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GLAUBERMAN CORRESPONDENCE

by Adam Martin Case

Let S and G be finite groups of coprime order such that S acts on G. If S

is solvable, Glauberman [11] proves the existence of a bijection between the

5*—fixed irreducible representations of G and the irreducible representations

of Gs.

In the case of G solvable, Isaacs [13] uses a totally different method to

prove the existence of a bijection between the same two sets of representa-

tions.

Assuming the existence of the Glauberman correspondence, Boltje [5] uses

the method of Explicit Brauer Induction (EBI) to give an explicit version of

this correspondence for the case in which S is a p—group.

After presenting the above results, we outline a strategy for investigat-

ing these correspondences using Explicit Brauer Induction, and we use these

ideas to give a new proof for the theorems of Glauberman and Boltje. We

move on to suggest some ideas of how this work may extend to Isaacs' corre-

spondence. We also mention a link to Shintani's correspondence [25]. In the

final chapter, we look at cryptography, and mention a potential application

of some of our techniques (Adams Operations) in this field.
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Chapter 1

Introduction

Let S and G be finite groups of coprime order such that S acts on G. If S

is solvable, Glauberman [11] proves the existence of a bijection between the

S—fixed irreducible representations of G and the irreducible representations

ofGs.

In the case of G solvable, Isaacs [13] uses a totally different method to

prove the existence of a bijection between the same two sets of representa-

tions.

Assuming the existence of the Glauberman correspondence, Boltje [5] uses

the method of Explicit Brauer Induction (EBI) to give an explicit version of

this correspondence for the case in which S is a p-group.

Here, we give a brief introduction to representation theory (together with

induced representations and the representation ring), followed by an overview

of Explicit Brauer Induction. We then move on to give a description of the

Glauberman correspondence, and of Boltje's explicit characterisation.

Chapter 4 outlines a cohomological strategy for dealing with these cor-

respondences, we use these ideas to give a new proof for the theorems of

Glauberman and Boltje in Chapter 5, and move on to suggest some ideas



about how the work may extend to Isaacs' correspondence. We also mention

a link to Shintani's correspondence. In the final chapter, we look at cryptog-

raphy, and mention a potential application of some of our techniques (Adams

Operations) in this field.



Chapter 2

Representation Theory

We give a brief introduction to representation theory, and the theory of

Explicit Brauer Induction.

2.1 Basic Results and Definitions

This section presents the basic results (omitting proofs, etc) on group repre-

sentation theory needed to work with the Explicit Brauer Induction formula.

We only introduce necessary concepts (for example, all representations are

taken over the complex numbers, rather than an arbitrary vector space over

afield).

Definition 2.1.1 Let G be a finite group. A (complex) representation of

G is a group homomorphism p : G —> GL(V) where V is an n-dimensional

vector space over C. Two representations p. p' are equivalent if there exists

T G GL(V) such that p(g) = T'lp'{g)T for all g G G. The dimension of

such a representation, dim(p) = n.



Note that we can choose an isomorphism (by choice of basis) between

V and C" so p : G -» GL(Cn) =GLn(C) where GLn(C) is the group of

invertible n x n matrices over C We can define an action of G on V as

follows: if g G G and v G V then the action induced from a representation p

isgov = p(g)(v).

Definition 2.1.2 / / p : G -> GL(V) is a representation and W is an m-

dimensional C-subspace of V which is preserved by the G-action, then the

induced homomorphism p' : G —> GL(W) is a subrepresentation of G of

dimension m. We say W is a subrepresentation of V.

Definition 2.1.3 If pi and p2 are two representations of G with dimensions

ni and n2 respectively, p2 : G —> GLnz(C) (i = 1, 2) then we define the direct

sum:

Pi®p2 • G^GLni+n,{C)

(2.1)

This is clearly an (rii + n2)-dimensional representation of G. The tensor

product, p\ <S> Pi is induced from the vector operations in the same way: it

has dimension n\ • n2 and is given by the Kronecker product of pi and p2-

Theorem 2.1.4 (Maschke's Theorem) Let p : G —> GL(V) be a representa-

tion of G and W\ a, subrepresentation. Then there exists a subrepesentation

W2 such that V = \\\ 0 W2.



Definition 2.1.5 If a representation p : G —>• GL(V) has no subrepresenta-

tions except p and the zero homomorphism, we say p is irreducible. Maschke's

theorem tells us that given V = W\ © W2 for subrepresentations W\ and W2,

p is irreducible if W\ = 0 or V. We write p = p\ © p2 where p\ and p2

correspond to the subrepresentations for W\ and W2 respectively.

Note that a one-dimensional representation

\ . f< . (~i T ((Ty\ fP* fH f(~\\ (O O\
A . Lr —r K^L/iyi^j — IL, = : *_- — i ^ J \"'^)

is clearly irreducible.

Given a representation p, we can apply these results to obtain a decom-

position of p into a direct sum of its irreducible constituents

s

P = 0n,A?; (2.3)

where nu s G N and Aj are irreducible representations. We now give some

further results concerning group characters and irreducible representations,

before moving on to look at induced representations.

Definition 2.1.6 Given a representation p. the character of p is defined to

be the complex-valued function, Xp, given by:

Xp(g) = Trace(p(g)) = T(p(g)h (2.4)

Definition 2.1.7 The Schur Inner Product of two representations p, p' with

characters Xp and Xp' ?-s" defined by:

1 ^-^ —-
(Xp,Xp') = T^2.XP{9)Xp>{9) (2.5)



Lemma 2.1.8 The following results hold for representations p and p'

1. If p, p' are equivalent, then Xp(d) = Xp'iy) for a^ fl *= G-

2. Xp(l) = n1 the dimension of p.

3- Xp{g l) = Xp(g) (complex conjugation)

4- Xp + Xp' is the character of p © p'

5- {Xp) • {Xp') 'ts the character of p® p'

6- Xp = Xp' lf an>d only if P = p'

Theorem 2.1.9 The following results hold for representations p and p' and

irreducible representation A :

1. (xp,X\) *s e?wa/ to the multiplicity of X in p (the number of times A

appears in the decomposition of p as a direct sum, of irreducibles, as in

2.1.5).

%• {XpiXp) — 1 if and on^y if P is irreducible

3- (xP,Xp') = (xP',Xp)

Corollary 2.1.10 If pi,...,pt are the distinct irreducible representations of

G then:
t

J ] 2 (2.6)



2.2 The representation ring, R(G)

Definition 2.2.1 The complex representation ring of G, denoted by R(G), is

defined to be the free abelian group on the complex irreducible representations

ofG.

The ring structure on R(G) is defined using the tensor product as follows:

in the free abelian group of irreducible representations {Ri}, we identify a

formal sum

y^lRl (2.7)

with a formal difference of representations

x = S+- S-

S+ = Q3 mRi S^ = Qfi(-ai)Ri (2.9)
Q,>0 O',<0

Similarly, if y = T+ — T_ G R(G) we may define the product:

xy = [(5+ ® T+) © (5_ ® T_)] - [(5+ ® T_) © (5_ <8> r+)] (2.10)

zs is well-defined and makes R(G) into a commutative ring.

2.3 Representations as CG-modules

Lemma 2.3.1 Representations of a finite group G over C are equivalent to

CG-modules.



Proof Given a representation p : G —>• GL(V), where V is an r?,-dimensional

vector space over C, we can define an n-dimensional CG-module by letting

G act on V by g.v = p(g).v. The product extends to elements of CG in the

obvious way:

Conversely, given a CG-module M, for each g G G we define

p(g) : M ->• M by p(g){m) = g • m. Then p(#) G GL(F) and p is a ho-

momorphism because of the multiplication rules imposed by the CG-module

structure. •

Lemma 2.3.2 If Mu M2 are both CG-modules, then M{ = M2 as CG-

modules if and only if the corresponding representations p\ and p2 are equiv-

alent.

Proof Assume Mx = M2 as CG-modules, and let n : M\ --> M2 be the

isomorphism. Let Mi have basis {mi,..., mn} and M2 have basis {si,..., sn}.

For any g G G we have:

f/ • 7r(m,) = ir(g • s,:)

p2(</)^(ml) = TT(Pl(g)Si) (2.12)

7T is invertible so TT~1 p2{g)ir = Pi(g), and the result follows by taking the

matrix T of IT in the basis given, so T~1p2(g)T = pi(g) with T G GLn(C)

as required. The converse is obtained by applying the same argument in

reverse. •

We see from these results that we can consider all representations of G

as CG-modules. We can show that the irreducible representations of G

correspond to the simple CG-modules (modules with no proper submodules)



and study representations in this new way (the approach followed in Leary

[17]). We have introduced this in order to give the definition of induced

representations.

2.4 Induced Representations

Definition 2.4.1 Suppose H is a subgroup of G. A representation p of H

is equivalent to a left CH-module M from, the results above. CG is both a

left CG-module and a right CH-module, so the tensor product

CG®CHM (2.13)

is another (left) CG-module, and is therefore equivalent to a representa-

tion of G. We call this the representation of G induced from p, and denote

by Indfr(p).

Definition 2.4.2 If H is a subgroup of G and p : G —>• GL(V) is a repre-

sentation, then p\H: H —> GL(V) is a representation of H. We call this the

restriction of p to H, denoted by Res^(p).

There are several useful results (including Frobenius reciprocity) which

can be obtained by combining the Ind and Res maps, which are stated and

proved in Snaith [28] and Leary [17] which we will not repeat here.



2.5 Explicit Brauer Induction

We present a summary of results from Snaith [28] and Boltje [5] to introduce

the method of Explicit Brauer Induction.

Definition 2.5.1 For a finite group G, let R+(G) denote the free abelian

group on G-conjugacy classes of one-dimensional representations

X : H —>• C*; where H < G. We denote this element by (H, A) and

its conjugacy class by (H,X)G £ R+(G), where the action of G is given

by g o (H,X) d=f (gHg-\g-1 * A), with g~l * X(h) '=' X(g-'hg), for all

g EG,heH.

More specifically, for any finite group G. we define G to be the multi-

plicative group of one dimensional representations of G, Hom(G, C*). Let

R(G) be the Z -span of G, and M(G) = {(H, A) | H < G, A e H}.

We see M{G) is a Z-basis for ®H<GR{H) on which G acts by conju-

gation, and this basis is invariant with respect to this action, as gHg^1 is

another subgroup of G, and g'1 * X maps an element ghg^1 £ gHg~l to X(h).

We write (H, X)G for the G-orbit of {H, A) G M(G).

We can now define R+(G) as the free abelian group on the elements

(H,X)G e G\M(G) as in definition 2.5.1. Snaith [28] demonstrates how a

product can be defined on R+(G) to give it a ring structure, and we give

several properties of R+{G) from Snaith

Definition 2.5.2 For J < G, we can define am, induction map:

IndG : R+(J) -> R+(G), given by IndG{{H, X)J) = {H, X)G (2.14)

10



We also define the following map:

bG : R+(G) -+ R(G), (H, \f -> /«4(A) (2.15)

Using the ring structure on R+(G) mentioned above, we can show that bo

is a ring homomorphism on R+(G). The Brauer Induction Theorem (2.1.20

of [28]) gives that it is surjective.

Definition 2.5.3 For J < K < G, define a restriction map:

Res* : R+{K) -> R+(J) (2.16)

by the double-coset formula:

\^z-^~l*^)Y (2-17)
zeJ\K/H

We can show that the maps {be} commute with these restriction maps (see

for example [5j.

The next theorem effectively gives an inverse map a(; : R(G) -> R+(G)

such that bcac = 1, this is the canonical form for Brauer Induction. We

also give properties of the map ac which we will use in order to calculate

this map explicitly for given groups. The version of this theorem we state is

taken from Boltje [5], however it was first discovered in Snaith [31] (see also

[30]), improved upon in [4] and [3] and developed and applied in [6],[27],[32],

and [28].

11



Theorem 2.5.4 If G is a finite group, there is a unique family of maps

aG : R(G) —>• R+(G) such that for H < G, the following diagram commutes:

aG
R(G) R+(G)

Res%

R(H) aH

(2.18)

R+(H)
Moreover, if (H,X) G M(G) and p G R{G), and the coefficient of aG(p)

at the basis element (H,X)G of R+(G) is denoted by Q.{H.\){P) £ %, s0:

G R+(G) (2.19)
(H,\)EG\M(G)

then:

2. For all A G G we have aG(X) = (G. X)G

3. If p is a representation of G and (H, A) G M(G) then (A, Res°j(p)) = 0

implies a(H}X)(p) = 0

4. If pe R(G) and (H,X) G M{G) then a.{H.x)(p) ^ 0 implies Z{G) < H

(where Z(G) denotes the centre of G)

5. For any automorphism a : G —>• G and any p G R(G) we have

aG(a o p) — a^1 o aG (p) where:

def „/ _/ „̂ ^ ; „ „ / TJ \\G "£/ ( „( u\ „— 1 „ \ \G
p(9) =

6. For any p G R(G) we have

(2.20)

(2.21)

We also give one further result from Snaith

12



Corollary 2.5.5 If p E R(G) and (H, A) G MG is an element which is

maximal among those satisfying (\,Res(fI(p)') ^ 0 then:

<X(H,x)o(p) - (X,Res%(p)) • ([NG(H,X) : H))~l (2.22)

(we use the term 'maximal' in the sense that (H', A') < (H, A) if and only

if H' < H and Res%,(X) = X') where NG(H,X) is the set

{g e G | X(ghg-1) = X(h) for all h e H).

13



Chapter 3

Glauberman's Correspondence

Let G and S be finite groups of coprime order, and assume S is a solvable

group acting on G. After some preliminary results concerning the existence

of extensions, we give a characterisation of the Glauberman correspondence

(first described in [11]), a bijective correspondence between Irr{G)s and

Irr(Gs) for special cases of S. We then show how Boltje [5] used the meth-

ods of Explicit Brauer Induction along with Glauberman's proofs to create

an explicit form of this correspondence for the case in which the most explicit

characterisation exists, when S is a p—group, and we briefly give some ex-

amples to illustrate this (later we will present a new proof of Glauberman's

results for the special cases mentioned above, and show how this extends to

all solvable groups S).

3.1 Extensions of representations

For an irreducible representation p of G, the existence of a unique (canonical)

extension to the semi-direct product 5 x G (for an appropriate S acting on

G) is well-known. We will give a version of the proof from Glauberman [11].

14



D e f i n i t i o n 3 .1 .1 Let S tx G be the semi-direct -product with, respect to the

action of S onG, the cartesian product of S andG with multiplication defined

as

(s\,gi){s2, g2) = (si-s-2, (Jis1(g2)) for all s{, s2 G S and gl:g2 € G (3.1)

Consider the Z[S]-module given by R+{G). If s G S, s(H,<p)G is the

G—conjugacy class of s (cp) : s(H) —> C* given by s (6) (.s (/?.)) = </>(/i), for

/i Gif.

If we have a commutative diagram with G acting by conjugation as above:

H 9-9' gHg-L

v
(3.2)

then:

commutes because:

s(y>)

C*

This shows that S acts on R+(G).

(3.3)

'l) = s(v)(s(g)s(h)s{g)-i) (3.4)

15



Theorem 3.1.2 (Glauberman) Let S act on G with {\G\,\S\) = 1. / /

p G Irr(G) such that for all s G S, p is equivalent to ps given by:

Ps{g) = p(s(g)) (3.5)

then there exists a unique representation p G B(S ix G) such that

f>(g) — p(g) for all 9 £ G and det(p(s)) = 1 for all s G S.

Proof

For s G S, there exists a matrix Ms G GLr(C) (where r is the degree of

p) such that:

] / ;V( f lp / s (3.6)

for all geG. Take 5 , (6 5 and g eG. Then:

M;t
lp{g)Mst = p(st(g)) = p(s(t(g))) = MJ1 p{t{g))Mx = M;lM~l p(g)MtMs

(3.7)

thus MtMsM^ centralizes p(g) for all .9 G G. As p e Irr(G), MtMsM~t
l

is a scalar multiple of the identity, by Schnr's Lemma.

Take cSjt G C such that:

MtMs = cs,tMst (3.8)

Now let d(s) = det(Ms) for all s G S. From 3.8 we see:

d(t)d(s) = cyi(st) (3.9)

16



and:

cSjtcu,st = MtMsM-t
lMstMuM,-l

t

= MtM3MuM~s\

= MtMsMuM^MllxM,-\ (3.10)

Hence we see:

Cs,tCu,st = t'us,tCu,s (3-11)

Let e(t) = T\seScsj for all t G S. Multiplying each side of 3.11 over all

u G S gives, where \S\ = n:

cueist) = e(t)e(s) (3.12)

n and r are coprirne, so there exists integers i..j such that in + jr = 1.

Let f(s) = d(s)je(sy for s e 5. Equations 3.11 and 3.12 give:

cs,t = (cs,t)
in+jr = {cs,t)

in(cs,t)jr

= KtYKtV = (e(t)e(s)e(st)-lY(d(t)d(s)d(s,t)-y

= d(s)Je(s)id(tpe(t)id(st)-Je(st)-'

= f(s)f(t)f(st)-1

Define M's = /{s^M, for s E S. From 3.8 and 3.13, M'^ = M[M'S for all

s,teS. For each s G 5. let d'{s) = det(M's) and i\/; = d'(s)-JM's.

For g £ G and s,t E S we see:

(3.14)

17



and

M'JM? = Ml (3.15)

so that

det(M'J) = (d'(syj)rd'{s) = d'(s)m = d'(sny = d'(l)1 = 1 (3.16)

We define p by p(s, g) = M"p(g) for all s G S and g G G.

Wre show p is unique: let f be another representation such that

•-(g) = p(g) = p(g) for all g G G and det(f(s)) = 1 for all s € S. For

i G S and each g £ G we see:

) = f(s)-lp(g)f(s) (3.17)

So p(s)f(s)"1 centralizes p(_g) for every g G G. p is irreducible hence there

exists h(s) G C such that f(s) = h(s)p(s). By comparing determinants, we

see /?,(s)r = 1. p(l) = f(s)n = h(s)np(s)n = h(s)"p(l) hence h(s)n = 1. We

see h(s) = h{s)in+ir = V+3 = 1.

Take s G S and g £ G then f(s,g) = f(s)p(g) = p(s)p(g) = p(s,g). m

Definition 3.1.3 Let m be an integer, and p an irreducible, character ofG.

Denote by Qm the field obtained by adjoining the complex m-th roots of unity

to Q, and let Q(p) be the fi,eld obtained by adjoining the values of p to Q.

Theorem 3.1.4 Let p G Lrr(G)s:

a. There exists a unique p G Irr(S x G) such, that B,esf;
K('(p) = p and

det(p(s)) = 1 for all s G S.

18



b. If p satisfies (a) then Q(p) = Q(p) and p(s) G Q /or oi/ s G 5.

c. Assume p satisfies (a). If <fi G Irr(S x (?) ttn<i p «.s a constituent of

s^G(4>), then there exists a unique j3 G Irr(S x G/G) sue//, i/mi /3 <g> p «s

an irreducible character of S x G and p is a constituent of Res^G'(8 <g> p).

Proof

a. The degree of p divides |G| and is coprime to |5 | = /x. Take p as in

Theorem 3.1.2.

b. R,es'G
K (p) = p. so Q(p) C Q(p). Conversely for every automorphism

a of Q\G\n that fixes elements of Q(p), a(p) is an irreducible character of SKG

such that ReS(*G(a(p)) = <r(p) = p, so we see <7ei(V(p))(.s) = CT(1) = 1 for

all s G S. Hence cr(p) = p and Q(p) C Q(p).

Take s G 5 then p(s) G Q(p) n Qn = Q(p) n Q7l C Q,6, n Qn = Q.

c. S K G fixes p by the hypothesis, and by Frobenius Reciprocity, <b is a

constituent of /rzd^,KG(p), and the result follows immediately from Theorem

2 of [10]. •

Definition 3.1.5 For p G Irr(G)s, the unique extension described above,

p G Irr(S IK G) is called the canonical extension of p.

We give one further property of the canonical extension.

Lemma 3.1.6 Let S be cyclic and p G Irr(G)s. If .s G 5 is a generator,

and a an integer prime to \S\ = n, then:

p(s,t) = p(sa.t) (3.18)

for all t G Gs.

19



Proof Choose integers a and [5 such that a\G\ + fi\S\ = 1, and let

b = a + P\S\(1 — a), so we see 6 = 1 (mod |Gj), b = a (mod n) and b is

prime to the order of S x C

Consider the action of the element CT of Ga/(Q(£,,)/Q) which sends £n (a

primitive n—th root of unity) to (£n)
6 and fixes all roots of unity prime to n.

Thus a fixes every element of Q|G| and as Q(/5) C Q|GI, cr(p) = p.

For g E G, a(p(s, g)) = p(s, .9), and for t £ Gs we see:

p(s, t) = a(p(s, t)) = p((s, t)b) = p{sb, tb) = p(sb. t) = p(s\ t) (3.19)

3.2 Characterisation of Glauberman's

Correspondence

With G and S as above, the necessary facts about Glauberman's correspon-

dence can be summarised in the following results from Glauberman [11]:

Lemma 3.2.1 Let S be cyclic, and p an irreducible representation of G such

that sop = p for all s G S (ie p G Irr(G)s). Then (/using the notation above)

there exists a unique sign e = ±1 and a unique A G Irr(Gs) such that

p{s,t)=e\(t), (3.20)

for all s which generate S, and all t G G" . Moreover, for every

X G Irr(Gs), there exists a unique p G Irr(G)s which corresponds to X

as in Equation 3.20.
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Lemma 3.2.2 Let S be a p-group, and p 6 Irr(G)s. If

Res%s{p) = niAi + ... + nt\t, (3.21)

where Xj are distinct irreducible representations of Gs, there exists a

unique i such that p\n%. Moreover, n,L = ±1 (mod p).

Theorem 3.2.3 If S is solvable, then there is a unique bijection

TIS'G : Irr{G)s -> Irr{Gs), (3.22)

called the Glauberman correspondence, satisfying the following conditions:

1. IfT<S, then nT'G (irr (G)S) = Irr{Gr)s and TTS<G = 7rs^rjT o ^ G .

2. If S is ap-group and p £ Irr(G)s, then i\b'G(p) is the unique irreducible

constituent Aj of Res^s (p) with p \ nls (using the notation from Lemma

3.2.2).

3.3 Boltje's Explicit Characterisation

This section contains a summary of the work done by Boltje [5] to obtain an

explicit formula for the Glauberman correspondence, when S is a p-group.

We give Boltje's results here, later we will return to this correspondence and

use our results from Section 4 to give our own proof of Boltje's main result.

Boltje's treatment assumes the existence of the Glauberman correspondence,

but our treatment does not: we give a new proof using Explicit Brauer

Induction.
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For p e Irr(G) we define Trs(p) to be the S-orbit sum of p, ie

Trs(p)(g)=

Stabs(p) i3c S1<ibg(p)

Wre note that Trs{p) G R(G)S. If p runs through a set of orbit represen-

tatives of the 5-orbits S\Irr(G) of Irr{G), then the elements Tr${p) form

a Z-basis of R{G)S, and we write R(G)<S for the Z-span of the elements

Trs(p) with p G /rr(G) with Stabs(p) < S. Then we have:

R{G)S = Z.Irr(G)s + R(G)^S (3.24)

Boltje [5] goes on to derive some consequences of Lemma 3.2.1. We

give his proofs in detail because they illustrate how the existence of the

Glauberman map is fundamental to Boltje's work:

Proposition 3.3.1 Let S be a p-group.

1. For p G Irr(G)s with Stabs(p) < S we have:

Res%s(Trs(p)) = 0 (mod pR{Gs)) (3.25)

2. For A G Irr{Gs) we have IndG's{\) G R(G)S. and there is a unique

p G Lrr(G)s such that p \ (pJnd^s(X))G.

Moreover, (p, Ind,f;S(p))G = ±1 (modp).

3. For A G R(GS) we have

Res%s(Ind%s(\)) = A (mod pR(Gs)) (3.26)

4. For pe R(G)S we have

Ind%s(Res%s(p)) = P (mod pR(G)s + R{G)S
<S) (3.27)
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Proof

1. Let T = Stabs(p). We see:

Res%s(Trs(p)) = J ^ Res Gs (sop)
ses/T

ses/T

= \S/T\-Resgs(p) (3.28)

and \S/T\ = 0 (mod p), since S is a p—group.

2. For s G 5, we see

s o Ind%s (A) = Indgs (s o A) = J?;r/g, (A) (3.29)

hence Ind^s{^) G R(G)S. Now. as the Glauberman map

TTG'5 : Irr(G)s —> Irr{Gs) is bijective. Lemma 3.2.1 gives that A is

the irreducible constituent of Res^;S(p) for a unique p e Irr(G)s such

that p does not divide its multiplicity, ie

p\(\Res%s(p))GS = (Ind$s(\),p)c (3.30)

The final part also follows from Lemma 3.2.2.

3. It is sufficient to prove for A G Irr(Gs). If A = nG's(p) for some

p G Irr(G)s, then by part 2:

Ind%s (A) = ±p (mod pR(G)s + R(G)^S) (3.31)

Hence i?e.sgs(/nrfgs(A)) = A (mod pR(G)s) by part 1.
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4. It is sufficient to prove for Trs(p) for p E Irr(G), as these elements

form a Z-basis for R(G)S. If Stabs(p) < S, then:

Ind%s{Res%s(Trs(p))) E pR(G) C pR(G)s + R(G)S
<S, (3.32)

by part 1, and we also have Trs(p) € pR(G)s

If Stabs(p) = S and A E Irr(Gs) is the Glauberman correspondent of

p = Trs(p), then i?esgs(p) = ±A (mod pR(Gs)) and Jrcdgs(±A) = p

(mod pR{G)s + R(G)'ls) from part 2.

Putting these two parts together gives the result for Trs{p) and hence

for p.

We now have enough background material to deduce the canonical map.

Firstly we give some useful results concerning coprime action:

Theorem 3.3.2 (Schur-Zassenhaus) Let N < G and G be finite, with either

G or G/N solvable. Assume \Ar\ = n and \G : N\ = m are coprime. Then

G contains subgroups of order m and any two such are conjugate in G.

Proof See for example [22] •

Lemma 3.3.3 (Glauberman [11]) Let S act on G with (|S|, |G|) = 1. As-

sume one of G or S is solvable. Let S and G both act on a set 0. such

that:

a. s(g(a)) = s(g)(s(a)) for all a E £1, g G G. ,s E S and

b. G is transitive on Q.

then S fixes a point of Q.
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Proof (Proof taken from [13], Lemma 13.8)

Define an action of S x G on Q by:

(s,g)(a) = s(g(a))fovaen (3.33)

This is an action by condition (a) above. For a G 0, let

H = {stabiliser of a in S x G}

g)(a) = s(cj(a)) = a} (3.34)

G is transitive on Q. hence |fi| = |G : G n H\ = |5 x G : # | and hence

\H:GnH\ = \S\.

Now, application of Theorem 3.3.2 gives that there exists a subgroup T

of order \G C\ H\, a complement for G C\ H in H. Then \T\ = \S\ and T is a

complement for G in S1 x G.

The conjugacy part of Theorem 3.3.2 gives that S = x~lTx for x £ S1 x G,

hence S C x~lHx and 5 fixes rr(o;) G Jl, completing the proof. •

Corollary 3.3.4 In the situation of Lemma 3.3.3. the set of S—fixed points

of Q is an orbit under the action of Gs.

Proof (this proof taken from [13], 13.9)

If a e Q is fixed by S and t G Gs then s{t{a)) = s(t)(s(a)) = t(a) so

t(a) is S—fixed also.

If a,0 ett are both S-fixed, then let X = {() G G\g(a) = /?)}. Because

the action of G on Q is transitive, X is a left coset of the set Gp = {stabiliser

of /3 in G} = {g G G|r/(;/i) = /:*} and is 5-fixed.

Let Gp act on A' by left multiplication. Gg is 5—fixed and transitive on X.

For x G A',0 EGp,s € S we have s(f/(x)) = .s(.(/.7:) = »{g)s(x) = s(
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so Lemma 3.3.3 applies to the action of S on Ge and of S and Gp on X. So

S fixes some element x G X. Hence x G Gs and x(a) = (3. •

Definition 3.3.5 Using the notation from, Section 2.5, we define the map

bols'G as the following composition:

bols>G : R(G)S -^ R+(G)S b°X R+(GS) H R(GS) (3.35)

We still have to determine the map bols
+'G : R+(G)S -> R+(GS). If

p G R(G) is 5-fixed (ie p(s o g) = p(g) for all s G 5, g G G), then from

part 5 of Theorem 2.5.4 we have

s o aG{p) = aG(s~1 o/j) = «r;(p) (3.36)

so each S-fixed point of R(G) is mapped under a,c to an 5-fixed point of

R+(G) (recall that the action of S on R+(G) is given by s o (H.X)G =

(s o H, s~L o A), where s o X(g) = X(s o g), and we see that the basis elements

(H. \)G of R+(G) corresponding to G\M(G) are permuted by this S—action).

The G-orbit of (H, A) G M(G) is {{gHg~l, g'1 * A) | </ G G}. If

T = Stabs{(H,X)G)

= {s G 5, (s o H, s"1 o A) = (gHg-^g'1 * A) /or .some (/ G G}

(3.37)

then the S-orbit sums

s o (H, A)G, (H, A ) 6 5 K G\M(G) (3.38)

form a Z-basis of R+(G)S. By considering the action of T and G on

(if, A), the G—action is transitive so we can apply Lemma 3.3.3, hence there

exists a T-fixed point (H', A') in the G-orbit of (H. A).
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ie t(H',X') = (H',X') for all t e T, and {H,X)G = {H',\')G with T =

Stabs((H, X)G) = Stabs((H', X')G). We can now define the map:

G\ i(GnH,ResnW(X^^ if T = S

j I 0, if T < S
(3.39)

If T = S, we can write HlS instead of Gs D H'. By Corollary 3.3.4, the

inition of feo/+' does not depend on the ch

tative (H',X') we choose from within (H,X)G.

definition of feo/+' does not depend on the choice of the 5—stable represen-

The following results of Boltje [5] show that the map bols'G can indeed be

taken as a definition for the Glauberman correspondence for the case when

S is a p—group.

Proposi t ion 3.3.6 Let S be a p-group. For p £ G we have:

= S (3.40)
0, if Stabs(p) < S

Proof

Trs(p)= Y sopeR{G)s (3.41)

applying the map CLG to this gives (from part 2 of Theorem 2.5.4):

so(G,p)G (3.42)

'^ Stabs(p)

If Stabs(p) < 5*, applying bol+G gives 0 (direct from definition of bol+G

given in 3.39). If Stabs(p) = S, we get:

{Gs n G, ResG
s (p))GS = (Gs, ResG,s (p)fS G R{GS) (3.43)

Finally, we apply the map bGs to see bols'G(Trs{p)) = IrulG,sResG
s(p) =

esc
G's (p) as required. •
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Theorem 3.3.7 Let S be a p-group.

1. For p E R(G)S we have

bols>G(p) = ResG
s(p) (mod pR(Gs)) (3.44)

2. For p <E R{G)S
<S we have

bols'G(p) = 0 (mod pR(Gs)) (3.45)

Proof Boltje gives full details in [5], we will give a new proof later in

Chapter 5. •

This theorem together with Theorem 2.5.4 shows that the map bols-G can

indeed be used as a definition for the Glauberman correspondence in the case

where S is a p-group. However, the Glauberman map is defined for any G

and solvable S of coprime order, as we will also see in Chapter 5.

3.4 Examples of the explicit correspondence

We give two examples considered by Boltje.

3.4.1 Example: Quaternion group of order 8

Definit ion 3.4.1 Let G =< a, b | a4 = b4 = 1. a2 = b2. aba'1 = b^1 > be the

quaternion group of order 8 and S =< s \ s3 = 1 > act on G by s o a = b,

s o b = ab.

28



There are four proper subgroups of G. Let H\ =< a >. H2 = < b >,

H3 =< ab > , the three subgroups of order four and Z = Z(G) = < a2 >, the

centre of G. Keown [16] gives a detailed exposition for finding the character

table of this group (there are five conjugacy classes and hence five irreducible

representations: the trivial representation and three further one-dimensional

alternating representations, and one irreducible representation p of degree 2

with character 2 on the conjugacy class {1}, —2 on {a2} and 0 on the other

conjugacy classes).

We see Gs = Z and Irr(G)s = {l,p}. If A, e H, and r e Z are irre-

ducible representations of the subgroups then we can calculate the Explicit

Brauer Induction formula of G on p £ Irr(G)s, (one way is to build a table

of ResfI(p) for all subgroups H < G and apply the various parts of Theorem

2.5.4 as outlined in Snaith [28]) which is given by:

3

2 = 1

Now, observing that Stabs(p) = S, so Trs(p) = p and we can apply the

map bols'G to p to obtain:

P ̂  6 5 G "
(3.47)

We also see Res^s(p) = Res^(p) = 2r. We have p = 3 and indeed,

p \ (r, Res^s(p)} as expected. Applying part 2 of Theorem 3.2.3, we see that

irG's\p) = IT = —T (mod p) so we do indeed have the correct correspondent.
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3.4.2 Example: Extraspecial p-group of order p2n+1

Let G be the extraspecial group of order p2n+1 and exponent p for p an odd

prime.

Let S be a finite group acting on G such that ( |5 | . |Gj) = 1 and such

that Gs = Z, the centre of G. Dornhoff [8] demonstrates that G has

p — 1 irreducible representations of degree greater than 1 (they all have degree

pn) and that these are all fixed by S. Let p <E Irr(G) be one such represen-

tation, and we find ResG,s(p) = pnX, where A is a one-dimensional represen-

tation of Z. Applying part 2 of Theorem 3.2.3, we see that irG's(p) = A. We

state a result from Boltje [5]:

Proposition 3.4.2 With the notation above, the. Explicit Brauer Induction

formula for p is given by:

{^)'V(d~l){H.\)G (3.48)
d=0 Z<H abelian

where A is a one-dimensional representation of H. an arbitrary extension

of A G Irr(Z).

Proof Covered in detail by Boltje [5], using the property that G/Z is

a symplectic vector space over Z when it is identified with the field of p

elements. •

The action of S on a representation A as above gives another extension

of A, which is therefore a G-conjugate to A (using the results of Clifford
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theory) hence an element (H, X)G is fixed by S if and only if H is fixed by S.

Hence, applying bol+G to the equation above gives:

E E (-l)dpd{d-l)(GsnH,Res^snIr(X))GS (3.49)
d=0 Z<H abelian

H S—invariant
\H/Z\=p»-<*

However, Gs = Z and Z < H for each summand so this reduces to:

n

E E {-l)dpd{d-l\Z,R.e.sl}{\))z (3.50)
d=0 Z<H abelian

H S—invariant

Finally, observing that Res^(X) = A, we apply be to obtain the map

bols>G :

bols'G{p) = E E (-l)V(d~J) • A (3.51)
d=0 Z<H abelian

H S—invariant
\H/Z\=pn~d

We can reduce this by making further assumptions about the action of

S. for example if we assume that Z is the only 5-stable abelian subgroup

containing Z, then bols'G{p) = {-l)npn{n~l)\. If all abelian subgroups of G

containing Z are S-invariant, we can show bols'°(p) = pn\.
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Chapter 4

Cohomological Ideas

Throughout this chapter, we let S be a group of order n acting on a finite

group G of order prime to n.

Consider the Z[5]—module given by R+(G) where the action of s 6 S

given by s o (H,(p)G is the G—conjugacy class of ,s-(@) : s(H) —> C* given

by s(0)(s(fr)) = (f>{h), for he H.

Recall that ([29] Definition 1.1.2 p.3). if

Ns =

is the norm element and for a 2{S]—module J\L

Ms = {m G M i s(m) = m /or a// s G 5} (4.2)

is the S—fixed points, the 0—th Tate cohoinology group is denned by:

H°{S;M) = MS/(NSM) (4.3)
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For any Z[S] -permutation module of the form M = ®Jnd§(Z) we set

Mo= ft} Indi(Z) (4.4)

and we have Z[5]—maps:

i, S,=S

Mo - A M - 4 A/O (4.5)

with j the inclusion map and irj = 1. Also.

0 (4.6)

Specifically, we will apply this to:

R+(G)= 0 In4(Z) (4.7)

J=Stabs{H,0)G

Hence (the sums are taken over the same elements as above)

H°(S;R+(G)) =

H°(S\IndSj(Z))

| (4.8)

From this we see:

H°(S;R+(G)0)= 0 Z/|5| (4.9)

S=Stabs(J,o)c
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Similarly,

Z/\S\. (4.10)

(J,4>)6R+(GS)

4.1 Non-Abelian Cohomology

Lemma 4.1.1 If G is solvable, and J C G is an S—invariant subgroup, then

Hl(S; J) = {*}, the set with one element.

Proof J is solvable and by induction on \J\. we can find a normal sub-

group A<J such that A is abelian, non-trivial and S—invariant. The follow-

ing sequence in non-abelian cohomology is then exact (see [27]

Chapter 2):

. . . —yH^S-^A) -^H\S;J) —>HX{S:J/A) (4.11)

The groups S and A have coprime order, hence we see Hl(S\A) is triv-

ial (a well-known fact from abelian cohomology), and the result follows by

induction on \J\. •

Lemma 4.1.2 Let p be a prime not dividing \G\ and let S be a p-group acting

on G. Then H1(S:G) = {*}, the set with one element.

Proof Let / : S —> G be a 1-cocycle so that /(si.s2) = /(si)si(/(s2))

for all si, s2 E S. We must find g € G such that f(s) = gs(g~]) for all s E S

([27] p.37).
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Consider the injective homomorphism

$ : S —>• 5 K G (4.12)

given by $(s) = (s,/(s)). By Sylow's Theorem, /m(<I>) is conjugate to

5 = {(s, 1) G S1 x G | s G S} in 5 K (7. Therefore there exist s0 e S,g <E G

such that

= (Sp^SSo, 1)

for all s £ S. This implies that 1 = g~lf(s)s(yg) for all s G 5, as required. •

L e m m a 4 . 1 . 3 Let S be a solvable group acting on G. with (\S\, \G\) = 1.

ThenHl{S;G) = {*}.

Proof Let T be a proper abelian normal subgroup of S. Then by

Lemma 4.1.2, Hl{T; G) = {*}. We see from page 73 of [24]. that the following

sequence in non-abelian cohomology is exact:

H1(S/T;Gr) —>• Hl{S;G) —> H[(T:G)S/T (4.14)

and the map H\S/T\GT) —^ Hl{S:G) is mjective. By induction,

Hl{S/T; G) is trivial, hence Hl{S; G) = {*} as required. •
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4.1.4 The Feit-Thompson Theorem [9] states that every group of odd order

is solvable, so that the condition (\S\, \G\) = 1 implies that at least one of

S or G must be solvable and by applying Lemmas 4.1.1 and 4.1.3, we see

Hl(S;G) — {*}. We now continue working towards Glauberman's result

with results using a solvable S.

4.2 Isomorphism in Tate H°

Theorem 4.2.1 Let S be a p—group acting on G of coprime order, and

adopting the notation above, the restriction and induction hornomorphisms

induce inverse modulo p isomorphisms

Res-

H°{S;R+{G)C H°(S:R+(G)) H°(S:R+(GS)) (4.15)

Corollary 4.2.2 With S and G as above, the restriction homomorphism

induces a modulo p isomorphism

Proof

ResG
Gs : H°(S;R(G)0) -^ H°(S:R(GS))

ResG

H°(S;R+(G)) ^ — H°(S:R+(GS))

bG aG a,Gs

75 G

H°(S;R(G)) - ^ f — • H°(S:R{GN))

(4.16)

(4.17)
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By naturality each of the homomorphisms aG, bG, acs and bGs is a Z[S]-

module homomorphism. By Theorem 2.5.4 and functoriality of bG all these

homomorphisms commute with the restriction homornorphisrns. Since

bcQ-G = 1 arid bGsaGs — 1, the restriction homomorphism on H°(S;R(G)o)

is a natural summand of the restriction homomorphism on H°(S; R+(G)0),

and is therefore an isomorphism. •

Theorem 4.2.1 will be proved in 4.2.6 below after a series of preliminary

results.

Lemma 4.2.3 Assuming the situation given in 4.1.3, if S fixes

(H,IIJ)G £ R+(G) then there exists J C G and o : ./ —> C* such that

(J, (f))G = (if, -0)G and s(J, 4>) = (J, 4>) all s e S.

Proof The proof is by direct application of the fixed point Lemma 3.3.3.

G and S both act on (H./ip): the conjugation G—action is transitive and we

can easily see that condition (a) is met, hence there is an S—fixed point (J, (j))

as required. •

We note that G does not act on the double-cosets in the next lemma, so

we cannot apply Glauberman's Lemma 3.3.3. Instead, we use the non-abelian

cohomology results from above.

Proposition 4.2.4 Assuming the situation given in J^.1.3, suppose that

J C G is a subgroup such that s(J) = J for all s 6 S. Then

{GS\G/J)S = Gs • 1 • .7 (4.18)

the identity double coset.



Proof Assume S is cyclic of order m, generated by an element s. If S

fixes a double coset Gs • z • J then there exists a G G's. ,/3 G J such that

s(z) = ttz/3. Therefore we see that

s2{z) = s(azP) =

s3(z) = s(a2zfis{f3)) = o^z(3s{i3)s2(d):

(4.19)

z = sm(z) = amz8s({3)s2{[3) ... s"1-1^)

and so z~1a~mz G J. Since |5 | = m is prime to the order of a, we find that

z^^'z = z~} s(z)0~l G J and so z~ls(z) G J. This holds for all elements of

S which means we may define a 1-cocycle, / : 5 —> J. by f(s) = z~ls(z)

for all s G S. By Lemma 4.1.3, there exists j G J such that j~is(j) = /(s) =

z~1s(z) for all s G 5 and so z j " 1 G G5. Hence az3 = a:(zj~l)(jP) and this

implies that Gs • z • J = Gs • 1 • J as required.

Assume S is non-cyclic, and take S' <\ S such that S/S' is cyclic. Let

Xs> = {Gs-z- J\zeGs'} (4.20)

we see S/S' acts on Xs>- We will proceed by induction on |5| . Choose S"

such that S"/S' is cyclic. By considering the action of S"/S' on XS', from

the argument above if a G Gs, ,3 G J such that oz/3 G X.v is fixed by S"/S',

there exists j G J such that z j" 1 G Gs", then tu/i = a(zj-1)(j/3) and we

see (Xs')s"/S> = Xs"- The result then follows by induction. •
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L e m m a 4 .2 .5 Assuming the situation given in 4.1.3, if J',J C Gs and

( J , 0 ) G = (J\4>')G G R+(G) then

(j,4>)GS = {J'A')GS eR+(Gs). (4.21)

Proof By definition, there exists g G G such that gJ(fl = J' and

4>{j) — 4>'{9ig~l) for all j e J. Now consider the function. / : S —> G,

given by /(s) = g~1s(g). Define the normaliser of (J.(t>) in G, Nc{J,<j)), to

be the subgrovip given by

NG(J, (j)) = {ze NGJ I fajz-1) = 6{j) for all j G J } . (4.22)

For j G J we have

(4.23)

so that / is a 1-cocycle with values in NG(J,4>)- By Lemma 4.1.3, there

exists gi G NG(J,4>) such that g~ls{g) = f(s) = g'[[s(gi) for all s G 5.

Hence gig'1 — s(gig'1) and therefore g\g~l & Gh. Hence, for all j G J,

HJ) = Hgi'jgi) = <t>'{ggTliaia~1)- (4.24)

which implies that (J,</>)GS = {J',(p')c'S e R+(GS)- ™ required. •
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4.2.6 Proof of Theorem 4.2.1

We have only to show that Ind^s induces a modulo /; inverse to Res°,s

on Tate cohomology in dimension zero.

Given (H, tp)G 6 R+(G)S, Lemma 4.2.3 gives that we can find an element

(J, 0) such that {H,ijj)G = (i, cf))G and Stabs(J,(p) = S. Proposition 4.2.4

gives that (GS\G/J)S is the identity double coset. The following composition

H°(S;R+(G)Q) A H°{S;R+{G)) "^k H°(S: R+(GS)) ''%s H°(S;R+(G))

(4.25)

on (H. i))G gives

= IndG
s (

iGsnzJz'\{^Y(di)f (4.26)
zeGs\G/.J

The action of S permutes the terms in this sum. so we can separate the

fixed and non-fixed terms, and apply Proposition 4.2.4 to see that there is

exactly one fixed double coset:

ses

(4.27)

where the final sum is taken over appropriate non-fixed double cosets. We

see that all the terms in this sum are fixed by the action of S. and because

S is a p—group, all the S—orbits have orbit size a multiple of p. Hence:
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Ind%s (Resgs (J, (f)f) = (J, 0)° (mod p) (4.28)

Similarly, if (J,0)6 '5 G i?+(Gs) then

0 5 (4.29)

Applying Proposition 4.2.4, there is exactly one 5—fixed double-coset;

the remaining non-fixed terms appear with order a multiple of /;. Combining

this with the discussion at the beginning of the chapter, we see Ind^,s induces

a surjection on H°. By Lemma 4.2.5, we see that Indc
(
;,s is one-to-one, which

completes the proof.

Corollary 4.2.7 Let S be a cyclic group acting on G with (\S\.\G\) = 1.

Then \Irr(G)s\ = \Irr{Gs)\.

Proof Let S be a p—group, let A:,. . ., Xt denote the irreducible represen-

tations of the fixed group Gs and let px,. .. , pt> denote the 5-fixed irreducible

representations of G. t counts the irreducible elements of R(G) with stabiliser

S, which is the rank of H°(S; R(G)o). t' is the number of irreducible elements

of R(GS) which is the rank of H°(S\ R(GS)). By Corollary 4.2.2, these num-

bers are equal. If S is cyclic, let S = S{ x S2 where (|S*ij, (S l̂) = 1. Then we

see:

\Irr{G)s\ = \(Irr{G)Sl)S2\ = \Irr(GSl)Si\ = \Irr(GSlxS*)\ (4.30)

hence the result follows by induction on |5 | . •
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Chapter 5

New proofs of Glauberman and

Boltje

5.1 Glauberman's Correspondence

Let S be cyclic, let Ai,. . .. Xt denote the irreducible representations of the

fixed group Gs and let p\,. . ., pt< denote the 5-fixed irreducible representa-

tions of G. By Corollary 4.2.7, t = f.

Let pi be an extension of pi to the semi-direct product, S tx G. We shall

assume that pi is the canonical extension of p,-, as given in Section 3.1.

Let Cc{g) denote the centraliser of g in G so that the order of the

G—conjugacy class of g is equal to |G|/ |CG(</) |- The following lemma is

from Glauberman ([11], Lemma 2), and we will use this at various stages to

switch between Schur inner product calculations over S K G . S K Gs. G and

Gs.

Lemma 5.1.1 Let T =< s > be a cyclic subgroup of S of order n, not

dividing \G\.
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a. For any g G G the T x G-conjugacy class of (s.g) contains an element

of the form (s, g') with g' G GT.

b. Let z, z' G GT. Then (s, z) and (s, z') are conjugate in T x G iff z and

z' are conjugate in GT.

c. If H is a group and z G H, let CIH(Z) denote the H-conjugacy class

of z. Suppose that z G GT. Then

^CIGT(Z)\ (5.1)

Proof

a. Let Q be the conjugacy class of (s, g) in T x G. T acts on Q by

conjugating elements by (s, 1) and G acts on Q by conjugation by (l,.z) for

2 G G. It is easy to show that these actions satisfy s(g(a)) = s(g)(s(a)) for

all a G fi, and by application of Lemma 3.3.3 there exists a fixed point (s, g')

of Q with .9' G Gr. as required.

b. If z.z' G G r are conjugate in GT then (,s\ z). (s, z') are clearly

T x Gr—conjugate and so are T x G—conjugate.

Conversely, suppose that (s.z) and (s.z') are X x G-conjugate. Since

{s\g){s,z){s\g)~l = ( l ; 5 ) ( s , z ) ( l , p)"1 , for all g G G and l<i<n- 1, we

may assume there exists g £ G such that

(s,z') = ( l ^ X s ^ X l ^ r 1 = (s,gz)(l,g-1) = (s,gzs(<r1)) (5.2)
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Let k,l be integers such that k\G\ + In = 1. hence k\G\ = 1 (mod n).

Since z £ GT, (s, z)m = (sm,zm) for any integer m and we have

= (s,l). Hence

(5.3)

which implies that 1 = gs(g~1) or, equivalently, (/ G G r . Therefore

z' = gzs(g~1) = gzg~l, as required.

c. Setting z = z' in the argument of part (b) shows that

CT«G(S-, Z) — T x CG<s>(z) and therefore

M\ = W ^ ~ l = ̂ T T = ̂ |O«,,(,)I, (5.4)

as required. •

We will now work towards a proof of Glauberman's characterisation, Lem-

mas 3.2.1 and 3.2.2. For simplicity, we first present the working for the sit-

uation with S a cyclic group order p2 before moving on to the general cyclic

case, although the method for both cases is the same.
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5.1.1 Cyclic groups order p2

We start, to get the idea, with the case of a cyclic group S — Cp-z for a prime

p. Let s be a generator of S. The irreducible representations of S are given

by powers of the representation y given by y : s —» e27T^p'.

We first consider the Galois orbits of elements of the set

{?/J|0 < j < p2 — 1} under the action of elements of the Galois group

Gal(Q((p2)/Q) (where £p2 is a primitive root of unity). We see there are

three orbits, namely:

y1 - > Y] yk = IndC/-(I)-
(k,P2)=i

I<k<p2-1

p " = Intf* {!) - \y

Recalling the properties of the canonical extension (Lemma 3.1.6), we see

Pj(sa,g) = pj(sb,g) for any a, b such that s" and sh are in the same Galois

orbit, and g G Gs. This implies that:

c^ (1) - Lndcr (1)) ® Ul2)

(1) - 1) ® C/i3)

- Ui3)) + ai2(IndC{"2 (1) ® Ui2) + a,z{Ind\f (1) ® (C/i2 - Ui3))

fp2 (1) ® B,-) + a^Ind^ (1) 0 C,)

(5-5)

with Uij, Ai,Bi,Ci virtual representations of G's and ar/, a,n G Z for

1 < j < 3.
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Considering the values of induced characters, we see that al2 and ai3

vanish on the character of this representation on elements (s"',g) G 5* x Gs

with a coprime to p, so for such a choice of a we sec:

E
gees

(5.6)

We now evaluate this sum differently, to show it is equal to Stj, by writing

the elements of S K G in a similar wav to the Galois orbits above.

1

P
2\G\

Pl(s
a,g)p3(s°:g)

Y^^){) +

1 ' ' (s«,s),fl=i,...^-i,,eG

k3 , 1 E

From the properties of the canonical extension, each pl(s",g) is indepen-

dent of the choice of a over which the sum is taken. In particular, if we

choose o. such that (a,p2) = 1, 1 < a < p2 — 1, then by applying lemma 5.1.1

we see:
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E
Also, if we choose a such that (a,p) = 1, 1 < a < p — 1 then we see

< sap > = Cp, hence (considering the properties of the canonical extension):

(5.9)

\—^ (-
L, Resc

geGc;p

Let TZJ be the common value of Equa t ion 5.8 for appropr ia te choice of a,

and p u t t i n g back into 5.7, we see:

(o.

where d> is the Euler phi-function. Hence we see Tt] = 5tl as required.

Choosing a copr ime to p and subs t i tu t ing in Equa t ion 5.6 gives:

(Ai(g),Aj(g))GS (5.11)

Since the ^ are integers, we must have (Ai,A.j)GS = Sij and

y Corollary 4.2.7, the distinct irreducible representations,
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{Ai,. . . At}, of Gs must be precisely {A ] ;...A (} which implies that there

exists a permutation, a, and a sign e; e {±1} such that

4̂i = £iK(i) (5-12)

for 1 < i < p — 1. Therefore

es^sipz) = etXa^+p2al2Bi+pa,l3Cl = f,Xa^) (mod p) (5.13)

which is the required Glauberman correspondence.

5.1.2 General cyclic groups

We now repeat the ideas covered above, but more generally, to give the

Glauberman correspondence for all cyclic groups. Let 5 = < s > be cyclic

of order n where n = p°xp%2 . . .p^r for distinct primes pt. The irreducible

representations of S are given by powers of the representation y given by

y : s -> e2™/".

We first consider the Galois orbits of elements of the set {y?|0 < j < n}

under the action of elements of the Galois group Gal(Q(j;n)/Q) (where £„ is

a primitive n—th root of unity). There are («i + l)(o2 + 1) . . . (ar + 1) such

orbits.

For (3\n, the Galois orbit of yfi, Gg is given by

For fj\n, we can use the Artin induction formula (see [28], Theorem 2.1.3)

to rewrite each Gp as a sum of induced representations:
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^il) (5.15)
c.f>c3

where for each 7, /i7 is an integer (these can calculated using Mobius

coefficients but this is not necessary here) with /iff = 1, and the C7 are cyclic

groups. We recall a property of the canonical extension, Lemma 3.1.6: if

s G S, g G Gs and a an integer coprime to the order of ,s then the character

value, pt(s
a,g), is independent of a. Using this and by summing Gp over all

P\n and gathering together terms, we see:

l /3(/mig(l) ® Al3) (5.16)
0\n

for integers a^ and virtual representations AiAj G R(GS) (yet to be de-

termined).

Choose a such that (a,n) = 1, and we see all the terms in the sum of

Equation 5.16 vanish on sa except the term 3 = n. so:

^ i s ^ g ) = ainAm(g) (5.17)

Hence:

^T E ResS
s^s(pt)(s\g)Ress

s«
G

GS(pJ)(s°,g) = ~ J^ »mAm{g)a]n~A~{g)
s T

(5.18)

We now evaluate the left-hand side of this equation in another way:

Proposition 5.1.2 If S = < s > is a cyclic group order n and, a an integer

satisfying 1 < a < n — 1 and (a,n) = 1, and let Trj be defined:

49



gees

enTij = SZJ.

Proof For j3\n, let kp be an integer satisfying 1 < k(i < 'j - 1, (fc/j, ~) = 1.

Let Sp =< s ^ >, (note S^ is independent of the choice of kg) and by

application of Lemma 5.1.1 we see:

= (pi,Pj)s*G

n\G\

0 1 " V' ' ' ' geGsP

(5.20)

By induction on |5 | , we can assume the result true for all cases above

except the case f3 = 1. hence we see:

We recall J^sin <K/̂ ) = Yl,B\n ^ ( t ) — n, hence:

n

B\n

= <t>[n)Tij + nSij - <p(ii)6ri (5.22)
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Hence Tij = 8^ as required. •

Proposition 5.1.2 and Equation 5.18 give:

Sij = ainajn {Ain(g),Ajn(g))Gs (5.23)

Since c^n and a j n are integers, we must have (Am, Arn)c;S = 5%j and

afn = 1. By the discussion at the start of the chapter, the distinct irre-

ducible representations {/Lln,. . . Atn}, of Gs must be precisely {Ai,...At}

which implies that there exists a permutation, a. and a sign e, G {±1} such

that for

Ain = eiACT(i) (5.24)

for 1 < i < t. If we choose a coprime to n and put into Equation 5.16, we

see for t e Gs:

Ress
s^s(pi)(sa,t) = ~Pl{sa.t) = Ain(t) = e.Xair) (5.25)

This proves the following lemma (this is exacth' Glauberman's Lemma

3.2.1 above):

Lemma 5.1.3 Let S be a cyclic group and p G Irr(G)s. Then there exists

a unique sign e = ±1 and a unique A G Irr(Gs) such that

p(s,t)=e\(t), (5.26)

for all s which generate S, and all t E Gs. Moreover, for every

A G Irr(Gs), there exists a unique p G Irr(G)s wliich corresponds to A

as in 5.26.
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From the above equations, we also see:

P\n

If S is a p—group we note that all terms except the first term disappear

modulo p, hence we immediately get the following:

Lemma 5.1.4 Let S be a cyclic p-group, and p G Irr(G)s. If

Res%s(p) = niAi + ... + ?7tAt, (5.28)

where Xj are distinct irreducible representations, there exists a unique i

such that p \ ri{. Moreover, nl = ±1 (mod p).

In the next section, we will strengthen this result by dropping the condi-

tion that S is cyclic (we consider the lemma above applied to the final term

of a composition series for S). This will achieve Glauberman's Lemma 3.2.2.

Definition 5.1.5 For a cyclic group S, let

TIS'G : Irr(G)s -» Irr(Gs) (5.29)

be the bijective correspondence described in Lemma 5.1.3 above: if

p G Irr(G)s then 7is'G(p) = X, and for X G Irr{Gs). then ( T T ^ - ^ A ) = p.

This gives a characterisation for the correspondence for cyclic groups.

W7e will follow Glauberman's method and demonstrate how to give the cor-

respondence for all solvable groups 5.

An alternative proof of Glauberman's Theorem was given in Alperin [1],

using Brauer's work in block theory. When G is a p—group, it is possible to
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describe the characters and p—blocks of the semi-direct product S x G in a

canonical way, in particular those with defect group S. These can then be

related to the characters of S x Gs and modulo p congruences established to

give the correspondence.

Finally, we note the following alternative proof. If the result of 5.1.3 is

established for the case of cyclic p—groups (slightly simpler than the working

for general cyclics given above), we can use the following lemma:

Lemma 5.1.6 Let T be a cyclic p—group (for a prime p), acting on a, group

G of coprime order. Assume that for all p G Irr(G)T, there exists a unique

e G ±1 and A G Irr(GT) such thai for all g G G1 and t a generator of T,

p(t,g)=e\(g) (5.30)

where p is the canonical extension of p. Then this also holds true for all

cyclic groups S.

Proof Let Si, S2 be as above with (|Si|, |52|) = 1 then we would like to

show that for S = Si x S'2 and p G Irr(G)s, there exists a unique e = ±1

and A G Irr{Gs) as above.

Let p (E Irr\S tx G) be the canonical extension of p. Hence for i = 1,2

we have, by uniqueness, Res^^G(p) G Irr(St K G) is equal to the canonical

extension of p to Si x G. Also if s\ G Si then

S l o (Ress
s%(~p)) = Resl%(p) (5.31)

so that Ress
s^G(p) G Irr(S2 x G)Sl and there exists a unique

i G Irr(S2 x GSl) and t\ — ±1 such that

A i ( s 2 , . 9 i ) = e i / J ( . S i , s 2 , < / i ) ( 5 - 3 2 )
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for all < Si > = Si,s2 G S2lgi G GSl.

Also i?es| i
K^(p) G Irr(S\ x G) yields, from the S*i-correspondence for p,

a unique A2 G Irr(GSl) such that

A2(<h) = e2Ress
s%{p)(sugi) = />(*!, 1, </,) (5-33)

for all < si > = 5i, c/i G GSl and for e2 = ±1 .

The character values of Ress^G 1 (Xi) satisfy

s^, L r7l) = fle2A2(.9l) (5.34)

for all g\ G G'Sl. Since A2 is irreducible we must have e\ = e2

A] is the canonical extension of A2 G Irr(GSl)s'2. Hence there exists A G

/rr((G s '1)52) = Irr(Gs) such that

X(g) = eXi(s2,g) = ep(sus2,g) (5.35)

for all < si >= Si, < s2 >= S2, g E Gs. Corollary 4.2.7 gives that this is

unique. •

5.2 Extension to solvable groups

We now use our results from the previous section and follow Glauberman's

approach to demonstrate how the correspondence extends to a solvable group

S. We start by recalling Lemma 4 of [11]:

L e m m a 5.2.1 Let. S be a cyclic group acting on G, with coprime order.

Suppose S is a normal subgroup of S' which also acts on G. Let T = Gs.

Suppose X G Irr(T) and x G S' and let p = TTS'C(X). Then x{X) G Irr(T)

andx(p) = TTS'G(X{X)).
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Proof x normalises S so x fixes Gs — T, hence x{\) G Irr{T). Let p be the

canonical extension of p to 5* x G. S x G < S' x G so

:r(p) G Irr(StxG). Let s generate 5 and take e = ±1 such that p(,s, t) = eA(t)

for all t G T. Let s' = x sx ' 1 and we see s' also generates 5, so for

all t G T, p(s',t) = p(s,t). Now Res^G(x(p)) = x(p) G Irr(G). Also,

det(x(p))(s11) = det(x(p))(xsx"i, 1) = 1 so x(p) is the canonical extension

of a;(/o) to S x G. For alH G T,

x(p)(s,t) = p(xsx~\x-lt) = eA(x~4) = e.x(A)(i) (5.36)

Hence x{p) = Res^G{x{p)) = TTS'G(X(X)) as required. •

Definition 5.2.2 Let S be solvable, and C be a composition series for S of

the form:

S = So > Si > • . . > Sn = 1 (5.37)

Let T?; = Gs' so T = To = Gs, We note that T normalises Si, so Si-i

fixes T{ and we can consider Si-\/Si as acting on T.,, with, fixed point subgroup

5j_i. We follow Glauberman and define two character sequences:

1. For X G Lrr(Gs) = Lrr(T) define A,; for i = (),. . . ,n by Ao = A and

for i > 0,

Xi = 7tSi-l^Ti(Xi^) (5.38)

We see Aj G Irr(Ti)Si-^Si, so A, is an irreducible character of T{. Let

irc(X) = Xn, so 7TC(A) G Lrr(G)s.

2. For p G Irr(G)s define pi for i = n, n - 1 0 by pn = p, and for

i < n, pi is an irreducible character of Tt which is fixed by Si given by:
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Pi = ^st,si+uTi+1y^pi+i) (5.39)

WeseePl G /rr((T4+1)5<^+i) = /rr((Gs'+1)5?/5'+I) = Irr(GSi) = IrriT,).

Define (TTC)"1^) = Po, hence (irc)~
l{p) G Irr(T).

Lemma 5.2.3 7rc(A) and (TTC)~1(P) are well-defined. For every A G Irr(T),

7Tc(A) ŝ S—fixed and A = (7rc-)~
1(7rc(A))

Proof (TTC)"1^) is well-defined if p̂  is fixed by S7/Sj+i for z = n,. . ., 0.

S* fixes pn, so suppose i < n and S" fixes p(+i. We can regard St/Sl+i as

a normal subgroup of S/Si+i so by Lemma 5.2.1. 5 fixes p,:. Similarly, 5

fixes 7Tc(A) for every A G Irr(T). Let x = ?rc(A); by induction Xz = K f°r

z = n,.. ., 0. Hence (7rc)"
1(7TC(A)) = A. Likewise. 7Tc((nc)~

l(p)) = P- •

We now use these definitions to strengthen Lemma 5.1.4:

Lemma 5.2.4 Let S be a p-group. and p G Irr(G)s. If

Res%s(p) = niAi + ... + ntXu (5.40)

where A? are distinct irreducible representations. there exists a unique i

such that p\n%. Moreover, rii = ±1 (mod p).

Proof We use induction on \S\. Assume |5 | > 1. By induction,

Res^l~l (An_i) = e'A (mod p) for some e' = ±1. Since \Sn-i \ = p. by Lemma

5.1.4, there exists e" = ±1 such that i?es^n_i(p) = f"A,,_] (mod p). Since

T < Tn_i, Res%{p) = e"Res}1'1 (K-i) (mod p), and since

Res%{p) - ^'Resf^iXn-i) ~ ("{Res^'1 (An_0 - f'A) = ifc.s£(p) + e'e"A

(5.41)
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we see Resff(p) = e'e"A (mod p) and the result follows. •

The following theorem completes the characterisation of Glauberman's

correspondence for solvable groups. We firstly show that for cyclic groups

S, TTC(A) agrees with the characterisation given in Lemma 5.1.3, then we

move on to show that when we take S to be solvable, the value of 7rc(A)

is independent of the choice of composition series. This is Glauberman's

Theorem 4 [11].
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Theorem 5.2.5 Let S be a solvable group actmg on G with coprime order.

Assuming the notation above, let C be a composition series for S and let

A e Irr(Gs) with p = TTC(A). Then:

a. If S is cyclic then p = TTS'G(X).

b. If D is any other composition series for S. then TTD(^)
 = P-

Proof

a, We use induction on |5 | . Assume \S\ > 1. By Lemma 5.2.3, S fixes

p. Let Ao = i^S'G)~1(p) and let p be the canonical extension of p to S ix G.

Take e0 = ±1 such that e0A0(t) = p(s, t) for all t £ T and all s £ 5* satisfying

< s > = S. We have two cases to consider:

1. |5 | = pn for some prime p. By Lemma 5.1.4. Rcs^s(p) = e0A0

(mod p) so p \ (Res<£s(p), Ao) and hence by part (a). A = Ao. We see

P = 7r
s>G(\0) = ns>G(\).

2. Suppose |5 | is not a prime power. Let p = |5/Si|, then S = A x B

for a group A with order prime to p such that .4 < S\ and a p—group B.

Let Ai = 7T5//'Sl'Tl(Ao) and let C* be the series obtained by removing Si from

C. Then p = TTC-(AI). By induction, p = 7rSl:G(Ai) so p doesn't depend on

C*. Since 1 < A < Si, we can assume that A is one of the terms in C*. Let

A' = TVS/A'GA(X) and similarly, we can show that p — TYA'G(XI).

Let a and b be generators for A and B respectively. Consider A acting

on B ix G (these groups have coprime order) and note (B ix G)A = B x G4 .

Let p be the canonical extension of p to S ix G, and by the properties of the

canonical extension, we see that Ress^l^(p) is the canonical extension of p

to B K G and hence irreducible.
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By Lemma 5.1.3 there exists e' = ±1 such that:

p(a,x) = e'X(x) (5.42)

for all x G B tx GA, and by applying part (c) of Theorem 3.1.4, we see:

e'X(x) = e'9'(a)p'(x) (5.43)

where 9' G Irr(A) and p' G Irr(B x G'4). Consider this formula for

x G GA. As p = TTA'G(A'), we see Res^°A (p1) = A'. Now,

\' = ns^GA(X) = 7vB'GA(X) (5.44)

so there exists e = ±1 and 9 G / r r (B x GA/GA) such that:

p'(b,t) = e6(b)\(t) (5.45)

Putting 5.43 and 5.45 together, we see:

,t) = ee'9(b)9'{a)X{t) (5.46)

Since < ah > = 5, we have p = TT5'G(A) as required.

b. Let D have the form S = Bo > Bi > .. . > Bm = 1. We use induction

on m. If m < 1 then clearly TT£>(A) = p. Suppose rn > 2. If Si = 5 i then

GSl(X) (5.47)

so 7T£)(A) = nc(X) by induction.

Assume now that Si ^ B\. Let J = S\ n S|.. Then ,/ < 5. By induction,

nc(X) and TTD(A) are unchanged if we let S2 = B2 = J. Consider 5 / J acting

on G J and J acting on G. By induction, we have TTD(A) = 7rf:(A).
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Finally, we consider the case m = 2, we must have S = Sj x B\\ Si and

B\ both have prime order and either \S\\ = \B-\ | or 5 is cyclic. In the first

case, the result follows from application of Lemmas 5.2.4, 5.2.3 and 5.1.3. In

the second case, part (a) gives that TTC(A) = 7T'S'G(A) = nc(X). •

5.3 The Glauberman correspondence a la

Shintani

The Shintani correspondence [25] (see also [7]) is a similar correspondence

between irreducible representations but in the case when S = G(FqP/Fq)

for a prime q, the Galois group of the finite field extension, FqP/Fq and

G = GLn(Fqp) with the entry-by-entry Galois action. The most important

fact to notice about this correspondence is that p = \S\ may divide the order

of G.

Given an irreducible representation, p, of GLn{FqP) whose character is

fixed by the action of G(FqP/Fq) we may choose an irreducible representa-

tion, p, of the semi-direct product G{FqP/Fq) ix GLn{Fqp). All choices of p

are obtained by tensoring any such p with one-dimensional representations

of G(FqP/Fq). If s = Frobq G S is the generator given by the Frobenius auto-

morphism of FqP, z i—> zq, then the Shintani norm of g G GLn(FqP) is denoted

by N(g) and is a conjugacy class in GLn(Fq) = Gs. which is defined in the

following manner. The p-th power of (Frobq, g) € G(Fql>/Fq) K GLn(FqP) has

the form (1, JV9) where Ng = gFrobq(g)Frob2
q(g) . . .FrotPq-

l{g) e GLn(FqP)

whose conjugacy class is fixed by G(FqP/Fq). In fact, the conjugacy class of

Ng intersects GLn{Fq) in the conjugacy class of the Shintani norm, N(g).
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If Sh(p) is the irreducible representation of GLn(Fq) corresponding to p

then the character functions are related by the equation

p(Frobq,g) = eSh(p)(N(g)) (5.48)

for all g E GLn(Fq), where e 6 {±1}. Note that, if g E Gs then N(g) is

the conjugacy class of gv.

The following result recasts the Glauberman correspondence. pt <—> Xa^

in a form analogous to that of the Shintani correspondence. First we intro-

duce the Adams operation:

Definition 5.3.1 Let p be a complex representation of G. with character

value Xp, and p > 0 be an integer. The Adams operation, y;p is defined by

the character formula:

= xP(gp) (5-49)

for all g € G.

Chapter 4 of [28] gives further properties of Adams operations. In par-

ticular, we note the following property:

Lemma 5.3.2 If p is coprime to the order of G. wp • B.(G) —> R{G) is an

isomorphism which permutes the irreducible representations of G.

Proof The isomorphism assertion follows from the fact that, if tp = 1

(modulo jGj), then -ipl • i)v ~ iptp = 1. To see that representations (rather

than virtual representations) are permuted, realise each (/-dimensional rep-

resentation by a homomorphism, p, into GLd{K) where K is a cyclotomic

field containing primitive |G[-th roots of unity. If a £ G(K/Q) is a Galois

61



automorphism which raises to the p-th power all primitive \G\— th roots of

unity then o(p) is a representation whose character satisfies

trace(a(p)(g)) - trace{p(gp)) = wp{p){g) (5.50)

Finally, if fa,. . ., <bt are the irreducible representations of G the Schur

inner product satisfies

(5.51)

so that {f/-'p((/)j) jl < i < t} constitutes a full set of irreducible representations

of G, as claimed. •

Proposition 5.3.3 Let S be a cyclic group acting on a group G of coprime

order. Then, in the notation of 5.1, there is a Injection

Pi <—> Sh(pi) (5.52)

between the S-fixed irreducible representations of G and the irreducible rep-

resentations of Gs which is characterised by the relation

(^) (5.53)

for all ge Gs. Here a G {±1}.
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Proof Define Sh to be the correspondence given by composing the

Glauberman correspondence with

(5-54)

where the Aj's are the irreducible representations of Gs. Hence, if

'0P(A?:) = AT(j) for some permutation, r, the Glauberman correspondence

canonically extends pt to pt on S x G, sending /;, to X^ where, for all

g G Gs and s a generator of 5,

Pi(s,g) = elXa{l)(g). (5.55)

If ^(Xj) = Xu{l) then Xa{l){g) = Xj(gP) for all g E Gs and r(j) = a(i).

Hence, for all g E Gs and s a generator of S,

pi(s,g) = eiXT-i^i)){g) = e,;5/?(p,)(f/p), (5.56)

as required. •

5.4 Boltje's Explicit Map

We recall the map bols'G from 3.3.5 is defined as the following composition:

bols'G : R(G)S -^ R+(G)S b°S R+(GS) H R(GS) (5.57)

Let S be a p-group, and p G Irr(G)s. From the results of Chapter 4

(specifically lemma 5.2.4), we have established Glauberman's characterisa-

tion for p—groups, that Res^sip) = eA (mod;;) for a unique irreducible
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representation A <G Irr(Gs). Applying the EBI hornomorphism aG to this,

we see:

Res%s(aG{p)) = aGs(Re4s{p))
(5.58)

= aGs (eA) (mod p)

Also, we can apply Frobenius reciprocity (for some Ht < G and

<f>i e Irr(Hi)),

Res%s(aG(p)) = Res^J2

(5.59)
= E n ' E { G s \ \ v ) G l '

i zeGs\G/Ht

By Theorem 2.5.4, we can split aG(p):

i j .sG.S' A-

where the (Jj.6j)G terms are 5-fixed. and the (Kk,y'k) terms are not.

Further from Lemma 4.2.3, we can assume that s(Jj) = J3 and s((pj) — 4>j

for all j . We have:

(5.61)

+ E E s(GsnzKkZ-\(z-rmfs

k,s&S zeGs\G/Kk

From Proposition 4.2.4, the first sum gives a single term for each j , as

there is only one double coset to sum over (z = 1). The terms in the second

sum all restrict to subgroups and representations of Gs, so the action of s
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leaves the element unchanged in its Gs orbit, and each term will therefore

appear a multiple of p times. Hence:

Resgs (aG(p)) = J2(GS n Jj} Res%nJ. (6:j)f
S (mod p) (5.62)

3

Combining this with Equation 5.58, we see we have obtained the EBI

formula for the Glauberman correspondent modulo p, and to filter out the

appropriate terms, we have removed the {Hi,4>i)G from ao(p) which are not

S-fixed. This immediately gives us a proof that Boltjc's map bols'G (given in

3.3.5), is equivalent to Glauberman's correspondence modulo p. when S is a

p-group, this is Theorem 3.3.7 above.
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Chapter 6

Isaacs' Correspondence

If we drop the Glauberman assumption that S is solvable, we see from the

Feit-Thompson theorem that the order of S is even, hence the order of G is

odd, and therefore G must be solvable.

Starting with the assumption of a solvable G (in which case S may or

may not be solvable), Isaacs [14] showed how to construct a bijection be-

tween Irr(Gs) and Irr(G)s by a group-theoretic method entirely different

to Glauberman's correspondence. We start by giving the characterisation of

Isaacs' correspondence and we briefly give the results relating to the 'over-

lapping' case, in which both G and S are solvable. We give some properties

of this correspondence, relating to its behaviour with respect to induction

and restriction. Finally, we consider how it may be possible to use the re-

sults from the earlier chapters, in particular the arguments from Chapter 4

to prove results about the Isaacs situation from the Glauberman case.
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6.1 Definition and Properties

The main step to Isaacs' correspondence is the following theorem, first proved

in [14]:

Theorem 6.1.1 Assume S acts on G with {\S\, \G\) = 1. and G solvable of

odd order. Let H be a group such that Gs C H C G. and, suppose there exists

S-invariant normal subgroups K and L of G such, tha,t:

a. L C K and the quotient K/L is abelian

b. G = GS
 KK

c. H = GS
 K L

Then for each p G Irr(G)s, there exists a unique A G Irr{H)s such that

(re6'^r(p). A) is odd. The map /) f> A is a bijection between Irr(G)s and

Irr(H)s.

Proof This is effectively Corollary 10.7 of [14], the proof of this is the main

aim of Isaacs' paper. •

To construct Isaacs' correspondence we construct a chain of subgroups:

G = C0 >d > ... >Ck = GS' (6.1)

To define the maps, let H be an S'-invariant subgroup of G with

Gs C H C G. Let //* - Gs K [H:S]' (where [A: B] is the commu-

tator subgroup of A and B, and [A, B}' refers to [[A, B],[A: B}]). Since

[H, S}<Si<H/it follows that [H, S]'<lSt<H and hence H* is 5-invariant. If

H > Gs then [H, S] > 1 and [H, S] > [H, S]' (by the solvability of H). Fur-

thermore, since [H*,S] C [H,S]', it follows that H* < H. Now, let Co = G

and Ct+i = {Ci)* for 1 < % < k, and we have the desired chain of subgroups.
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Let K = [G, S] and L = [G, S]'. We check the conditions of Theorem

6.1.1: For the first part, the argument above gives that K and L are normal

S'-invariant subgroups of G and K/L is abelian. The second part follows from

Glauberman's Lemma 3.3.3, and the third part comes from the definition of

G* above.

We can therefore apply Theorem 6.1.1 to each C, to obtain a series of maps

Irr(Cj)s —>• Irr(Cl+i)s for each i. Isaacs' correspondence is the composition

of these maps, we will refer to this map as iss-G.

Example 6.1.2 Wolf [33] gives an example to show that the composition of

maps is necessary in the definition of Isaacs' correspondence:

Let G = B ix E where \E\ = 23° and \B\ = 11° (diagonal subgroups

of GL5(23) and CrZ^ll) respectively). Let S be the cyclic group of order

5 acting on G by permuting the subgroup generators transitively. We can

then choose p G Irr(G)s such that there is a unique A' G Irr(Gs) with

(^Res^s(p), X'^ odd. However, iss'G(p) ^ A'. To find the Isaacs Correspon-

dent, we have to go through a series with Gs = Co ahove.

Let both S and G be solvable groups. We see that the conditions for both

the Glauberman and Isaacs correspondence are met. and quote the following

theorem from Wolf [33]:

Theorem 6.1.3 Assume S and G are solvable groups such that S acts on

G, with (I5J, |G|) = 1. Then the Glauberman correspondence and Isaacs'

correspondence for S and G coincide.

As a consequence of this theorem, we can define TTS)G to be the correspon-

dence between Irr(G)s and Irr(Gs) regardless of the solvability of S and G.
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We give a property of ns'G from Isaacs [15], some special cases of which are

also mentioned in Wolf [34].

Theorem 6.1.4 Suppose H is an S-invariant subgroup ofG. Let p £ Irr(G)s

and 9 e Irr(H)s. Then:

p E Irr(G)'
7TS,G

Irr(Gs)

Ind Res Ind

rS.H

Res

9 E Irr(HY Irr(Hs

1. Iflnd%(9) = p then Indfs{-KS>H{0)) = irs'G(p) and

2. IfRes%{p) = 0 then Res%{-ns>G{p) = ns'H(9).

(6.2)

6.2 Isaacs' Correspondence via Glauberman

We would like to be able to use the ideas of Chapter 5 to derive Isaacs'

correspondence from that of Glauberman, and we propose a strategy for

approaching this work, based on the following result from Snaith [28]:

Definition 6.2.1 A complex representation p of G is called a monomial rep-

resentation if p = Indf^cj)) for some (j> : H —> C*. An M—group is a group

all of whose irreducible complex representations are monomial. In particular,

it is possible to show that an M—group is solvable.
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Proposition 6.2.2 ([28], Proposition 2.1.17) Let S be any finite group.

Then there exist M—groups, Sa < S, such that

1 - Yl n«In4n (1) £ R(S) (6-3)
Q

for suitable integers, {na}.

We want to construct a map similar to Isaacs' correspondence by finding

such a relation and applying the Glauberman correspondence to the solvable

components Sa. We give some preliminary notation first.

Given a correspondence (a bijective map of sets) a : Irr(Gb) —?> Irr(G)s',

we can obtain a homomorphism 4> : R(GS) —>• R(G)S by writing x G R(GS)

as:

_ nvV (6.4)

and defining

VeIrr(Gs)

Conversely, given such a (f> we may obtain a map:

Z<V> (6.6)
V'e/rr(G)s

by observing that R(G)S is the free abelian group on a basis of elements

of the form given by L(V) for V G Irr(G) where:

L(V)= V s(V) (6.7)
z /

s
z Stabc{V)
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So we have

VeIrr[G)S
 Z < V > ~ <L(V)\VeIrr(G),Std,s(V)$S>

Given d>, we may form

: R{GS) A R(G)S -^ 0 Z < V > (6.9)

and then we obtain a correspondence if we can show that the matrix of

acj) with respect to the two Z—bases, Irr(Gs) and Irr(G)s, is diagonal: then

we may define X(V) = W when a((p{V)) = rnW for each T e Irr{Gs), for

some non-zero integer m and some W E Irr(G)s. Usually rn G {±1}.

Example 6.2.3 When S is a p—group and given 0, we can get the corre-

spondence back from the homomorphism. by the, following composition:

R(GS) A R(G)S -^ 0 Z < F >^> 0 Z/p < V > (6.10)
VeIrr(G)s \'£lrr(G)s

Now, let S be solvable and assume that we have a Glauberman homo-

morphism:

gf'G : R(GS) —+R(G)S (6.11)

such that the composition

R ( G S ) "•!-> R { G ) S - ^ 0 Z < F > (6.12)
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gives a Glauberman correspondence

gls>G : Irr(Gs) —->• 7rr(G)5 (6.13)

satisfying

with es>G(V) G {±1} for each V G Irr(Gs). Note that we are using the

map gl to be the inverse of the correspondence TT as previously defined for

ease of notation.

We will now propose a correspondence for general groups S and G of co-

prime order, and demonstrate that the definition works when 5 is a p—group.

Definition 6.2.4 / / V is an irreducible representation of G fixed by S we

have a canonical extension, V G Irr(S tx G), in order to define an extension,

we call this es'G(V).

If V is an irreducible representation of G and H = Stabs (V) we have a

canonical extension eH'G(V) G Irr(H x G) and we extend:

es>G(V) = Inds
H«?G{eH<G{V)) G R(S K G) (6.15)

This defines a homomorphism:

esx; : R{G)S —> R{S x G) (6.16)

extending the canonical extension on S—fixed irreducibles.
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Definition 6.2.5 Define a homomorphisrn

dS'G :R(SKG)^ 0 Z < V > (6.17)
VeIrr(G)s

by setting:

qr, f 0 if Ress
r*

G(W) is reducible,
ds>G(W) = \ G (6.18)

I Ress
G

KG(W) if this is irreducible

and extending linearly.

Now consider a relation of the form given in Proposition 6.2.2:

o (6.19)

and the inflation of this to S x G:

l) e i?(.S K G) (6.20)

where the Sa ^ S may be allowed to equal S.

FOTWQ eIrr(Gs°), let

/ ° ) G ( w y = es-G(wgS!s-G(w;) (6.21)

and extend linearlv.
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Consider the composition:

IndGfc-a

'Sa,G

S1 G

R(G)S" -*—- R(Sa K G) (6.22)

R(S x G) (J) Z < V >
VeIrr{G)s

Proposition 6.2.6 If S is a p—group, then the above composition of maps

is congruent to the Glauberman correspondence gls'G modulo p.

Proof We shall evaluate this composition (mod p) on V € Irr(Gs).

We have shown already in Theorem 4.2.1 (via the modulo p isomorphism)

that:

glSa'° = Inc%Sa (mod p) (6.23)

and that Res^Sa (mod p) gives the inverse isomorphism (mod p). up to

a sign. That is,

Ind%Sa = es°>G(V)glSa'G(V) (mod p)

(6.24)

= es-G{V)gls°>G(V) (modp)
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This means that

'Sa,G

B.

= gl

= Ind%sInd%sa (V) (mod p) (6.25)

'<Sa,G
(Indfa(V)) = Ind%s(V)

(6.26)

= es<G{V)gls>G{Y) (modp)

Xow, W = es'G(gls>G(V)) is an irreducible representation of S x G which

restricts to the canonical extension es°"G{gls'G{\/')) on Sn ix G. Hence (by

Frobenius reciprocity):

Sa,G
(mod p)

(mod p)

(6.27;

We can substitxite the relation from Equation 6.20:

''Sa ,G
(IndG

GS
a(V))) = (modp)

= TI" (mod p)

(mod p) (6.28)



If we finally apply ds>G to the above chain of maps, we see the result is

congruent to gls>G{V) (mod p) as required. •

Unfortunately we have been unable to obtain any further results about

the composition for a general S, but it seems likely that a composition of

this form is a possible candidate for Isaacs' correspondence for non-solvable

S.
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Chapter 7

Cryptographic Applications

In 5.3, we saw a connection between the Glauberman correspondence and

Adams operations on representations. In the context of cryptography, we

make some further remarks about Adams operations.

The first section gives a brief overview of the three main asymmetric

cryptographic systems. We move on to describe how we can recast the Dis-

crete Logarithm Problem (DLP) within complex representations of a finite

group using Adams operations. We consider pairings to demonstrate the

isomorphism between abelian groups and their irreducible representations.

We can then define the Representation Discrete Logarithm Problem (RDLP)

on a group G, extending the definition to include non-abelian groups.

Finally, we consider an example of RDLP on the representations of GLiFq,

the group of invertible 2x2 matrices over a finite field. We look in detail at

these representations and how to apply Adams operations. We consider a

specific example for GL2F3, and finally give a brief outline of how this ap-

proach may lead indirectly to an attack on ECDLP.
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7.1 Existing Cryptographic Ideas

7.1.1 The Integer Factorization Problem

The Integer Factorization Problem (IFP) forms the basis of the RSA encryp-

tion system. The IFP is stated as follows: given an integer n that is known

to be the product of two primes n = pq, find p and q. Further details of the

RSA algorithm can be found in Chapter 19 of [23],

7.1.2 The Discrete Logarithm Problem

Let G be a finite abelian group. The Discrete Logarithm Problem (DLP) is

the problem of finding the smallest integer x > 0 (if it exists) which satisfies

h = gx, given the two elements g and h in G.

In practice, the difficulty of solving the DLP is exploited by cryptographic

algorithms such as the Diffie-Hellman key exchange (D-H), and the Digital

Signature Algorithm (DSA) among others. Full details of all the commonly

used algorithms can be found in Chapter 1 of Blake, Seroussi & Smart [2].

To give the idea, we describe the D-H algorithm here:

Diffie-Hellman key exchange

Using the standard cryptographic language, we assume that Alice wishes to

send a message to Bob without an eavesdropper, Eve. being able to interpret

the message. Here, they just wish to agree on a randomly chosen element

of the group G (which in practice is then used as a key for a high-speed

cryptographic algorithm). An element g G G is chosen, and is publicly

communicated along with the group G.
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Alice and Bob follow this process:

1. Alice generates a random integer 1 < x.\ < n — 1, where n is the order

of g. She calculates gXA and sends this to Bob.

2. Bob generates a random integer 1 < XB < n — 1. He calculates gXB

and sends to Alice.

3. Alice can now compute the key k £ G, using k = gx*x" — (gXB)XA.

4. Bob can also compute k £ G, using k = gxA'xo = (^X-I)XB.

The only information available to Eve is G. g. gXA, gXB. It is easy to see

that if Eve can solve the DLP in G, then she can recover k and compromise

the system. It is widely believed that the converse is also true (polynomial-

time algorithms exist to reduce D-H to DLP and vice-versa).

7.1.3 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is formed from

taking the DLP over the additive group of points on an elliptic curve (further

details of the definitions of elliptic curves can be found in [26] and [2]).

Let Fq be the finite field of order q. where q = / / for some prime p. Let

E(Fq) be an elliptic curve defined over Fq. The ECDLP is the following:

given a point P £ E(Fq) of order n and a point Q G E(Fq). determine the

integer m, 1 < m < n — 1 satisfying Q = rnP (if it exists). We note that

Elliptic Curve groups are generally written using additive notation.

Pohlig and Hellman gave an algorithm (detailed in Chapter 5 of [2]),

based on the Chinese Remainder Theorem to solve ECDLP by determining

m modulo s, where s ranges over each of the prime divisors of n, so in
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practice, n is taken to be prime to provide the strongest possible security

level.

7.1.4 Best Known Attacks

The measure of the security of the above cryptosystems is given in terms

of the best known attacks. Details of the full list of best known attacks

together with their running times is given in [19]. The current best known

general-purpose attacks, those not relying on specially chosen situations (for

example the super-singular elliptic curves, which are assumed to be avoided)

are: for IFP, the Number Field Sieve algorithm [18]: for DLP, a variant of

this algorithm [12]: for ECDLP, the Pollard rho-method ([21] and Chapter

5 of [2]). The running time of this method takes the order of y/7m/2 steps

(a 'step' is considered to be an elliptic curve addition) which is significantly

slower than the best methods for IFP and DLP, as the Number Field Sieve

algorithm is sub-exponential in both cases, for comparable sized systems (see

[19] for a full discussion of this). For this reason. ECDLP is believed to be

much harder than IFP and DLP.

7.2 Representation Theory and Pairings

Definition 7.2.1 Let G be an abelian group. A pairing <. > is a non-

singular bilinear form:

< ; > : G x G ^ Q / Z (7.1)

We see such a pairing gives rise to an isomorphism between G and Irr(G),

the set of complex irreducible representations of G (these are all one-dimensional

as G is abelian):
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For each g e G, define (j)g : G ->• C* by 05(/i) = (< /» , then the corre-

spondence is given by:

G <—>

g <—> <j)g:G^C* (7.2)

Example 7.2.2 Let E be an elliptic curve defined over Fq. Let n > 2 be

an integer coprime to the characteristic p of Fq, and E[n] be the n—torsion

points of the curve. Let /j,n be the group of n—th roots of unity. The Weil

pairing en is a pairing:

en : E[n] x E[n] -> //.„ (7.3)

The explicit definition of the Weil pairing is given in Chapter 3 of [2]

(including an algorithm to compute this function for given points). This

gives a bijection:

E[n) ^ Lrr(E[n])

Q ^ cpQ (7.4)

where </)Q(P) = en(P, Q) for all n—torsion points P £ E(Fq).

We recall the definition of the Adam operations (from 5.3.1)

Definition 7.2.3 Let p be a complex representation of G, with character

value xP, and m > 0 be an integer. The Adams operation, v:rn is defined by

the character formula:

Xp(gm) (7.5)

for all g £ G.
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Section 5.3 along with Chapter 4 of [28] gives further properties and appli-

cations of Adams operations. In particular, we note the following properties

for p e Irr(G):

1. dim(p) = dim(%)m(p))

2. If m is coprime to \G\ then ipm(p) G Irr(p) (lemma 5.3.2)

Returning to example 7.2.2, we see that if Q and P are two points as

above, with Q = mP, then this gives <\>Q = il:"l((pp) in the corresponding

representations.

7.3 The Representation Discrete Logarithm

Problem (RDLP)

For the abelian group E(Fq), the Weil-pairing above shows that if two points

P, Q on the elliptic curve are related as in ECDLP. ie Q = rnP for some

integer m, then 4>Q = n)m(4>p), and conversely.

Let G be any finite group (not necessarily abelian). We can define RDLP

on Irr(G) as follows: let pi and p2 be elements of Irr(G). What is the

smallest integer m (if it exists) such that p\ = V'"'(/>?)?

For abelian elliptic curve groups, Section 7.2 demonstrates that RDLP

corresponds to ECDLP. We would like to know more about the difficulty of

RDLP in the case of non-abelian G.
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7.4 Representations of GL2Fq

We give a summary of the results from Chapter 2 of Snaith [28] in which

the representations of GL2Fq (the group of invertible 2 x 2-matrices with

elements in the finite field Fq) are calculated.

7.4.1 The Weil Representations

Let Fq2 denote the field of order q2, so the Galois group G(Fq2/Fq) is cyclic

of order two, generated by the Frobenius automorphism, F:

F:Fq2

7.6)

Let 6 : F*2 —>• C* be a non-trivial character satisfying 0 / F*(Q) (where

F*(G)(z) = Q(F(z)) for all z G F*2).

We note that the elements of GL2Fq can be divided into four types of

conjugacy class:
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Type Minimal

polynomial

Conjugacy class Number

representative in class

(t-a)(t-/3) a 0

0 B
q(q + 1)

II

III

IV

it - af

(t-a)

i2 - (x + F(x))t + xF(x)

F(x) F*2

<f - q

Theorem 7.4.1 For each choice of 0 , we can define a unique irreducible

representation r(O) : G^Fg —> GLg_j(C), called the Weil-representation

associated to Q. The character values of this representation on the elements

of GL2Fq is summarised in the following table:
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Type Conjugacy class Character

representative value

0
a

°
a

0

0

P

1

a

III \
0 a

, 0 -xF(x)
IV |

Proof Contained in Section 3.1 of [28]. •

7.4.2 A full list of irreducible representations

We can now give a complete list of the irreducible representations of GL2Fq:

Definition 7.4.2 The Borel subgroup. B < GLiFq is defined:

B=\XeGL2Fq\X = \° ' | \ (7.7)
0 5

Suppose we are given characters of the form:

p , pi, p2 : F* —> C* (7.8)
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then we have a one-dimensional representation. L(p), given by composing

p with the determinant map:

L(p) = p-det: GL2Fq ^ F*q - A C* (7.9)

If p\ and p2 are distinct, define:

Inf£(p1®p2):B->C* (7.10)

by inflating px ® p2 from the diagonal torus T to the Borel subgroup B.

That is.

' | ( ) ( ^ ) (7-11)
0 5

Define a (q + 1)—dimensional representation R(p\, p2), by:

Intf(px®P2)) (7.12)

When p = Pi = p2, we have:

Inff(p®p) = Resf2Fq(L(p)) : £ -> C* (7.13)

so there is a canonical surjection:

IndG
B

hF"(Inff,{p ® p)) -> 7nd2!S;(i(p)) = £(/>) (7-14)

Therefore, we may define a g—dimensionexl representation, 5(p), by means

of the following short exact sequence of representations:

0 -> S'(p) -^ IndG
B

l2Fq{InfZ(p ®p))-> L(p) -> 0 (7.15)
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Theorem 7.4.3 A complete list of the representations ofGL2Fq is given by:

1. L(p) of7.9forp:Fq*^C*;

2. S(p) of 7.15 for p : F* —> C*,

3. R(pi,p2) = R(p2,Pi) of 7.12 for any two distinct pu p2 • F* —> C*,

4. r(Q) = r(F*(@)) of 7.4-1 for any character 0 : F*2 —> C* which is

distinct from its Frobenius conjugate, F*(Q).

Proof Theorem 3.2.4 of [28] has full details. We note that the number

of each type of representation is q — l,q — 1, (q — l)(q — 2)/2 and (q2 —

q)/2 respectively. These representations have degree l.<72, (q + I)2, (q — I)2

respectively. Calculating Schur inner products of each type of representation

with itself and with the others demonstrates that they are all distinct and

irreducible, and summing the number of each type multiplied by the square

of the dimension gives the size of the group, hence all the irreducibles are

included. •

We can calculate the character values of these representations, and sum-

marise in the following table (taken from Theorem 3.2.5 of [28]),

where N = NF 2/Fq denotes the norm:

Type L ( p ) R { p ^ ( h ) 5 Y p ) r ( 9 )

I

II

III

IV

p(a/3)

p(a)2

p(af

p(N(x))

Pi{a)p2{(3) + p2{a)p

Pi(<y)p2(a.)

(q + 1) p\{ct) p2(cv)

0

i(/3) p(cvB)

0

I qp{(v)2

-p(N(x))

0

-0(a)

(q-l)e(a)

-{e(x) + e(F(x))}
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7.4.3 Application of Adams Operations

We want to investigate RDLP for GL2Fq. Firstly, we consider the behaviour

of the representations listed above on applying the Adams operation ipm,

where m is a positive integer coprime to q(q — l)(q2 — 1), the order of GL2Fq.

From the remarks following 5.3.1 we note that if 4> is an irreducible resen-

tation of GL2Fq. ?/>m((/>) is irreducible of the same dimension. This immedi-

ately gives us that ij)m preserves the representation type in

Theorem 7.4.3.

We can calculate the m-th powers of the types of conjugacy class GL2Fq

and summarise in the following table:

Type X = Conjugacy class Representative

representative of _Ym

I

II

III

0 -xF(x) \ /O -xmF(xm)

x + F(x) j \l xm + F(xm)

In all cases, we note that the conjugacy class representative for Xm lies

in the same type of class as that for X (note in type—IV that we have



x y^ F(x), hence xm / F(xm) as m is prime to the order of the group). We

can immediately see from the two tables above how the application of ipm

permutes the irreducible representations of GL2Fq within their types, and

use this to calculate the new character values.

7.4.4 This observation gives the motivation for an algorithm to tackle ECDLP

for Weil-representations. Given two distinct representations O, : F*2 —> C*

as above, for i = 1,2, if ^m(©1) = 0 2 for some integer m coprime to the

order of GL2Fqi we know the corresponding Weil-representations r(Oi) and

r(62) are such that -0m(r(0!)) = r(Q2). If we choose x G F*2 such that

F(x) ^ x, then the type—IV matrix R given by:

(0 -xmF(xm) .
R = [ I (7.16)

\l xm + F(xm)

satisfies the character formula:

= -(&i(x) + e1(F(x))) = a (7.17)

and

a and /3 are complex numbers lying on the unit circle, hence by calculating

the angles between them (provided this is not a rational multiple of IT) we

are able to recover the integer m.

Combining this with the Weil-pairing, or a similar computable function

allowing a mapping between Elliptic Curve points and representations, we
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may be able to use this method as part of an algorithm to tackle ECDLP. If

we can use points on a curve in place of matrices, we can calculate equivalents

of a and (5 above without having to know the choice of x.

There are several problems. In order to compute the Weil-pairing for

example, we need to determine the smallest integer k such that E[n) C E(Fqk)

(where n is the order of P. the curve point corresponding to Gi). Algorithms

to determine this value k are only known for the class of supersingular curves,

which are the target of the MOV attack (this attack and the class of curves

is described in detail in Menezes, Okamoto and Vanstone [20]).

We finish with an example of the Weil-representations for the group

GL2F3.

7.4.4 Example: G = GL2F3

We calculate first the Weil-representations of G. which has order 48. The

conjugacy classes are as follows:
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Type Number of Size Conjugacy Class

Classes Representatives

I 1 12 .4 =
\ 0 - 1

, 1 1 \ -1 1
II 2 8 B1 = |

0 1 / \ 0 - 1

, 1 0 \ / - 1 0
HI 2 1 Ci = | . C2 =

0 1 / \ 0 - 1

. 0 —1 \ 0 1 \ / 0 - 1
IV 3 6 A = | , D2 = , £>3 =V 1

There are three Weil-representations. Let j be a root of x2 + 1, an irre-

ducible quadratic polynomial over F%, and consider F9 = F^[j]. The Weil-

representations are given by r(8m) for 1 < rn < 3 where 9rn : (1—j) —> e7rzm/2.

The character values on eight conjugacy classes are calculated as follows:

Type A Bx B2 Cx C2 Dy D2 D:i

r ( 6 i ) 0 - 1 1 2 - 2 0 \[2%

r ( 6 2 ) 0 - 1 - 1 2 2 2 0 0

r ( 0 3 ) 0 - 1 1 2 - 2 0 - s / 2 i \ / 2 i

0 - 1
Consider the image of | | under r{Bx) and r((93). We note

- 1 - 1
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= -s/2 (7.19)
• V - i - i ;

and

Xr(e3) I ° 1) =V2 (7.20)v - 1 -1;
Unfortunately, for this example, we see the angle between these points

is 7T, which hits the indeterminate situation: we are not able to recover the

power r(#3) = ip5(r(9i)) in this particular case, and in fact with any other

pairs of Weil-representations for GL2F3. However, with a large group order,

a random choice from the available type—IV representations should eliminate

the ambiguity.
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