Efficient Deployment of Early-Exit DNN
Architectures on FPGA Platforms

DATE PhD Forum 2024

Anastasios Dimitriou
School of Electronics and Computer Science
University of Southampton, United Kingdom
ad1r20@soton.ac.uk

I. INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated remark-
able success in various cognitive applications, benefiting from
innovative network architectures such as AlexNet [7], ResNet
[6], VGG [11] and Transformers [13]. However, their success
is immediately connected with an increase in depth and
parameter count resulting in higher computational burdens and
greater power consumption. This limits their deployability and
arise challenges in adapting to resource-restricted devices and
varying computational budgets.

Dynamic neural networks [5] are approaches that strategi-
cally allocate computations by their ability to adapt network
structures or parameters during inference. The core idea lies
in recognizing that different inputs have different computa-
tional requirements. Developing techniques to abstract this
information significantly reduces computations and enhances
the efficiency, capacity, and compactness of the networks.

The focus of this research lays on Early Exiting [8]. It is
a structure-focused dynamic approach, enabling the inference
process to stop at shallow exits, when the network is confident
in recognizing the input. In order to enable an early exit,
intermediate classifiers are placed in-between each or sets
of layers. These are very small decision sub-networks con-
taining convolutional, fully-connected (FC), or pooling layers.
Based on this architecture early-exit can be implemented with
confidence-based criteria [12], [9], usually using a softmax’s
output, or learned decision functions [1], [3].

Despite their effectiveness though, we argue that there is
a gap between theoretical findings and practical applications.
The majority of early exit networks are designed using li-
braries optimized for static models, resulting in inconsistency
between anticipated and actual results. Furthermore, these net-
works are typically accelerated and evaluated on conventional
CPU-GPU systems, platforms that cannot meet the real-time
processing requirements in embedded devices [2].

In this research we target FPGAs, a platform that has already
been proven to be very effective in accelerating CNNs [10].
They are programmable devices that allow users to implement
digital circuits custom-designed for a specific task. Their
parallelization capabilities can accelerate very effectively a
large amount of neural network operations, while maintaining
very low levels of power consumption. In this work we high-
light some of the difficulties on realising early-exit networks

Adyvisors: Geoff V. Merrett & Jonathon Hare
School of Electronics and Computer Science
University of Southampton, United Kingdom

{gvm, jsh2} @ecs.soton.ac.uk

save load

L L2VEl }’ - __ .{ Layern.1 Layer, }> -

en)
Decision D stop
Sub-Net Decision
Sub-Net

Fig. 1. Explored designs for (a) Pipeline and (b) Parallel approaches.

Layernq

-—— >

on FPGAs and propose two different designs pipeline and
parallel. They are experimental implemented and evaluated on
a ZCU106 FPGA, comparing accuracy, execution time, power
and energy consumption against a desktop CPU, CPU+GPU
and Nvidia Jetson Xavier. Finally, we analyse the placement
of the exit points on a ResNet32 and taking advantage of the
parallel architecture, further accelerate the dynamic inference.

II. LIMITATIONS IN DESIGNING DYNAMIC NETWORKS
ARCHITECTURES ON FPGASs

Programming and testing FPGAs targeting complex applica-
tions like neural networks can be difficult and time consuming.
Hence many FPGA manufacturers and researchers put a lot of
effort on creating mapping tool-flows for DNNs (e.g. Xilinx’s
Vitis Al, Nvidia’s NVDLA, fpgaConvNet [14], Angel-Eye[4]
etc.). They are connected with popular static network libraries
(caffe, tensorflow, torch) and produce complete and inacces-
sible designs. However, the structure of dynamic networks
demands the use of custom layer types and interfere on
intermediate stages of the backbone network, which renders
the tools incapable to produce efficient designs. Therefore
we used an architecture for the backbone network similar to
ones produced from the tools, and designed from scratch the
decision sub-networks.

In the targeted approaches, these sub-networks are responsi-
ble to make a decision on stopping inference. To achieve that
they use the intermediate layer outputs, which generates an
issue as these data is of vital importance when an early exit
does not happen. In order to maintain them, while the sub-
networks are executing, we can use buffers or the external
memory. However the first option is not always feasible, as
these outputs can be very large and the second has severe
effects on the latency and the memory footprint of inference.
A way to efficiently eliminate this issue is presented below.

»
w0

Execution Time (ms)
e
o w

1.5W

0

0 P

2

T £ =
s

4 BW|

3

2

1

0

Energy Consumption (mJ)

without Early Exit|
with Early Exit
Average

CPU CPU Jetson FPGA FPGA

+GPU Xavier (Pipeline)(Parallel)
()

aw W IL2w;

o

F‘PGA F‘PGA
(Pipeline) (Parallel)

FPGA Jetson
(Non-Dynamic) Xavier
(b)

Fig. 2. Experimental results comparing (a) Execution time and (b) energy
consumption per sample. Average values are calculated based on the frequency
of the decision to early exit, 94.37% yes and 5.63% no.

ITII. FPGA REALISATION OF EARLY-EXIT DYNAMIC
NETWORKS

We explore two different FPGA architecture for early-exit
networks, focusing on the implementation of the decision
sub-networks. The pipeline approach (fig.1 (a)) follows the
traditional early exiting architecture. Inference is paused until
a decision is made, based on which the network either stops,
generates a prediction and proceeds with the next input, or
continues with the deeper layers. As the sub-networks contain
the same type of layers as the backbone, this architecture
enables reusing the already designed IPs, leading to very
compact designs. However for the reason mentioned above,
it requires the usage of external memory.

The parallel approach (fig.1 (b)) takes advantage of the
FPGA parallelization capabilities and contains a separate
module that is designed specifically to execute the decision
sub-network. In this architecture the intermediate layer output
is fed simultaneously to the next layer of the main network
and to the decision branch. Thus, it removes the need of
pausing inference as well as storing the intermediate outputs
to memory. It achieves lower latency and reduces the memory
footprint, however it utilises more of the platform’s resources,
increasing the energy demands.

The core of both designs is an Array of Processing Elements
(PEs). They are hardware configurations that replace a pipeline
structure with an array of homogeneous PEs, capable of
performing a common mathematical operation. These elements
are locally interconnected, and able to synchronously com-
municate with each other. It accelerates the feature-weight
multiplications that dominate Convolution layers. Concerning
the FC layers a module of multipliers connected to an adder
tree is implemented. Inputs and weights are split into equal
parts, and calculated separately. Finally max pooling layers
are implemented using a sliding window while ReLu activation
function is immediately applied to the results.

To verify, test and compare the performance of the designs
we follow the BranchyNet’s [12] approach on confidence-
based early exiting. Figure 2 (a) shows the per sample
execution time of the early-exit LeNet-5 using the MNIST
data-set. We observe that the dynamic DNN is always faster,
highlighting the effect of the approach. Furthermore focusing
on our designs, the pipeline approach is 1.5x faster than a
desktop CPU and 1.8x than the Jetson. The parallel approach
further accelerates inference by 1.2x over the pipeline, in cases
where an early exit is not decided, while avoiding a 2.88kB

3500
3000 -
@ 2500
8
s
£ 2000
<
7]
g 1500
z
1000 -{

5004 079 o 081 078 076
, ‘Dmﬁ%mmﬂﬁﬂﬂmﬁm
Layer No.

Fig. 3. Number of samples to be firstly correctly predicted in the next 6
layers after being rejected from the predetermined exit points on ResNet-32.
On top of bars is the average confidence they had on the original exit points.

data transfer to the memory and back.

Concerning energy consumption the dynamic DNN is again
consistently less energy demanding than the non-dynamic. The
pipeline and the parallel approaches also showcase compara-
tively low energy consumption (Fig.2 (b)), requiring 12.68 mJ
and 15.69 mJ per-sample respectively. This equates to 6.9x
and 5.6x less energy than on the Jetson, and 2.7x and 2.2x
than the inference of the backbone on the FPGA. For both
energy and time we achieved similar results while evaluating
the designs using AlexNet, VGG19 and ResNet32.

IV. EARLY-EXIT PLACEMENT OPTIMISATION

Early-exit architecture dictates that the placement of the exit
points is decided before the deployment and cannot change
during execution. However, we found that on a ResNet32
(Fig.3) network with an early-exit branch after every layer,
31% of the rejected outputs from the original exit points (after
2nd and 14th layer) could be correctly recognised by the
next 6 layer, rather than continuing to the next original exit
points (after 14th and 32nd layer). Furthermore the average
confidence of these samples was very close to the original
points’ confidence threshold (Fig.3).

Taking advantage of the versatility that the parallel ap-
proach provides, as the dedicated hardware can be used in
between every layer, we explore a confidence-controlled place-
ment of the early-exit points. When the difference between
the confidence level of a rejected sample and the threshold
of the original exit point is small, we try to early exit before
the next predetermined point. In such manner we reduced the
computations of a ResNet32 dynamic network by 24% while
maintaning the same levels of accuracy.

V. CONCLUSION

In this paper we explored the benefits and limitations of
realising dynamic DNN approaches on FPGAs. We propose
two efficient early-exit FPGA architectures, the pipeline and
the parallel, focusing on the better implementation of the
decision sub-network. Finally using the parallel approach’s
versatility we explore a dynamic placement of the early-
exit branch further improving the efficiency of the dynamic
network and the FPGA platform.

ACKNOWLEDGMENTS
This work was supported by the Engineering and
Physical Sciences Research Council (EPSRC) under

EP/S030069/1. Data associated with this paper is available
on https://doi.org/10.5258/SOTON/D2885.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

REFERENCES

T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. “Adaptive Neural
Networks for Efficient Inference”. In: International Conference on
Machine Learning. 2017.

J. Cong and B.-Y. Xiao. “Minimizing Computation in Convolutional
Neural Networks”. In: International Conference on Artificial Neural
Networks. 2014.

X. Dai, X. Kong, and T. Guo. “EPNet: Learning to Exit with
Flexible Multi-Branch Network”. In: Proceedings of the 29th ACM
International Conference on Information & Knowledge Management
(2020).

K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, et al. “Angel-Eye: A
Complete Design Flow for Mapping CNN Onto Embedded FPGA”.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37 (2018), pp. 35-47.

Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang.
“Dynamic Neural Networks: A Survey”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 44 (2021), pp. 7436-7456.
K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for
Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016, pp. 770-778.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems. Ed. by F. Pereira, C. Burges,
L. Bottou, and K. Weinberger. Vol. 25. Curran Associates, Inc., 2012.
S. Laskaridis, A. Kouris, and N. D. Lane. “Adaptive Inference
through Early-Exit Networks: Design, Challenges and Directions”.
In: Proceedings of the 5th International Workshop on Embedded and
Mobile Deep Learning (2021).

Leroux, Sam and Bohez, Steven and De Coninck, Elias and Verbelen,
Tim and Vankeirsbilck, Bert and Simoens, Pieter and Dhoedt, Bart.
“The cascading neural network : building the Internet of Smart
Things”. eng. In: KNOWLEDGE AND INFORMATION SYSTEMS
52.3 (2017), 791-814.

S. Mittal. “A survey of FPGA-based accelerators for convolutional
neural networks”. In: Neural Computing and Applications 32 (2018),
pp. 1109-1139.

K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: International Conference on
Learning Representations. 2015.

S. Teerapittayanon, B. McDanel, and H. T. Kung. “BranchyNet: Fast
inference via early exiting from deep neural networks”. In: 2016
23rd International Conference on Pattern Recognition (ICPR) (2016),
pp. 2464-2469.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al. Vol. 30.
Curran Associates, Inc., 2017.

S. I. Venieris and C.-S. Bouganis. “fpgaConvNet: Mapping Regular
and Irregular Convolutional Neural Networks on FPGAs”. In: IEEE
Transactions on Neural Networks and Learning Systems 30 (2019),
pp. 326-342.

	Introduction
	Limitations in Designing Dynamic Networks Architectures on FPGAs
	FPGA Realisation of Early-Exit Dynamic Networks
	Early-Exit Placement Optimisation
	Conclusion

