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Abstract: A new iterative feedback/feedforward tuning (IFFT) method is presented for multiple-input
multiple output (MIMO) control systems that relies on efficient computation of the negative gradient of
the controller cost function in the frequency domain. The iterative method is using only one experiment
per iteration and it is therefore suitable for realtime implementation for periodic adjustment of the
controller. The primary target application area of the presented method is self-tuning feedback control
in active noise and vibration control (ANVC).
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1. INTRODUCTION

Iterative feedback tuning (IFT) has been the subject of inten-
sive research efforts during the past decade (Hjalmarsson and
Gevers M, 1998; Hjalmarsson, 1999; Hjalmarsson, 2002). Its
advantage is that it does not need modelling, given a stable
and reasonably functioning controller to start with is available.
Recent efforts were aimed at improving gradient estimation
(Jansson et al., 2002; Jansson and Hjalmarsson, 2004) of the
control performance criterion, improving stability robustness
without modelling (Veres and Hjalmarsson, 2002) and through
spectrum analysis (Kammer et al., 2000).

In (Luo and Veres, n.d.), Iterative Feedback/Feedforward Tun-
ing (IFFT) in Frequency Domain(FD), i.e., FD-IFFT, has been
proposed to solve SISO ANVC problems. This paper extends
FD-IFFT to Multiple Input Multiple Output (MIMO) cases that
relies on the frequency domain handling of signals and dynam-
ics in multi-variable systems. It only requires one additional
experiment for each input channel of the unknown plant to
compute a gradient estimate. Tuning simultaneously takes place
while the iterative feedback tuning (IFT) in earlier publications
had to perform multiple experiments for feedback and feedfor-
ward controllers.

Although the new approach is applicable to general control
problems in theory, it is particularly suitable for control prob-
lems with finite frequency spectrum signals (disturbances, ref-
erences and measurements) in practice. The most important
target area of its application is active noise/vibration control
(ANVC) of low frequency sound and vibration that has been an
active research field for almost three decades. The original idea
of ANVC has been proposed in the early 1930s (Lueg, 1934),
and the underlying physical theory has been laid down for
some time (Tokhi and Veres, 2002). Many effective methods
have been developed in the last twenty years. There are de-
sign approaches that are model-based, e.g., H∞ control (Elliott
and Rafaely, 1997), unfalsified-model based control (Veres and
Wall, 2000) and iterative correlation based IFT (Karimi et
? Corresponding author S.M.Veres.Email: s.m.veres@soton.ac.uk.

al., 2003). There are many model-free approaches, which do
not model the plant dynamics with precise models, but tune
the controller parameters directly. One of the most widely
used and well understood methods is filtered-x LMS algo-
rithm (Morgan, 1980), which can be made adaptive to track
plant dynamics with slow time variance. Frequency selective
filter-based iterative feedback/feedforward tuning (FSF-IFFT)
control (Meurers and Veres, 1999) has also been successfully
used for periodic disturbance cancelation. There are very few
effective methods available to tune both feedback/feedforward
controllers in ANVC.

The remainder of this paper is organized as follows. In Section
II, the problem of gradient-based tuning control for ANVC is
shortly reviewed in the time domain. In Section III, the idea
of FD-IFFT is proposed and some implementation topics are
discussed. In Section IV, a series of MIMO simulation examples
are presented to compare two implementations of FD-IFFT.
Finally conclusions are drawn in the last section.

2. GRADIENT BASED TUNING FOR ANVC

In this section, the ANVC problem is generally addressed,
the fundamental definitions and performance function will be
defined.

Following symbols are frequently used in the paper.



∇ Gradient vector of functions
7→ Map to
:= Define or denote
{·}T Transpose
{·}∗ Conjugate and transpose
φ{·} Discrete spectrum of a signal

φ{·}|ω Discrete spectrum of a signal
over frequency subset ω

Φ{·} Discrete frequency response function
of a dynamics

Φ{·}|ω Discrete frequency response over
frequency subset ω

DFT Discrete Fourier transform
diag(xxx) Diagonal matrix with diagonal vector xxx

FRF Frequency Response Function
LTI Linear Time Invariant System

Fig. 1 gives a schematic description of the control system
considered.

Fig. 1. Block diagram of a linear feedforward feedback system
of ANVC system

The measured output, which is affected by the disturbance
ddd ∈ Rnd , is represented by yyy ∈ Rny . G is the unknown plant
dynamics with inputs ddd and uuu and produce yyy. It can be described
as

yyy = G(ddd,uuu) (1)

The control signals from the feedforward controller F and
feedback controller H are denoted by uuu f ∈ Rnu and uuuh ∈
Rnu , respectively. The tunable control system C comprises
the parameterized feedforward controller F and the feedback
controller H:

C(www,rrr,yyy) : F : uuu f = F(wwwF ,rrr)
H : uuuh = H(wwwH ,yyy)

uuu = uuu f +uuuh

(2)

which can be tuned by adjusting their parameter vectors in
www := {wwwF ,wwwH} ∈ Rnw .

The disturbance-reference signal rrr ∈ Rnr is obtained through
an unknown but time-invariant dynamics S from ddd. While the
output signal yyy(t) is measurable and recordable, the disturbance
signal ddd cannot be measured directly.

In case of periodic disturbance ddd, it is always assumed that the
steady output yyy is also periodic. If the ANVC system has steady
output yyy with period N then the control performance criterion
is defined as the average quadratic performance of a length N
output sequence:

J(www) :=
1
N

N−1

∑
t=0

yyyT(t)Qyyy(t) (3)

where Q is a priori known weighting matrix.

The objective of tuning for ANVC is to adjust the controller
parameters www to minimize performance (3).

3. ITERATIVE TUNING IN THE FREQUENCY DOMAIN

In this section a general framework of frequency domain itera-
tive feedback-feedforward tuning (FD-IFFT) is introduced and
some implementation issues are also discussed.

3.1 Gradient estimate in the frequency domain

Considering the MIMO system described by Fig.1, if there is
N-length output data set Y := {yyy(0); . . . ;yyy(N − 1)},yyy(t) :=
{y1(t), . . . ,yny(t)} ∈ Rny , it can be rewritten with the order of
output channels as Y = {yyy1, . . . ,yyyny},yyyi = {yi(0); . . . ;yi(N −
1)}, i = 1, . . . ,ny.

Denoting ωm := 2π
N m,m = 0, . . . ,N − 1 as m-th discrete fre-

quency for N-length data, φφφ i
y := {φ i

y(ω0); . . . ; φ i
y(ωN−1)} ∈CN

denotes the discrete spectrum of N-length yyyi, which can be
estimated by φφφ i

y
.= DFT(yyyi). Furthermore, the discrete spectrum

of Y is described as φφφ y := {φφφ 1
y ; . . . ;φφφ ny

y } ∈ C(ny×N)×1. There
are similar notations as used such as φφφ d , φφφ r, φφφ u f and φφφ uh.

In the frequency domain, the plant G is described as function
{φφφ d ,φφφ u} 7→ φφφ y:

φφφ y = ΦG(φφφ d ,φφφ u) = ΦG(φφφ d ,φφφ
1
u, . . . ,φ

nu
u ) (4)

and controller system C is described as function {www,φφφ r,φφφ y} 7→
φφφ u:

ΦC(www,φφφ r,φφφ y) : ΦF : φφφ u f = ΦF(wwwF ,φφφ r)
ΦH : φφφ uh = ΦH(wwwH ,φφφ y)

φφφ u = φφφ u f +φφφ uh

(5)

In LTI systems, FRF ΦG, ΦH and ΦF are derivative functions
with respect to inputs’ spectrum.

Therefore, some notations can be defined as follows: ΦG :=
∂φφφ y
∂φφφu

∈C(ny×N)×(nu×N), ΦF :=
∂φφφu f
∂φφφ r

∈C(nu×N)×(nr×N), Φ(w,u)
F :=

∂φφφu f
∂wwwF

∈C(nu×N)×(nw f ), ΦH := ∂φφφuh
∂φφφ y

∈C(nu×N)×(ny×N) and Φ(w,u)
H :=

∂φφφ uh
∂wwwH

∈ C(nu×N)×(nwh).

Considering LTI in Fig. 1, the plant G in frequency domain can
be written with increment format as

∆φφφ y = ΦG(∆φφφ u f +∆φφφ uh) (6)

With regard to the small increment of parameter www, i.e., ∆wwwF
and ∆wwwH , it is straight forward to write

∆φφφ y = ΦG(Φ(w,u)
F ∆wwwF +Φ(w,u)

H ∆wwwH +ΦH∆φφφ y) (7)

Using notations ∆φφφ w
u f := Φ(w,u)

F ∆wwwF , ∆φφφ w
uh := Φ(w,u)

H ∆wwwH and
∆φφφ y

uh := ΦH∆φφφ y, the incremental relationship (7) can be graph-
ically described by following Fig 2.



Fig. 2. Block diagram of small increment in frequency domain

If (I−ΦGΦH)−1 exists, the input/output mapping ∆φφφ w
u 7→ ∆φφφ y

can be rewritten from (7) as

∆φφφ y = (I−ΦGΦH)−1ΦG(∆φφφ w
u f +∆φφφ w

uh) (8)

Considering LTI closed loop dynamics T := {G,H}, the FRF
of T is defined as

ΦT := (I−ΦGΦH)−1ΦG ∈ C(ny×N)×(nu×N), (9)

From (8), the derivative of φφφ y with respect to controller param-
eters wwwH and wwwF can be written as

∂φφφ y

∂wwwH
= ΦT Φ(w,u)

H (10)

∂φφφ y

∂wwwF
= ΦT Φ(w,u)

F (11)

According to Parseval’s theorem (Oppenheim and Willsky,
1996), it is straightforward to write (3) in the frequency domain
format as

J =
1

N2

ny

∑
i=1

N−1

∑
j=0

φ i∗
y (ω j)qiφ i

y(ω j) =
1

N2 φφφ ∗yQF φφφ y (12)

where QF ∈ R(ny×N)×(ny×N) is the performance weighting ma-
trix Q in the frequency domain.

The derivative of performance J with respect to controller
parameters can be written as

∂J(www)
∂wi

=
2

N2 φφφ ∗yQF ΦT Φ(wi,u)
C (13)

where Φ(wi,u)
C :=

∂ ΦC(www,φφφ y,φφφ r)
∂wwwi

.

3.2 Tuning of MIMO systems in the frequency domain

In (13) the key to estimate ∂J(www)
∂wi

is to compute ΦT , which has
ny×N rows and nu×N columns.

In this subsection, some assumptions are introduced and some
estimation techniques are given to simplify the estimation of
ΦT , and the practical tuning strategy is proposed for the MIMO
ANVC problem.

First note that most disturbance signals in engineering can often
be considered to have finite discrete spectrum, especially in
ANVC problems. For a periodic output yyy with common period
N, only a finite set of frequencies, ωωω = {ω1, . . . ,ωnω}, are

included in φφφ y, the other elements in φφφ y are 0. In this case, (9)
can be written as finite frequency format as

ΦT |ω = (III−ΦG|ω Φi
H |ω)−1ΦG|ω , (14)

and similarly (13) can be rewritten as

∇J(wwwi) =
2

N2 φφφ ∗y |ω Φi
T |ω Φ(w,u)

C |ω . (15)

Remark 1. It should be noted that, in the previous subsection,
there was no limitation about the spectrum of yyy, rrr and uuu.
Theoretically, the gradient based tuning described by (10), (11)
and (13) is applicable for any LTI control problems. There is
similar idea arised in (Kammer et al., 2000) for servo control.

Secondly, an indirect estimate of ΦT is more convenient for the
online tuning. According to (9), if ΦG can be estimated, ΦT can
be solved since H is known by the designer.

Note that if ΦG is assumed a LTI system, FRF is independent
with respect to different frequencies. To ease the notation,
for a single frequency FRF of ΦG, the ΦG(ω) is used in the
following discussion, and the extension to complete ΦG is
straightforward.

Note that ΦG(ω) ∈ Cny×nu has ny × nu unknown variables,
which can be solved out through a full-rank ny × nu equation
matrix.

Considering plant G, it is straightforward to get the an equation
system

∆φy(ω) = ΦG(ω)∆φu(ω), (16)

which gives ny equations.

Therefore, considering the case of the full rank equations, given
nu such equation groups as in (16), ΦG(ω) can be obtained by
solving an equation system with nu×ny equations.

To summarize, under the assumption of a finite frequency set
ωωω for the disturbance and assuming an LTI system, we have
following tuning strategy in the frequency domain:

At the i-th iteration,

(1) Estimate ΦG|ω by solving the equation set from (16);
(2) Calculate Φi

T |ω with (14);
(3) Solve the derivative of J with (15);
(4) Update the controller parameter www with

wwwi+1 = wwwi−µ∇J(wwwi) (17)

where µ is a proper step size to update the controller.
Remark 2. As above stated, at least nu different equation
groups as (14) are required to solve ΦG(ω), which means nu
pairs of difference data {∆uuu,∆yyy} are required. In the implemen-
tation, in order to get the estimate of ΦG|ω , 1+nu experiments
are required to yield nu pairs of {∆uuu,∆yyy}.

For LTI systems, ΦG|ω is considered unchanged and can be
estimated offline. ΦT |ω(ΦG|ω ,Φi

H |ω) can be updated with the
change of H i. Therefore, to make NT times gradient based tun-
ing, plus the nu additional experiments, NT +nu time iterations
are necessary to be performed.



3.3 Further discussion about the implementation

In this subsection some issues are discussed with regard to the
implementation of FD-IFFT in practice.

First note that N should be the common period of yyy and rrr. In
the time domain, (3) vary with the starting point if N is not the
common period of yyy. In the frequency domain, while φφφ y and φφφ r
is the discrete spectrum based on N length time series data, the
necessary condition to make φφφ y = DFT(yyy) and φφφ r = DFT(rrr)
is that yyy and rrr has common period of N. In the practice, the
common period N is often offline estimated, otherwise requires
a proper long period experiment to make online estimate.

Secondly, the format of tunable C = {F,H} can vary in different
applications.

It is noted that there is no limitation about the format of the
controllers in (15).

FIR controllers are one of the most convenient controller struc-
tures to realize. For some simple ANVC applications with
few frequencies, especially single frequency control, FIR con-
trollers can give the satisfying tuning result with the simple con-
troller structure and easy tuning algorithm, which is important
in practice.

In order to achieve higher level of cancelation performance
and more robust tuning performance, the Frequency-Selective-
Filter (FSF) can be introduced for each of main frequencies
in the signal, which is called FSF-FD-IFFT in the following
discussion.

Fig. 3. Block diagram in frequency domain of one sub-block in
the FSF controller

Fig. 3 shows the typical block diagram of one sub-block in the
FSF controller with nω FSF channels, which is from the i-th
input to the j-th output. For the finite set of ωωω = {ω1, . . . ,ωnω},
there are nω FSF channels. Φm

FSF denotes the band-pass FSF
with central frequency ωm, which cascaded with a tunable
complex gain module w ji(m), where m = 1, . . . ,nω .

4. SIMULATION

This section illustrates the usefulness of the FD-IFFT as tested
in simulation using MATLAB. FIR control structure and FSF-
FD-IFFT are tested and compared. The robustness against the
error in the common period N is discussed with a simulation
example.

4.1 Simulation platform

The block diagram of the Simulink-based simulation is given
in Fig. 4. It is a 2-input and 2-output LTI system. y1, y2, r1 and
r2 denote the data acquired for output and reference signals.

Module Ny1, Ny2, Nr1 and Nr2 denote the senor noise in the
output and reference paths. They are assumed as white noise
with standard deviation 0.001.

Fig. 4. Block diagram for simulation

In Fig. 4, control path Gu is given by




0.1q−8−0.3q−9

1+0.2q−1−0.2q−2
0.01q−6−0.03q−7

1+0.02q−1−0.02q−2

−0.02q−7−0.02q−8

1+0.01q−1−0.01q−2
−0.2q−8−0.3q−9

1+0.1q−1−0.2q−2


 (18)

and disturbance path Gd is given by




0.85q−4

1+0.4q−1 0

0
0.95q−6

1−0.2q−2


 (19)

The sampling frequency is 4kHz. The disturbance signal ddd is
a mix of three sine-waves with frequencies of 50Hz, 80Hz and
100Hz and a white noise signal wt with standard deviation 0.01,
leading to:

d(t) =
1
3
[sin(100πt)+ sin(160π(t−0.091))

+sin(200πt)]+wt (20)

The uncontrolled output is shown in Fig. 5.
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Fig. 5. Initial output without control

The reference signal r(t) is obtained from d(t) by S:



S(q) =




0.8q−8

1+0.8q−1 0

0
0.5q−10

1+0.9q−1


 (21)

4.2 Simulation for FIR-FD-IFFT and FSF-FD-IFFT

In this subsection, two formats of the controller structure are
tested with the above simulated platform. One is an FIR con-
troller structure (FIR-FD-IFFT), another is FSF-FD-IFFT.

FIR-FD-IFFT has the 10-th order feedback controller and the
40-th order feedforward controller. The step size (adaptation
gain) for feedforward controller tuning is µ f = 0.1 and step
size for feedback controller tuning is µh = 0.02.

In FSF-FD-IFFT, 1st-order Butterworth bandpass filters are on-
line designed according to the spectrum of yyy. The bandwidths of
the FSF were given by the disturbance frequency ±10 percent
which also eliminates the unwanted white noise in the tuning.
The step size (adaptation gain) for feedforward controller tun-
ing is µ f = 8.0 and step size for feedback controller tuning is
µh = 2.0.

The signal period is defined as N = 800. The iteration time of
tuning is set 50. All the initial controllers are set to zeros. The
weighting matrix is Q = diag([1.00.8]). The initial performance
criterion without control is 0.2443. In order to perform an initial
estimate of G, only the sub-block from rrr1 to uuu f 1 in H is changed
to be 0.2 in the 2nd iteration, and only the sub-block from rrr2 to
uuu f 2 in H is changed to be 0.2 in the 3rd iteration.
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Fig. 6. Performance update in FIR-FD-IFFT
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Fig. 7. Final output of FIR-FD-IFFT

Fig. 6 shows the updating performance in FIR-FD-IFFT: The
2nd and 3rd iteration are manual updates, which give J(2) =
0.2432 and J(2) = 0.2391. After 50 iterations, the final perfor-
mance is J = 0.0371 with 8.2dB cancelation. The final output
with control is shown in Fig.7.
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Fig. 8. Performance update in FSF-FD-IFFT
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Fig. 9. Final output of FSF-FD-IFFT

Fig. 8 shows the updating performance in FSF-FD-IFFT. After
50 iterations, the final performance is J = 0.0026 with 19.8dB
cancelation. The final output with control is shown in Fig.9.

It is obvious that FSF-FD-IFFT can supply much better tuning
performance than FIR-FD-IFFT.

5. EPILOGUE

A hybrid iterative feedback/feedforward tuning approach in the
frequency domain has been presented that uses an innovative
way of computing gradient estimates of the controller cost
function. Compared to IFT in the time domain, this method
simplifies both control structure and control operation.

The method is ideally suitable for ANVC applications with
feedback and feedforward controllers. After providing a general
general idea about iterative tuning in the frequency domain,
some detail issues were discussed for applications. The effec-
tiveness and flexibility of FD-IFFT was shown by simulation
examples.

As the basic scheme was outlined and tested in simulation,
the robustness of controller is still questionable. Future work
on robustification will be possible to perform directly in the
frequency domain. Extension of the general framework to other
control application except ANVC also requires further research.
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