
FedTM: Memory and Communication Efficient
Federated Learning with Tsetlin Machine

Shannon How Shi Qi∗, Jagmohan Chauhan∗, Geoff V Merrett†, Jonathan Hare∗
School of Electronics and Computer Science, University of Southampton, Southampton, UK

{s.how,j.chauhan,jsh}@soton.ac.uk∗, gvm@ecs.soton.ac.uk†

Abstract—Federated Learning has been an exciting devel-
opment in machine learning, promising collaborative learning
without compromising privacy. However, the resource-intensive
nature of Deep Neural Networks (DNN) has made it difficult
to implement FL on edge devices. In a bold step towards
addressing this challenge, we present FedTM, the first FL
framework to utilize Tsetlin Machine, a low-complexity machine
learning alternative. We proposed a two-step aggregation scheme
for combining local parameters at the server which addressed
challenges such as data heterogeneity, varying participating client
ratio and bit-based aggregation. Compared to conventional Fed-
erated Averaging (FedAvg) with Convolutional Neural Networks
(CNN), on average, FedTM provides a substantial reduction in
communication costs by 30.5× and 36.6× reduction in storage
memory footprint. Our results demonstrate that FedTM outper-
forms BiFL-BiML (SOTA) in every FL setting while providing
1.37 − 7.6× reduction in communication costs and 2.93 − 7.2×
reduction in run-time memory on our evaluated datasets, making
it a promising solution for edge devices.

Index Terms—Federated Learning, Tsetlin Machine,
Communication-Efficient

I. INTRODUCTION

Federated Learning (FL) has become increasingly popular
in recent years with a broad range of applications spanning
various domains such as Automatic Speech Recognition (ASR)
and Image Recognition [1]. As user data such as images
and personal information are highly sensitive in nature, FL
provides a solution to ensure data confidentiality and privacy
by allowing the data to remain on the client devices, rather than
being shared with a central server for training. With the rise of
an ever-increasing number of network-connected devices, such
as smartphones and Internet-of-Things (IoT) devices, there
is a growing demand towards developing communication-
efficient FL models that can cater to the requirements of edge
devices while preserving data privacy and achieving high-
quality learning outcomes.

The typical FL process uses neural networks that involve
rigorous arithmetic computation of gradient descent, multiple
rounds of learning on the client’s device, uploading and
downloading neural net parameters over the network and
aggregation on the server [2]. Given the heavy computational
and memory-intensive nature of neural networks, it is no
surprise that current FL methods might not be able to realize
the vision of FL on the edge. Combining this with other issues
such as high communication overheads, data heterogeneity,
and scalability, the operating scenario for FL at the edge
becomes extremely challenging [1].

In our work, we push the boundaries of FL by introducing
FedTM, a novel FL framework that leverages the Tsetlin
Machine (TM) [3] as an alternative to traditional neural net-
works. TM utilizes propositional logic and learning automata,
providing a low-complexity design with exceptional learning
capabilities, making it an excellent candidate for memory
and communication-efficient FL. Our two-step aggregation
approach with TopK and AverageCW offers a solution
to alleviate the challenge of aggregating bit-based representa-
tions, data heterogeneity and varied participating client ratio.
Through extensive experiments on three image datasets, we
demonstrate that FedTM achieves a compelling balance of ef-
ficiency and performance compared to the four baselines, and
outperform the BiFL-BiML (SOTA) approach while reducing
average communication costs across our evaluated datasets by
3.57×. Our work presents an exciting and promising avenue
to explore the potential of TM in the context of FL, opening
up new possibilities for efficient FL on edge devices.

In summary, our contributions are as follows:

• We proposed a FL framework based on the TM, which
offers a substantial reduction in parameter requirements
through logic-based formulation and bit-based representa-
tion, making TM a highly appealing alternative to neural
networks for FL.

• We introduced a two-step aggregation approach
with TopK to handle bit-based aggregation and
AverageCW to mitigate the challenge that comes
with aggregating TM parameters in the presence of data
heterogeneity and low participating client ratio.

• Our experiments on three image datasets demonstrated
that FedTM outperforms BiFL-BiML in all FL settings
while using 2.93− 7.2× less run-time memory and with
1.37 − 7.6× lower communication costs. Furthermore,
our framework performs significantly better than the 4
baselines in the presence of high data heterogeneity and
with varying ratios of participating clients.

To the best of our knowledge, FedTM is the first FL framework
that employs Tsetlin Machine to simultaneously enhance com-
munication efficiency and memory. By leveraging the distinct
properties of TM, we have developed a novel approach that
outperforms FL baselines in terms of memory and commu-
nication efficiency and we believe that our work represents a
significant step towards optimizing FL for edge devices.

II. BACKGROUND

We will first introduce Federated Learning, followed by the
concept of the Tsetlin Machine and how it works. We intend
this section to serve as a primer for our readers to get the
necessary background knowledge on TM to make our design
philosophy easy to understand in Section III.

A. Federated Learning

FL is deployed to allow distributed learning across an
extensive network of devices without sharing local data. As
a result, there is a central server to iteratively consolidate
the local parameters. Federated Averaging (FedAvg) [2] is
a widely adopted strategy for aggregation and it works as
described in Algorithm 1. Given N number of clients, the
server may choose to select a fraction of clients (J << N),
or use all clients to perform local model training (J = N).
It assumes the Stochastic Gradient Descent (SGD) method
where each client updates their weights by computing the
SGD of the global model for a predefined number of local
epochs, e and learning rate λ, on their dataset during each
communication round. The clients then transmit their weights
to the central server where they are aggregated based on their
dataset sizes |Dj | as seen in (1), to obtain the global model,
Wt at communication round t.

Wt =
1

|D|

J∑
j=1

|Dj |Wj
t (1)

This iterative process continues until communication round
T where the global model is finalized with WT .

Algorithm 1: FedAvg [2]

Server:
Initialize W0

for communication round t = 1, 2, ...T do
for client j = 1, 2, ...N do
Wj

t ← ClientUpdate(j,Wt−1)
Wt =

1
|D|

∑J
j=1 |Dj |Wj

t

ClientUpdate(j,W):
for epoch i = 1, 2, ...e do

for batch b = 1, 2, ...B do
W←W − λ∇ℓ(b,W)

return W to server

B. Tsetlin Machine Primer

The Tsetlin Machine (TM) is an innovative machine-
learning algorithm that relies on propositional logic. It employs
logic expressions as building blocks to identify distinctive
patterns in data. In contrast to DNNs, the TM first converts raw
data into booleans, enabling the construction of conjunctive
clauses from literals, which are the input variables (X) and
their negations (¬X). The TM is composed of three fundamen-
tal modules, as shown in Fig. 1: the clause computing mod-
ule, the summation and threshold module, and the feedback

module. The clause computing module consists of teams of
Tsetlin Automata (TA), which are finite state machines (FSMs)
that control the output of each clause. The TA has internal
states that decide on the inclusion or exclusion of the input
features and their negations, using the AND bitwise operator.
Half of the clauses have positive polarity (C+) and the other
half has negative polarity (C−). The positive clauses are used
to identify class Y = 1, while the negative clauses are used to
identify class Y = 0. During a training cycle, the output of the
clause computing module is summed using a weighted or non-
weighted voting mechanism that indicates class confidence,
regulated by a predetermined threshold. The feedback module
then compares the expected output (Ŷ) with the actual output
(Y) and assigns reinforcements, either penalty or reward, to
the TA states. The probability of a penalty or reward in the
automaton is influenced by a preset learning sensitivity value
that controls the flexibility with which the TAs can transition
between states [4]. The cycle ends when the TA updates its
states and actions based on the reinforcements. This process
repeats until a prescribed objective is met. Finally, inference is
performed with the final states and actions of the TA, without
the feedback module [3].

Fig. 1: The TM employs multiple teams of TA to construct dis-
criminative conjunctive clauses with classification determined
through majority voting based on the clause outputs [4].

1) Tsetlin Machine Architecture: Each clause composes of
a collective of TAs and each TA is represented with bits
such that state indexes of the TAs of a clause are represented
with several bit sequences. The action of each TA is then
derived from the most significant bit which is computed from
a series of bitwise operators as seen in Fig. 2. This is required
for inference and the other bit sequences can be dropped
as they are used only for training, which minimizes the
memory footprint of TMs [3]. Additionally, only incremental

Fig. 2: Example of the bit-based representation with sequence
8 as the most significant bit which is derived from a series of
bitwise operators (NOT, AND, CMP - comparison) [3].

and decremental operations are used during learning which
further reduces the memory usage of TMs, making TMs ideal
for deployment on devices with limited memory [4].

2) Convolutional Tsetlin Machine (CTM): CTM aims to
learn better sub-patterns by using clauses as convolution filters
that will be computed multiple times based on the patch size.
During training, a single patch is randomly chosen to be used
for updating a clause. Since each clause outputs values instead
of a single output for TM, the outcome of this computation
on each patch will be combined with the OR bitwise operator
to form the output of a convolution clause [5]. For a given
positive clause C+

i , the output is the combination of the
positive clauses, cb,+i , on each patch, b:

C+
i [m] =

B∨
b=1

cb,+i (2)

Additionally, in the multi-class scenario, the TA teams
corresponding to class Y = m are trained as per Y = 1
and a random class Y ̸= m is selected to train as per
Y = 0. Feedback is modulated based on the weighted sum
of clause outputs and a threshold. The final classification is
then computed using the argmax operator to output the class
Ŷ with the largest sum [3]:

Ŷ = argmax
m=1...M

(

c/2∑
i=1

W+
i [m]C+

i [m]−
c/2∑
i=1

W−
i [m]C−

i [m]) (3)

The CTM further reduces the overall complexity by re-
iterating with the same TM across the whole data, focusing
on a specific patch at a time, enabling it to learn sub-patterns
as well as simple Convolutional Neural Networks (CNN), on
various MNIST datasets while using less memory [5].

III. DESIGN OF FEDTM

Motivated by the logic-based formulation and bit-based
representation of TMs [3], we propose FedTM for memory
and communication efficient FL. Unlike neural networks in
which the server aggregates the floating point parameters with
FedAvg [2], FedTM requires a two-step aggregation approach
to independently aggregate the clause weights and states which
will be described next. An overview of FedTM is provided in
Algorithm 2.

A. Integer Clause Weights Aggregation

TM constructs patterns with conjunctive clauses that are
built from literals [5]. Clause weighting enhances accuracy,
reduces computation time and memory usage as it replaces
multiple clauses with one, and this improves the influence of
each clause [6]. In TM, there exists c number of clauses for
each class (m = 1...M), as in (3). In order for the clause
weights to be aggregated at every communication round, all
J participating clients, would have to upload M ∗ c local
parameters each to the server.

Algorithm 2: FedTM
Server:

1. Initialize global parameters W0,S0 with the same TM
architecture and clients inform the server of their local
dataset sizes, |Dj |, j = 1, 2, ...N
for communication round t = 1, 2, ...T do

2. For all participating clients, J , train a TM model with
the current weights, Wt−1 on their local dataset, Dj , for
e epochs
3. Clients upload their local parameters
Server:
4. Aggregation of clients’ parameters
for class m = 1, 2, ...M do

Wt[m]←AverageCW(m, δ, t)
St[m]←TopK(m, k, t)

5. All clients download the new global parameters:
Wt,St

AverageCW(m, δ, t):
Wt[m]← int(1

|D|
∑J

j=1 |Dj |Wj
t [m])

if t > 1 then
if ∀Jj=1W

j
t [m] = 0 then

Wt[m] ← Wt−1[m] ▷ if class m is not
seen in round t of training then use previous
weights

else
Wt[m]← (1− δ)Wt−1[m] + δWt[m]

return int(Wt[m])

TopK(m, k, t):
sorted list← sort(∀Jj=1|Dj |[m])
sortedk ← sorted list[0 : k]
St[m]←

∨sortedk

j Sj
t [m]

return St[m]

Inspired by FedAvg [2], we aggregate the c integer clause
weights for each class m, for the participating J clients using
a weighted average based on their dataset sizes as in (4).

W[m]← int(
1

|D|

J∑
j=1

|Dj |Wj [m]) (4)

However, the existence of class imbalance can pose a
significant challenge for FedTM. As each class has its clause
weights, in the presence of data heterogeneity and low partic-
ipation client ratio, a particular class can be under-represented
at communication round t. Therefore, the global model may
not make accurate predictions for that class, resulting in
continued poor performance throughout the FL process. There-
fore, to allow for sustained learning, we utilize the clause
weights at communication round t − 1 for the classes that
are not present at communication round t.

Additionally, the clause selection to be used in the voting
mechanism in (3) is determined by a predefined threshold
parameter. This indicates that a bigger threshold value means

more clauses participate in the voting and impact the feedback
to TA states. Since the clients repeatedly train with the global
model on their local dataset, the weights of the clauses are
also being incremented or decremented accordingly [5]. The
threshold is kept unchanged throughout the training process,
so increasing the training epochs would inherently increase
the overall magnitude of the clause weights, causing the FL
training to be slow after some communication rounds when
the clause weights gets bigger and closer to the threshold.

We propose a solution to address the issue of rapidly
growing clause weights by introducing a scaling parameter,
denoted by δ as in (5).

Wt[m]← (1−δ)Wt−1[m]+δ

 1

|D|

J∑
j=1

|Dj |Wj
t [m]

 (5)

This parameter prevents the magnitude of clause weights from
increasing excessively after each communication round, and
also ensures fair treatment of classes in the presence of high
data heterogeneity with a low number of participating clients.
Overall, it helps to maintain consistency in the magnitude of
clause weights between consecutive communication rounds,
even when certain classes are absent. Our experiments in
the non-IID scenario, as illustrated in Section V, Fig. 5,
demonstrate the effectiveness of our approach in achieving
consistent performance across varying participation ratios.

B. States Aggregation
Since TAs are represented as bits, integer aggregation cannot

be applied to the states of the TAs. In TM, the OR bitwise op-
erator is used between conjunctive clauses to jointly represent
sub-patterns with a single clause [7]. We applied this principle
between the TA states of each clause across all clients for each
class m, Sj [m], to represent the same pattern that is expressed
differently with a single clause, S[m] as shown in (6).

S[m]←
J∨

j=1

Sj [m] (6)

However, there are limits on using bit representation (i.e.
0-4294967295 for a 32-bit unsigned integer), so combining
all TA states across all N clients will result in the quick
convergence to the limit, resulting in the learning of the FL
system going stale as seen in Fig. 3.

As the clause weights do not influence the TA state updates
[5], the aggregation of TA states can be done independently
from the clause weights aggregation meaning that if J selected
clients partake in the clause weights aggregation, it does not
require for all J selected clients to also partake in the TA state
aggregation. Therefore, we introduce TopK, to prevent stale
learning by only using a predetermined number of clients, K,
to aggregate the states. Since the parameters are computed
across clients for each class, we will select K clients based
on the confidence of the TA states, using the clients with the
top K size for the particular class. This further minimizes
the communication costs as only K clients’ parameters are
required to be uploaded at each communication round.

Fig. 3: An example of how the number of participating clients
(K), with 32-bit representation, affects convergence of FL on
the MNIST dataset with 100 clients

IV. EXPERIMENTAL SETUP

We describe our experimental setup in detail in this section.
1) Baselines: To make a fair comparison with the existing

works, we benchmark the performance of FedTM with the
following four baseline models:

• FA (CNN): A Convolutional Neural Network (CNN) as
the base model with FedAvg (Algorithm 1).

• BiFL-FULL: A Binary Neural Network (BNN) as the
base model with FedAvg and full-precision parameters
uploaded and downloaded.

• BiFL-Bi-UpDown: BNN as the base model with bina-
rized parameters uploaded and downloaded.

• BiFL-BiML: BNN as the base model with binarized
parameters uploaded but downloaded parameters are esti-
mated with Maximum Likelihood to provide more robust
parameter updates at reduced communication cost.

Note that the term BiFL encompasses all variations.
2) Datasets: The datasets that we used to evaluate the

different frameworks are MNIST [8], Extended MNIST (FEM-
NIST) [9] and Fashion-MNIST (F-MNIST) [10]. All datasets
are downloaded and preprocessed with PyTorch [11].

• MNIST: A dataset of handwritten digits with 10 classes.
It contains 28x28 greyscale images with 60,000 training
data and 10,000 testing data.

• FEMNIST: The extended version of MNIST which con-
tains 814,255 characters with 62 unbalanced classes.
Similar to BiFL [12], we only used a subset of the entire
dataset for training and testing.

• F-MNIST: A dataset of Zalando’s article images with
10 classes. It also contains 28x28 greyscale images with
60,000 training data and 10,000 testing data.

3) Evaluation Metrics: We ran each experiment on 5 in-
dependently initialized dataset partitions and evaluated them
on the testing dataset after 100 communication rounds. We
present the average of each experiment as the accuracy mea-
sure. The total upload and download communication costs are
recorded for each communication round in terms of the size of
the communicated parameters between the server and the 100
clients. We ran all experiments on a general compute node with
32 CPU cores and recorded the average latency of training the

model at each client and estimated the run-time memory using
PyPi’s memory-profiler and PyTorch Profiler [11].

4) Data Distribution: Data distribution is done by sampling
class priors from a Dirichlet distribution, in which a parameter
α is used to determine the heterogeneity of splits [13]. As
α −→ 0, the partitions tend to get more heterogeneous but
when α −→ ∞, the partitions tend to get more identical. For
our experiments, we used α = 10000 as the IID (Independent
and Identically Distributed) setting. For the non-IID setting,
we use α = 1 for low heterogeneity and α = 0.01 for high.

5) Model Configurations and FL Setup: The default FL
system for the experiments consists of one server with N =
100 clients and each experiment is carried out for 100 com-
munication rounds. We used all N clients for aggregation at
each communication round unless stated otherwise.

• We evaluated FA (CNN) using a CNN with 2 convolu-
tional layers and 2 fully connected layers with a softmax
function to output the predicted labels [12]. BiFL uses
a BNN with the same structure as the 2-layer CNN, but
with binarized convolutional and fully-connected layers.

• Decaying learning rate after the 30th and 60th round:
{0.005, 0.002, 0.001} for MNIST and F-MNIST,
{0.0003, 0.0001, 0.00005} for FEMNIST as specified in
the paper [12].

• The CTM model for FedTM varies for each dataset,
and we specify the values for each definable parameter
and the local epochs in Table I. We used δ = 0.1 in
AverageCW for all the experiments. As observed in
Fig. 3, we select K = 2 for TopK as it provides the
optimal learning rate for FedTM.

• Since TM requires booleanized input, for the MNIST and
FEMNIST data we encoded our data by replacing pixel
values larger than 75 with 1 and below or equal to 75
as 0. As for the F-MNIST dataset, we referred to the
original CTM paper and binarized it with an adaptive
Gaussian thresholding procedure with window size 11
and threshold value 2 [5].

TABLE I: FedTM model configuration for all datasets

MNIST FEMNIST F-MNIST
Number of clauses 100 300 200

Feedback Threshold 1000 1000 1000
Learning Sensitivity 5 5 5

Patch-Dimension (10,10) (10,10) (5,5)
Local Epochs 100 50 100

V. RESULTS

A. Performance on IID data distribution

To begin, we assess the effectiveness of various techniques
when applied to the IID data distribution. Our evaluation
criteria include accuracy, communication costs and latency.
In FedTM, each client will send their clause weights and TA
states to the server using 32-bit integers for clause weights
and 32-bit unsigned integers for the TA states representation.
To compute the upload cost, we consider a fixed number of
clauses (c) and classes (M). For each class, J participating

clients upload their clause weights, resulting in a total of
J ∗ c ∗M parameters. However, since we are using TopK,
only the TA states of a maximum of K clients are required
for aggregation, reducing the cost to K ∗M∗ number of TA
states. For the download phase, all clients retrieve the global
model containing the clause weights and TA states.

Table II show that FedTM outperforms BiFL-Bi-UpDown
and BiFL-BiML, with lower communication costs than BiFL-
BiML by 1.75×, 7.6× and 1.37× across the MNIST, FEM-
NIST, and F-MNIST datasets, FedTM achieves higher accu-
racy and exhibits less fluctuation during training as observed
in Fig. 4. This is most likely because FedTM trains the
dataset with more local epochs during each communication
round, resulting in higher test accuracy and less fluctuation
during training. While FedTM exhibits a slight performance
difference from FA (CNN) and BiFL-FULL, the substantial
reduction in communication costs by 16.45×, 63.47×, and
11.58× on the evaluated datasets justifies a small trade-off
between accuracy and efficiency especially in cases where
edge devices might be involved and communication costs are
more prohibitive than the computational costs.

Despite the additional local training performed by FedTM,
the latency is not significantly impacted. It takes an average
of 0.89 seconds for each client in FedTM to train for MNIST,
1.93 seconds for FEMNIST and 2.07 seconds for F-MNIST.
This is compared to 1.93, 8.85 and 1.91 seconds for BiFL.

B. Data Heterogeneity

We evaluate the methods on non-IID data with the same
settings as in the IID experiments, without additional hyper-
parameter tuning, consistent with other FL experiments [12],
[14]. As presented in Table III, the algorithms perform rel-
atively well when data heterogeneity is low, comparable to
the performance on the IID data distribution. However, as
data heterogeneity increases, the performance of all algo-
rithms diverges. This divergence occurs because the local
data distribution progressively deviates from the global data
distribution, leading to a corresponding divergence in the local
parameters from the global parameters, hence a decline in the
ideal performance. It is worth noting that the other baseline
methods deviates significantly from their IID setting compared
to FedTM and FedTM easily outperforms all baseline models
when data heterogeneity is high.

C. Effect of Number of Participation Clients

As only a subset of participants can be expected to be
connected to the server at any point in time, participation ratio
is an important characteristic of FL. We evaluated the impact
of the number of participating clients for aggregation using
the same experimental setup and evaluation metrics with 100
clients for 100 communication rounds. However, instead of
having all 100 clients participate in the aggregation at each
round, as in the above experiments, we varied the number of
clients to be {10,30,50}. Our results are shown in Fig. 5.

In general, the number of participating clients did not sig-
nificantly affect the performance in the IID setting. However,

TABLE II: Test Accuracy and Communication Costs of 100 clients on IID data distribution (α = 10000)

MNIST FEMNIST F-MNIST
Accuracy Upload/Download Accuracy Upload/Download Accuracy Upload/Download

(%) (MB per round) (%) (MB per round) (%) (MB per round)
FA (CNN) 98.41 32.9/32.9 80.84 2640/2640 87.74 32.9/32.9

BiFL-FULL 97.12 32.9/32.9 79.27 2640/2640 87.40 32.9/32.9
BiFL-Bi-UpDown 83.70 1.0/1.0 57.36 82.6/82.6 73.23 1.0/1.0

BiFL-BiML 91.16 1.0/6.8 61.57 82.6/550 82.18 1.0/6.8
FedTM 94.85 0.47/4.0 69.50 8.78/74.4 83.36 0.88/4.8

Fig. 4: Comparison of convergence speed between FedTM and the baselines

TABLE III: Test Accuracy (%) on non-IID data distribution

MNIST FEMNIST F-MNIST

Low

FA (CNN) 97.66 77.30 85.98
BiFL-FULL 96.48 76.01 85.82

BiFL-Bi-UpDown 83.15 57.14 77.54
(α = 1) BiFL-BiML 88.04 65.23 80.82

FedTM 94.72 70.24 82.64

High

FA (CNN) 59.61 12.43 33.07
BiFL-FULL 11.53 13.91 13.06

BiFL-Bi-UpDown 11.03 8.64 18.29
(α = 0.01) BiFL-BiML 10.22 12.24 13.10

FedTM 69.61 44.25 50.36

we did observe a slight improvement in FedTM’s performance
with a smaller client participation ratio. This suggests that we
could potentially use fewer devices and still maintain FedTM’s
performance while reducing communication costs further.

For non-IID data with varying numbers of participating
clients, it remains a significant challenge for BiFL as FL
training does not guarantee convergence. However, a varied
number of participating clients does not affect the performance
of FedTM as much as BiFL. This suggests that FedTM is
better equipped to handle non-IID data scenarios and can be
potentially deployed in constrained environments where the
available number of connected devices is limited.

D. Scalability

We also evaluated the performance of FedTM in terms of
scalability in both the cross-silo and cross-device setting. We
conducted our experiments for 10 clients in the cross-silo
setting and increased the number of clients to 200 in the cross-
device setting. The results demonstrate that all FL algorithms

Fig. 5: Effect of participating clients on performance

varies similarly with FedTM outperforming BiFL-Bi-UpDown
and BiFL-BiML with a varying number of clients, suggesting
that FedTM can be an efficient solution to large-scale FL
applications.

E. Memory Costs

Model storage size is an important consideration, partic-
ularly for edge devices with limited storage capacity. We
compared the model storage size of FedTM with that of FA
(CNN) and BiFL. As shown in Table IV, we observed that the

Fig. 6: Testing accuracy with different number of clients

bit-based representation used in CTM significantly reduced the
number of parameters required for model storage, making it a
more storage-efficient option for edge devices. Notably, CTM
used in FedTM is considerably smaller than that of the CNN
and BNN (BiFL-FULL) with reductions of 8.24×, 35.7×, and
6.6× across the evaluated datasets. The low storage costs for
BiFL-Bi-UpDown and BiFL-BiML compared to FedTM come
at the expense of reduced accuracy as seen in Table II and III.
Overall, the smaller size of FedTM maintains a good balance
between accuracy and efficiency.

TABLE IV: Memory Storage (MB) of the algorithms used in
our experiments

Dataset
MNIST FEMNIST F-MNIST

FA (CNN) 0.33 26.43 0.33BiFL-FULL
BiFL-Bi-UpDown 0.01 0.83 0.01BiFL-BiML

FedTM 0.04 0.74 0.05

We also computed the average run-time memory for FedTM
and BiFL per client during training. Table V shows that
FedTM has significantly lower run-time memory usage per
client compared to BiFL that utilizes auxiliary real-valued
weights for training [12], which contributed to their higher run-
time memory usage. Specifically, CTM used 2.93×, 4.98×,
and 7.2× less run-time memory than BNN. Overall, our results
suggest that FedTM is not only storage-efficient but is also
more memory-efficient than BiFL.

TABLE V: Run-time Memory (MB) of each client

Dataset
MNIST FEMNIST F-MNIST

BiFL 30.60 355.9 30.28
FedTM 10.45 71.4 4.20

VI. DISCUSSION

FedTM consistently performs well compared to FL with
neural networks, achieving peak accuracy within 30 commu-
nication rounds across all datasets. Moreover, FedTM exhibits
robustness against varying numbers of participating clients,
enabling the reduction of communication costs by ensuring
convergence with fewer participants and reduced number of
communication rounds. While data heterogeneity can lead to
a slight trade-off between efficiency and accuracy, we suggest

exploring sparser representations for the states of each TA to
improve performance while minimizing communication costs.
Furthermore, future work could also focus on deriving a theo-
retical proof for the scaling parameter, δ in our AverageCW
approach to enhance the performance of FedTM. While our
experiments showed promising results, particularly with the
image datasets, we plan to extend FedTM’s capabilities to
constrained devices and to other domains such as audio and
Natural Language Processing (NLP) to prove its generality.

VII. RELATED WORK

Federated Learning (FL) has gained significant traction due
to its ability to address concerns related to data privacy.
However, challenges arise due to data heterogeneity and client
selection, which impact communication overhead. To tackle
data heterogeneity, several techniques have been proposed,
such as encoding local seed samples for data reconstruction
at the server [15], clustering users based on contextualization
[16] and bi-partitioning [17], and knowledge distillation [18].

The FedAvg algorithm [2], known for its ability to randomly
select clients for aggregation, may lead to slow training
efficiency and performance due to the variability of commu-
nication and computing resources among the clients. Various
client selection techniques have been proposed to overcome
this challenge. Some techniques aim to aggregate local clients
that can benefit the global model [19]–[21], while others
focus on balancing the label distribution of the participants
[22]. Additionally, some techniques only select clients with
a lower degree of data heterogeneity [23]. These methods
have shown promising results in improving the efficiency and
performance of FL models, and further research can explore
their effectiveness in different scenarios.

However, the aforementioned challenges of FL exacerbate
communication costs. To mitigate these costs, various methods
have been proposed such as enabling more device-level com-
putations [24], [25] or introducing additional variables [24],
[26], [27] to reduce the number of required communication
rounds for convergence. Other common techniques include
quantization [28], [29], sparsification [30], [31] and pruning
[14], [19], [32], which reduce the upload size of updates. These
approaches have successfully reduced communication costs
while maintaining comparable performance. Notably, BiFL
has demonstrated effective training of Binary Neural Networks
(BNN) with lower storage memory and communication costs
while maintaining sufficient performance.

FL systems rely on neural networks due to their powerful
pattern recognition capabilities, which has led to a focus on
resolving FL challenges based on neural network training
in prior research. However, the computational complexity of
training and optimizing neural networks presents significant
challenges. The Tsetlin Machine (TM), a logic-based machine
learning framework, offers a promising alternative to neural
networks by significantly reducing parameter requirements
while maintaining competitive performance in a range of ap-
plications, including low-power audio keyword spotting [33],
natural language understanding [34], and computer vision [35].

Furthermore, TM’s reliance on logic operations and energy-
efficient propositional logic-based learning makes it appealing
for hardware implementations and constrained devices [4].

The earliest implementation of FL with neural networks on
microcontrollers relied on transfer learning [36]. However, this
approach only focused on re-training the weights of the last
fully-connected layer for inference, neglecting the training of
the entire model on the local dataset. As a result, this approach
can lead to significant accuracy degradation due to the lack
of comprehensive training. Furthermore, this method requires
higher memory storage compared to the innovative techniques
used in FedTM and BiFL. In comparison, our approach is the
first to leverage the potential of TM that can enable practical
realization of FL on many edge devices.

VIII. CONCLUSIONS

In this paper, we introduced FedTM, a novel FL framework
that utilizes the Convolutional Tsetlin Machine to significantly
reduce communication and memory costs while maintaining
FL’s performance. Our two-step aggregation scheme with
TopK and AverageCW effectively addresses challenges
such as data heterogeneity, client participation ratio, and bit-
based parameter aggregation. FedTM was compared with
four baselines, and the results demonstrated that it provides
a promising tradeoff between efficiency and performance.
Notably, FedTM outperforms all baselines for the non-IID
scenario with varying numbers of participating clients, and sig-
nificantly outperforms BiFL-BiML in all FL settings, reducing
communication costs by 1.37−7.6× and run-time memory by
2.93− 7.2×. To further explore the scalability and generality
of FedTM, future work could focus on addressing challenges
such as data heterogeneity and client selection. As the first FL
framework utilizing TMs, FedTM shows great potential for
efficient FL with TMs on edge devices.

ACKNOWLEDGMENT

This work was supported by the UK Research and
Innovation (UKRI) Centre for Doctoral Training in Ma-
chine Intelligence for Nano-electronic Devices and Systems
[EP/S024298/1] and the Engineering and Physical Sciences
Research Council (EPSRC) International Centre for Spatial
Computational Learning [EP/S030069/1].

REFERENCES

[1] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A Survey
on Federated Learning for Resource-Constrained IoT Devices,” IEEE
IoT-J, vol. 9, no. 1, pp. 1–24, 2022.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in AISTATS, 2016.

[3] O.-C. Granmo, “The Tsetlin Machine - A Game Theoretic Bandit Driven
Approach to Optimal Pattern Recognition with Propositional Logic,”
2021.

[4] J. Lei, A. Wheeldon, R. Shafik, A. Yakovlev, and O.-C. Granmo, “From
Arithmetic to Logic based AI: A Comparative Analysis of Neural
Networks and Tsetlin Machine,” in IEEE ICECS, pp. 1–4, 2020.

[5] O.-C. G. et al., “The Convolutional Tsetlin Machine,” 2019.
[6] A. Phoulady, O.-C. Granmo, S. R. Gorji, and H. A. Phoulady, “The

Weighted Tsetlin Machine: Compressed Representations with Weighted
Clauses,” 2020.

[7] L. Jiao, X. Zhang, and O.-C. Granmo, “On the Convergence of Tsetlin
Machines for the AND and the OR Operators,” 2021.

[8] L. Deng, “The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web],” IEEE SPM, vol. 29,
no. 6, pp. 141–142, 2012.

[9] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: Extending
MNIST to handwritten letters, year=2017,” in IJCNN, pp. 2921–2926.

[10] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms,” 2017.

[11] P. A. et al., “PyTorch: An Imperative Style, High-Performance Deep
Learning Library,” in NeurIPS, 2019.

[12] Y. Yang, Z. Zhang, and Q. Yang, “Communication-Efficient Federated
Learning With Binary Neural Networks,” IEEE JSAC, vol. 39, no. 12,
pp. 3836–3850, 2021.

[13] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the Effects of Non-
Identical Data Distribution for Federated Visual Classification,” 2019.

[14] L. A. et al., “Hermes: An Efficient Federated Learning Framework for
Heterogeneous Mobile Clients,” MobiCom, p. 420–437, 2021.

[15] M. S. et al., “XOR Mixup: Privacy-Preserving Data Augmentation for
One-Shot Federated Learning,” 2020.

[16] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three Approaches for
Personalization with Applications to Federated Learning,” CoRR, 2020.

[17] F. Sattler, K.-R. Müller, and W. Samek, “Clustered Federated Learn-
ing: Model-Agnostic Distributed Multitask Optimization Under Privacy
Constraints,” IEEE TNNLS, vol. 32, no. 8, pp. 3710–3722, 2021.

[18] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble Distillation for
Robust Model Fusion in Federated Learning,” in NeurIPS, pp. 2351–
2363, 2020.

[19] L. S. et al., “Joint Model Pruning and Device Selection for
Communication-Efficient Federated Edge Learning,” IEEE TCOMM,
vol. 70, no. 1, pp. 231–244, 2022.

[20] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
Federated Learning via Guided Participant Selection,” in USENIX OSDI,
pp. 19–35, 2021.

[21] D. Y. et al., “AUCTION: Automated and Quality-Aware Client Selection
Framework for Efficient Federated Learning,” IEEE TPDS, vol. 33, no. 8,
pp. 1996–2009, 2022.

[22] M. J. et al., “Client Selection Based on Label Quantity Information for
Federated Learning,” in IEEE PIMRC’21, pp. 1–6.

[23] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client Selection
for Federated Learning With Non-IID Data in Mobile Edge Computing,”
IEEE Access, vol. 9, pp. 24462–24474, 2021.

[24] X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Federated Learning
with Additional Mechanisms on Clients to Reduce Communication
Costs,” 2019.

[25] L. Y. et al., “FedBCD: A Communication-Efficient Collaborative Learn-
ing Framework for Distributed Features,” IEEE TSP, vol. 70, pp. 4277–
4290, 2022.

[26] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in MLSys, 2020.

[27] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,
and V. Saligrama, “Federated Learning Based on Dynamic Regulariza-
tion,” in ICLR, 2021.

[28] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-Efficient SGD via Gradient Quantization and Encod-
ing,” in NeurIPS, vol. 30, 2017.

[29] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, “Ternary Compression for
Communication-Efficient Federated Learning,” IEEE TNNLS, vol. 33,
no. 3, pp. 1162–1176, 2022.

[30] R. et al., “FetchSGD: Communication-Efficient Federated Learning with
Sketching,” ICML, 2020.

[31] A. F. Aji and K. Heafield, “Sparse Communication for Distributed
Gradient Descent,” in EMNLP, 2017.

[32] J. Y. et al., “Model Pruning Enables Efficient Federated Learning on
Edge Devices,” IEEE TNNLS, pp. 1–13, 2022.

[33] L. J. et al., “Low-Power Audio Keyword Spotting Using Tsetlin Ma-
chines,” JLPEA, vol. 11, no. 2, 2021.

[34] R. Saha, O.-C. Granmo, V. I. Zadorozhny, and M. Goodwin, “A
Relational Tsetlin Machine with Applications to Natural Language
Understanding,” 2021.

[35] S. Glimsdal and O.-C. Granmo, “Coalesced Multi-Output Tsetlin Ma-
chines with Clause Sharing,” 2021.

[36] K. Kavya and L. Eric, “TinyFedTL: Federated Transfer Learning on
Tiny Devices,” 2021.

