In situ observation of fluoride-ion-induced hydroxyapatite–collagen detachment on bone fracture surfaces by atomic force microscopy

Kindt, J.H., Thurner, P.J., Lauer, M.E., Bosma, Bonnie, Schitter, Georg, Fantner, Georg E., Izumi, Michi, Weaver, James C., Morse, Daniel E. and Hansma, Paul K. (2007) In situ observation of fluoride-ion-induced hydroxyapatite–collagen detachment on bone fracture surfaces by atomic force microscopy. Nanotechnology, 18, (13), 135102-135110. (doi:10.1088/0957-4484/18/13/135102).


Full text not available from this repository.


The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ~70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ~10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein–hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1088/0957-4484/18/13/135102
ISSNs: 0957-4484 (print)
Related URLs:
Subjects: R Medicine > RZ Other systems of medicine
Q Science > QP Physiology
Divisions : University Structure - Pre August 2011 > School of Engineering Sciences > Bioengineering Sciences
ePrint ID: 48333
Accepted Date and Publication Date:
Date Deposited: 12 Sep 2007
Last Modified: 31 Mar 2016 12:24

Actions (login required)

View Item View Item