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[1] 2]  The sampling process is conducted separately for CPUs and GPUs, as the

most efficient sub-network architectures differed for these heterogeneous
computing resources. Each sub-network provided unique accuracy, latency,
and power/energy trade-offs.

* During runtime, the sampled sub-networks can be switched to meet the
desired performance targets, adapting to the time-varying available hardware

 DNN inference is increasingly being executed on mobile and embedded devices,
thanks to its low latency and improved privacy. However, DNN models are both
computationally and memory access intensive.

« Efficient deployment of DNN models faces three primary challenges:
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