsets of the DNN, e.g.
layers [3], channels [4] or sub-networks [5].

Key components of a dynamic DNN are the decision sub-
networks. They are typically placed between layers, with a
purpose of deciding the parts of the DNN to execute. While this
adds computation to the network, with careful design and train-
ing the overall network performance is accelerated substantially
[6], [7], improving inference time and efficiency, and enabling
inference on more constrained computing platforms. However,
we argue that there is a gap between theoretical results and
practical implementations [8]. Most dynamic DNN approaches
are developed using libraries fine-tuned for static DNN models
leading to inconsistency between expected and actual efficiency.
In addition, they are applied and tested on conventional CPU-
GPU systems.

To address this, we explore decision extraction architectures
for FPGA-based dynamic DNNs. FPGAs have been shown to

Fig. 1. Explored designs for (a) Pipeline and (b) Parallel approaches to
Decision Sub-Networks.

offer enhanced configurability and parallelization capabilities
to efficiently accommodate the computational needs of DNNs,
while achieving very low energy consumption. The novel
contributions of this paper are:

• Consideration for realising and implementing dynamic
DNNs on FPGAs, exploring pipeline and parallel ap-
proaches for decision sub-networks.

• An experimental implementation and evaluation on a
ZCU106 FPGA, comparing accuracy, execution time,
power and energy consumption against a desktop CPU,
CPU+GPU and Nvidia Jetson Xavier.

• Experimental results show faster execution time and lower
energy consumption, and that a parallel approach to deci-
sion sub-network implementation can decrease latency at
the cost of increased energy consumption.

II. DECISION SUB-NETWORK ARCHITECTURES

Decision sub-networks are small neural networks, containing
convolutional, fully-connected (FC), or pooling layers [7], [9].
Since these components are the same as those in the backbone
network, there is an opportunity for reusing existing IP, min-
imising the area and power overhead. This, however, leads to
some under-utilisation of existing components (the backbone is
stalled while the sub-network is computed), but can be useful
in cases where the target devices have very limited resources.
This pipeline (fig. 1(a)) approach executes inference as normal
up until the layer before the decision sub-network. Then it is
stalled and the layer’s output is stored while the sub-network
executes. Following this decision, inference either stops and
restarts with the next input sample (if the early exit is taken),
or else the stored output is loaded and continues with the next
layer (if the early exit is not taken).

Alternatively a parallel (fig. 1(b)) approach executes both
the backbone and sub-network at the same time. In this case,
the output of the previous layer is fed to both the next layer

and the decision sub-network, and they are both activated. This
reduces the latency overhead while computing the decision, as
if the early exit is not taken, the backbone network has already
started executing. If the decision is to exit, the layer stops
prematurely and the network proceeds with the the next input
sample. Additionally, in this design there is no need to store
the intermediate output as it’s already fed to the next layer, so
the memory footprint is also reduced. However simultaneous
activation of both paths requires the design of separate IPs
for the sub-network, increasing the area and power/energy
demands.

III. HARDWARE IMPLEMENTATION

As mentioned above the decision sub-networks and DNNs
share the same components, so their realisation on an FPGA
require the implementation of the different network layers. An
array of process elements is used for convolutional layers. Input
data is fed into a sliding window with a same size as the ker-
nel’s. Input-kernel multiplication is calculated by the PEs, and
outputs then moved to an adder tree. This adds the biases and
produces the final convolution result. The activation function
(ReLU), which is just a conditional branch, is immediately
applied and the results are stored in buffers that feed the next
layers.

The architecture of FC layers is similar to that of the convo-
lutional layers, but instead of convolution they require vector-
matrix multiplication. Input vectors contain a large number of
values, as they are generated by flattening the previous layer’s
output, which leads to a lot of multiplication operations. To
perform it, the inputs and weights are split into equal parts, and
calculated separately. Finally, pooling layers are implemented
using a sliding window and set to calculate the maximum of
the selected value. Throughout the designs, 8-bit fixed point
representation is used with three bits for the integer part and
five bits for the fractional part.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify, test and compare performance, the BranchyNet
[6] early exit LeNet-5 network is used. It consists of three
convolutional and two FC layers, while the decision sub-
network contains one convolutional and one fully connected
layer. Additionally, at all exit points, a softmax function is
applied to classify a 28x28 image of a handwritten digit
(MNIST data-set). It is executed on a desktop computer (Intel
Core i9 + Nvidia RTX 2080 TI) and on an embedded platform
(Nvidia Jetson Xavier NX).

Figure 2(a) shows the per sample execution time of the
early-exit network on different platforms. We observe that the
dynamic DNN is effective on all of them, as the average time is
always lower than the no early exits (orange bars). Furthermore
the pipeline approach is 1.5x faster than on a desktop CPU and
1.8x faster than the Jetson. The parallel approach, which ex-
ecutes the backbone and decision sub-network simultaneously,
is 1.2x faster than the pipeline approach in cases where an early
exit is not decided.

The pipeline and the parallel approaches showcase compar-
atively low energy consumption (fig.2(b)), requiring 0.52 mJ

C P U C P U
+ G P U

J e t s o n
X a v i e r

F P G A
(P i p e l i n e)

F P G A
(P a r a l l e l)

0

1 . 5

3

4 . 5

Ex
ec

uti
on

 Ti
me

 (m
s)

(a)

 w i t h o u t E a r l y E x i t
 w i t h E a r l y E x i t
 A v e r a g e 4 . 4 W

4 . 8 W

4 . 6 W 5 . 1 W

4 . 8 W

0 . 8 W 1 . 2 W

4 . 4 W
4 . 8 W

1 W 1 . 5 W

F P G A
(N o n - D y n a m i c)

J e t s o n
X a v i e r

F P G A
(P i p e l i n e)

F P G A
(P a r a l l e l)

0
1
2
3
4
51 01 52 02 53 0

En
erg

y C
on

su
mp

tio
n (

mJ
)

(b)

Fig. 2. Experimental results comparing (a) Execution time and (b) energy
consumption per sample. Average values are calculated based on the frequency
of the decision to early exit, which was calculated to be 94.37% yes and 5.63%
no.

and 0.71 mJ persample respectively. This equates to 8.5x and
6x less energy than on the Jetson, and 16x and 12x than a non-
dynamic FPGA LeNet-5 design. The effects of Dynamic DNN
on energy consumption are also highlighted, as even on Jetson
the average energy per inference was almost 2x less than than
the non-dynamic FPGA design.

Finally the parallel approach integrating the extra IPs for
the decision sub-network had higher energy consumption, but
avoided a 2.88kB data transfer to the memory and back. This
has minimal effect on a network like LeNet, but on deeper
networks, with more exit points and larger feature maps, can
have a higher impact.

V. CONCLUSION

In this paper we explored dynamic DNNs on FPGAS, con-
sidering two decision sub-network architectures, and compared
them to a desktop (CPU+GPU) system and an embedded
device. All implementations achieved the same inference accu-
racy, with FPGA implementations achieving fastest execution
and lowest energy consumption. Our future work, is to consider
and evaluate networks containing more layers and exit points.

ACKNOWLEDGMENTS

This work was supported by the Engineering and
Physical Sciences Research Council (EPSRC) under
EP/S030069/1. Data associated with this paper is available on
https://doi.org/10.5258/SOTON/D2514.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, G.Hinton. ”ImageNet classification with deep
convolutional neural networks”. in Conf. NeurIPS, 2012, pp.84–90.

[2] C. Shan, J. Zhang, Y. Wang, L. Xie. ”Attention-based end-to-end speech
recognition on voice search”. in Conf. ICASSP, 2018.

[3] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, K. Q. Weinberger.
”Multi-Scale Dense Convolutional Networks for Efficient Prediction”.
CoRR, 2017.

[4] Z. Chen, Y. Li, S. Bengio, S. Si. ”GaterNet: Dynamic Filter Selection in
Convolutional Neural Network via a Dedicated Global Gating Network.”
in Conf CVPR, 2019.

[5] L. Yang, Z. He, Y. Cao, D. Fan. ”Non-uniform DNN Structured Subnets
Sampling for Dynamic Inference.”, in Conf. DAC, 2020, pp.1–6.

[6] S. Teerapittayanon, B. McDanel, H. T. Kung. ”BranchyNet: Fast Inference
via Early Exiting from Deep Neural Networks.”, in Conf. ICPR, 2016.

[7] M. Wang, J. Mo, J. Lin, Z. Wang, L. Du. ”DynExit: A Dynamic Early-Exit
Strategy for Deep Residual Networks.”, in Conf. SiPS, 2019, pp.178–183.

[8] Y. Han, G. Huang, S. Song, L. Yang, Honghui Wang, and Yulin Wang.
”Dynamic neural networks: A survey.”, CoRR, 2021.

[9] X. Dai, X. Kong, T. Guo. ”EPNet: Learning to Exit with Flexible
Multi-Branch Network.”, in Int. Conf. on Information & Knowledge
Management, 2020, pp235–244.

