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Abstract

Numerous feature attribution (or saliency) measures have been proposed that utilise
the gradients of the output with respect to features. Gradients in this setting
unequivocally tell us about feature sensitivity by definition of the gradient, but do
they really tell us about feature importance? We challenge the idea that sensitivity
and importance are the same, and empirically show that gradients do not necessarily
find important features that should be attributed to a models’ prediction.

1 Motivation

Interpretability is seen as a crucial step towards achieving trust in neural networks. While Explainable
AI is a prolific field of research, the ML community is still far from being able to interpret the decisions
of learning machines. We believe an important step in this direction is exposing misinterpretation of
explainability tools. More specifically, this paper urges deep learners to reconsider the interpretation of
“saliency” maps and gradient-based attribution methods by challenging the core common assumption
upon which they are built.

What is saliency? Informally, in the context of image classification, saliency aims to capture that
information on which the model relies when making a prediction. Attribution methods rely on the
assumption that the information captured by a model is a weighted composition of accumulated
evidence. The objective is, therefore, to identify those image regions with the biggest contribution
towards the final prediction. This is understood to be equivalent to the importance (or saliency) of an
image region.

Gradient-based attribution methods rely on the assumption that the gradient of the output with respect
to the input or an intermediary feature captures importance. In this paper, we start from the definition
of the gradient and argue that gradient-based attribution methods capture sensitivity to small changes
to input/feature values. While sensitivity to small perturbations can correlate with importance,
the two are not equivalent. It is important to note that this misconception has wider implications
beyond model interpretability as gradient-based importance is used in other areas such as model
diversification [e.g. 26].

While practitioners widely rely on gradient-based attribution methods [e.g. ], researchers in the field
acknowledge the plethora of evidence against established attribution methods. Several works pointed
out different limitations of existing gradient-based methods, many of them only to propose other
variants of gradient-based attribution. Adebayo et al. [1] proposed “sanity checks” for attribution
methods, which some of the methods we consider, such as Grad-CAM [21] and Integrated Gradi-
ents [25] successfully passed. Others proposed various new tests for attribution methods, focusing on
establishing new evaluation methods for attributions [e.g. 3, 34, 11, 12, 18, 2, 4, 6, 19]. They expose
limitations of attribution methods but do not provide an explanation for them. To the best of our
knowledge, no other study challenges the fundamental assumption that sensitivity is equivalent to
importance, or even a good proxy for it. This is the main contribution of our work.
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In this research our contributions are: 1. We differentiate saliency from sensitivity and argue em-
pirically that they are distinct; 2. We create an artificial dataset that allows us to decouple most
confounding factors and confidently reason about feature importance; 3. We argue that gradien-
t-based attribution methods are bound to capture sensitivity rather than saliency and demonstrate this
experimentally.

2 Background

Gradient-based methods have been widely used for interpreting deep learning models. The basic
premise is that the gradient magnitudes at specific input locations (such as pixels in an image) reflect
the importance of those inputs for the model’s prediction. The rationale for using gradients as a proxy
for importance dates back to Simonyan et al. [23] who make the argument that if one approximates a
deep network by a linear function using a first-order Taylor expansion, then the gradients with respect
to the input features might indicate feature importance. It should be noted that Simonyan et al. [23]
make the point that gradients do also precisely capture the sensitivity of the features (in terms of how
much small changes affect the output). Srinivas and Fleuret [24] also questioned whether gradients
genuinely reflect the importance of inputs and demonstrated gradients can be manipulated without
affecting model predictions, raising doubts about the assumption that larger gradients indicate the
most contribution towards prediction.

The assumption that gradients can estimate importance has lead to a proliferation of methods [see 29,
for a through review]. Applications include identifying the least important neurons for pruning [20]
and the most contributive features for cancer prediction [10].

2.1 Computing the gradient

Whilst there are some variations, gradient-based attribution methods are based around the concept of
computing the gradient of (some part of) the model output with respect to the input, or to features
at some intermediary point. There are two important decisions to be made when computing this
gradient: the choice of class (or the specific output for which to compute the gradient) and whether or
not to compute the gradient of the logit or the softmax probability.

Predicted Class versus True Class. Firstly is the question of which output should be used to compute
the gradient. Some approaches use the predicted class (e.g. the largest output), whilst others consider
the true target class. Given that the objective of attribution methods is to uncover saliency, in other
words to explain the model’s own decision, we argue that it is the predicted class that should be more
meaningful, and use this in the experiments below. However, for completeness, we include the results
for the true class in Appendix A.3.

Logits versus Softmax Probabilities. Attribution methods often look at the gradient computed on
the logits [24]. Sundararajan et al. [25] argue that a more meaningful indicator of importance is the
gradient after softmax is applied. We agree, as taking a single logit alone would not capture the
nuances of the changes to the other logits which a small change to the input (e.g. the shift-invariance
property of the softmax as noted by Srinivas and Fleuret [24]) and therefore report results on gradients
computed on the softmax probabilities, which lead to better attribution results. For completeness,
results using logits are also included in the Appendix A.3.

2.2 Gradient-based attribution methods

For the experiments in this paper we choose a small subset of gradient-based attribution methods:
Gradient Magnitude (vanilla gradient): The absolute gradient of the output with respect to each
feature is computed and used as an attribution score [23]. Gradients × feature: The gradient of
the output with respect to each feature is computed and multiplied by the feature value [2, and also
incorporated in techniques like GradCAM [21]]. Integrated Gradients (IG): The above methods
have a problem that some features might have near-zero gradient whilst contributing to the prediction.
Instead of directly calculating gradients on the input, Integrated Gradients (IG) [25] interpolates
between a baseline input (often a completely black image) and the target input. Gradients are
accumulated along this path, resulting in a more robust estimate of which features influence the
model’s prediction. IG is sensitive to the choice of baseline input and different approaches have been
proposed [e.g. 30]. For our experiments we utilise completely black and completely white image

2



(c) Additive importance
(higher accuracy is better)

(d) Subtractive importance
(lower accuracy is better)

Black
Discriminative

Black
Attributed

Masked
Discriminative

Masked
Attributed

(a) Input

Discriminative pixel

vs

vs
Attributed pixel

(b) Attribution

Figure 1: (a) A specially crafted single discriminative pixel is inserted to allow models to learn a
shortcut. (b) An attribution method is used to predict the pixel most highly attributed to the model’s
prediction. (c) Additive importance compares the difference in accuracy between keeping only
the discriminative pixel and setting others to black, against keeping only the attributed pixel. (d)
Subtractive importance sets the discriminative and additive pixels to black respectively whilst keeping
the remaining pixels. The importance measures determine if the attributed pixel is more or less
important than the discriminative pixel. A good attribution method should have an accuracy at least
as high as the accuracy determined by the discriminative pixel.

baselines, and note that there is some difference in attribution performance. The conclusions that we
draw from our experiments hold for both cases however.

3 Gradient captures sensitivity, not saliency or importance

When trying to identify importance or saliency in practice, there are two typical approaches. A piece
of information is considered salient for a model if the model’s prediction (or confidence) changes
when either adding that piece of information or removing it [e.g. 32, 11, 12, 18]. There are many
challenges that are associated with these two approaches, most of them reducing to the inability to
decouple the model’s decision and eliminate confounding factors, as well as a lack of ground-truth,
however as we show below, it can be possible to craft specific datasets where this behaviour can be
probed. While most studies look at removing information alone, we consider both perspectives as
this provides a more restrictive and, in our opinion, more informative view. In the following we show
empirically that the gradient based methods can fail to find the most important features because they
are by definition looking for feature sensitivity, which may or may not be correlated with feature
importance.

3.1 Methodology and experiments

We explore the question of whether any of the gradient-based attribution methods described in
Section 2.2 actually captures the importance of particular parts of the input to the prediction of
the model. To do this we construct a dataset with a special discriminative diagnostic pixel that
whilst present during training can be removed during evaluation. Because of the propensity of deep
neural networks to learn shortcuts or simple solutions [e.g. 8, 27, 7], the trained models are rather
over-reliant on the diagnostic pixel. As illustrated in Fig. 1 we are then able to ask if the position
of the ‘most important’ pixel predicted by an attribution method (i) matches our diagnostic pixel’s
position, and (ii) if it does not, is the attributed pixel actually more important than the diagnostic pixel
according to the definitions of adding information (‘additive importance’) and removing information
(‘subtractive importance’) defined above. Importantly, note that we do not propose this approach
as a new baseline for attribution methods. It is simply a way to allow us to illustrate the difference
between saliency and sensitivity. Code for all experiments and diagnostic datasets can be found at
https://github.com/ecs-vlc/is-saliency-capturing-gradient.

Dataset. Similar to Malhotra et al. [17], in our artificial dataset, a fully discriminative pixel is
introduced in each training data sample. The dataset is based on CIFAR-10 [15]. Unlike Malhotra
et al. [17], we randomly sample a single pixel location for placing our discriminative pixel. We also
pick RGB values to determine the pixel colour associated with each class by choosing 10 values for
the red channel. Further details can be found in Appendix A.1.
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Table 1: Pointing accuracy of different attribution methods. Three ResNet-18 models were trained,
and results show the mean (and standard deviation) of performance.

Attribution Pointing accuracy

gradient magnitude 99.1% (0.1)
gradient × input 62.7% (1.2)
integrated (black) 98.4% (2.4)
integrated (white) 98.4% (1.3)

Table 2: Analysis of integrated gradients when it fails to point at the discriminative pixel. These
results explore how important the discriminative pixel is compared to the attributed pixel. Because
of the way the models learn, we cannot guarantee that the discriminative pixel is most important,
however any reasonable attribution method should at least find a pixel that is at least as important as
the discriminative pixel. These results show this is not the case as the attributed accuracies are worse
than the discriminative ones (e.g. lower for additive, higher for subtractive).

Additive ↑ Subtractive ↓
Model Attribution method discriminative attributed discriminative attributed

ResNet-18 integrated (black) 100.0% 62.2% 60.6% 64.8%
VGG16 integrated (black) 100.0% 94.1% 95.2% 99.3%
ResNet-18 integrated (white) 100.0% 93.1% 87.1% 92.9%
VGG16 integrated (white) 100.0% 69.8% 70.0% 97.3%

Models. We train VGG16 [22] and ResNet-18 [9] models. For full details, see Appendix A.1. All
models have near perfect accuracy on the validation dataset (see Table A1) with the discriminative
pixel present, and about 12% accuracy without the pixel, indicating that whilst the discriminative
pixel is important, there is still some information from the images being learned.

3.1.1 How well do attribution methods predict the discriminative pixel?

We first measure if different gradient-based attribution methods actually find the discriminative pixel
inserted into the validation dataset or if they attribute the prediction to another pixel; the accuracy of
predicting the discriminative pixel is known as pointing accuracy (essentially this is a single-pixel
version of the pointing game score used by Wang et al. [29], Zhang et al. [33]). Intuitively we actually
expect the discriminative pixel to have relatively high gradient, as it is clear that changes in the value
of the red channel will have large effects on the predicted class (and one would expect the model
to be sensitive to this). As such, we would expect that gradient-based attribution methods should
have a big advantage in this task setting. Table 1 shows the result for ResNet-18 models, using the
gradient of the input pixels with respect to the softmax probability of the predicted class. Table A3
in the appendix shows results for all models and combinations, however, the take-away is the same:
gradient magnitude and integrated gradients both achieve very high pointing accuracy. Naïvely we
could interpret this as these being good attribution methods that are picking up the most important
information. The gradient × input method doesn’t perform anywhere near as well, but that should
also be expected on our dataset because, by design, the pixel value will be low for some classes.

3.1.2 Are non-matching attributions actually more important?

Why did the attribution methods not always pick the discriminative pixel? In our experiment, we are
not claiming that the discriminative pixel is actually the most important; it is possible that the model
learns to use a different strategy to determine the result. Thus it makes sense to investigate the cases
where the attributed pixel is not the discriminative one. We ask, using the additive and subtractive
notions of importance, if the attributed pixel is more important than the discriminative one.

We show results for integrated gradients methods in Table 2. We focus on integrated gradients in the
main body of the paper because despite having slightly worse pointing accuracy it is a better indicator
of importance than the absolute gradient (full results in Table A3 in the appendix). Nonetheless,
as shown in Table 2, on aggregate over the subset of validation data where the attributed and
discriminative pixel is different, the attributed pixel is less important than the discriminative one by
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under both the additive and subtractive viewpoints of importance for both baselines used. The full
results table shows this is the case under all the chosen attribution methods and model types.

3.1.3 Related work

The most similar study to our empirical experiments is the work of Zhou et al. [34], who also
introduce information correlated with the labels. We believe that the experiments they consider
do not extensively rule out confounding factors, however they do uncover some of the problems
with established attribution methods by creating more controlled setups. More importantly, the
focus of Zhou et al.’s work is to create a set of tests for attribution methods. They do not aim
to explain the limitations of the methods they evaluate. Therefore, apart from the experimental
differences, the crucial aspect that differentiates our work from prior art is that we challenge the basis
of gradient-based attribution methods and argue that sensitivity is not equivalent to importance.

4 Discussion

We argue a reasonable attribution method should always rank the most important feature higher. We
have shown that for a selection of gradient-based methods this is not the case. Inherently, by definition
of gradient, gradient-based attribution methods will be biased towards finding sensitive features
rather than the ones that are necessarily the most important for the model’s current prediction.

Inherently when training models we would actually like them to be robust to small perturbations of
the input and thus have small gradients. The vanilla and input × gradient methods obviously have
a problem in determining importance in this scenario. Methods like integrated gradients partially
address this, but are still tied to model sensitivity (over the path), which may or may not correlate
with importance. With this in mind we propose that an obvious step for future work would be to
design problems where it is easy to decouple importance from sensitivity. This will allow us to better
design attribution methods that actually capture what is important. It would also be interesting to
further explore if gradient methods appear to work reasonably precisely because typical models are
over sensitive.
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A Appendix

A.1 Training and evaluation procedure

Models. The standard torchvision implementations of VGG16 and ResNet-18 are used (with 10
outputs rather than 1000). However for the ResNet-18 we modify the first layer filter size to be 3× 3
with stride 1 as this is known to significantly help improve performance on CIFAR-10.

Data. The dataset is based on CIFAR-10 [15]. In all our experiments the inserted discriminative
pixel was placed at (26, 15) (which was a randomly chosen pair of ordinates picked from a particular
seed of the random number generator). The discriminative pixel is added to the input before it is
converted from 8-bit unsigned integer format to floating point. We pick RGB values to determine the
pixel colour associated with each class by choosing 10 values for the red channel that are equally
spaced between 10 and 245, and fixing the green and blue values to 10 and 245 respectively. We
found this gave a reasonable balance of simplicity bias when training the models (the pixel was
learned, but there was still sufficient learning of the other parts of the data to illustrate the point we
wish to make).

Training. Models were trained with the following hyperparameters:

Optimizer: SGD
Learning rate: 0.001

Number of epochs: 200
Momentum: 0.9

Weight Decay: 0
Batch size: 256

No data augmentation was used during training. We do however convert input images into floating
point tensors scaled between zero and one, and normalise by subtracting the mean values for the red,
green and blue channels of the training set and dividing by the respective standard deviations. We
trained three of each model with different seeds, and reported results show the mean and standard
deviation over these models.

Model evaluation. Model evaluation has three parts:

1. We compute the overall model accuracy on two variants of the validation dataset; one has
the discriminative pixel present, and the other does not have the discriminative pixel (in fact
this variant is exactly the standard CIFAR-10 validation set). This allows us to determine
the degree to which the models have learned the discriminative pixel by contrasting the
accuracies (‘validation accuracy’ with the discriminative pixel; ‘no pixel validation accuracy’
without).

2. We utilise different attribution methods to isolate the ‘most important pixel’, and ask if the
position of this attributed pixel matches that of the discriminative pixel. The proportion
of times the attribution method picks the discriminative pixel is known as the ‘pointing
accuracy’.

3. For the subset of images where we did not localise the discriminative pixel, we ask if
the attributed pixel is more important than the discriminative one in terms of the relative
classification accuracies under additive importance and subtractive importance.

A.2 Compute resources

Training and evaluation was performed on a mixture of single Nvidia A100 and H100 GPUs; these
are unnecessarily powerful for our models/data however. Typical training runs took between ∼ 13
minutes for a ResNet-18 and ∼ 25 minutes for a VGG16.
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A.3 Full Results

A.3.1 Model accuracy

Table A1: Model accuracies with (‘validation accuracy’) and without (‘no pixel validation accuracy’)
the discriminative pixel inserted. Values are the means over three models trained with different seeds,
with standard deviations in brackets. All models learned to solve the task (near-perfect validation
accuracy), relying heavily on the discriminative pixel (hence low ‘no pixel validation accuracy’).

Model Validation accuracy No pixel validation accuracy

ResNet-18 99.8% (0.1) 12.4% (1.7)
VGG16 99.9% (0.0) 11.5% (1.9)

A.3.2 Pointing accuracy

Table A2: Pointing accuracy of different attribution methods. Three models of each type (ResNet-18
and VGG16) were trained, and results show the mean (and std. dev.) of performance.

Model Attribution method predicted or true softmax or logit Pointing accuracy

ResNet-18 gradient magnitude p l 97.7% (0.6)
ResNet-18 gradient magnitude p s 99.1% (0.1)
ResNet-18 gradient magnitude t l 97.7% (0.6)
ResNet-18 gradient magnitude t s 99.1% (0.1)
VGG16 gradient magnitude p l 100.0% (0.0)
VGG16 gradient magnitude p s 100.0% (0.0)
VGG16 gradient magnitude t l 100.0% (0.0)
VGG16 gradient magnitude t s 100.0% (0.0)
ResNet-18 gradient × input p l 52.3% (4.0)
ResNet-18 gradient × input p s 62.7% (1.2)
ResNet-18 gradient × input t l 52.3% (4.1)
ResNet-18 gradient × input t s 62.7% (1.3)
VGG16 gradient × input p l 81.3% (16.2)
VGG16 gradient × input p s 51.7% (16.8)
VGG16 gradient × input t l 81.3% (16.2)
VGG16 gradient × input t s 51.8% (16.8)
ResNet-18 integrated (black) p l 99.9% (0.0)
ResNet-18 integrated (black) p s 98.4% (2.4)
ResNet-18 integrated (black) t l 99.9% (0.0)
ResNet-18 integrated (black) t s 98.4% (2.4)
VGG16 integrated (black) p l 100.0% (0.0)
VGG16 integrated (black) p s 93.6% (0.6)
VGG16 integrated (black) t l 100.0% (0.0)
VGG16 integrated (black) t s 93.6% (0.7)
ResNet-18 integrated (white) p l 99.9% (0.0)
ResNet-18 integrated (white) p s 98.4% (1.3)
ResNet-18 integrated (white) t l 99.9% (0.0)
ResNet-18 integrated (white) t s 98.4% (1.3)
VGG16 integrated (white) p l 100.0% (0.0)
VGG16 integrated (white) p s 98.3% (1.2)
VGG16 integrated (white) t l 100.0% (0.0)
VGG16 integrated (white) t s 98.3% (1.3)
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A.3.3 Importance

Table A3: Analysis of integrated gradients when it fails to point at the discriminative pixel. These
results explore how important the discriminative pixel is compared to the attributed pixel. Because
of the way the models learn, we cannot guarantee that the discriminative pixel is most important,
however any reasonable attribution method should at least find a pixel that is at least as important as
the discriminative pixel. These results show this is not the case.

predicted/ softmax/ Additive Subtractive
Model Attribution method true logit discr. attrd. discr. attrd.

ResNet-18 gradient magnitude p l 100.0% 12.1% 17.4% 99.2%
ResNet-18 gradient magnitude p s 100.0% 9.5% 12.0% 98.4%
ResNet-18 gradient magnitude t l 100.0% 12.1% 17.4% 98.9%
ResNet-18 gradient magnitude t s 100.0% 9.5% 12.0% 98.4%
VGG16 gradient magnitude p l 66.7% 5.6% 11.1% 55.6%
VGG16 gradient magnitude p s 66.7% 4.8% 0.0% 33.3%
VGG16 gradient magnitude t l 66.7% 5.6% 11.1% 44.4%
VGG16 gradient magnitude t s 66.7% 4.8% 0.0% 33.3%
ResNet-18 gradient × input p l 100.0% 18.9% 22.7% 99.3%
ResNet-18 gradient × input p s 98.8% 15.7% 17.0% 98.9%
ResNet-18 gradient × input t l 100.0% 19.0% 22.7% 99.4%
ResNet-18 gradient × input t s 98.8% 15.7% 17.1% 98.9%
VGG16 gradient × input p l 100.0% 0.1% 0.7% 99.1%
VGG16 gradient × input p s 100.0% 15.6% 15.8% 99.1%
VGG16 gradient × input t l 100.0% 0.1% 0.8% 99.2%
VGG16 gradient × input t s 100.0% 15.6% 15.9% 99.2%
ResNet-18 integrated (black) p l 100.0% 47.7% 30.6% 45.8%
ResNet-18 integrated (black) p s 100.0% 62.2% 60.6% 64.8%
ResNet-18 integrated (black) t l 100.0% 55.0% 32.5% 65.0%
ResNet-18 integrated (black) t s 100.0% 53.6% 69.8% 82.5%
VGG16 integrated (black) p l 100.0% 50.0% 0.0% 16.7%
VGG16 integrated (black) p s 100.0% 94.1% 95.2% 99.3%
VGG16 integrated (black) t l 100.0% 66.7% 0.0% 33.3%
VGG16 integrated (black) t s 100.0% 94.2% 95.3% 99.4%
ResNet-18 integrated (white) p l 100.0% 59.0% 40.0% 36.3%
ResNet-18 integrated (white) p s 100.0% 93.1% 87.1% 92.9%
ResNet-18 integrated (white) t l 100.0% 63.9% 46.7% 46.7%
ResNet-18 integrated (white) t s 100.0% 93.8% 87.8% 93.9%
VGG16 integrated (white) p l 100.0% 16.7% 0.0% 16.7%
VGG16 integrated (white) p s 100.0% 69.8% 70.0% 97.3%
VGG16 integrated (white) t l 100.0% 16.7% 0.0% 16.7%
VGG16 integrated (white) t s 100.0% 70.9% 71.1% 98.5%

A.4 Limitations

We argue that because of the design of the dataset it is reasonable to look at a single attributed pixel
as we know that all required information is present in a single pixel. However, attribution methods
typically will assign no zero attribution to multiple pixels and in some senses we have introduced bias
to the experiment by not considering some subset of attributed pixels when investigating importance.
Whilst we acknowledge this could be an issue, we contend that as it is incredibly likely that the
discriminative pixel would be in this set that it should still be given a higher attribution score as it is
clearly more important from both the additive and subtractive perspectives. For further discussion see
B.3 where we describe a direction we would like to see explored in the future where a dataset that
decouples sensitivity from importance is created.
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B Debunking Challenge Submission

B.1 What commonly-held position or belief are you challenging?

Provide a short summary of the body of work challenged by your results. Good summaries should
outline the state of the literature and be reasonable, e.g. the people working in this area will agree
with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).

A large body of literature is based around the idea that gradients with respect to the features can tell
you about feature importance. This ranges from works proposing attribution methods [e.g. 16, 30, 13],
to pruning and feature diversification methods [e.g. 20, 26] to machine learners [e.g. 31, 14] and
interdisciplinary practitioners [e.g. 5, 28] trying to justify model behaviour. This idea originated from
an assumption that it was reasonable to take a local linear approximation of a deep network using
the first-order Taylor expansion [23]. This approximation seemingly gives reasonable results, in the
qualitative sense that things like saliency maps generated align with reasonable expectations, but it
has always been rather difficult to soundly quantitatively assess the performance. Whilst the original
work proposing gradient highlighted that there was an alternative explanation of the approach based
on feature sensitivity, which aligns with the definition of a gradient, the field ran away with the idea
that gradients imply importance.

B.2 How are your results in tension with this commonly-held position?

Detail how your submission challenges the belief described in (1). You may cite or synthesize results
(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.

In real data, and with deep neural network models trained on that data it is incredibly difficult to
actually determine a ground truth for feature importance, and as such methods for determining feature
attribution are difficult to validate. By carefully controlling the data we have shown empirically a case
where pixel sensitivity does not correlate with actual feature importance, highlighting the importance
of re-assessing the interpretation of the fundamental approximation made by gradient-based attribution
methods.

B.3 How do you expect your submission to affect future work?

Perhaps the new understanding you are proposing calls for new experiments or theory in the area, or
maybe it casts doubt on a line of research.

We hope that future work might be affected in two main ways; firstly we hope that the findings
encourage researchers developing new attribution methods to be more mindful about what their
proposed methods actually attribute in terms of importance to the model, and to be clearer what their
proposed methods actually capture. Secondly, whilst we do not believe that popular methods such as
GradCAM and approaches like integrated gradients will disappear, we hope that people using them
will be more aware of what they are actually saying about the model, and that inferring what a model
is looking at to compute a prediction for a given input might not actually align well with what the
attribution method or saliency map suggests.

Intuitively, we want our models to be insensitive to small perturbations of the features; if they are
not then the model is likely to not be robust (particularly in the adversarial sense). Equally, models
that generalise well should accumulate evidence in multiple ways so as to be robust to missing or
occluded features and to the presence of spurious features. So, additionally, we would like to see new
research attention towards the problem of capturing true feature importance. An important first step
is designing problems where it is easy to decouple importance from sensitivity. Subsequently, a good
attribution method should be able to identify a feature as important even when the said feature (and
model) is robust to small perturbations.
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