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I. INTRODUCTION

Deep neural network (DNN) inference is increasingly being
executed on mobile and embedded platforms [6, 40] due
to several key advantages in latency [26, 36], privacy [9]
and always-on availability [26, 24]. However, efficient DNN
deployment on mobile and embedded platforms is challenging
due to limited computing resources [21, 1]. Although many
hardware accelerators [10, 8, 18, 17, 14] and static model
compression methods [35, 11] were proposed by previous
works, at system runtime, multiple applications are typically
executed concurrently and compete for hardware resources.
This raises two main challenges:

• Runtime Hardware Availability: Modern System-on-
Chips (SoCs), comprising CPUs, GPUs, and NPUs, face
challenges due to the varying availability of hardware
resources at runtime. This fluctuation arises from different
core combinations and changes in voltage and clock
frequencies. While static model compression can initially
optimize DNN models to fit on targeted hardware and
meet performance goals, the issue is the unpredictable
availability of these resources during runtime. Differ-
ent and dynamic workloads on SoCs make it hard to
consistently meet performance targets, as the hardware
resources available to DNN models change and are un-
known during the initial compression [33, 12, 2, 3].

• Runtime Application Variability: A single DNN model,
such as large language models (LLMs), can serve as
the backbone for various applications like translation,
text generation, and ChatBot, each requiring different
performance trade-offs. For example, a ChatBot needs
LLMs to have low latency for quick responses, whereas
translation and text generation need LLMs to focus on
accuracy. These performance targets can also change
through user settings/preferences at runtime, posing a
significant challenge in the design stage. The current
solution of using multiple static models with different
performance trade-offs is not feasible for mobile and
embedded platforms due to limited memory resources.
An ideal approach would be a single, adaptable DNN
model that dynamically adjusts its performance trade-offs
to meet the specific requirements of each application and
user at runtime.

II. RUNTIME SYSTEM-LEVEL PERFORMANCE TRADE-OFF
MANAGEMENT
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Fig. 1. The high-level diagram of the proposed runtime system, which
contains three abstract layers that are connected through knobs and monitors.

Previous works have addressed aforementioned challenges
through dynamic neural networks that contain sub-networks
with different performance trade-offs [22, 28, 39, 38, 37, 34]
or runtime hardware resource management [16, 4, 20, 19, 27].

We proposed a combined method [32, 33], a system was
developed for DNN performance trade-off management, com-
bining the runtime trade-off opportunities in both algorithms
and hardware (Fig 1). The runtime system contains three
abstract layers which are connected through knobs and mon-
itors. Application layers contain multiple concurrent dynamic
neural networks. The device layer is mobile and embedded
heterogeneous SoCs. The runtime management layer is the
highest-level layer with central control algorithms for tuning
both application knobs (i.e. dynamic DNN sub-networks), and
device knobs (e.g. DVFS and task mapping) to meet dynam-
ically changing application performance targets and hardware
constraints which are both monitored in real-time. The key
contribution of our works [32, 33, 30, 31, 29] is system-
level performance trade-off management, the application layer
and runtime management layer are co-designed based on the
characterisation of the underlay hardware platforms to boost
the space and granularity of performance trade-offs. This is
different to the previous works which only focus on standalone
system components while isolating others.



III. DYNAMIC SUPER-NETWORKS
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Fig. 2. Dynamic Super-network. It samples and combines different efficient
sub-network libraries from backbone super-networks for all heterogeneous
cores, and to build dynamic neural networks without training.

We co-designed novel dynamic neural networks to max-
imise system-level performance and energy efficiency. We
identified three common issues with all previous dynamic
neural networks: (1) significant training time cost, (2) conflict
with the SOTA neural architecture search (NAS) pipeline, and
(3) inference inefficiency on heterogeneous hardware.

To address these problems, we proposed Dynamic Super-
network [13, 15], as shown in Fig 2, which directly samples
efficient sub-networks on (near) the performance trade-off
Pareto-front from the backbone super-networks to create a
library and build dynamic neural networks directly without
any training process (i.e. only sampling and performance
profiling). The sampling and profiling process is repeated for
different heterogeneous cores (e.g. CPU, GPU, NPU) on SoCs,
this is because the most efficient DNN model architectures
for different cores are different, and often contrary [7]. Super-
networks have the flexibility to generate very different sub-
network model architectures, whereas previous dynamic neural
networks can scale either layer-wise [23, 25] or channel-wise
[22, 28, 39, 38, 37, 34]. In the end, we obtained different
libraries of efficient sub-networks for all heterogeneous cores
using only one set of model weights (i.e. the weights of the full
super-network) which are stored using on-chip memory. Each
library has multiple sub-networks with different performance
trade-offs, which all share their weights with each other,
and with sub-networks in other libraries, as well as the
super-network. Each library is efficient on the corresponding
cores, and when moving the DNN model between cores (e.g.
from GPU to CPU), a different sub-network from the target
hardware (i.e. CPU) model library is selected, and this is done
by applying masks to the backbone super-network so it can
be partially executed, this act as model/weights selection from
the backbone model rather than full model/weights switching.

Fig. 3. The performance trade-offs between ImageNet Top-1 accuracy and
latency of our Dynamic OFA model [13] on the GPU of Jetson Xavier
NX platform, comparing against SOTA static OFA backbone model [5] and
dynamic DNN models [39, 38, 37, 34]. Dynamic OFA model is 2.4x faster
(at similar accuracy) or has 5.1% higher Top-1 ImageNet accuracy (at similar
latency) than AutoSlim-MnasNet [37].

We illustrated the Dynamic Super-network approach
through a dynamic version of ‘once-for-all network [5]’
(namely Dynamic-OFA), which can scale the ConvNet ar-
chitecture to fit heterogeneous computing resources efficiently
[13] and has good generalisation for different model architec-
tures such as Transformer [15]. As shown in Fig 3, compared
to the SOTA dynamic neural networks [39, 38, 37, 34], our
experimental results using ImageNet on the GPU of Jetson
Xavier NX show that the Dynamic-OFA is 2.4x faster for
similar ImageNet Top-1 accuracy, or 5.1% higher accuracy at
similar latency. We also see a similar level of improvement on
the CPU. Dynamic OFA has a slightly lower accuracy than its
fine-tuned static versions (i.e. individual models with separate
weights), but these models have significant memory overhead
and runtime switching costs.

IV. RUNTIME RESOURCE MANAGEMENT FOR DYNAMIC
SUPER-NETWORKS

We illustrated the runtime management approach through
a hierarchical runtime resource manager that tunes both dy-
namic neural networks and DVFS at runtime to meet the
hardware constraints (e.g. power consumption), and algorithm
performance targets (e.g. accuracy, latency). Compared with
the Linux DVFS governor schedutil, our runtime approach
achieves up to a 19% energy reduction and a 9% latency
reduction in single model deployment scenario, and an 89%
energy reduction and a 23% latency reduction in a two
concurrent model deployment scenario.
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