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Runtime Algorithm and Hardware Management [1,5]

Dynamic Supernetwork [2, 6] 

• DNN inference is increasingly being executed on mobile and embedded devices, 

thanks to its low latency and improved privacy. However, DNN models are both 

computationally and memory access intensive.

• Efficient deployment of DNN models faces three primary challenges:

1. [Hardware Variability] Achieving consistent performance across platforms is 

difficult due to significant variations in hardware computing capabilities.

2. [Application Variability] A single DNN model (e.g., machine translation) can be 

utilized in various applications (e.g., real-time speech translation, text translation), 

but their performance requirements differ.

3. [Runtime Variability] The hardware resources available to the model may 

change during runtime due to factors such as thermal throttling or the DNN model 

sharing resources with other applications.
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• Traditional runtime resource 

management primarily focuses on 

hardware adjustments (e.g., DVFS, 

task mapping), treating DNN models as 

general applications and overlooking 

domain-specific optimization 

opportunities.

• In our research, we have developed 

dynamic neural networks that facilitate 

runtime adjustments for both algorithms 

and hardware.

Incremental Training and Group Convolution 

Pruning [1,3,4]

[1] [2]

[1]

• Convolution layers are divided into groups, which 

are trained incrementally.

• A dynamic neural network with four sub-network 

configurations is created. Each sub-network 

offered unique accuracy, latency, and 

power/energy trade-offs.

[3]

[1]

[4]

• Sub-networks are sampled from a pre-trained supernetwork, and a dynamic 

neural network is created using the sub-networks located on the Pareto-front 

of performance trade-off. 

• The sampling process is conducted separately for CPUs and GPUs, as the 

most efficient sub-network architectures differed for these heterogeneous 

computing resources. Each sub-network provided unique accuracy, latency, 

and power/energy trade-offs.

• During runtime, the sampled sub-networks can be switched to meet the 

desired performance targets, adapting to the time-varying available hardware 

resources.

Conclusion

• Our research addresses the challenges associated with the efficient deployment 

of DNN models on heterogeneous computing platforms.

• We have developed novel dynamic neural network methods for both static 

models and supernetworks.

• The proposed system framework offers great performance trade-off adaptability, 

and system efficiency through runtime resource management, which facilitates 

runtime adjustments for both algorithms and hardware, enabling system 

adaptation to the dynamic performance targets and available hardware 

resources.
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