
Fluid Dynamic DNNs for Reliable and Adaptive
Distributed Inference on Edge Devices

Lei Xun*†, Mingyu Hu*†, Hengrui Zhao†, Amit Kumar Singh‡, Jonathon Hare†, Geoff V. Merrett†
†School of Electronics and Computer Science, University of Southampton, UK

‡School of Computer Science and Electronic Engineering, University of Essex, UK
Email: {l.xun, mh1u20, hz20u22}@soton.ac.uk, a.k.singh@essex.ac.uk, {jsh2, gvm}@ecs.soton.ac.uk

* Equal Contributions

Abstract—Distributed inference is a popular approach for
efficient DNN inference at the edge. However, traditional Static
and Dynamic DNNs are not distribution-friendly, causing system
reliability and adaptability issues. In this paper, we introduce Fluid
Dynamic DNNs (Fluid DyDNNs), tailored for distributed inference.
Distinct from Static and Dynamic DNNs, Fluid DyDNNs utilize a
novel nested incremental training algorithm to enable independent
and combined operation of its sub-networks, enhancing system
reliability and adaptability. Evaluation on embedded Arm CPUs
with a DNN model and the MNIST dataset, shows that in scenarios
of single device failure, Fluid DyDNNs ensure continued inference,
whereas Static and Dynamic DNNs fail. When devices are fully
operational, Fluid DyDNNs can operate in either a High-Accuracy
mode and achieve comparable accuracy with Static DNNs, or in
a High-Throughput mode and achieve 2.5x and 2x throughput
compared with Static and Dynamic DNNs, respectively.

Index Terms—Fluid Dynamic DNNs, Distributed Inference

I. INTRODUCTION

DNN inference is increasingly being executed on edge
devices due to advantages of latency, privacy and always-
on availability. However, DNNs are computationally inten-
sive, which makes efficient edge deployments a challenge
[1]. Previous works have addressed this challenge through
static model compression to fit DNNs into available hardware
resources [2], and Dynamic DNNs [3]–[6] (Fig. 1a) which
contain multiple switchable sub-networks with different widths
and latency/accuracy trade-offs. They can adapt to dynamically
changing available hardware resources at runtime.

Distributed inference is an orthogonal approach, which par-
titions a DNN into sub-tasks and deploys them on multiple
devices for parallel computing. Existing works mostly follow
a distributed framework in which one device is selected as the
Master for making decisions of partitioning and distribution,
while other devices used as Worker for receiving and executing
the workloads [7], [8]. However, existing Static and Dynamic
DNNs (Fig. 1a) are not distribution-friendly in this framework
due to the high dependencies between their sub-networks to get
correct inference, leading to low adaptability on device usage.

Meanwhile, physical devices in a distributed system could
completely fail due to factors such as power outages and
hardware/software failures, leading to reliability issues [9].
When the Worker fails (Fig. 1b), the Static DNNs on the Master
also fail because it doesn’t have enough resources on its own.
In contrast, the Dynamic DNNs can adapt by switching to
a smaller sub-network (e.g. 50% model) on the Master. This
allows it to keep the expected performance with a temporary
accuracy loss. However, when the Master fails (Fig. 1c), the

Static DNN

25% 50% 75% 100%

Dynamic DNN
A A B C DA B CA B

Upper 50%Upper 25%

Fluid Dynamic DNN
C* C* D*

(a)

Work independently Can’t work

(b) Worker (right) device fails

A C 
FluidDynamicStatic

D B A B C* D* 

(c) Master (left) device fails

FluidDynamicStatic
A B C* D* A C D B

Fig. 1. (a) Overview of three types of DNN model (b) under worker device
failure and (c) master device failure scenarios of distributed DNN inference.

Static and Dynamic DNNs on the Worker fail too because these
model weights cannot be used independently. To further address
the system reliability and adaptability issues, we introduce
Fluid DyDNNs, and the main contributions of this paper are:

• A Fluid DyDNN model trained by a novel nested incre-
mental training algorithm, reducing dependencies between
sub-networks and enhancing reliability and adaptability.

• Experimental results show it can maintain inference during
single-device failures. With both devices online, it can
adapt to either match Static DNNs’ accuracy or improve
throughput by up to 2.5x with temporary accuracy loss.

II. FLUID DYNAMIC NEURAL NETWORKS

Fluid DyDNNs (Fig. 1a) reduce the dependencies between
their sub-networks. Unlike traditional Dynamic DNNs, where
larger sub-networks contain and depend on the weights of
smaller ones, Fluid DyDNNs operate with a modular design.
This design has discrete sub-networks, in an example of 4 sub-
networks, the additional upper 25% and 50% model derive their
weights from the 50-75% and 50-100% model, respectively.
These sub-networks can function autonomously or be integrated
with the lower 50% model to enhance accuracy, forming more
accurate 75% and 100% models.

A. Nested Incremental Training
To train a Fluid DyDNN model, we introduce a novel nested

incremental training method outlined in Algorithm 1, with an
example of 4 sub-networks but it is applicable to any number.
Initially, A Dynamic DNN with 4 sub-networks (i.e. [25%,
50%, 75%, 100%] models) is first trained incrementally as the
base model (line 2-5), then a nested Dynamic DNN (upper 25%
and upper 50% models) is trained incrementally so they can be
used independently (line 6-10). Reusing the weights from the



Algorithm 1 Nested Incremental Training
1: for i← 1, niters do
2: for model in 25%, 50%, 75%, 100% models do
3: Train the model
4: Copy trained weights to the next model
5: end for
6: for model in upper 25% and upper 50% models do
7: Copy corresponding weights from 100% model
8: Re-train the model
9: Copy the re-trained weights back to 100% model

10: end for
11: end for

upper 25%/50% models on the 75%/100% models is nontrivial;
therefore, we fine-tune all the models for multiple iterations.

B. Reliable and Adaptive Distributed Inference
The trained sub-networks can either work independently (i.e.

[25%, 50%] and [upper 25%, upper 50%] models) or be com-
bined to inference collectively (i.e. [75%, 100%] models). In
independent mode, devices receive separate inputs in parallel,
maximizing system throughput (High-Throughput (HT) mode).
In collective mode, devices process the same inputs jointly,
ensuring peak accuracy (High-Accuracy (HA) mode). Fluid
DyDNNs seamlessly transition between two modes to meet
varying performance demands and adapt to available resources.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed Fluid DyDNNs were validated on a small
DNN model with three convolution layers and one fully-
connected layer. The [25%, 50%, 75%, 100%] sub-networks
have [4,8,12,16] (3x3) kernels, respectively. They were trained
using Algorithm 1 and tested on the MNIST dataset. We also
trained a Static DNN and a Dynamic DNN (using incremental
training [3]. The throughput was measured by running the
models on the CPU of a Nvidia Jetson Xavier NX platform. For
distributed inference, we used TCP to achieve data exchange.
To simplify the runtime scenario and avoid network variance,
we measured the communication latency offline. The total
throughput of the system can be calculated with the sum of
computation and communication latency. Fig. 2 shows the
throughput and accuracy of Static, Dynamic DNNs and Fluid
DyDNNs under two execution scenarios:

Single-Device Failures: Static DNNs exhibit the lowest
reliability; failure of either the Master or Worker results in
system failure, because the remaining device’s model weights
cannot function independently, shown as zero throughput and
accuracy in Fig. 2. Dynamic DNNs offer improved reliability;
the Master’s sub-networks can continue to inference with
temporarily reduced accuracy (due to the loss of upper 50%
model weights) when the Worker fails. However, if the Master
fails, the system cannot operate since the upper 50% model
requires the lower 50% model weights (on the Master) to
function. In contrast, Fluid DyDNNs show superior reliability;
their independent sub-networks allow for continuous inference
when any one device fails. The temporary accuracy losses

0

5

10

15

20

25

30

35

Static Dynamic Fluid

Th
ro

u
gh

p
u

t 
(i

m
ag

e
/s

) Master & Worker

Only Master

Only Worker

90

92

94

96

98

100

Static Dynamic Fluid

A
cc

u
ra

cy
 (

%
)

1
1

.1
0 0

1
1

.1
1

4
.4 1
1

.1
2

8
.3

1
4

.4
1

3
.9

0

9
8

.9

9
8

.8

9
8

.9
9

9
.2

9
8

.8
9

8
.99

7
.6

0 0 0

HTHA HTHA
[3] [3]

Fig. 2. Experimental results of throughput and accuracy of Static DNNs,
Dynamic DNNs [3] and Fluid DyDNNs under High-Accuracy (HA) and High-
Throughput (HT) mode. Inference results were collected when only the Master
is online, only the Worker is online, and when both devices are online.

when using smaller sub-networks are recoverable whenever the
system can re-deploy larger sub-networks.

No Devices Failure: when both devices are operational,
Static DNNs are limited to a throughput of 11.1 image/s (Fig.
2) due to inevitable communication overhead between devices.
Dynamic DNNs can adapt to a single device by deploying
smaller sub-networks (e.g. 50% model on the Master), sac-
rificing accuracy temporarily for increased throughput, up to
14.4 image/s. Fluid DyDNNs showcase maximum adaptability;
in HT mode, they operate two independent sub-networks in
parallel across both devices, reaching 28.3 image/s, this is 2.5x
the throughput of Static DNNs and 2x that of Dynamic DNNs.
In HA mode, they can replicate the distributed Static DNNs to
recover to its peak accuracy. Fluid DyDNNs outperform Static
and Dynamic DNNs in peak accuracy, likely due to the training
regularization benefits from their additional sub-networks.

IV. CONCLUSIONS

This work introduces Fluid DyDNNs, a novel approach for
distributed inference on edge devices. Our findings indicate
they can enhance system reliability in single-device failure
scenarios. With both devices online, it can adapt to either high
accuracy or boost throughput with temporary accuracy loss.

V. ACKNOWLEDGMENTS

This work is supported by the Engineering and
Physical Sciences Research Council (EPSRC) under
Grant EP/S030069/1. Experimental data can be found at:
https://doi.org/10.5258/SOTON/D2886.

REFERENCES

[1] L. Xun et al., “Optimising Resource Management for Embedded Machine
Learning,” in DATE, 2020.

[2] T.-J. Yang et al., “NetAdapt: Platform-Aware Neural Network Adaptation
for Mobile Applications,” in ECCV, 2018.

[3] L. Xun et al., “Incremental Training and Group Convolution Pruning
for Runtime DNN Performance Scaling on Heterogeneous Embedded
Platforms,” in MLCAD, 2019.

[4] J. Yu and T. S. Huang, “Universally Slimmable Networks and Improved
Training Techniques,” in ICCV, 2019.

[5] W. Lou, L. Xun et al., “Dynamic-OFA: Runtime DNN Architecture
Switching for Performance Scaling on Heterogeneous Embedded Plat-
forms,” in CVPR Workshops, 2021.

[6] H. Bouzidi et al., “HADAS: Hardware-Aware Dynamic Neural Architec-
ture Search for Edge Performance Scaling,” in DATE, 2023.

[7] J. Mao et al., “MoDNN: Local Distributed Mobile Computing System for
Deep Neural Network,” in DATE, 2017.

[8] L. Zeng et al., “CoEdge: Cooperative DNN Inference with Adaptive
Workload Partitioning over Heterogeneous Edge Devices,” Transactions
on Networking, vol. 29, no. 2, pp. 595–608, 2020.

[9] A. Yousefpour et al., “ResiliNet: Failure-Resilient Inference in Distributed
Neural Networks,” in FL-ICML, 2020.


