Evolution of microsturcture and mircrotexture in fcc metals during high-pressure torsion


Zhilyaev, A.P., McNelly, T.R. and Langdon, T.G. (2007) Evolution of microsturcture and mircrotexture in fcc metals during high-pressure torsion. Journal of Materials Science, 42, (5), 1517-1528. (doi:10.1007/s10853-006-0628-0).

Download

Full text not available from this repository.

Description/Abstract

Pure nickel and commercially pure (CP) aluminium were selected as model fcc materials for a detailed investigation of the experimental parameters influencing grain refinement and evolution of microstructure and microtexture during processing by high-pressure torsion (HPT). Samples were examined after HPT using microhardness measurements, transmission electron microscopy and orientation imaging microscopy. Processing by HPT produces a grain size of ∼170 nm in pure Ni and ∼1 μm in CP aluminium. It is shown that homogeneous and equiaxed microstructures can be attained throughout the samples of nickel when using applied pressures of at least ∼6 GPa after 5 whole revolution. In CP aluminium, a homogeneous and equiaxed microstructure was achieved after 2 whole revolutions under an applied pressure of 1 GPa. For these conditions, the distributions of grain boundary misorientations are similar in the centre and at the periphery of the samples. It is shown that simple shear texture develops in fcc metals subjected to high-pressure torsion. Some grain growth was detected at the periphery of the Al disk after 8 revolutions. The factors influencing the development of homogeneous microstructures in processing by HPT are discussed.

Item Type: Article
ISSNs: 0022-2461 (print)
Related URLs:
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TA Engineering (General). Civil engineering (General)
Q Science > QC Physics
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences > Engineering Materials & Surface Engineering
ePrint ID: 48888
Date Deposited: 17 Oct 2007
Last Modified: 27 Mar 2014 18:32
URI: http://eprints.soton.ac.uk/id/eprint/48888

Actions (login required)

View Item View Item