Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone
Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone
The modified Biot–Attenborough (MBA) model for acoustic wave propagation in porous media has been found useful to predict wave properties in cancellous bone. The present study is aimed at applying the MBA model to predict the dependence of phase velocity on porosity in cancellous bone. The MBA model predicts a phase velocity that decreases nonlinearly with porosity. The optimum values for input parameters of the MBA model, such as compressional speed cm of solid bone and phase velocity parameter s2, were determined by comparing the predictions with previously published measurements in human calcaneus and bovine cancellous bone. The value of the phase velocity parameter s2 = 1.23 was obtained by curve fitting to the experimental data for 53 human calcaneus samples only, assuming a compressional speed cm = 2500 m/s of solid bone. The root-mean-square error (RMSE) of the curve fit was 15.3 m/s. The optimized value of s2 for all 75 cancellous bone samples including 22 bovine samples was 1.42 with a value of 55 m/s for the RMSE of the curve fit. The latter fit was obtained by using of a value of cm = 3200 m/s. Although the MBA model relies on the empirical parameters determined from experimental data, it is expected that the model can be usefully employed as a practical tool in the field of clinical ultrasonic bone assessment.
osteoporosis, cancellous bone, phase velocity, porosity, biot’s theory, modified biot–attenborough model
323-330
Lee, K.I.
847340ea-904b-4d3a-be90-99b9b2d24986
Humphrey, V.F.
23c9bd0c-7870-428f-b0dd-5ff158d22590
Leighton, T.G.
3e5262ce-1d7d-42eb-b013-fcc5c286bbae
Yoon, S.W.
090362ea-5629-4090-aa97-061380a1cf9b
November 2007
Lee, K.I.
847340ea-904b-4d3a-be90-99b9b2d24986
Humphrey, V.F.
23c9bd0c-7870-428f-b0dd-5ff158d22590
Leighton, T.G.
3e5262ce-1d7d-42eb-b013-fcc5c286bbae
Yoon, S.W.
090362ea-5629-4090-aa97-061380a1cf9b
Lee, K.I., Humphrey, V.F., Leighton, T.G. and Yoon, S.W.
(2007)
Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone.
Ultrasonics, 46 (4), .
(doi:10.1016/j.ultras.2007.01.012).
Abstract
The modified Biot–Attenborough (MBA) model for acoustic wave propagation in porous media has been found useful to predict wave properties in cancellous bone. The present study is aimed at applying the MBA model to predict the dependence of phase velocity on porosity in cancellous bone. The MBA model predicts a phase velocity that decreases nonlinearly with porosity. The optimum values for input parameters of the MBA model, such as compressional speed cm of solid bone and phase velocity parameter s2, were determined by comparing the predictions with previously published measurements in human calcaneus and bovine cancellous bone. The value of the phase velocity parameter s2 = 1.23 was obtained by curve fitting to the experimental data for 53 human calcaneus samples only, assuming a compressional speed cm = 2500 m/s of solid bone. The root-mean-square error (RMSE) of the curve fit was 15.3 m/s. The optimized value of s2 for all 75 cancellous bone samples including 22 bovine samples was 1.42 with a value of 55 m/s for the RMSE of the curve fit. The latter fit was obtained by using of a value of cm = 3200 m/s. Although the MBA model relies on the empirical parameters determined from experimental data, it is expected that the model can be usefully employed as a practical tool in the field of clinical ultrasonic bone assessment.
This record has no associated files available for download.
More information
Published date: November 2007
Keywords:
osteoporosis, cancellous bone, phase velocity, porosity, biot’s theory, modified biot–attenborough model
Identifiers
Local EPrints ID: 49626
URI: http://eprints.soton.ac.uk/id/eprint/49626
ISSN: 0041-624X
PURE UUID: 08976fe1-4d6a-49db-b4c9-f94f20f40633
Catalogue record
Date deposited: 23 Nov 2007
Last modified: 16 Mar 2024 03:34
Export record
Altmetrics
Contributors
Author:
K.I. Lee
Author:
S.W. Yoon
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics