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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF MATHEMATICAL STUDIES
MATHEMATICS
Doctor of Philosophy
PARTIAL SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS MODELS FOR
DRYOUT IN BOILERS
by Mphaka Joane Sankoela Mphaka

A two-dimensional model for the annular two-phase flow of water and steam, along with
the dryout, in steam generating pipes of a liquid metal fast breeder reactor is proposed. The
model is based on thin-layer lubrication theory and thin aerofoil theory. The exchange of mass
between the vapour core and the liquid film due to evaporation of the liquid film is accounted
for in the model. The mass exchange rate depends on the details of the flow conditions and
it is calculated using some simple thermodynamic models. The change of phase at the free
surface between the liquid layer and the vapour core is modelled by proposing a suitable Stefan
problem. Appropriate boundary conditions for the model, at the onset of the annular flow
region and at the dryout point, are stated and discussed. The resulting unsteady nonlinear
singular integro-differential equation for the liquid film free surface is solved asymptotically
and numerically (using some regularisation techniques) in the steady state case, for a number
of industrially relevant cases. Predictions for the length to the dryout point from the entry
of the annular regime are made. The influence of the constant parameter values in the model
(e.g. the traction 7 provided by the fast lowing vapour core on the liquid layer and the mass

transfer parameter 1) on the length to the dryout point is investigated.

The linear stability of the problem where the temperature of the pipe wall is assumed to be
a constant is investigated numerically. It is found that steady state solutions to this problem
are always unstable to small perturbations. From the linear stability results, the influence
on the instability of the problem by each of the constant parameter values in the model is
investigated. In order to provide a benchmark against which the results for this problem
may be compared, the linear stability of some related but simpler problems is analysed. The

results reinforce our conclusions for the full problem.
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Chapter 1

General Introduction

The study of multiphase flow dynamics is frequently undertaken in the areas of natural
sciences and engineering. A multiphase flow is simply described by Wallis (1969) [90] as the
simultaneous flow of several phases, where a phase is a state of matter, e.g. solid, liquid or
gas. There are numerous publications on this subject which cover fields such as blood flow,
dust storms, air pollution, fluidised beds, sedimentation and pneumatic conveyors. These
publications include those of Soo (1967) [76], Wallis (1969) [90], Bergles & Ishigai (1981)
[11], Azbel (1981) [6], Chisholm (1983) [18] and Whalley (1987) [92] to name but a few.
Owing to the vast and broad scope of the subject of multiphase flows, we do not attempt
to describe the study of all aspects of the subject here since this would distract the reader
from the main theme of this thesis. This thesis is devoted to mathematical modelling and
analysis of an “annular” two-phase flow of an evaporating thin viscous liquid film of water
(adhering to a heated wall) and its fast flowing “vapour/gas core” (the technical terminology

will become clearer as we describe the physical problem in section (1.1)).

It is important at this stage to mention that the modelling and the analysis of the annular
two-phase flows (for the current conditions of interest) will involve the study of thin liquid
flows. Owing to their frequent occurrence (both in nature and in engineering sciences),
the subject of thin film flows (isothermal and otherwise) has always been, and still is, of
paramount interest to both theorists and industrialists including experimentalists. As a
result, the literature in this area is very large in its extent. It seems that much of the
recent work performed on isothermal thin liquid films has been mostly motivated by painting
processes in industry. This is not entirely surprising since many industrial processes involve a
form of coating solid substrates with thin layers of paint, e.g. the electronics industry, the food
industry and the paint industry to name but a few. Examples are presented in a review by
Ruschak (1985) [70]. Among most recent publications in the literature (and many interesting

mathematical modelling problems which arise in this area), we can mention, as examples, the



investigations of the closing and opening of holes in thin liquid films by Moriarty & Schwartz
(1993) [53]; the study of drying paint layers by Howison et al (1997) [40]; the investigations on
the spreading of thin liquid drops on planar substrates when subjected to a jet of air blowing
normally to the substrate by McKinley et al (1999) [52]; the study of thin film curtain flows on
rotating cylinders by Duffy & Wilson (1999) [27}; and the investigations into the blade coating
phenomena by Ross et al (1999) [68]. A significant amount of the recent research involving
the flow of non-isothermal thin liquid films (including the current problem of interest), on
the other hand, has been largely motivated by the flows which are commonly observed in
aerospace, power and process engineering industries. Examples include the study of ice and
water film growth from incoming supercooled droplets by Myers & Hammond (1998) [55];
the study of the cooling of turbine blade tips, rocket engines, hot fuel element surfaces in
hypothetical nuclear reactor accidents (see for example, a review by Bankoff (1994) [9]); and
investigations on the growth of a vapour bubble in nucleate boiling by Wilson et al (1999)
[95]).

In the problem studied here (whose motivation is explained in section (1.1)), a mathemat-
ical model for the two-phase annular flow of water and vapour in steam generating pipes of
a Liquid Metal Fast Breeder Reactor (LMFBR) is proposed and analysed. The main aim of
the model is to allow predictions to be made for the position of “dryout point”. The model is
based on thin aerofoil theory and thin-layer lubrication theory and it takes into account the
mass exchange between the liquid film and the gas core due to evaporation from the liquid
film. The resulting governing equation is a partial nonlinear singular integro-differential equa-
tion for the liquid film free surface. It contains Hilbert transforms which are characterised
by a Cauchy kernel of the form (¢ — z)~!. The solutions of the equation are achieved by em-
ploying both appropriate asymptotic and numerical techniques. The linear stability of some
solutions is investigated as well. Therefore, this thesis concerns mathematical modelling,

asymptotic techniques and numerical methods.

1.1 The Physical Problem

Within a nuclear plant, the basis of nuclear energy development is natural uranium. This is
mainly because its two isotopes U?3® and U%3® possess nuclear characteristics which are most
favourable to the production of atomic energy in a reactor, see for example, Wyatt (1956)
[96] and Wilke (1963) [93]. A nuclear reactor is an essential invention in which the radioac-
tive substance concerned is converted into useful energy. In a very brief and over-simplified
summary, the nuclear reactor consists mainly of two components, namely a reactor/core com-
ponent (or a fuel element) and a boiling/heat exchange component. Fission and conversion

take place in the reactor component in which heat is generated and transferred to a coolant.



Heat is then transferred from the coolant to water in the boiling component where steam is
produced to drive turbines in order to create electricity. There are different kinds of nuclear
reactors depending on many factors one of which is the type of coolant that is used. Some
examples of these are explained in detail by Etherington (1958) [28]. In the Liquid Metal Fast
Breeder Reactor, for example, a liquid metal is used as the coolant, a common choice being
sodium since it has a high boiling point at atmospheric pressure and therefore the nuclear
reactor may operate virtually unpressurised. Thus, in the event of Loss of Coolant Accident
(LOCA) in which there is a break in the boundary of the nuclear system (Prosperetti &

Plesset, 1984) [67], the damage and spread of contaminated material is minimised.

1.1.1 Flow Patterns

The boiling component of the nuclear reactor is composed of bundles of steam generating
pipes. Water is pumped through the pipes, and heat is supplied from the liquid metal which
flows in a counter-current direction in outer casings surrounding the pipes. As the water
temperature increases, the water begins to vapourise resulting in a two-phase flow of water
and steam. In a typical heat generating pipe, the water and the steam generated take up a
variety of configurations known as flow patterns or flow regimes, see for example figure 1.1.
Which particular flow pattern pertains depends upon the amount of each phase present, some
external effects such as orientation of the pipe, and the flow conditions like pressure and heat
flux. Detailed descriptions of the various flow regimes are given, for example, by Wallis
(1969) [90], Collier & Thome (1994) {20]. In a brief summary, the flow essentially consists of
a single-phase subcooled region near to the water inlet. The water in the subcooled region is
heated to the saturation temperature. At some point beyond this region, along the pipe, the
water gets superheated and the bubbles start to form at some suitable sites on the pipe. As
the bubbles grow, they detach from the pipe wall and start to form a bubbly region. In this
region, the vapour phase is distributed as discrete bubbles in a continuous liquid phase. The
bubbles (whose sizes are negligible compared to the diameter of the pipe) are almost spherical
in shape. The bubbles which are nearer to the subcooled region are typically smaller than
those at the farther end of the bubbly region along the pipe. As more and more bubbles are
produced and continue to grow larger, they amalgamate to form a plug flow region which
gives way to annular flow region. Thus, plug flow is identified by large vapour bubbles which
almost cover the whole diameter of the pipe. The bubbles are separated from the pipe wall
and one another by a thin layer of liquid. At this stage, both the vapour and liquid flow rates
are higher than of those in the bubbly region. As a result of the breakup of the large vapour
bubbles in the plug region, a churn flow regime may be observed prior to the annular flow
region. Churn flow is characterised by irregular and disturbed bubbles through liquid which

is mainly found adjacent to the pipe wall.
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In the annular region, a flow of continuous liquid film along the pipe wall surrounds a core
of fast flowing gas. Typically, the gas contains some liquid droplets which are believed to be
a result of break up of waves which are usually present at the liquid film free surface, and
undercuttings of the liquid film free surface by the increasing velocities in the gas core. In
this region, the liquid film is superheated. Thus, formation of the vapour bubbles at the pipe
wall has significantly decreased to a point that it is negligible and the gas production is due to
evaporation of the thin liquid film free surface. The liquid droplets in the gas core continue to
exist and slowly evaporate beyond the annular flow region into a dispersed-drop flow region,
where all the liquid film along the pipe has evaporated as well. The liquid droplets in the
gas core continue to evaporate until only a single-phase vapour region is present. It should
be mentioned that there are many other intermediate flow regimes, e.g. wispy-annular flow,
but the ones described above represent the minimum which can sensibly be defined (Whalley,
1987) [92]. The description of the intermediate regimes is qualitative and subjective (Azabel,
1981) {6] and therefore different sources of literature may describe them differently. Wispy-
annular flow, for example, is differentiated from the annular flow by a thicker liquid film
(than one in the annular flow region) on the pipe wall and a higher concentration of liquid
droplets (which are larger and nearly amalgamated) in the gas core. We will not try to
describe these intermediate regimes in this study although the interested reader may consult

the cited literature.

It should be mentioned that the flow regimes are also influenced by the orientation of the
pipe at low water velocities at the inlet of the pipe. In horizontal pipes, for example, the
gas bubbles tends to concentrate and travel on the upper side of the pipe. There is also a
possibility that, at very low velocities, a stratified flow region may develop after the plug
flow. In this case both the liquid and vapour phase flow separately with arguably a smooth
interface. It is also usually the case that prior to the annular flow regime, a wavy flow region
develops as a result of the interface being disturbed by the coherent travelling waves as the
vapour velocities increase in the gas core. In the annular flow, the liquid film may not be
continuous around the whole circumference of the tube but it is thicker at the base of the
pipe. For high inlet water velocities, the influence of gravity is negligible and therefore the
difference between the flow regimes in the vertical pipe and the horizontal one is virtually

not existent.

1.1.2 The Annular Region and the Dryout Point

Within this study, we focus on the two-phase annular region for several reasons. Annular flow
is the predominant flow regime present in evaporators, condensation operations, natural gas
pipelines and steam generating systems (Wallis, 1969) [90]. This is well-supported by several

published flow pattern diagrams where the different two-phase flow regimes are identified



as functions of mixture quality and mass velocity. Moreover, at the operating conditions of
the liquid metal nuclear reactor, (which are approximately pressures of 200 bar and hence a
water saturation temperature of Ts = 365°C) the flow pattern maps of Bennett et al (1965)
[10]} suggest that annular flow comprises at least 80 — 90% of the two-phase flow region.
Furthermore, the annular flow regime in steam generating pipes has a fundamental feature of
an exchange of mass between the liquid film and the gas core. This phenomenon consists of
evaporation of the liquid film, typically at the free boundary; droplet entrainment (from the
liquid film into the gas core) which is believed to be a result of the break up of large amplitude
coherent waves which are usually present at the surface of the liquid film; and deposition of
liquid drops from the gas core. The annular flow regime also contains the dryout point, where

complete evaporation of the liquid film occurs.

At the dryout point, there is a sharp increase in the temperature of the pipe wall because
the thermal conductivity of the gas phase, which is now in direct contact with the wall, is
much less than that of the liquid phase. The determination of the position of the dryout point
is not a trivial problem (see also Fisher & Pearce, 1993)(29] since, for example, in the event
that deposition of liquid drops occurs rapidly, the liquid film may reform hence rewetting and
causing the temperature of the pipe wall to drop. If the processes of dryout and rewetting
occur periodically, thermal stresses may be set up in the wall which could lead to cracking of
the pipe. Therefore, a good understanding of the dryout phenomenon is essential to predict
the lifetime of the steam generating pipes, as this process directly affects the integrity of the
pipes. Moreover, the position of the dryout point affects the amount of evaporation which
can occur in the pipes for a given value of the heat flux, and it is of great importance in the
design of evaporators, steam boilers and nuclear reactors (Bankoff, 1994; Collier & Thome,
1994) [9], [20].

1.1.3 Some Models which are Related to the Presented Problem

Since the studies on the dynamics of the two-phase systems encompass broad lines of dis-
ciplines in engineering and sciences, then it is almost inevitable that there exist numerous
related models to the current problem of interest. We do not make any attempt here to
review all of these models. It is, however, important to mention at this stage that the anal-
ysis of the available publications (e.g. Soo, 1967; Wallis, 1969; Chisholm, 1983) [76], [90],
(18] indicates that there is no standard type of equations generally agreed to describe the
two-phase (and of course multiphase) flows. Usually, most two-phase flows are characterised
by changes in many physical properties (e.g. density, viscosity, thermal conductivity) which
are, in general, functions of space, time and other variables. Frequently, the dynamics of
two-phase systems in pipes (as well as the current problem of interest) include heat and mass

transfer thermodynamics. Thus, it is extremely difficult to develop mathematical models of



these systems. The general attitude adopted in the literature is that two-phase flows obey
all the basic laws of fluid mechanics with equations more complicated and/or more numerous
than those describing the single-phase flows. Thus the models are based on the conservation

laws of mass, momentum and energy.

Practically all of the early literature indicates that the modelling of two-phase flows consid-
ered the mixture mass, momentum and energy conservation laws (see for example, a review
by Yadigaroglu & Lahey, 1976) [97]. This is a simple, but also not accurate, method of
analysing two-phase flows. The properties of the mixture, e.g. velocity, temperature, den-
sity and viscosity, are calculated average properties of the two phases. The challenge in the
mixture modelling is then of developing techniques to determine these weighted average prop-
erties and rearranging the resulting equations until they resemble equivalent equations of a
single-phase flow. There are numerous approaches in the literature adopted by researchers
and we are not going to make a review of them here. However, it is worth mentioning that a
frequently employed approach is to express the properties of each phase, in the conservation
of mass, momentum and energy equations, in terms of a mixture quality. A mixture quality
is defined as mass flux of one phase divided by total mass flux of the two phases. Later
models, on the other hand, consider separately the conservation laws for each phase in order
to improve accuracy of the mathematical representation. These equations can then be com-
bined to describe the total flow. The equations are many with numerous unknowns. Thus,
in general the problem is intractable. Therefore, it requires some simplifications and closure
conditions which can only be supplied by prescribing appropriate interaction laws of mass,
momentum and energy between the phases. This is non-trivial and researchers frequently

resort to a great number of hypotheses.

Some examples of models which are related to the current problem of interest include those
of Fisher & Pearce (1993) [29] and Whalley (1977) [91]. Fisher & Pearce (1993) [29] present
a model for annular flow of water and steam at high pressures (~ 149 bars) in electrically
heated (heat flux ranging from 60 to 65 KW/m?) horizontal serpentine evaporators with
typical radii and lengths of order 22.1 mm and 3.17 m, respectively. Fisher and Pearce’s
model takes into account evaporation of the liquid film and droplet entrainment from the
gas core into the liquid layer. Whalley (1977) [91] proposes a two-phase annular flow model
to calculate the dryout in a vertical rod bundle of a nuclear reactor at pressures between 10
and 68 bars. The heated length of the tubes is of order 3.66 m. The processes of droplet
entrainment and deposition are both assumed to be major phenomena affecting the dryout
process in this model. To analyse their models, Whalley (1977) [91], Fisher & Pearce (1993)
[29] use numerous empirical engineering correlations. In fact these type of models, as put
by (Kirillov et al, 1985) [46], are not developed to investigate directly the parameters which

characterise the annular two-phase flow in pipes, but to describe analytically the conditions



of burnout or dryout heat transfer. The basic equations are that of the film flow rate, and

the flow characteristics are described very schematically and empirically.

1.1.4 An Overview of Work Performed in this Thesis

We now summarise the work of this thesis. In chapter 2, an unsteady two-dimensional
mathematical model for the two-phase flow of a thin liquid film (adjacent to a heated pipe
wall) and its fast flowing gas core, along with the dryout point, is proposed. A number
of assumptions, relevant to the current conditions of interest, are made and discussed in
detail. The thin liquid film is modelled by employing thin-layer lubrication theory. The flow
in the gas core is modelled as an incompressible, inviscid and irrotational flow. The liquid
film adjacent to the wall is treated as a small perturbation to the gas flow. This allows the
application of the thin aerofoil theory. A constitutive equation for the transfer of mass, by
evaporation, from the liquid film into the gas core is proposed by specifying an appropriate

Stefan problem.

Chapters 3 and 4 deal with numerical solutions of the steady state cases of the model when
a constant wall temperature is specified and when a specific non-constant wall temperature
is prescribed, respectively. Chapter 5 is mainly concerned with linear stability analysis (with
respect to small temporal perturbations) of the steady state numerical solutions obtained
for the constant wall temperature problem. The results are compared with those analysed
for some simple paradigm problems. Finally, chapter 6 summarises some conclusions and

discusses possible further work.

All of the numerical results presented in this thesis have been computed using programs
which the author has written in FORTRAN-77. In many cases, some specified NAG library
routines have been employed and a specific reference is given in the thesis whenever and

wherever one is used.



Chapter 2

The Full Unsteady Model

In this chapter, we systematically develop an unsteady mathematical model for the dry-
out front position. The resulting model amounts to a nonlinear singular integro-differential
equation for the unknown liquid film free surface. Plausible boundary conditions are stated.
Before we proceed with the mathematical modelling, however it is instructive to review some

previous relevant work.

2.1 Literature Review

2.1.1 Mathematical Modelling

Owing to some previous modelling of various physical phenomena, nonlinear singular integro-
differential equations already exist in the literature. Fitt et al (1985) [32] propose a simple
model which gives a steady nonlinear integro-differential equation to investigate the aerody-
namics of slot film cooling by injection of an inviscid fluid from a slot into a uniform cross
flow. The model assumes both the injected and the free-stream to be potential flows. In
order to ensure that the injection is weak, it is further assumed in the model that the slot
pressure exceeds the cross flow pressure by only a small amount. Some theoretical results
are obtained and are found to be in good agreement with experimental observations at low
injection rates. Some variations of the Fitt et al (1985) [32] model are investigated by several
other authors. The effects of altering the geometry of the upstream end of the slot on the
mass flow are studied by Fitt & Wilmott (1994) [34]. In this paper the original model is
augmented with a term obtained from a known upstream end geometry. Fitt & Stefanidis
(1998) [33] include the energy equation in the original problem to enable predictions of the
film cooling effectiveness produced by the slot injection into the cross flow to be made. Fitt
& Lattimer (1996) [31] extend the Fitt et al (1985) [32] problem to include the effects of

introducing a downstream suction slot. In the absence of the upstream injection slot, Lat-



timer & Fitt (1998) [47] investigate transient effects by assuming that the unsteadiness in
the resulting problem is driven by a time dependent suction slot pressure. Pope (1999) [65]
studies the problem of de-icing (removal of a thin ice layer) by the injection of heated fluid
from a slot. Just like the other models mentioned earlier, this problem is also a development
of the original model by Fitt et al (1985) [32]. A complementary problem of slot suction from
an inviscid channel flow, when the suction and free stream total pressure heads are equal, is
investigated by Dewynne et al (1989) [25]. Other authors use hodograph techniques (by using
Christofel transformations, for example) to model fluid flows in some complicated physical
geometries, and the resulting equations of motion are nonlinear singular integro-differential
equations. Forbes & Schwartz (1982) [35] tackle a two-dimensional problem of steady flow
of a fluid with a free surface over a semicircular obstacle on the bottom of a stream. A
hodograph variable is specified and the problem is transformed from an otherwise difficult
physical space into a simpler hodograph space. Similar techniques are employed to study
other problems in various difficult geometries by a number of authors. These include King
& Bloor (1987) [44] in their study of a steady free surface flow of an ideal fluid over a semi-
infinite step; Asavanant & Vanden-Broeck (1994) [4] who investigate two-dimensional flows
past a parabolic obstacle lying on the free surface in a fluid of infinite depth; and Tuck &
Vanden-Broeck (1998) [87] who study “ploughing flows”, i.e. flows over shallowly-submerged

bodies which may be thought of as a model for an agricultural plough.

All of the above models concentrate exclusively on inviscid incompressible and irrotational
flows. There are a few models in the literature, however, which incorporate some viscous
effects. Spence & Sharp (1985) [78] study a pressure-driven fluid fracture problem whereas
Spence et al (1987) [79] consider the case of buoyancy-driven fluid fracture. These authors
formulate their problems in terms of singular integro-differential equations governing the
elastic deformations of the crack wall boundaries. The equations are then coupled with the
differential equations of lubrication theory for viscous incompressible flows in the cracks.
The resulting governing equations for the models are nonlinear singular integro-differential
equations. Another interesting physical problem which is closely related in structure to the
one which we model in this chapter, is the study of thin isothermal viscous liquid layers
supported by steady air flow surface traction (King & Tuck, 1993) [45]. The air not only
exerts the shear traction on the liquid layer, but also leads to a non-uniform pressure whose
size is determined by the shape of the layer. Upon employing thin aerofoil theory and
lubrication theory approximations, the problem is reduced to a nonlinear singular integro-
differential equation for the unknown shape of the liquid layer. This problem (like all the
other models which include viscous effects in this literature review) differs fundamentally
from the one that we model in this chapter because we account for both the transfer of mass

from the superheated (i.e. heated above saturation temperature) liquid layer into the gas
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core flow and the change of phase at the unknown boundary of the liquid layer. Therefore,

the associated boundary conditions also differ considerably.

2.1.2 Numerical Methods

It is worth mentioning at this point that, due to their frequent appearance in modelling
physical phenomena, a vast amount of literature is available on the numerical solution of
linear (or linearised) singular integral equations. The interested reader is referred to a wide
range of numerical techniques presented by various authors in the literature, see for example,
Tuck (1991) [86], Chakrabarti & Tsahoo (1996) {16], Cuminato (1996) [21], Kim (1998) [43],
De Klerk et al (1995) [23], Frankel (1995) [37] and Fitt et al (1995) [30]. Other authors
compute the singular behaviour of the linear Cauchy singular integral equations with both
constant and variable coefficients (Srivastav, 1992; Li & Srivastav, 1997) [84], [49]. Although
numerical methods for linear equations are interesting, they are not really applicable to
our problem. Here, we will therefore focus briefly on some of the references which employ
numerical techniques to solve nonlinear singular integro-differential equations and these are
much rarer. An obvious reason for undertaking this part of literature review is to learn of
what may be already available for application when we will be tackling the current problem

numerically later in this thesis.

In an analysis of a nonlinear singular integro-differential equation governing the local tem-
perature during transient radioactive heat transfer in a plane layer, Prasad & Hering (1970)
[66] present a purely numerical method for solving the problem. Their technique uses a least
squares approximation for the function within the integral operator to reduce the equation to
a system of ordinary differential equations. Predictor-corrector methods are then employed
to solve the resulting system of differential equations. Owing to the complex nature of their
problem and approximations involved, the problem of analysing the convergence, stability
and error bounds for the numerical scheme is not even attempted. Spence & Sharp (1985)
[78], in their study of pressure-drive fluid fracture, and Spence et al (1987) [79], in their study
of buoyancy-driven fluid fracture, rearrange the original nonlinear singular integro-differential
equation into an alternative form in which the unknown function may be approximated using
an expansion technique. The basis functions chosen for the expansion are based on Cheby-
shev polynomials with unknown coefficients. The Chebyshev expansion is augmented by a
term possessing the correct singular behaviour at an appropriate point. The unknown coeffi-
cients are determined by a constrained nonlinear optimisation technique. On the other hand,
Spence et al (1988) [77] employ similarity techniques (self-similar) to analyse their unsteady
model. Fitt et al (1985) [32], O’Malley et al (1991) [58], Fitt & Wilmott (1994) [34], Fitt &
Stefanidis (1998) [33], Fitt & Lattimer (1996) [31] and Pope (1999) [65] all invert their sin-

gular integro-differential equations and then integrate the resulting equations appropriately
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to remove any derivatives of the unknown function. After applying the relevant boundary
conditions to evaluate the constants of integration and inversion, the problem is then solved
numerically by employing a direct iterative relaxation scheme. The success of this numeri-
cal technique is primarily made possible by the fact that the resulting equation contains no
principal-value integrals. It is not clear, however, whether the fact that the behaviour of the
unknown function at one (or more) end point contains a logarithmic singularity also plays
an important role. King & Tuck (1993) [45], instead, employ regularisation techniques to
deal with the singular behaviour of the derivative of the unknown function near an end point
prior to any numerical manipulations. Their resulting equation is then discretised using fi-
nite differences and a collocation method is employed to evaluate the Cauchy principal-value
integral. The final challenge of King & Tuck (1993) [45] is to solve a set of nonlinear alge-
braic equations for the unknown function at discrete points, and this is done using a Powell’s
method as implemented in the NAG library routine COSNBF.

As a result of using a conformal mapping technique to map a region of complicated geom-
etry, which is occupied by an irrotational inviscid fluid, to a region with a simpler geometry,
Bloor (1978) [12], Schwartz & Vanden-Broeck (1979) [73], Forbes & Schwartz (1982) [35]
and King & Bloor (1987) [44] also solve various nonlinear singular integral equations using
different, but closely related, computational techniques. In general, the methods are based
upon finite difference approximations. The domain of the independent variable is subdivided
into subintervals. The derivatives are approximated by appropriate finite difference formu-
lae. Evaluation of the Cauchy principal-value integrals includes use of Taylor expansions of
the integrand about a point, singularity removal by some elementary transformations and
singularity subtraction leaving a singular integral plus a natural-logarithm term. Ordinary
integrals are calculated using Simpson’s rule. Finally, iterative methods are employed to solve

the resulting set of nonlinear algebraic equations.

An analysis of Newton iteration numerical methods is carried out by Junghanns (1994)
[42] for some classes of nonlinear singular integral equations. It might be useful to mention
at this stage that Varley & Walker (1989) [89] obtain analytical solutions (not numerical) to
certain classes of linear singular integro-differential equations over an infinite range. However,
the closed-form solution of nonlinear singular integro-differential equations over a finite range

still remains an open question.

2.2 A Model for Dryout Front Position

We now proceed to develop a mathematical model in order to allow predictions to be made
for the length to the dryout point. As mentioned in chapter 1 section (1.1.2), the annular

flow region is characterised by the transfer of mass at the interface between the liquid film
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and the gas core. Suggested mechanisms by which this phenomenon occurs are entrainment
of liquid drops from the liquid film to the gas core due to undercutting of crests on the
film free surface, deposition of liquid drops from the gas core and evaporation in the liquid
film. Typically, the liquid in the thin film is superheated (see for example Kirillov et al,
1985; Higuera, 1987; Prosperetti & Plesset, 1984) [46], [39], [67] and therefore evaporates
at the interface between the liquid film and the gas core. This superheating is possibly due
to suppression of a complex phenomenon of heterogeneous nucleation and ordinary boiling
by, for example, either heating or depressurising the liquid very rapidly (Higuera, 1987) [39].
The rate of evaporation depends on the external heat flux supplied to the boiling pipes. At
the operating conditions of interest the results of Collier (1972) [19] suggest that neither
entrainment nor deposition occurs rapidly. Therefore, we assume the dryout phenomenon
is mainly driven by evaporation of the liquid film. Deposition, as one might expect, seems
to be directly proportional to the concentration of liquid droplets in the gas core (Whalley,
1977, 1987; Fisher & Pearce, 1993) [91], [92], [29] while on the other hand, the process of
droplet entrainment appears to be a subtle matter. We adopt a simple approach in modelling
this problem, since in any mathematical modelling of a problem it is always good practice to
build a model from the simplest foundations (Alpabhai et al, 1997) [1]. It is rarely successful
to try and combine all realistic features into a model from the start. It should be noted,
however, that adjustments can be made in our models to account for these other factors. In
this study we concentrate exclusively on the problem when the dryout phenomenon is driven

by the evaporation process from the liquid film free surface.

2.3 Liquid Film Flow

We proceed by first considering the thin liquid layer adjacent to the heated pipe wall. The
flow in the gas core will be considered later. In order to suggest the qualitative details of
the flow in the liquid film, some typical parameter values are required. (It should be pointed
out that in this study, all of the thermal and physical values have been taken from Schmidt
(1969) [72], Irvine & Harnett (1976) [41] as at the pressures of interest, the literature is not
unanimous and different sources may give different values.) Typical operating conditions of
interest are given by parameter values in the nomenclature table in appendix A. We note, in
particular, that typical pipes have an internal radius of order a ~ 7 mm. Moreover, liquid
layer thicknesses and velocities of order hg ~ 0.1 - 1 mm and U ~ 1 cm/sec, respectively, are
considered typical. The pressure throughout the whole system is close to 200 bar so that the
saturation temperature of water is given by Ty = 365°C. On entry to the pipe, the water has
a temperature of 240°C and thus has a density of 491 kg/m?®. For a typical mass flux of 2000
kg/m? /sec the water velocity at the pipe entry is thus about 4.07 m/sec. At the top of the
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pipe where all the water has been converted to steam, the vapour has density 171 kg/m?® and

by mass conservation the gas velocity here is thus approximately 11.70 m/sec.

We assume that the film consists of an incompressible Newtonian fluid (since water has
a low molecular weight, approximately 18.015 (Lide & Frederiskse, 1996 - 1997) [50], and is
thus a Newtonian fluid (Skelland, 1967) {74]). The layer is evaporating so that at the vapour-
liquid interface there is mass loss, momentum transfer and energy consumption. The liquid
in the thin film is superheated and therefore non-boiling except at the free boundary where it
is assumed to be at the saturation temperature. We also assume that initially the free surface
is not disturbed, i.e. there is no rippling. Since hg/a <« 1, we analyse a two-dimensional
problem and neglect the effects of axisymmetry. Without loss of generality, we study the flow
in horizontally orientated pipes. We employ Cartesian coordinates to describe the system;
the schematic configuration is shown in figure (2.1). We assume that z = 0 corresponds
to an initial measurement of the film thickness y = h(z,t), while £ = L(t) corresponds
to the dimensional length to the dryout point and is to be determined. The coordinates

z and y are the lateral and vertical coordinates respectively, and ¢ denotes time. Under

y

-

flow of gas

y= l}(x,t)

flow of liquid

0 i X

dryout point, x =L(t)

Figure 2.1: A schematic representation of the liquid-gas interface relative to the liquid film.

these circumstances, the flow in the liquid film is governed by the standard two-dimensional
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Navier-Stokes equations

ug +vy, = 0,
P (ut + uug + 'Uuy) = —pz+u (uz'x + uyy) .
pvs+uvg +vvy) = —pg—py+ p(vaz + Vyy), (2.1)

where u and v are the z and y components of velocity q of the liquid respectively and p is
pressure in the liquid film. The constants p and u are the density and dynamic viscosity of the
liquid respectively, and g is the acceleration due to gravity in the system. Typical values for p
and p at the operating conditions of interest are approximately given by 6.44 x 1075 N sec/m?

and 491 kg/m3, respectively.

2.3.1 Interfacial Mass and Momentum Balances

The equations are now closed by prescribing appropriate conditions at the boundaries. At
the vapour-liquid interface y = h(z,t), there is a transfer of mass from the liquid layer into
the gas core by a phase change at a yet unknown rate. On denoting the mass per unit area
per unit time transferred from the liquid to the gas by M, and assuming that any mass
escaping at the free surface does so in the direction of the outward-pointing normal of the
free surface (since the mass in the tangential direction is not escaping, it is still part of the
film free surface), we have (Delhaye, 1974) [24]

M =p(q-q;)- A, (2.2)

where q; is the velocity of the interface whose components are obtained from the kinematic
condition of the free surface,
v; = hy + uihy, (2.3)

and 1 is the outward-pointing unit normal to the interface. In two dimensions, 11 is given by

A (241) ( ‘f)

Thus, in two dimensions M is given by

N+

sz{-—(u—ui)hz—i-v—-vi} (hg—*—l)_

Hence the application of (2.3) yields

=

M = p(—hgu — hy +v) (h§+1)” . (2.4)

We now assume that surface tension s is a constant sg. This is a valid approximation since

we assume, in the analysis, that all of the interface is at the saturation temperature T and
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therefore, if the surface tension is represented by an equation of state s = so — y(T — T5)"
(where r = 1,2 e.g. r = 1, Pearson (1958) [60], Davis (1987) {22] and Burelbach et al (1988)
[14]; 7 = 2, Oron & Rosenau (1994) [59]) for the surface tension gradient v, for example, then
s = sp the surface tension at the saturation temperature of the liquid. It should be mentioned
however, that surface tension may also depend on other scalar fields like the electrical field
and the concentration of foreign materials on the interface (Levich & Krylov, 1968) [48];
for simplicity we consider a clean interface here. With this assumption of constant surface
tension, it implies that all the surface tension gradient terms are equal to zero. Thus, the
shear stress at the interface effectively vanishes so that conservation of momentum tangential
to the interface (Levich & Krylov, 1968) [48] yields

M(@—-qg) - t— (XY -"y) a-t=0, (2.5)

where t is the tangential unit vector to the interface, qg = (ug,v4) denotes the velocity in
the gas core and it is not yet known, Y and Y, are appropriate stress tensors of the liquid
and the vapour respectively. The term M (g — qg) - 11 is a reactive pressure at the interface
known as vapour recoil (Burelbach et al, 1988; Bankoff, 1971) [14], [8] exerted by the vapour

leaving normal to the interface. Both X and Y, are assumed to take an explicit form given

by
p(uy +vg) 20y

2 + o
Y, = HgUgx Ig (ugy 9z) ' (2.7)
pg (tgy + vga) 2pgvgy

That is, for simplicity, we have assumed that the flow in the gas core is also incompressible.
The validity of the latter assumption will be justified later in section (2.4). We then define
the tangential traction 7(z,t) exerted on the free surface of the liquid film by the fast moving
in the core by

~ ~

Y, h-t=-7t-t.
Thus, in two dimensions, 7 is given by
-1
T= {ﬂg (ugy + vgz) (1 - hi) + 2pghs (vgy ~ ng)} (1 + hazc) ; (2.8)

where 114 is the dynamic viscosity of the vapour. However, for simplicity, we will assume that
T is a known parameter even though this is not a necessary requirement. Therefore, the shear

stress boundary condition at the interface gives

(g + ) (1 B2) + 2hs (v — )] (14 12) 7 =17 (2.9)
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It should be noted that in deriving equations (2.8) and (2.9), we have employed a no-tangential

slip condition at the interface y = h(z,t) in equation (2.5), i.e.
(@a—qg)-t=0. (2.10)
It should be noticed that the validity of (2.10) holds since neither of the two fluids has been

assumed to be inviscid at this stage.

The normal stress boundary condition at the interface balances the normal stress with the

product of surface tension times twice the mean Gaussian curvature of the interface (Atherton
& Homsy, 1976) [5] so that

vl

M(a—qg)-a—(p—pg)h-h— (X = Yy) f-ha=sohs (1+h2) 7, (2.11)

where py(z,t) is pressure in the gas core and is yet to be determined. In two dimensions

equation (2.11) leads to

{p (—uhz — by +v) [—hg (ug — u) + vy —v] — 2 [vy + ugh? — hy (uy + vx)]}

x (1+ hi)_1 + N — (p— py) = s0has (1+ hﬁ)'% , (2.12)
where N is given by
N =2y, {Uyy +ugghg ~ hy (ugy + ng)} (1 + hi)_l :
Finally, on the solid surface y = 0, the no-slip condition implies
u=v=0. (2.13)

(It might be important to recall at this stage that M is still not yet known. A constitutive

equation for M is derived in terms of h in section (2.6).)

2.3.2 Nondimensionalisation

In order to compare terms we need to nondimensionalise the variables. Depending on the
choice of a timescale, this will lead to various nondimensional models. In the liquid film we
set £ = LoZ, y = eLofj, h = eloh, u = Ut, v = €U, and p = (pU?/€eRe) p, where Ly
is the length to the dryout point in the steady state case and it is unknown, € = hgy/Lg,
Re = ULg/v is the Reynolds number and v = u/p is the dimensional kinematic viscosity of
the liquid. The scaling with the unknown length L merits some comment. It implies that
we have an idea about the order of magnitude for Ly and that we anticipate (as it is a case
in practice) the difference between the unsteady length L(¢) and Lo to be of small order of

magnitude.
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With these scalings, only two timescales, each determined by the boundary condition (driv-
ing the unsteadiness of the problem) at the onset of the annular flow (z = 0), are enough.
This point will be reiterated again later in this chapter in section (2.6). We first develop our
models in detail under the fast timescale ¢t = (Lo/U){, and at the end we state and discuss
the models under the long timescale ¢ = (Lg/eU)f. With the fast timescale t = (Lo/U)t,

equation (2.4) becomes

N

M = peU (~hgti — hg + ) (2R +1) 7, (2.14)

and therefore to lowest order in € we have

M = pUe (—hz@i — h; + 7). (2.15)
This effectively fixes the order of magnitude of the mass exchange required to produce dryout
in an order L(t) distance. On defining the nondimensional rate of mass flow 7h by M = pUern,
(2.15) becomes

m = (—hz@ — h; + 7). (2.16)

In general, equation (2.16) is not valid at the tip where the assumptions of the thin-layer
lubrication theory break. There, the velocities in the z and y directions are comparable.
Therefore, the problem would need some new scalings near this point. However, for simplicity,

we will assume that (2.16) is valid up to the dryout point.

In order to proceed with the analysis of equation (2.16) we need expressions for % and ¢ in
terms of h. These may be obtained by solving (2.1) subject to (2.9), (2.12) and (2.13). With

the above scalings, the nondimensional problem to solve is

Gz +0; = O,

]
€’ Re (U + Uiz + 0g) = —Pz + € gz + gy,
€2R6 ('l—){ + uvz + ‘l_)’l_)g) = —g - Zg + 62’175;3 + 'ljgg, (217)
subject to the boundary conditions
- - —o\ 1
(5 + €2z) (1 - €2R2) + 26%hs (5 — )| (1+€7R2) " =7, (2.18)

{pU? (~tths — by +9) [~z (etg — €2a) + (74—~ €%5)]

_-?TZ [617g + 53‘175’—12, — ¢hs (7_1'17 + 521—’2)] } (1 " 623;)—1
2

U
N —
+ e2Re

-3
B+ epoolUlBy = Sehaz (1+€2h2) 2 (2.19)

on § = h(%,%); and
(2.20)

S|
I
)
I

=
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on § = 0. The nondimensional quantities g, N and 7 are defined by § = (e2ReL0 JU?) g,
N = (2pgUc/Lo) N and 7 = (uU/eLy)7, respectively. The dimensional variable N is given
by

{Bg5 + €h2tigz — eh (tigy + 7z) } (1 + 6271%)—1 :

where, in the gas core (cf. section (2.4)), the variables z, y, py and q, are respectively scaled
with z = LoZ, y = Loj, qg = UxGQy ~ €71Uqq and py = €pooUZPy. The dimensional
parameters Uy, poo and po, are respectively the typical speed, density and dynamic viscosity
of gas far upstream of the dryout point. It should be emphasised though, that the scalings
for 7 are correct only when u(U/eugUs) ~ O(1), which can be confirmed, by considering
the typical parameter values given in the nomenclature table, that p(U/eugUs) ~ 9.58. The
surface tension sg has been scaled with sq = (3uU/eLy)3p following several studies of capillary
phenomena (see for example Williams & Davis, 1982) [94] where the surface tension is usually
scaled with the thickness of the liquid film. We will comment further about the scaling of the
surface tension in section (2.6). The nondimensional parameter S = (eLo/uU)so is an inverse

capillary number and is therefore a measure of the importance of surface tension effects.

2.3.3 Thin-Layer Lubrication Analysis

Examining the orders of magnitude of the dimensionless constants involved, we find that
(approximating Lg using L; ~ 6.1 m - the length of the tube that is heated) € ~ 1.64x10~% and
€2Re ~ 0.012, so that a thin layer analysis is appropriate, pU? ~ 0.049, uU/eLg ~ 6.54x 1074,
gUso/ Lo ~ 6.85 x 1075 which are small too, pU?/e?Re ~ 4.08 and epgUZ, ~ 4.04 which are
both O(1) and thus suggesting that to the leading order pressure is continuous across the
interface. The gravitational term § ~ 1.18 (which is of O(1)) and thus €?g ~ 3.17 x 1078 is
small. (It should be mentioned that even though we develop our models solely for the case of
horizontal pipes, it will be shown later however that even for vertical pipes the models, with

appropriate definition of variables, still hold.)

To leading order we therefore have to solve the familiar nondimensional lubrication equa-

tions
iz + vg = 0, (2.21)
py = 0, (2.23)
subject to the boundary conditions
iy = 7, on § = h(z,1), (2.24)
and
a=0v=0 ony=0. (2.25)
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In addition, p = p(Z,t) is continuous across the interface and hence will be determined by
the dynamics in the gas core.

On solving (2.21), (2.22) and (2.23) for @ and ¥ subject to conditions (2.24) and (2.25) we

obtain

T (2.26)

Substituting (2.26) into (2.16) we get a nondimensional equation for A in terms of 7

3

T

™= (lpfiﬁ - %%FL?) - hi, (2.27)

where pz is to be derived in section (2.4).

2.4 Gas Core Flow

In order to find an expression for §z in terms of A and therefore close equation (2.27), we
have to take into account the flow in the gas core. We assume that in the gas core, far away
from the interface, the gas is inviscid (this assumption is discussed further later on in this
section). In addition, velocities are much higher in the vapour core than in the liquid film
(Prosperetti & Plesset, 1984) [67]. Hence the changes in the vapour density originating at the
liquid-vapour interface are quickly convected away from the interface. As a result, we take
the vapour density as a constant in this study so that we have an incompressible flow of gas
in the core. Essentially, in the gas core, we assume an inviscid and irrotational incompressible
flow of gas in which the Bernoulli equation

1
e+ = (u2+02) + gy + 22 = C(1), (2.28)
2 Pg

holds, for some function C(t). We treat the flow in the liquid film adjacent to the pipe wall
as a perturbation to the main flow in the gas core (see Figure (2.2)). The function ¢(z,y,t) is
the velocity potential of the gas and therefore, the velocity components u, and v, respectively
satisfy ug = ¢ and vy = ¢,. All other variables are as defined earlier, but are written with
a subscript g to signify their reference to the gas. Since the flow in the gas core is inviscid

and irrotational, it satisfies the Laplace equation
¢zz + Gyy = 0. (2.29)

The assumption that the flow of gas in the core is inviscid warrants some discussion. If the
gas flow is inviscid it implies that the stress exerted is normal to the liquid-vapour interface,

i.e. there is no shear stress. In the previous section (2.3) however, we have assumed that
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flow of gas
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liquid film '
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dryout point, x = L(t)

Figure 2.2: A schematic representation of the liquid-gas interface relative to the gas core.
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the fast flowing gas in the core provides a tangential traction on the liquid film free surface;
therefore the gas cannot be totally inviscid. We can expect, due to viscous effects, that
adjacent to the liquid film free surface there is a thin gas-flow viscous boundary layer. The
traction (in general a function of z and t) that is supposed to be produced by this boundary
layer on the liquid film is alternatively provided by the traction parameter 7 as explained
earlier in section (2.3). Furthermore, on assuming that the liquid film is sufficiently thin and
streamlined in such a way that separation cannot occur then we can treat the rest of the gas
in the core as inviscid (Newman, 1977; King & Tuck, 1993) [56], [45]. It should be pointed
out that in reality the flow in the gas is turbulent, see for example Kirillov et al (1985) [46].
However, as a first approximation which captures the modelling and analytical study of this

problem we adopt, for simplicity, a laminar flow.

2.4.1 Nondimensionalisation

We now proceed by nondimensionalising the variables in the gas core. It is appropriate to
set py = €pocU%Pgy T = LoZ, y = Lo¥, ug = Usollg, Vg = UooTg, h = Loh, t = (Lo/U)t ~
(Lo/eUs)t and ¢ = LoUsc¢, where, as mentioned earlier, the dimensional parameters Uy,
and po, are respectively typical speed and density of the gas upstream of dryout, far away

from the perturbation. This gives

Pgz = — (Q-Sif +e ! [Ttz + 7_’97_’95]) J (2.30)

from Bernoulli’s equation (2.28), and

-1
B
8
+
-1
<
@

Il
o

(2.31)

from the Laplace equation (2.29).

We now have to specify appropriate boundary conditions. Far away from the perturbation,

the disturbance must vanish hence we must have
¢z = 1, g —= 0, as Z° + % — oo. (2.32)
On y = eh(z,t), mass conservation dictates that
M= —pg (qg — qi) - R (2.33)
In two dimensions, to leading order, equation (2.33) leads to
M = —pgUy (—ehaily — €hy+ ) (2.34)

We know, from section (2.3), that M = pUern. We use this fact and a consistent approxima-

tion Uy ~ U/e (as seen earlier in section (2.3)) to write (2.34) as

—&2h; — ehads + by + f—ém =0, (2.35)
9
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where we recall that @y = ¢z, 7, = @5 and (see the nomenclature table) p/py ~ 2.87 which is
O(1).

2.4.2 Thin Aerofoil Theory Approximation

We now seek an asymptotic expansion of the solution to (2.31) as the thickness parameter
€ — 0. In the limit, the liquid film thickness reduces to a line y = 0 which causes no
disturbance of the flow in the gas core. Thus, the basic solution is the uniform parallel flow

with speed U,. We therefore expect ¢ to be of the form

d_)(j’ Y, t—a 6) =+ eq;l(jag’t_) + 62&2(5;7 g,f) +oee (236)

We adopt standard thin aerofoil theory assumptions (see for example Van Dyke, 1975; New-
man, 1977) [88], [56]. We calculate (2.36) at the free boundary § = €h(Z,f). On assuming
that all the ¢;(Z,7,f) (i = 1,2,---) are analytic at § = 0, we then expand the right hand side
of (2.36) in Taylor series to obtain

d_)(j7 677‘7 {a 6) =Zz+ 6(31(',57 07t—) + 62 [}_Zq_slﬂ(jaoaf) + $Q(E7 0, ﬂ] +
It then follows that

1+6($1i(i‘707t_)+6 [71 4—55:1:0 'E)+FL(]_51" z, 0%)‘{'&25;5—13 Oﬂ]"{-

6&137(2_3,0’{)"*'6 [ ¢ Oi)+h¢1 m0{)+¢2y y,Of)]

-1 B
< 13 ]]
| I

Hence equation (2.35) gives

—€*hg — €hz [1 + €¢12(Z, §,0) + -] + €b15(Z, 7, %) + € [hyr13(Z, 7, D)+
hérgy(Z,,7) + 62(2,5,D)] + -+ + ezpp m =0, (2.37)
g9

at § = 0. The velocity potential ¢(Z, 7, %;€) in (2.31) thus satisfies, to order e,
P12z + Prgg =
subject to the boundary conditions (from (2.32) and (2.37) respectively)

2177 o500

=0.

8i

$12 =0, ¢1

$1g

as

‘dl

I—'L on

)

By representing the interface § = €eh(Z,f) as a distribution of sinks and sources along the

z-axis, an appropriate velocity potential for the gas flow is given by

- 1

1+(?)
i=o [ FEDI(G - e+, (2.39)
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where f(£,1) is unknown and has to be determined. It has been assumed, for simplicity, that
L(t) can be written as L(¢) = Lo + G(t) for some function G(t). Therefore I(f) is defined
by I(f) = G(t)/Lo and it is also not known at this stage. It should be mentioned that L(%)
may be written in other forms; however the current form is convenient for the linear stability

analysis of this problem that takes place later in this thesis.

The mass conservation at y = eh(z,t), equation (2.33), warrants some comment. In the
light of the above systematic analysis, (2.33) suggests that, since M is O(e) and the flow
velocity is much higher in the gas core than in the liquid film then as far as the gas core flow
is concerned, the interface y = eh(z,t) is a streamline. Thus the boundary condition that
must be imposed is

—€2 -—ehz¢z+¢y—0 atg=eﬁ.

On differentiating $; in (2.38) with respect to § we obtain

_ 1+i(%)
=1 5D

gt (2.39)

(4]
~ )

Taking the limit of 951_,7 as § — 0 and applying the boundary condition at § = 0 we get

lim g = 1&0 - e (2.40)
y—0 T s

where (2.40) is obtained from (2.39) by observing that as § — 0 the integrand tends to

zero except for the point £ = Z. At this point, the integrand tends to infinity. Thus,
g{(z -6+ 52}_1 behaves like a delta Dirac function and hence we obtain (2.40). It then

follows that 4, and v, respectively satisfy

1+1(%) h§ a

fg=¢s=1+¢ hm bz =1+ — ][ d§, (2.41)

€L g
Vg = T %I_I}% ¢1y - Ehz(]), {)a (242)
where f denotes a Cauchy Principal Value integral. Therefore, from equations (2.30), (2.41)

and (2.42), on assuming that hz(Z,f) = 0 for Z < 0, an expression for Dgz is given by
p‘_:_i ][1+l(t_) h{ _) _l ][1+lﬂh§ _) . _l_fl—Hﬂh{ ~)
9z s 0 T — ™ 0 r — 2 7r2 0 r —

zt
HHD he(e, ) 1: .
(]{) — df)i—f- thhm}.

Therefore, to lowest order, the equation for the dimensional pressure gradient in the gas core

pooUZe [ 1 [7® he(¢,) a
— [ 24
pgz [0 { T ( 0 § I . L] ( 3)

18

where r(f) =1 + (7).
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The assumption that hz(Z, t) = 0 for all # < 0 warrants some discussion. This assumption
implies that at all times the film layer is flat for all Z < 0. This is obviously untrue as it
has already been discussed earlier that prior to the annular region, there are some several
complicated flow regimes. We however argue that, since the annular flow regime occupies
most of the boiler tube, there should be a point along the pipe where the annular flow regime
is of constant thickness (even if it was not flat, but the shape was known, then this could
easily be included). Therefore, for practical simplifications, we measure the length to the

dryout from this point. This assumption will be revisited again later in the analysis.

2.5 Shear Stress Constitutive Law

Concerning a constitutive equation for the tangential stress 7, we will assume here (in order
to keep the amount of algebra manageable when computing the solutions to this problem
later in this study) that 7 (and hence 7) is a known prescribed constant. A constitutive
equation that has been adopted in the literature is a simple law 7 = f,p00U2 /2 (Thwaites,
1960; Sadatomi et al, 1993; King & Tuck, 1993) [85], [71], [45]. With the current scalings then
the nondimensional shear stress would be 7 = fgweLopc,oUgo /2pU. The parameter fg,, > 0,
in the thin layer approximation, is the coefficient of friction of steam on the wet pipe wall.
Since T is expected to be of order 1, it then implies that f,,, should be small. In general,
fgw is not known. It may however be determined empirically and experimentally for different
materials in various conditions of interest (see for example Whalley, 1987) [92]. In a general
case under the current conditions, the constitutive equation for the dimensional 7 should be

given by equation (2.8)

T = “QLIi‘X’ [(ﬂgﬂ + Tgz) (1 - €2E§) + 2ehz (g5 — ﬁgi)] (1 + 62}32)4 )

Expressions for 4, and 7, at the unknown liquid free surface are obtained from the thin

aerofoil theory, equations (2.41) and (2.42) respectively, so that to leading order

It can be confirmed from the parameter values given in the nomenclature that pg/p =~
0.54 which is of O(1). However, as stated earlier, we will assume here for convenience and

simplicity that 7 is a known constant.
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2.6 Mass Transfer Constitutive Law

We proceed to complete the development of the equation (2.27) for a general mass exchange
rate . In general, n depends on the details of the flow conditions and we will calculate

these using simple thermodynamics models.

We assume, for reasons explained earlier, that the transfer of mass from the liquid film to
the gas core is mainly affected by the evaporation process, i.e. deposition and entrainment
are ignored. We further recall that the liquid in the thin film is superheated, hence the mass
transfer is due to convective boiling (Whalley, 1987) [92] in which heat is transferred by
conduction and convection through the film and evaporation takes place at the liquid-vapour

interface. Thus, the interface is regarded as being at the saturation temperature.

On ignoring the viscous dissipation term, the flow of heat in the liquid film is governed by
the equation
pep (Ty + uTy + vTy) = k (Tzz + Tyy) » (2.44)

where the parameters ¢, and k are respectively the specific heat and thermal conductivity of
the liquid (typical values are given in the nomenclature table) and T denotes temperature. In
reality, ¢, and k will be functions of T but are assumed to be constants here for convenience

and simplicity.

2.6.1 Robin Condition

We now have to prescribe appropriate boundary conditions for (2.44). The mass transfer is
by phase change at the liquid-vapour interface y = h(z,t), hence, as mentioned earlier, we
regard the interface to be at the saturation temperature 7' = T;. At the pipe wall y = 0, we

prescribe a general Robin boundary condition
KTy = —((@,) (T(2, )],z — Tm) , (2.45)

where T}, is the typical temperature of the liquid metal, {(z,t) is the heat transfer coefficient
which we regard as “known” and, for thermodynamic reasons (see for example, Babits, 1968;

Sprackling, 1991) [7], [83], is required to be a positive quantity.

2.6.1.1 Nondimensionalisation

In order to compare terms in (2.44), we proceed by scaling variables using the thin-layer
scalings ¢ = LoZ, y = eLof, u = U, v = eUd, t = (Lo/U)t and T = Ts + T (T, — T}), to
yield X )
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where T, is a typical wall temperature. On using the typical parameter values given in the

nomenclature table, it may be confirmed that

k
TorUoe 32.76,
k
~ 8.81 x1077.
LopUCp

Thus to the lowest order, equation (2.46) reduces to

In nondimensional variables (2.45) is
Tg = —V(i’,ﬂ, (248)
where V(Z, 1) is defined by
— EL() | Ts
V(z,1) = =2¢(z, t) =22,

On solving (2.47) subject to (2.45) and T =Ts at y = h(x, t) we obtain

T = V(2D (h(z,5) -

2.6.2 Stefan Condition

The change of phase as the liquid boils at the interface must now be considered. On assuming
that the temperature in the gas core remains constant and neglecting the surface entropy

term, the standard Stefan condition (see for example Rubinstein, 1971) [69] asserts that

KT o = ~p 5y 0 = hlay) { A+ 3 ({lag = )-8 = {l@—a) - a}) |, (249
where the square brackets indicate the jump in a quantity from the liquid to the gas side, A
is the latent heat of vapourisation of the liquid (typical value is given in the nomenclature
table), D/Dt = 0; + q - V is the usual material derivative and, we recall, q; is the velocity of
the interface. Physically, this condition says that the thermal energy, which is conducted to
the interface from the liquid side, is partly conducted away into the vapour and in part used

to cause the phase change.

2.6.2.1 Nondimensionalisation

On invoking the thin-layer scalings ¢ = LoZ, y = eLog, h = eLgh, u = U%, v = U, t =
(Lo/U)t and T = T, + T (T, — Ts) to nondimensionalise variables, equation (2.49) becomes

- - 3pLoU

5 [Ugo (—tighs + v, — hy)? — U? (~ahg + 5 — Et—)2] } ,

(2.50)
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where n = (UpLoXe?/k (T, — Ts)) is a nondimensional parameter which, as the analysis will
show, characterises the transfer of mass from the liquid film into the gas core. From the
typical values given in the nomenclature table, we observe that
SpLoUUZ, - epLoU3
2 2
e3pLoU3
2

~2.46 x 1077,

~ 6.59 x 10715,
Hence, to the leading order, T} is given by

T; = —n (9 — @hg — hy) . (2.51)

o

We recall, from equation (2.16), that 7 = ¥ — @hz — h;, therefore we conclude from (2.51)
that

o= 28 (2.52)

Finally equations (2.48) and (2.52) give
V(z,
n

Naw

(2.53)

Equation (2.53) is a mass transfer constitutive law. It relates the interfacial mass flux 7 to
the heat transfer coeflicient at the boundary pipe wall. It thus confirms that the parameter
7 indeed characterises the mass transfer from the liquid. For n > 1, i.e. a liquid with large
latent heat, the mass transfer is small and dryout may not occur. For liquids with small
latent heat, the mass transfer is so great that a liquid film may not be established and dryout
occurs immediately. For the operating conditions of interest, the typical parameter values
given in the nomenclature table imply

1.18

nN————Tw—Ts’

indicating that with a few degrees of superheat in the liquid, dryout will occur at an O(1)

distance from the inset of the annular flow.

2.7 The Full Model

Since both the mass transfer and the shear stress constitutive laws are now known, then

the final full nondimensional problem that must be solved, from equations (2.27), (2.43) and

(2.53), is
VR 7® Re(e, D) G S
n {37 (J{) T—?df)i‘T} e (259

T

On the long timescale t > (Lg/eU)t, things change at a rate which is so slow that the problem

is equivalent to solving a steady problem at different times, a quasi-steady problem (this can
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easily be verified by following similar analysis as above). In this case, equation (2.54) reduces

V(R ([OR(eD ) R
— {37r <][0 5 df)j— ?T}i. (2.55)

It may also easily be verified that timescales greater than ¢ = (Lo/U)t are not allowable in

the current model. In such cases M > O(1), relative to the liquid film. Physically, this

to

means that the layer does not form at all.

For vertical pipes, it can be shown (by going through similar analysis as above) that under
the current conditions of interest and appropriate redefining of variables, we obtain models
very similar to (2.54) and (2.55). That is to say, in the fast timescale t = (Lo /U)? for example,

the final equation that must be solved is

V r(®) K2 -
%={37(fth§_f )_—%(Hg)}_—htz (2.56)

where in this case x refers to a vertical Cartesian coordinate and y denotes the lateral ones.
It is evident from (2.56) that in this case the gravitational term g is important. It should
be mentioned however, that solving (2.56) cannot be mathematically different from solving
(2.54) as the constant § can be absorbed into the traction parameter 7. Henceforth we assume
that 7 includes the effects of gravity.

As a final comment on (2.54), we consider what would happen if surface tension was to be
included. In section (2.3), in order to keep the surface tension in the problem, we could scale
the surface tension so with so = (3ulU/e?Ly) 3¢ instead of so = (3uU/eLg) 50. Thus, in the
fast timescale t = (Lo/U)t, to leading order the normal stress boundary condition (2.19) at

the interface § = h(Z, ) would become
—p+ Cpy = Shzz

where C and S are respectively given by C = €3RepoU2,/pU? and S = Se?Re/pU?. From
the typical parameter values given in the nomenclature table in the appendix, it can be
confirmed that € ~ 1.01 which is of O(1) and § ~ 4.01 x 10735 (which suggests that
the inverse capillary number S has to be very large in order that surface tension effects are
important in this problem). The thin aerofoil analysis in section (2.4) together with equations

(2.53) and (2.27) lead to a nondimensional equation for h

v _[C Ohe(ed \ _ B\ _; _ S (3
7{‘{5;’1 (J[o -z ) 7y R g (BRe), 28D

instead of equation (2.54). In this thesis, we will not generally use equation (2.57) though.
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2.7.1 Heat Transfer Coeflicient Constitutive Laws

For practical purposes, a constitutive equation for the heat transfer coefficient V(z,f) in
equation (2.53) must be proposed in order to make any progress with calculations on the full
model (2.54) (or with (2.55), (2.56) or (2.57)). This may be tackled in a number of ways.
Here we will consider a case where the temperature at the pipe wall is assumed to be a known
function of z and ¢, i.e. T|,_o = Tw(z,t). Other ways would include the case when V(z,1)
is assumed to be constant (we will comment again about this case later in this section).

We proceed here by solving equation (2.47) for T. As mentioned earlier, we assume the

temperature at the wall y = 0 is a known function of z and ¢, T|,_, = Tw(z,t). Solution of
(2.47) subject to T'=T, on y = h(z,t) and T = Tw(z,t) at y = 0 yields

- Tw(z,t) —Ts) ( gj)
T=(—————](1-=]). 2.58
( Tw—Ts h ( )
In this case, (2.52) gives
. Tw(z,t) — Ts) 1
_ s} L 2.59
= (A o (259)

where (2.59) is the constitutive law for the mass transfer. Thus, the constitutive equation for

the heat transfer coefficient V' (Z,#) in this case, from (2.53), is given by

V(z,0) = (%) % (2.60)

2.7.2 Constant Wall Temperature Problem

We suppose that in practice boilers, evaporators etc., are arranged in such a way that the
wall temperature is as close to constant as possible (in circumstances where this might not
be the case, another problem in the liquid metal should be solved). We therefore assume for
simplicity that Tw (z,t) = T, so that (2.59) implies

1

== 2.61
- (261)

which is singular at the dryout point & = 0. The final full nondimensional problem that must
be solved, from equation (2.54), with V(z,f) given by V(%,%) = 1/h from equation (2.61), is

then . o y
1[R[ 7@ he(6,8 h .
5= {37 (][ {f(_ﬂ? ) —?f}_—ht—. (2.62)

Similarly, equations (2.55), (2.56) and (2.57) will respectively become

B3 ® 12
{%? (][ hg— .'17_) ) B %f}_v (2.63)
R (@ R2 _
;73,-; = {%(}l hg &0, ) %(Hg)}_—hf, (2.64)
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1 _ [ Cs(ORe6d) 3 h? - S (731
nh {37rh (]{) £E-% i—ET i—ht_37r (h him)f' (2.65)

Evidently, the nonlinear singular nature of the above equations renders it extremely unlikely
that it will be possible to find closed-form solutions. In the steady state analysis in chapter 3,
we solve (2.62) using both asymptotic and numerical techniques. We will begin by considering
some special limiting cases which will motivate a numerical method for the full problem. It
will also be argued later, in the same chapter, that solving (2.65) numerically should not be

fundamentally different from solving (2.62).

2.7.3 A Varying Wall Temperature Problem

As mentioned in section (2.7.2), in the case when the wall temperature is not constant then a
problem in the liquid metal should be solved for temperature profiles. However, this is a non-
trivial task. It requires careful modelling of the flow problem and the knowledge of pressure
(which is in general a function of z and t) in the liquid metal. Further, in some cases (see
for example, Ockendon & Ockendon, 1977; Pearson, 177) [57], [61] it may be appropriate to
propose a constitutive equation for the liquid metal viscosity (which is in general a function
of temperature). It is extremely unlikely that the resulting model could be solved in closed-
form. Hence, it is unhelpful for the current purpose. An outline for this problem, in the
current conditions of interest, will be briefly presented in section (2.8). Here, we observe that

if the temperature at the pipe wall is given by
Tw(z,t) = Ts + (T — Ts)h?,

(in which case V(z, ) is given by V(%,%) = h(Z,t)) then from (2.54) we obtain

h_ [R (7O k(D) f) Tra|l 7
5_{§ (f - )i—gh }x—ht. (2.66)

This problem may not have any obvious physical relevance whatsoever (though it will be
seen that the results for this case are realistic). However equation (2.66) is relatively simpler
to solve (as it will be seen later in this study) than both equations (2.62) and (2.67). Hence
solving (2.66) encourages different numerical techniques (which are tackled in chapter 4) for
these types of problems. Further, the steady state solutions to (2.66) help us to explain some
of unexpected behaviour in the numerical results (in particular, the pressure profile curves)
of equations (2.62) and (2.67).

2.7.4 Constant Wall Heat Flux Problem

In industrial settings, it is customary to assume a constant heat flux at the pipe wall supplied

by the liquid metal. In most cases the value of the flux quoted is simply a figure derived from
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the known properties of the total heat input provided by the reactor. It is questionable how
such a pointwise heat flux may be either measured or maintained, or whether it is reasonable
to assume that it does not change along the tube. However, if such is the case, then the

equation that must be solved, from (2.66) or (2.54), is

1 O he(¢,D) Tr2| _ g
H {37r (][ E-z% )i_ih }x_ht’ (2.67)

where the nondimensional heat transfer coefficient V(z,) is simply a constant and has been

absorbed into the heat mass transfer parameter 7 in equation (2.67).

2.7.5 Initial and Boundary Conditions of the Full Model

The modelling formulation must be completed by the specification of appropriate initial and
boundary conditions. The boundary conditions for this problem are far from trivial. To
begin with, it should be observed that (2.62) [or (2.66) or (2.67)] requires the prescription of
at least four boundary conditions (the reasons for this will become clearer as we discuss these
conditions further in the particular case in chapter 3). At the dryout point, where the liquid
film vanishes at all times, the obvious boundary condition to impose is that A(r(f)) = 0. The
function r(£) is not known a priori. We require that h(z,f) ~ (r(f) — z)P as £ — r(f), for the
appropriate real value p to be determined as part of solution. We assume that at the onset of
the annular flow Z = 0, h(0, %) is known at all times . It is convenient to assume that r(0,1)
is a constant equal to hg (say) for all . Another boundary condition may be obtained by
assuming that in practice the pressure at £ = 0 can be measured and therefore it is known.
Equally, we may require that hg satisfy the pressure gradient condition (which is obtained
by insisting that the mass flux should always vanish at the dryout point) at Z = 0. The final
boundary condition comes from the fact that we do not allow infinite values of pressure at
Z = 0 so that hz(0,7) = 0 (again this condition will become clearer as it is discussed further
in chapter 3). As far as the initial conditions are concerned, it is sensible to assume that

h(z,0) = h(z), for some steady state solution h(z), and r(f) = 1 at £ = 0.

2.8 Problem in the Liquid Metal

In this section we set up a plausible problem in the liquid metal. This problem should be
important for obtaining the boundary temperature to be prescribed at the wall y = 0 when
solving the problem in the liquid layer. We should mention, however, that it is not our main
aim to solve this problem here (since it is highly unlikely that the problem may be solved in
closed-form, hence rendering it unhelpful for the purposes of solving any of the problems in

the liquid layer). It should be emphasised that we will not return to this problem, but we
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just set it up to show that it could be done. Figure (2.3) shows a schematic representation of

the whole problem. For convenience, the dryout point is at z = 0 measured from the entry to

y ! Flow of gas
_ Liquid film
y= .
X= u=v=0 Tw(x,t) x=L(t)
| p=P c ®
Liquid metal flow | T=TE (1)
y:-H ]
u=v=0 T (x,-H)=0
y

Figure 2.3: A schematic representation of the problem in the liquid metal.

the annular regime at £ = L(t). We assume, for simplicity, that the flow in the liquid metal
has the characteristic velocity Up,, constant density p,,, constant specific heat cpp,, constant
thermal conductivity k., typical temperature T,, and dynamic viscosity u(z,T) to account

for some essential coupling between the energy and momentum equations.

Considering the pipes (in which the liquid metal flows) whose typical length is approx-
imately equal to the typical length of the steam generating pipes (6.1 m) and possess a
characteristic diameter H ~ 0.012 m, we consider here a two-dimensional problem. For
simplicity and to avoid unnecessary complications, we consider a quasi-steady state and in-
compressible flow in the liquid metal. It is convenient to write L(t) as L(t) = Lo + 6G(t), for
some function G(t), Ly is the length to the dryout point in the steady state case and §(> 0)
is small and is defined by 6 = H/Ly. On approximating Lo by the characteristic length of
the pipe then § ~ 1.97 x 10~3.

We now nondimensionalise variables by setting (thin-layer scalings but in a different layer)
T = LoZ, y = Lo = Hf, u = Unti, v = Up%, p = (pnU2/6°Ren)p, T = Ty +
T(Ty ~Tw), t = (Lo/dUy) T and p = pmp(Z,T) where Rep = UpLopm/tim and i, are
respectively the Reynolds number and the typical dynamic viscosity of the flow in the liquid
metal. All the other variables retain their usual meanings but they should be understood

to refer to the flow in the liquid metal in this section. Under these circumstances, the two-
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dimensional Navier-Stokes equations for the flow in the liquid metal become

iz +75 = O,
8% Rem (8uz + Gtz + 0y) = —pz + 6° (B(F, T)ia), + (B(Z, T)ay),,,
8 Rep, (807 + g + 005) = —§ — % +62 (a3, T)vz), + (8(2, T)7y)

o
_ 1 = = (g 2

where the nondimensional parameters g, A and B are respectively given by
52R€mLo
‘"—(Tg,
km
- LOmemcpm’

8T + uT; + 0Ty

Qi

and
_ BrnUn,
- PmCpm (Tw - Tm) LO,
where g is, as usual, the acceleration due to gravity and T, is the typical temperature of the

heated pipe wall at y = 0. In the energy equation, only the dominant term (ag/ 8)? from the

viscous dissipation term has been included.

In order to suggest the qualitative details of the flow in the liquid metal, typical orders of
magnitude for 62 Re,,,, A and B are required. However, getting typical parameter values is not
easy for this problem. In this section, all the typical physical parameter values for the liquid
metal have been taken from Bolz & Tuve (1973) [13] (different sources in the literature may
give different values). At typical operating temperatures of 673 K, the physical parameter
values for liquid sodium are typically given by cpm ~ 1280.30 J/kg/K, pm ~ 858.56 kg/m3,
km ~ 71.09 W/m/K, pi,, ~ 2.85%x 10~* Ns/m? and T}, ~ 673 K while T,, ~ 640 K. Therefore,
for a typical velocity of U, ~ 0.1 m/s in the liquid metal, A ~ 1.06 x10™%, B ~ —7.86x 10713
and thus B/§? ~ 2.01 x 107 (which is small) while A/6%> = A ~ 27.31 (and it is of O(1)).
The parameters 62 Re,, and § are typically (and respectively) given by 62Re,, ~ 7.13 (which
is of O(1)) and § ~ 713g, where the magnitude of g is g ~ 9.8 (hence 623 ~ 2.77 x 10~3g and

it is small).

Therefore, to leading order, the Navier-Stokes equations reduce to

iz +75 = O, (2.68)
Uty + 0y = —ﬁj-f-(ﬁ(ft,T)ﬁg)g, (2.69)
oy = 0, (2.70)
aly + 9Ty = ATy (2.71)

The sensible boundary conditions to impose on the equations (2.68) - (2.71) are & = v = 0,

(the no-slip condition) at the pipe boundary walls § = 0 and § = —1 and Tg =0aty=-1
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(i.e. the outer casing wall is assumed to be totally insulated). Finally, we assume that both
the dimensional pressure and temperature, Pg(t) and Tg(t) respectively, can be measured
and therefore are known at the entry to the annular regime z = L(¢). The dimensional
temperature T' = Ty (z,t) at the pipe wall y = 0 is unknown and it has to be found. Since
fi(Z,T) in equation (2.69) does not appear in the energy equation (2.71), then it is reasonable

and convenient to treat it as a constant and ignore the dependence on Z.

The system of equations (2.68) - (2.71) is very challenging to solve numerically (due to
nonlinearity and coupling of some dependent variables). However, we observe that when the

flow in the liquid metal is a fully developed Poiseuille flow at all times, we can then write

u(z,9,t) = F{O)y(g + 1),

for some function F(f). Then we obtain that #(Z, 7,) = 0 so that the no-slip condition holds
at the boundary walls. As a result, equation (2.70) tells us that the pressure p is a function

of  and t only. From equation (2.69), in nondimensional form, we have

so that on integrating with respect to z we obtain

_ 2uUnp
- 8213

D F(t)z + a constant.

We apply the boundary contain p = Pg(t) at z = L(t) to yield

_ 2uUn

Thus, in nondimensional variables, p is given by
p=2aF(1)(Z ~ 1) + P(d),

to leading order. The nondimensional function Pg(f) is given by

8% Re,,

Fe®) =02

PE(t)
The dimensional temperature T has to be obtained by solving (2.71)
F(t)y (% 4 1) T, = ALoHT,,, (2.72)

subject to the boundary conditions T, = 0 at y = —H, T = Tg(t) at £ = L(t) and T =
Tw(z,t) at y = 0 is to be calculated. For any given nonzero F(t), (2.72) can only be solved
numerically and (for reasons given earlier in this section) we do not pursue this problem any

further in this study.
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Chapter 3

Steady States for the Constant
Wall Temperature Problem

Prior to any attempts to solve the unsteady problem subject to appropriate initial and bound-
ary conditions, it is instructive to analyse and try to understand steady state situations. Ow-
ing to the nonlinear singular nature of the governing equation, it is extremely unlikely that
the problem can ever be solved in closed-form except for particular special cases. Therefore,
it is inevitable that we have to resort to asymptotic and numerical techniques in order to
obtain any information from the model. We start by analysing some paradigm problems,
mainly to motivate an appropriate numerical method for the full nonlinear problem (steady
state version of (2.62)) which will be tackled in section (3.2).

3.1 Limiting Cases and Paradigm Problems

We define M by M= Qz, where Q) is the dimensional rate of mass transfer per unit length
at the free surface. In this case the dimensional version of equation (2.27) may be integrated,
where we recall that in the liquid film M = pUem, z = LyZ, h = eLgh, T = (uU/eLy) 7,
p= (pU?/e’Re) p and Re = ULgp/p. On assuming that p, is finite at the dryout point h = 0
(or if it is not, then at least it does not blow up faster than h3 tends to zero at this point),

we impose, for simplicity, the boundary condition @ = 0 there. Under these circumstances

we have 3 9 73 52
h h h h
Q= _Z_ ('3_px _ 77) = pLoUe (?ﬁi — ?7—') y (31)
from which we get
3wl (Q 7
— = 4 3.2
Pe = 212 <h3 * 2h> ’ 42
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where Q has been appropriately scaled, from (3.1), by Q = pU LoeQ and Q is nondimensional.
Comparing equation (3.2) and a steady case of (2.43), i.e. closing the equation by matching
the dimensional pressure gradients p; and py, across the interface y = €h, leads to

Q 7 _ 0T hef)

—_ 4 = = — —=2rde) 3.3
2hn 7w \Jo £€-%Z ¢ 2_: (33)
where 8 = pooUZe3Lo/3Uu is a nondimensional parameter and measures the relative orders

of magnitude of the pressures in the two regions of flow. Using the typical parameter values

given in the nomenclature table, it may be confirmed that § ~ 0.32 and hence is of order 1.

3.1.1 Boundary Conditions

We now need to prescribe appropriate boundary conditions for this problem. We note that
due to the nonlinearity and singular nature of these equations, no theory exists to determine
sufficient conditions for existence and uniqueness of solutions. However, since equation (3.3)
has two derivatives and one Hilbert transform we might expect to specify three conditions
to uniquely determine the solution. To emphasise this point we look at an example of a very
simple singular integral equation of the finite type

1x E(

he(©) ge — 1, (3.4)
0 §—17

Equation (3.4) possesses one Hilbert transform and a derivative. However, a general solution
of (3.4) is

h(Z) = Cy + Cysin™}(v/Z) — 1/Z(1 — 7). (3.5)
Equation (3.5) has two constants, C; from the inversion of (3.4) and C; from the integration
of hz(Z) with respect to Z. Thus, we would have to specify two boundary conditions in order
to obtain a unique solution A(z) from (3.5). Therefore, it is sensible to anticipate prescription

of three boundary conditions in order to determine a unique solution to (3.3) if it exists.

The annular flow regime occupies most of the boiler tube, therefore we assume that at
some point along the tube, the annular flow regime is of known constant thickness and the
gas core pressure is known at this point. Moreover, from the steady state of the Bernoulli

equation (2.28), we observe that the dimensional pressure in the gas core, to lowest order, is

pooULe [ he(€)
0 £—T

Pg = Poo + dg. (3.6)

The dimensional parameter po is the typical pressure in the gas core far upstream of dryout.

At Z = 0 equation (3.6) yields

]{)1 @df = g (I%U{;TOO) . (3.7)
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Thus, (3.7) indeed suggests that hz(0) = 0 for the integral to exist. In other words, hz(0) =0
is a boundary condition which is consistent with the thin aerofoil theory which has been used
to model the pressure in the gas core in order to have finite pressure at the onset of annular
flow, £ = 0. We also know that the dryout point is at Z = 1. Therefore we have to solve (3.3)

subject to

hi‘(o) = 07 }_7'(1) = 07 Pg = Pgo, (38)
where pgo is dimensional gas core pressure at z = 0. If the dimensional thickness h(0) is
known from measurements, we can then calculate the dimensional length to dryout from

_ MO

0= F) (3.9)

In other words, we need to solve the dimensional equation with a known h(0), h;(0) = 0,

Py = pgo and h(Lg) = 0. This determines Lg. It is like an eigenvalue problem.

It would be ideal if the dryout length could be calculated from the conditions prescribed at
the entry to the boiler tube. However, it is evident that to determine the length of the annular
flow and hence the dryout point, requires some initial data concerning the annular regime
itself. Since the flow regimes prior to annular are very complicated, it might be very difficult
to take measurements there. Therefore the conditions described in (3.8), approximate as they

are, seem to be practically reasonable.

3.1.2 Analysis of the Integral Equation

As mentioned earlier equation (3.3) is nonlinear, therefore any attempts to determine closed-
form solutions for general mass exchange rates are likely to prove fruitless. These difficulties
imply that we are mostly restricted to using asymptotic and numerical methods. However,
the well-posedness of the problem may be checked for a few special cases. We analytically

solve one such simple case below.

A relatively easy special case of (3.3) is obtained when Q = k1h® and 7 = 2kyh, for some

constants ky and ks, ~

% 01 g_ff%dg —Ki-C, (3.10)
where K0 = k; + ko and C] is an arbitrary constant of integration. Physically, this implies
that we assume the rate of liquid mass escaping at free surface per unit area is directly
proportional to the product of the square of the film free surface, h%, and its slope, h.
While the traction on the free surface (provided by the flow of vapour in the gas core) is
directly proportional to the thickness of the liquid layer, A. It should be mentioned that
these assumptions may not be realistic at all; however, using them we can obtain a closed-

form solution. Equation (3.10) may then be inverted by standard methods (for example see
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Muskhelishvili, 1953) [54] to yield

- 1-z2 Cy
(@) ,/ ][,/1_§ d§+\/m, (3.11)

where C; is an arbitrary constant arising from inversion of the singular integral in (3.10).
Simplification of (3.11) leads to

ha () = \/~ (01 By 2:1:)) _x(c{_:;_) (3.12)

and upon imposing the boundary condition (3.8), hz(Z) = 0 at = 0, gives
K
C1+Cy = 5 (3.13)
From the pressure condition (3.7) and equation (3.12), at Z = 0, we get

][01 hg(f dt = ][11{\/—‘5(01 (1.{.25))4——{(—611——2—6—)-}(15,

which simplifies to give

K  (pgo—pPoo)™
_ 2 _ P90 7 Px)T 3.14
02 2 epooUgo ( )

Integration of equation (3.12) with respect to Z leads to

h(z) = (Cl—§K+2Cg>sm (\/:5) (Cl——g—gw)m—kfl.

On imposing the boundary condition A(1) = 0 at the dryout point implies
3
A=—— (01 - —K+202)

so that, on using (3.13) and (3.14), we have

- K K T K
1 A 8N/ T 8
h(z) = (P+ )sm (Vz) ~ ( +4+2a:) zZ(l - z) 2(P+4),
where P(< 0) is given by P = (pg0 — Poo) /€psoU%- In this case the dryout length is given,

from (3.9), by 84(0)
w(K — 4P)’

It is then evident that, for any finite fixed h(0), the length to the dryout L is inversely

Lo =

proportional to K — 4P. Since P < 0 then for any any K > 0, the liquid film cannot be
formed for values of K — 4P — oo. On the other hand, if we can allow K < 0 then there will
be some cases when the dryout point cannot be established at all. Such cases are possible
when K —4P =0, e.g. when K = 0 and the pressure through the pipe is a constant equal to
DPoo- This example may be unrealistic in its physical conception but it however suggests that
the problem may be well-posed. Other choices of Q and 7 which make the integral equation
linear in A may be possible but we now wish to move on to solving the nonlinear problem

(3.3) in the cases where the mass exchange rates are considered known.
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3.1.3 An Inversion Technique Using Properties of Abel’s Equation

Before we proceed to solve (3.3) numerically, it should first be mentioned however, for com-
pleteness, that (3.10) can also be inverted alternatively using properties of Abel’s equation.
We briefly outline here a method due to Peters (1963, 1968) [62], (63]. For convenience and
ease of notation we drop bars and write hy(z) = ¢(z) and (Kz — C1)7 = f(x). The left

hand side of (3.10) is then rewritten as

O e [IrEos-gs
L& = f #()de

£ -
— (&) £8(€)
= J 4o df+f e f, 20+ f £
= [0+ o1 - f g+ jo), (3.15)
where use of (3.10) has been employed. Substitution of (3.15) into (3.10) then gives
£ 80 —apo)+ [ a0
which can be rewritten as
b Epede Jo 9(§)d¢ 216
{ (=) s = Ve (316)
Equation (3.16) may be integrated with respect to z to yield
NEN:
- | R E Vesede = [ VEr@as +2va | e (317
It is observed that the integral
\/—f—gﬁz——‘ —2In » 3 _‘5;‘__; —p + a constant,
so that the definite integral
g dp . l\/E v _ ‘\/E -Vz|
V€~ B)(z ~ 6 -z VE-Vz VE+ VT

Therefore (3 17) can be rewritten as

1 T dﬁ B
/{\f‘ﬁ({ VE- ﬂ —'ﬁ} /{‘/g‘ﬁ({) 0 \/(é—ﬂ)(w—ﬂ)}dé_
T 1
/0 VEF(€)de + 2V /0 HE)dE. (3.18)

An appropriate change of order of integration on the left hand side terms of equation (3.18)

yields

[ [t o [ s [ S s [ veriae+
M/o B(&)de,
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which simplifies to

s 1 UVEEdE) L. [ !
/ { ez /ﬂ S }dﬂ— | VEr@d vz | #ok @)

It is then noted that the solution to Abel’s equation

is given by (see for example Arfken, 1985) [3]
(z) = ( T 98 dﬂ) _ (9(0) _i_/oz 95(6) d,B),

N Nz N
where integration by parts has been used. Thus, an application of this result on equation
(3.19) yields
b Vafla
) 4z +/ $(€)de, (3.20)
[, = 1 [ G [

where use of the result
/ B dz o
o Ve(B-z)

has been employed. It is noted that the solution to the integral equation

s Ve-g =P

can be deduced from the Abel’s equation as

o0 =2 ([ 752%%),

Therefore, equation (3.20) leads to

1 X
Veate) = HILEORE L(/ 1{ e }dﬂ> SN
£

where use of the integral

—/g (fi/ﬁ(—)g)dﬁ 2\/—/ $(¢)de

and hence .

dI __f3 (&)

d¢ vi-¢’
have been employed. Upon changing the order of integration in the second term on the right
hand side of (3.21), the equation can then further be manipulated (the details are given in

Peters (1963) [62]) to give a standard inversion formula

vz l—xf(m C
N ][ o~ s (3.22)

P(6) =
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where C is a constant given by
1 1
— dz.
~ [ ¢@)d

It should be recalled that, in relation to the paradigm problem in section (3.1.2), ¢(z) and
f(z) are given by ¢(z) = hz(z) and f(z) = Kz — C; respectively (where bars are omitted
for convenience). Thus, we could invert (3.10) using (3.22) instead of (3.11) to get

Ve 3] c
m][ (G- K&+ =

However, it would be very difficult to proceed analytically. It can be shown, using standard

hy(z) =

(3.23)

techniques, that

][ Ve (1_ VEL=8) e
JNT_

+ %(2:5 +3),

£dé = — (2z+3)+7r><

27
{6&:4(1 —r)t+422(1 —z)6 +428(1 — )2 + 28 + (1 — )8
22 [(1 — z)* + 322(1 — 2)% + 3z4]
2B8z4(1-2)2+ (1 —2)2+ (1 — )8 + 28 + 322(1 — )]
322 [4(1 — )2 + 327] _ 522 }
16[(1 —z)*+222(1 —z)2 + 4] 16[(1 — z)2? + =2

Therefore, in this case, it would be very difficult to proceed (as in section (3.1.2)) to solve

(3.10) in closed-form using the inversion formula (3.23).

3.1.4 Numerical Solution
3.1.4.1 A Conventional Method

As an initial step to solving (3.3) numerically, we start by first solving a very special case

( lgf_(izam) =1, (3.24)

subject to the boundary conditions (3.8). We do this as (3.24) can be solved analytically
and therefore we can compare our numerical soiution to the analytical one, thus checking the
accuracy of our numerical method.

As far as numerical methods are concerned, we pretend that (3.24) cannot be integrated
explicitly with respect to Z and thus treat it as if it were nonlinear in h(Z). We discretise
the interval [0,1] by dividing it into n equal subintervals [{;,{;+1], where & = j/n are mesh

points, n denotes the number of mesh points and 0 < j < n — 1. We use finite differences
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(see for example Smith, 1994) [75] to approximate $z, where

Be :{ hs(ﬁ)dg}_

at mesh points and we collocate p at mid-mesh points where it can be evaluated. We assume
that the Cauchy integral
! hs(f )
0 £€— :1:
may be approximated by the sum of the mtegrals in each subinterval [£;,£;41]. Essentially,
we are approximating the integral using a trapezoidal rule. We further suppose that hz(Z)
is a constant in each subinterval, i.e. we approximate the solution % by linear functions in
each subinterval. It is then clear from the boundary condition hz(0) = 0 that h(Zg) = h(Z;).
Then assuming that we know h(&), a parameter that has to be chosen in order that the

solution satisfies the pressure condition, equation (3.24) becomes
e 2<i<n-1, (3.25)

where p;1,/2 and &;41/5 are respectively given by

b he(€)
= _ £
Pirp = 7 g_gii%dﬁ,
it
H n

Six

b

and are the mid-mesh points.

Equation (3.25) can also be written as

i }_lj - ﬁj_l & 1 4 4
JZ=:1 (5] _gj—l)(éﬂ.% - i—-) (‘/E] 1 § §1+ 5 Ei—1 f 61__ é

where }_zj = 71({1-). After integrating and imposing the boundary conditions hy = h; and

hn = 0 we get an (n — 2) x (n — 2) system of linear equations

(3 —29)?
(1—24)(5—-23)]|

S - ﬁj_mn\( (2) — 2+ 1)°

hi In
2j—2i+3)(2j—2z—1)1 nz th )

We solve this system for values of 7zj using the NAG library routine FO4ATF and h; = hg
ié a prescribed parameter. The method uses an LU factorisation with partial pivoting and
iterative refinement. Results are plotted against the mesh points for different values of n. In
each case the numerical results, see for example figures (3.1), (3.2) and (3.3), are compared

with the analytical solution of (3.24) which, for example when h(0) = 37/8, is

) = -%sin-l(\/;%) + (§ - i) 2(1-2) + gw. (3.26)

i 42
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Figure 3.1: Graph of h(Z) (n = 5).
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Figure 3.2: Graph of h(z) (n = 55).
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Figure 3.3: Graph of A(Z) (n = 495).

1t is observed that the results of this conventional method are not satisfactory in comparison
to the analytic solution. For n = 5, a curve for the analytic solution appears to be an average
of the numerical solution. However, as the number of mesh points is increased, the numerical
results do not approximate the analytic solution satisfactorily at all (see figures (3.1) to
(3.3)). Therefore, it is necessary to devise other computational methods in order to obtain a

satisfactory numerical solution to this problem.

3.1.4.2 A Different Approach

It is obvious from the analytical solution (3.26) that near z = 1, h(zZ) — 0 like v/1 — Z.
Therefore, there is a singularity in the slope of A(Z) as hz(Z) — oo near Z = 1. It is this
singularity in h(Z) at & = 1 which disrupts the conventional numerical scheme. As a remedy,
we instead solve a regularised problem by considering a stretched coordinate where h(z) =0

linearly near Z = 1. We put
h(z) = H(y), where 32 =1 - %.

Under these circumstances equation (3.24) becomes

1 (]{)1 _fﬂ%du>y ~ 2, (3.27)

T y2—u

subject to the boundary conditions H(y) = 0 at y = 0, Hy(y) = 0 at y = 1 with H(1) a

known parameter.
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Equation (3.27) is then discretised in the conventional way, as described in section (3.1.4.1),
to give an (n — 2) x (n — 2) system of linear equations

n—3

Z(En—j - Bn—j——l) X

j=0

1 L @i+2i43)(2i - 2j+ D2 -2+ D) - D@i+2G+ D +1)]
2+1 [(2%-2-1)2i+2+1)Qi+2(G+1)+3)(2i —2(G +1) +1)|
1 ’(2i+2]+1)(2z—2y—1)(22—2(]—1—1)—3)(22+2(J+1)—-1)‘ B
2i—1 [(24-27-3)(2%+2j—1)(2%+2(G+1)+1)(2-2G+1)-1))
2 1 ln’(2i+2(n—) 3)(2i — (-2)+1)‘_
n? N2i+1 (@ —2n-2)-DR2i+2n—-2)+1)
1 (20 +2(n—2) +1)(2 —2(n—2) — 1) .
2 — 1 '(22-2(n—2)—3)(2z+2( 2)—1)) lsisn=2

The system is then solved for values of kj, as explained earlier, using the NAG library routine
FO4ATF. Results of this method compare well with the analytical results (see figures (3.4),
(3.5), and (3.6)). The transformation removes the singularity in hz(Z) at Z = 1 so that the
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Figure 3.4: Graph of A(z) (n = 11).

numerical method works better. However, there is evidently a price to be paid because the

transformation enormously increases the amount of algebra involved in the problem.
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Figure 3.6: Graph of A(Z) (n = 100).

47




3.1.5 A Nonlinear Problem

The previous paradigm problem in section (3.1.2) could be solved in closed-form. Hence the
asymptotic behaviour of the solution could be deduced from the analytical solution itself. The
numerical solution could also be compared with the closed-form solution in order to check
the validity and the accuracy of the computational method. On the other hand, the full
problem we intend finally to solve is highly nonlinear and the chances are extremely remote
that closed-form solutions could be obtained. Therefore, we need to develop some asymptotic
techniques in order to get an insight into the behaviour of the unknown solution near the end
point £ = 1 (where non-uniformities may be anticipated to arise). We will further require
some techniques for testing the accuracy of our numerical method in this case. In order
to proceed, we first consider a nonlinear special case of the finite range nonlinear singular
integro-differential equation (3.3) where the dynamics of 7n and 7 are ignored. In other words,
(3.3) is solved for h given that 7 and 7 are prescribed parameters. In general i = rn(h(z)),
details of which have been given previously by simple thermodynamic models and we must
solve the steady case of problems (2.62) and (2.63). However, we hope this special case,
physically unrealistic as it may be in its conception, will give us an insight as to how and
whether we can solve the full nonlinear problem numerically. In equation (3.3), it is not
known whether in general the quantity Q has to be negative or positive.

We recall that m = Qz with the boundary condition Q = 0 imposed at the dryout point,
z = 1. Therefore, with this fictitious approximation of a constant h, @ = m (z —1). It
is obvious that if 7n > 0 then Q < 0 for all Z in [0,1]. We now have to solve (3.3), written

explicitly in this case as,

M _(z-1)+ 2;@) - g ( 01 g—ﬁ_(%dg)_. (3.28)

In effect it can be observed that (3.28) is identical to the constant heat flux problem from

h® ([ he(€) T 1
Bt o

in the special case when th = 3/n, T = 37 and 6 = 1. To show this, we assume that the mass

E( 1B5(§)d§>

3mr \Jo £—Z

equation (2.67)

flux

vanishes at the dryout point Z = 1 where h(Z) = 0. Effectively, this fixes the regularity

condition for this problem. Integration of (3.29) with respect to Z then gives

R (1 he(€) Tra_ Lo -
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Now, equation (3.30) can obviously be rewritten as

R S O Y e 11(9)
U oh(z) « (.7[0 f—:id€>_’

T

and hence the result follows.

For simplicity and for demonstration purposes, in the subsequent section (3.1.5.1) we will
solve a far much simpler case than equation (3.28). (Equation (3.28) may be solved in exactly
the same way but the amount of algebra will be more involved.) We will therefore assume
that in equation (3.3) the quantity Q is taken to be a negative constant -Q. Physically,
this corresponds to the case where the mass transfer from the film is constant and does not
depend on the film thickness (so that 7n = 0). This problem will serve to demonstrate both

the asymptotic analysis and the numerical technique.

3.1.5.1 Asymptotics and Regularisation

At the upstream end Z = 1 (dryout point) the thickness h(Z) must vanish. Therefore, the
nonlinear term -—Q /h3, which dominates the left hand side of (3.28), must be balanced by at

least one other large term in the equation.

In the earlier special case considered, we recall that the singular integral equation was linear
and it could be solved all in closed-form. Then from the analytical solution, one could observe
how the problem should be regularised so that the numerical method could be employed
to satisfactorily solve the problem. In the current case we do not know h(Z) analytically,
therefore in order to proceed we resort to asymptotic approximations. We assume that the
main contribution from the Cauchy integral comes from a small region near z = 1 where
we suppose h(Z) ~ A (1 — z)P, for some positive constants A and p(< 1) to be determined
by performing an asymptotic balance in the equation. Intuitively, in this particular case the
nonlinear term —Q /h® must be balanced by the large negative gas flow pressure gradient on

the right hand side of (3.28). This implies that as Z — 1, A(Z) must tend to zero as
e
- 4
h(Z) ~ (%) (1-7)%.

Encouraged by our experience of solving the paradigm problem (3.24), and the work by
King & Tuck (1993) [45] (who solved a steady nonlinear singular integro-differential equation
to determine the unknown shape of a thin liquid layer supported by steady air-flow surface

traction) we set

h(z) = (9;171> ' H(y), where 32 =1 — Z,
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to regularise (3.28). We then have to solve

-Q [ 6 7 ™ ( ][1 H,(u) )
_ Iy = du) | 3.31
<H3(y) w6 T )\ 6g! =\ v-w ™), (331
with H(y) - 0 as y — 0, Hy(1) = 0 and H(1) is prescribed. The regularisation of the

thickness h(Z) is important since, as seen earlier, the singular behaviour of hz(Z) as 7 — 1

seriously degrades conventional discretisations of the integro-differential equation.

Equation (3.31) may now be conventionally discretised and solved numerically for H where
three parameters, H,, Q and 7 would have to be specified and varied at will. However, it is
numerically convenient to set A(Z) = hog(Z) in (3.3) so that we have to solve

M T _6/(7" %
ga+g_ﬂ(0 {_Ed§> , (3.32)

T

where M and T are respectively M = Q/h4, T' = 7/2h%, subject to boundary conditions
g(0) =1, gz(0) = 0 and g(1) = 0, for any hg > 0.
On performing asymptotic approximations of (3.32), as detailed above, we obtain that as

Z — 1, g(Z) must tend to zero as

9(z) ~ (‘“”T”)%(l—f) .

The problem is then regularised by setting

N

1
g(z) = (Mgﬂ) ! G(y) with y? =1 — Z.

We now have to solve a regularised problem

o () o ([ 500, o

subject to boundary conditions G(1) = (9/4M7r)1/4, Gy(1) = 0 and G(0) = 0.

3.1.5.2 Numerical Scheme and Results

Equation (3.33) is then discretised in the conventional way, i.e. a mesh u; = j/n is defined
on the interval [0,1] with G,(u) assumed constant in each subinterval [u;,u;j;+1]. In other

words, the function G is approximated by linear functions in each subinterval. The pressure

' Gu(u)
py = {f) y2 -—uzdu}y’

gradient
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is evaluated by finite differences. We collocate (3.33) at the mid-mesh points and the resulting

(n —2) x {n — 2) set of nonlinear algebraic equations is given by

n—1 . . . . . .

1 (21425 +3)(21 —25+1) 1 (20 + 25 + 1)
Gjs1— G, 1 - 1

];( i+l J)(2i+1n(2i—2j—1)(2z'+2j+1)‘ %1 |(2i-27-3)
(2i — 25 — 1) _L(L)% _ﬂ( 0 )é_

(2i + 25 — 1) nf \ M6 G \aM~
2z+1_l:_)=0,

n? G

(3.34)

for1 <i<n-—2, where Go =0, G, = Gp_1 = (9/(4M7r))1/4 and M and I' are specified.

The system is then solved iteratively for values of G; by Powell’s method using the NAG
library routine COSNBF. This method uses a combination of Newton and steepest-descent
iterations. An initial guess for the solution is taken to be linear functions in each subinterval
[uj,u;41]. The g; values are recovered from those of G; using a relationship

1
AM7\ 1 .
9:'=(—~—'9 ) Gn-j, 0<j<n.

The values of g; are then plotted against Z;, Z; = 1 — u?, for 0 < j < n (see for example
figure (3.7)).

T M T

Numerical ]

0.8 -

0.6 -
g(x)

0.2 -

O : t s 1 . 1 L 1 '
0 0.2 0.4 0.6 0.8 1

X
Figure 3.7: Graph of g(Zz), M =1.0, T = 1.0 (n = 60).

The residual error in the numerical method is checked by evaluating each side of (3.33)

using the computed numerical results for G, and with just 60 points, the error is of order
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between 1078 and 1071°. The sensitivity of the numerical method’s accuracy to the choice
of grid is examined by increasing the number of mesh points and there is no change at all.

Respective illustrative results are shown in tables (3.1) and (3.2).

52



Table 3.1: The computed left and right hand sides of equation (3.33), n = 60.

(left-hand side of equation (3.33))/n3

(right-hand side of equation (3.33))/n®

-3.4319983209766 x 1098

-3.4319983364776x 10708

-5.7219241008031x 1098

-5.7219241027164x 10708

-8.0151785494553x 10798

-8.0151785544487x10~%8

-1.0313309239400x 1097

-1.0313309230887x10~97

-1.2617864099689 x 1097

-1.2617864096696 x 10~%7

-1.4930415355307 x 1097

-1.4930415364852x 10797

-1.7252544690301 x 1007

-1.7252544683381x 1097

-1.9585866046224 x 1097

-1.9585866048016x 1097

-6.8519016656996 x 1097

-6.8519016652359% 1097

-7.1495301153696 x 1097

-7.1495301176883x 1097

-7.4531852115604 x 1097

-7.4531852093556x 1097

-7.7632459123378x 10707

-7.7632459101436x 1097

-8.0801138340682x 10797

-8.0801138357576x10~97

-8.4042176207048 x 10797

-8.4042176215384x 1097

-8.7360133805391x 10797

-8.7360133805839x 10797

-9.0759896848271x 10797

-9.0759896858032x 10797

-1.6833040542487x10~06

-1.6833040543052x 1096

-1.7474296200718 x 1096

-1.7474296200179x 109

-1.8149122203705x 1006

-1.8149122204215%x 1096

-1.8861343835772x 10706

-1.8861343835772x1079%

-1.9615636688746 x 1006

-1.9615636688746x10~96

-2.0417926323933x 1006

-2.0417926323933x 109

-2.1276141594599 x 10~06

-2.1276141594599x 1096

-2.2201965660681 x 1006

-2.2201965660681 x 1096
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Table 3.2: The computed left and right hand sides of equation (3.33), n = 70.

(left hand side of equation (3.33))/n®

(right hand side of equation (3.33))/n3

-1.6117973461395%x 1098

-1.6117973114169x 10708

-2.6869707487590x 10708

-2.6869707358407x 1008

-3.7632536402413x 10708

-3.7632536670543x 10798

-4.8411608283313%x 10798

-4.8411608328744%x 1008

-5.9212069825471 x 10~08

-5.9212069696528 x 10708

-7.0039127925471x 10798

-7.0039127913953x 1008

-8.0898010164976x 1098

-8.0898010267356x 1098

-9.1794023212022x 1098

-9.1794023212022x 1098

-3.8030660960309 x 10~97

-3.8030660964884x 1007

-3.9426232171084x 10797

-3.9426232154198 x 1097

-4.0845574463214x 10797

-4.0845574480995x 10797

-4.2289956801862x 1007

-4.2289956800995x 1097

-4.3760718913259x10~%7

-4.3760718905604 x 1097

-4.5259271530648 x 10~97

-4.5259271533573x 10797

-4.6787108051342%x 1097

-4.6787108052335x 1007

-4.8345805856406 x 10707

-4.8345805863114 x 1097

-9.5563633056128 x 10797

-9.5563633051395x 1097

-9.8692301430570x 10797

-9.8692301425888 x 1097

-1.0196929169265x 10~96

-1.0196929168999 x 1906

-1.0541068106002x10~06

-1.0541068106390x 10~%

-1.0903614932174x 10796

-1.0903614933002x 1096

-1.1287069918118 x 1096

-1.1287069917665x 109

-1.1694793502372x10~96

-1.1694793501831x 109

-1.2131770497869x 1096

-1.2131770498170x 1096
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3.2 The Full Nonlinear Problem

We are now in a position to solve the full steady nonlinear problem where the dynamics of

m are taken into account. We recall that the equation is

R (1 [1Re(e) 1
U (A ), -5} - o

It should be recalled that equation (3.35) has to be solved subject to the boundary conditions
hz(0) = 0, h(Z) = 0 at the dryout point Z = 1, h(0) = hg is known and the pressure gradient

condition or the related pressure condition, from equation (3.6),

1 Bg(ézdf _ 7rpg _poo’
0 {—1Z €Pol2,

has to be satisfied at T = 0.

3.2.1 Analytical Treatment

We continue here by first deriving the integral equation that has to satisfied by h(Z). This
integral equation does not contain any derivatives of the unknown function h(Z) or principal-
value integrals. Therefore, it may be possible to compute h(Z) from this equation by direct
iterative methods, see for example Pope (1999) [65], Fitt & Wilmott (1994) [34]. It is not
obvious nonetheless, whether this numerical technique can be successful in solving the cur-
rent problem. In the previous problems where this technique has been used successfully, the
behaviour of the unknown function at one (or more) end point contains a logarithmic singu-
larity which, as it will be shown, is not the case here. Our main interest here of deriving the
integral equation for h(Z) however, is to explore, in the process, whether in general it may be
possible to solve this problem numerically using some interpolation techniques as in Spence
et al (1987) [79], for example, who solves a problem which contains a singularity stronger

than logarithm near an end point. We proceed by assuming that in (3.35), we can write

L h
( ;( 3 ) = 12(@), (3.36)
for some function f(Z). Equation (3.36) then integrates to give
L 0= -0, (3.37)

where C is a constant of integration. On inverting (3.37) by standard methods we obtain
_ 1-z Co
(T ,/ & ge + , 3.38
h(2) ][ \/1—5 s—x ¢ Z(1 - z) (338)
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where C; is an arbitrary constant arising from inversion of the singular integral. We apply

the boundary condition hz(Z) = 0 at Z = 0 to get

Ci+Cy = (3.39)

| A

Upon imposing the pressure boundary condition at £ = 0, we obtain

1_ﬁ1 Co __7r(p0_poo)
/ { 7[ Vl—E Dag + NG ——ﬂ)}‘w = ez 0 G40

where we recall that pgo = py(0) is the dimensional gas core pressure at the onset of the

annular flow Z = 0. It can easily be shown by using standard techniques that
L E G
— ¢ = Cym,
bt = o
1 Cs 1-p
————df = 2C;lim4/——,
| wmi=m® = ok
1 /1- ﬁ _ . 1-8
[ a5 = 2pmy 5t
Thus, (3.40) becomes

zclhm\/:ﬁcﬂlm\/icl /{ \/ﬂlf\/—f })

ng

. (3.41)

Using integration by parts, we can write

P8O o [ g, |VOI=BE+ VBI=0
£ rsed e =soms [ o gm0

tan—1 }_E_f} de.
L) _ ! -1 (1-¢
/0 t0 _é)d{ = f(0)7r+/0 fe(€) tan £ dg.
Hence we get

7 B V=B + VBT —§)
][,/1_ D= 155 ff(ﬁ)ln‘ — Id&

1O
+/0 md{. (3.42)

+

and

Therefore, (3.41) and (3.42) imply
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2C, hm + 2C, hm (2 hm —l-j — 71') —1— X

' f(£) B¢ + vB(1
[ s /{ i \ s Ut
77(]7 0 — Poo)
EZOOW . (3.43)
However, by equation (3.39), we find
im (|18 i JL2B g AL [T TE)
2O T TR my T =2 7T/0 I
so that the constants C; and C, are respectively given by
_ mlpo—pe) 1 1 VI=BE +VBI=0)
Ci = e;ooUgo =/ {'B/o fe(€)In — ‘df} ds
il / gk 64
_ T(Pgo = Poo) \/ B)E +v/B(1 -~ 6)
CQ—WJF { / f¢(©)In | S } (3.45)

Integration of (3.38) with respect to Z and application of the boundary condition A(1) = 0
yield

B(:E)z{—g—}-sin_l\/f-{— 5(1—5)} {Cl 1 1\/% }+02x
.1 = 171 1 1-—-
(2sm 'z - 7r) + ;/i {/0 fe(€) ln 'Bzi%ﬂ( ldﬁ} ag. (3.46)
The constants C; and C5 are respectively given by equations (3.44) and (3.45). Thus, (3.46)
implies
a1 VI=BE+ /BO=9)

+Cy {\/i(l——a“:)—i— sin™! ﬁ} . (3.47)

The system (3.35) and (3.47) may be solved numerically using interpolation techniques. We

continue however, for completeness, to obtain the integral equation which has to be satisfied
by h(z). The parameter h(0) = ho is not independent of the dimensional pressure drop
(Pgo — Poo) and it has to be specified in such a way that

3 __%oo_u%/ {Qﬁ‘l n| Y15 j;‘gﬁ ld{}dﬁ. (3.48)

From (3.45), Cs should also satisfy

VIT=P)E + VA ‘d§
VE—F '

1
Cy = —Bo% + ;f; /0 fe(€) ln‘ (3.49)
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It will be become clearer in section (3.2.2) that from (3.35), A3(Z) fz(Z)|;—o ~ O near 7 = 1,

with the result that 3 1 48
N_3 7 3
f2(2) = 2h(z)  R3(2) /z nh(B)’

Thus, h(Z) satisfies the integral equation

o[- R [ (g )

VI P+ VBT =9)
VE— B dﬁ}dﬂ’

In

where C5 and hg are related by

_ g2 2 M3 7 3 [t dA VA=B)E+/BO-9
G=hrtm {<2ﬁ(£) ol nﬁ(z\))ln’ Ve B df}dﬂ

3.2.2 Asymptotic Analysis

We have seen in our examination of the previous two paradigm problems that the knowledge
of the asymptotic behaviour of the unknown solution is very important in the numerical
computation of this type of problem. Therefore, it is sensible to perform the asymptotic
analysis of the current problem under consideration. It can easily be observed from (3.47)
in section (3.2.1), that if (3.45) is defined and finite near Z = 1, then h(z) ~ (1 — z)'/?
In which case, an inspection of (3.35) then reveals that 7 must be specifically equal to zero
and fz(Z) ~ —6(1 — z)~!/n near 7 = 1. We observe that in order to treat equation (3.47)
numerically using interpolation techniques (see for example Spence et al, 1987)[79], we may

write
N

f2(28) =21 - B)] ' Y AT (X(3)),

! near z = 0 and fz(Z) ~ (1 — Z)~! near

for some positive integer N, so that fz(Z) ~ Z~
z = 1. The functions T} are the Chebyschev series and the function X (Z) has to be ingeniously

chosen so that, if at all possible, the integrals

1 o), | VOIS BE+ VBT

/0/3{ 0 E1-6 " N ldg}dﬂ’
' 1(X(9) |, |VI =B + VAT

BT == ld’f}"ﬁ’
‘L) |VIEHE+ EI=D|
o {(1-¢) VE—Z ’

can be evaluated in closed-form. The coeflicients A; may then be obtained by demanding that

equation (3.35) be satisfied within some specified tolerance. We do not pursue this approach
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further here since it is restrictive to the special case 7 = 0 and more importantly, it may
not always be possible to find some suitable functions X () in this problem. It is therefore
instructive to consider other appropriate asymptotic expansions of (3.35) for general values
of 7.

At the dryout point, £ = 1, where h(Z) vanishes, there is only one possibility that the
nonlinear term 1/nh balances with the first term on the left hand side of equation (3.35).
That is to say that near Z = 1, on assuming the power law h(z) ~ A(1 — z)P for some positive

constants A and p (< 1), we have

1 A‘i B 1 (1 _ 6)1—7—1
nAQ—zp " {-gp(l —z)% (]{) Tf:—@)i}j- (3.50)

We now make a substitution 1 — £ = (1 — Z)u under the integral sign so that (3.50), in the
asymptotic limit near Z = 1, leads to
1 At o Pl
Y I _1_1_-4P—2/ dub . 3.51
T { pp-1D5-1-2)%2 [ u_lu}i (3.51)
Equation (3.51) implies p ~ 3/5 so that h(Z) ~ A(1 — £)%/5 and hence hz(Z) ~ —34A(1 -

£)™%/%/5 near T = 1. The semi-infinite range integral on the right hand side of (3.51) exists

in the Cauchy principal sense and we calculate it using standard complex variable techniques
(see for example Spiegel, 1964; Carrier et al, 1966) [80], [15). We consider

2P~ 1
f ldz, z = u+iv.
rz-—

We choose I' to be a contour as shown in the schematic figure (3.8) where z = 0 is a branch
and the positive real axis is the branch line. The integrand has a simple pole at z = 1. In
reality, the lines BC and DA coincide with the real axis. The integral from A to B is equal
to zero by Cauchy theorem and the integral from C to D is also zero in the limit radii € — 0

and R — oo. Therefore, the only contributing integrals are
R ,p-1
/ i du,
€ u — ].

/R ue?ﬂ'i(p——l)
e uem 1

from B to C where the argument of z has changed by 2x. The two integrals have residues 1

from D to A, and
du,

and e2™P~1) respectively. Thus, by residue theorem and on taking the limits ¢ = 0, R — oo

we have

/0°° ;‘p:lldu (1 - 2P} = i (14 270D

which implies that

00 'u,p—l ) e—pm’ +epﬂi62ni

du = w1t - . .

0 U-— 1 e—PTl _ ePTip—2mi
= —7cot(pn).
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(N

Figure 3.8: a schematic figure showing z in the complex plane (u,v)
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As a result, 4 is given by A = (125 |tan (37/5)| /4n)*/°.

Before we proceed, we observe that, after going through similar asymptotics as above on
the problem with surface tension included (equation (2.65)), the only possibility is that near
the dryout point Z = 0 the nonlinear term 1/nh must be balanced by the surface tension
term S (7135553—;) z /3m. Hence, as one would expect, the singularity in hz(Z) is reduced since
now h(Z) ~ B(1 — z)*/® and thus hz(z) ~ —4B(1 — z)~1/5/5, for a positive constant B,
near T = 1. However, since the surface tension term does not completely flatten the layer
thickness h(zZ) near Z = 1 (unlike in other studies, e.g. King & Tuck (1993) [45]), then as
far as the numerical method is concerned, the approach cannot be different from the one we

employ to solve (3.35).

3.2.3 Regularisation and Pressure Gradient Condition

We now proceed to regularise the problem (3.35) by setting

3 3
R(z) = (E)’EZ%(B—W)B H(y) withys =1-z,

so that, after integration with respect to y (in order to avoid calculations of higher order
derivatives numerically in the subsequent numerical solution), we then have to solve
5 (,477_)% vut (@)% 18 <][1 Hy (u) du)
3n \ 125 o H(u) — \ 49 5743 \Jo y3 —us v

2

1 dn \s _o_
2(125X) H?7 +C, (3.52)

where C is a constant of integration and x = |tan (37/5)].

We solve (3.52) subject to boundary conditions (3.8), i.e. H(y) =0 at y =0, Hy(1) =0,
H(y) = (47]/125)()1/55(0) at y = 1 and the pressure condition has to be satisfied here.
From the pressure condition (3.6), in nondimensional form, we obtain the pressure gradient

condition

We then obtain, in the regularised variables,

! Hy(w) ( 4n ) _
———=du = -\ ™

where we recall that §, is the nondimensional pressure in the gas core. The quantity Dayl y=1

?

y=1

may be or may not be measurable in practice. If it is, then the constant C in equation (3.52)

can be evaluated trivially. Nonetheless, whether this is the case or not, since pressure gradient
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is an unknown function which depends on H(y) in this problem, we are not physically allowed
to dictate both H(y) and pgy at y = 1 independently. Therefore, it is mathematically sufficient
to calculate C directly from (3.52), using known properties of the solution H(y), and this will
give us an appropriate physical pressure gradient condition which must be satisfied at y = 1.

We exploit the regularity condition, H(y) ~ y near y = 0, in order to obtain the pressure
gradient condition at the onset of the annular flow, y = 1, in terms of H(1). We note from
(3.52) that in actual fact C is given by

4
1 3 3 1
C = —— (.1_2_%) ® lim iz ][ {I“(u)5 du
57 47’] y—0 yg 0 yg —u3 v
1 /12 1 H
~ ( 5X> lim y:,i ][ - "(u)s du , (3.53)
571‘ y—0 0 yg —us v

as H(y) ~ y near y = 0. We define a variable z by y < z < 1. We then write

1 g z 1 2 0
I =][ Hu(w) g, =][ 1)y, —/ Huw) (4 (Q) g (g) ’ ) du.  (3.54)
0 y3 —us 0 y3 —us z u3 u u
We know that H(y) is continuously differentiable at the points y = 1 and y = 0 since we

recall that Hy(y) =0 at y = 1, H(y) ~ y and therefore Hy(y) ~ 1 near y = 0. In addition,

we require that H is continuously differentiable at z. We then use integration by parts to

expand the terms on the right hand side of equation (3.54) to give
du du z z  du
Il = Hu(z) (/ é) Hu(O) (/ T—'—-—é) — / {Huu(u) 3 é:l du
—us3 Y3 —u3 0 0 Y3 —us3
1
~{ () / oI [ [t [ %] du}
z u3

1 g
i [ @)

u3

WIU'

u=0

o (/%)

=z

which implies that

du z Z  du
Il ~ = (/ 5 é)‘ _/ [Huu(u)/ 5 é
y3 —us /|y /0 0 y3I—us

[ [ [ 5o [ B

On the right hand side terms of equation (3.55) (in order to arrive at (3.56)), Hy(0) ~ 1 has

been used in the second term, Hy(1) = 0 has been employed so that the fourth term vanishes

du +

and finally, the fact that y < 2z has been exploited so that in the asymptotic limit the first
term on the right hand side of (3.55) is
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and it cancels with the fifth term in the equation. We further make an important observation
that the third and the sixth terms on the right hand side of (3.55) perfectly cancel with
each other. The reason is, in the third term, the contribution only comes from the integral
evaluated at u = z as Hy, and all other higher order derivatives of H are zero at y = 0. On
the other hand, the contribution from the sixth term only comes from the integral evaluated
at u = z since H(1) is a constant and therefore all its derivatives are equal to zero. Finally,
it is important to observe that all other remaining terms on the right hand side of (3.55)

are very small, in particular the leading order term is of O(y/22)%/3. Thus, to leading order,

d
L=~ (/—g—u—g‘)
Y3 — u3

We use two consecutive substitutions (u/ y)*/® = sin(¢) and sin(f) = t° to transform the

du
/ y5/3 — 573

6 td
W/ =gt

This term can now be evaluated by partial fractions to yield

/ él éduzz—%{——ln‘ 1+s|+
yS— 3 y3

I( s—\/f_)s+2) (232+s+\/_s+2) (232—3—\/53+2) (232——3-{-\/534-2)1

2s +s+\/—s+2) (232—3—\/53+2)

Ezs2+s— 53+2)(232—s+\/53+2)
L 2B+l {tan‘l (43—}-1—\/5) o (43—1+\/5)]
201/10 +2V/5 V10 + 25 V10 + 25
L 21 [tan_l (43—1—\/5> - (4s+1+\/5>”
201/10 — 2v/5 /10 — 2/5 /10 — 2¢/5 ’

where s = (u/y)'/6. Thus, equations (3.53) and (3.57) imply that

: 1)1
C ~ lim | y3 { — [ a constant] =0.
y—0 Y3 y

This is equivalent to a condition which dictates that at the onset of the annular flow y =1,

equation (3.56) is simply

. (3.57)
u=0

integral

nto

In

+———ln

the pressure gradient is

2

5 (5 e (£ Ptpe) | =55 ()

2
41 (B@‘-> "H2(1)F. (3.58)
2\ 4n
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Rearranging and simplifying (3.52) implies that we have to solve

2 2 3 2
4n )3 y3 25( 4n )3 Y us 5H(y) . ][‘ Hy(u)
e = —— VIFL = ——=d 3.59
(125x 7THii(y){ 3n \125x 0 H(u)du+ 2 T 0 yf?_ug “ y’ ( )
subject to H(0) = 0, Hy(1) = 0 and H(1) is a specified constant which satisfy equation
(3.58).

3.2.4 Numerical Scheme

The nonlinear regularised problem (3.59) may now be solved numerically. The problem is
discretised in the conventional way as repeatedly described in the previous paradigm prob-
lems. We define a mesh u; = j/n for 0 < j < n — 1 on the interval [0, 1], where n is as usual
the number of mesh-points. We then assume, for simplicity, that H can be approximated by
linear functions in each subinterval {u;,u;4.]. The pressure gradient on the right hand side
of (3.59), Bgy, is approximated by finite differences and (3.59) is collocated at the mid-mesh
points by insisting that pg, is satisfied exactly there. In order to keep a balance of accuracy,

speed and complexity in the numerical computations, we further assume that the singular

integral
U Hy(w)
Dbg = 5 E B du,
0 y3 —us3

may be approximated using the trapezoidal rule so that it is equal to the sum of the integrals

in each subinterval [u;, u;41]. We therefore have to solve a set of nonlinear algebraic equations

n—1 2 N\ 2 3

4 s iy? 25( 4 51
2( .. . _m. _ — [ 27 r I e/ R
JZ:;)GTL (H]+1 HJ>(11+ I1_> (125X) W(n) { 377(125X) Hisx
2

3/1\° 57
udly et —— 1<s<n-2. .
[2(n) +I2}+2Hi}, <i1<n-2. (3.60)

The integrals I;+ and I, are respectively given by

Iy = /uj+1 —é——l—sdu, (3.61)
uj u:‘i% +us
PR |
L= 12::1/,,] H(u)du. (3.62)
The integral in equation (3.62) is approximated by
: b o
/qu us ——du = 1)3 (u§+1 _ué) + Q% In ujirl _ 1j
woom(u-mas) T m 20T )T T s s
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where H(u) has been approximated by piece-wise linear functions
H(u) =mu — (mu]- - H]) )

in each interval [uj,u;41]. Clearly, m and Q; are respectively given by

_Hin - Hj
- b
Uj+1 — Uj
Q= mu; — Hj.
J m

As a result of calculating (3.57), we find that the integrals I and I;4, after putting in the

limits and performing some straightforward algebraic simplifications, are respectively given

2 .2 : 2z
I = : 1 3G+1)5—55  (n®(Hjr—Hy)j—H;j\*
n (Hj+1 - H ) 2 n% n (H.'H-l - HJ)

(G + D (Hyan — H))S = (n2(Hja — Hy)j— H))3 |
(n (Hjp1 — Hy)3 — (n2 (Hjp1 — Hy) j — Hj)$
+ (( + 1) (Hjy1 — Hy) (n? (H 41— H])j - H]))
+ (j (Hj31 — Hj) (n? (Hj4r — Hj) j —

+\/§{tan ! (§ (2<TL2 (Hj+1 _I];_)J -y ))
L f1 g (n(Hjn — Hj)) %
tan 1<§ <2<n2(Hj+1J Hj)j—H ) ))H

g

110G+ (Hjs - Hj))
(j (Hj31 — Hy))
(n? (Hj41 — Hj) j — H))
(n?(Hjy1 — Hj) j — Hj)

Lol

+

wivo| wh

wi]|  cores

}

and
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Ili—(zizl)a _Iﬁln 1+E2_;:)% +
- 2i:tl)
GO () (- +2) (o (30 + (380! (149 42)
—1n X
O (2()° + (0)F (1-v8) +2) (2()* + () (14 8) +2)
() - @) 0+v9)+2) (238 - () 0-9)+2)|
(2(a0)" - (k)" (1+v8) +2) (2 ()" ~ ()" (1-¥8) +2)
s (2(22)" + (22)° (1+v5) +2) (2(%)%_(%)%(1+¢5)+2)X
Yl 6 (-v9) ) L (88) - (38) (- v9) +2)
() + () 0-v9)+2) (2 ()} - ()} (- 9) +2)|
(2()"+ ()" (14 v8) +2) (2 ()" - () (1+v8) +2)
101/10 + 2v/5 10 + 2v/5 10 +2v/5
tan~! 4(2_?%)%_1_*_\/5 —tan™! 4(%)%_1+\/5 1-i-
10 + 25 10 +2v5
—-~———\/5_5 tan~! 4(%)é_1_ —tan~ 2—22:]5)(13 o5 +
104/10 — 2v/5 10 — 2v/5 \/10 25
tan~! 4<2_i2£1_)%+1+\/_ —tan~! 4 Zlil +1+f
V10 - 2v5 /10 — 2v/5

The system (3.60) is then solved iteratively for the values of H by Powell’s method as

implemented in the NAG library routine CO5NBF. As explained earlier, this method uses

a combination of Newton and steepest descent iterations. The initial guess to the solution

is taken to be a function which is piecewise linear on [0, 1], i.e. linear in each subinterval

[uj,uj41]. The system (3.60) is solved subject to the boundary conditions Hy = 0, H, = Hn_1

and H,, has to be prescribed such that the numerical solution satisfies the pressure boundary

condition (3.58). The parameters 7 and 7 are specified and may be varied at will. For fixed

values of 7 and n, H, is altered until the converged numerical solution satisfies the boundary

condition (3.58) within some specified tolerance. Thus, H, (and hence the nondimensional

length to the dryout point) is obtained as an eigenvalue to this problem. Essentially, this
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implies that it may not be always possible to obtain a numerical solution which satisfies
all the prescribed boundary conditions for arbitrarily specified values of n and 7. Once H,
(together with the computed solution for H(y)) is obtained, it is then trivial to calculate the
dimensional length to the dryout point from equation (3.9) if the dimensional h(0) can be
measured in practice. For clarity, it should be mentioned that due to the complexity of the
computations in this problem, a tolerance (or absolute error) of magnitude less or equal to
1 x 10~° has been employed for convenience in this study. It should also be noted that the

discrete version of (3.58) is exactly (3.60) with ¢ = n.

In general, a numerical solution may be easily obtained for n < 17. For n > 17, a
continuation method (where a previous converged numerical solution is used as a starting
value) has to be employed. It should be mentioned however, that even when n < 17, it is
possible for the numerical scheme not to converge which may lead to wrong impressions that
a solution does not exist for some combinations of certain values of the specified parameters
n and 7. Therefore, it is crucial in this problem that the initial guess to the solution must
be close enough to the required solution and this requires a lot of intuition. As a result,
the method can take a long time before one satisfactory converged numerical solution is
obtained. It is customary in numerical computations to quote the exact amount of time the
numerical scheme takes for it to converge to the correct solution. It is almost impossible to
do that here because the amount of time taken is controlled by many parameters, e.g. how
far the initial guess to the solution is from the solution itself, after how many points can the
continuation method be employed, how long does it take to find the appropriate kg so that
the numerical solution satisfies all the appropriate boundary conditions for each combination
of the prescribed parameters H,, n and 7. This implies that it would not be abnormal in
this problem for the numerical method to take completely different amounts of time to reach
the same converged numerical solution if the choice of initial parameters is different. The
accuracy of the numerical results, on the other hand, can be checked by evaluating each side
of equation (3.59). Illustrative results are shown in table (3.3) for n = 7 = 1.0 where the
number of mesh points n = 100. The values of ’_lj are recovered from those of H; using the

relationship

1
- 125x\ 5 .
h_’] = (4—7’) Hn—jv 0<j<n,

and the results are shown and discussed in the next section below.

3.2.5 Numerical Results and Discussions

In this section we present and discuss numerical solutions of equation (3.60). We begin with
figure (3.9) which shows plots of different numerical solutions to (3.60). None of the solutions

shown by various dotted lines in this figure satisfy the boundary condition (3.58) and hence
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Table 3.3: a table showing the computed left and right hand sides of equation (3.59) when
n = 100 points.
(left hand side of equation (3.59)) | (right hand side of equation (3.59))

-1348.6295919936

-1348.6295919946

-1853.5718199877

-1853.5718199890

-961.56742628979

-961.56742628957

-710.18724183416

-710.18724183411

-584.98065706458

-584.98065706462

-506.91613418576

-506.91613418565

-452.17521258971

-452.17521258918

-410.97677037539

-410.97677037547

-169.20973850158

-169.20973850169

-165.58172052767

-165.58172052758

-162.14296448477

-162.14296448483

-158.87808700445

-158.87808700443

-155.77337996565

-155.77337996573

-152.81658414089

-152.81658414092

-149.99669906233

-149.99669906234

-147.30382245842

-147.30382245842

-108.17057086541

-108.17057086546

-106.97304065314

-106.97304065312

-105.80816643502

-105.80816643501

-104.674546504705

-104.674546504705

-103.570860944285

-103.570860944285

-102.495865689865 -102.495865689865
-101.448387123678 -101.448387123678
-100.427317141391 -100.427317141391
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hz(Z) = 0 at = 0. Thus, the results depicted in this figure suggest that for each combination

0.8 - T : T : T ; T

N\ —— A Numerical Solution

0 0.2 0.4 0.6 0.8 1
X

Figure 3.9: Plots of the liquid film free surface h(Z) when 7 = 1.0 and 5 = 1.0 for n = 100

points.

of the parameters hg, 7 and 7, there is a unique solution which satisfies all the prescribed
boundary conditions to the problem. It is further observed that only the acceptable solution
is monotonic. In figure (3.10), it is moreover illustrated that these other solutions are not
only unsatisfactory (with regard to the boundary conditions at the onset of the annular flow
Z = 0) but they also give a false length to the dryout point. Figures (3.10) and (3.9) are
essentially the same but in figure (3.10) the dryout point is allowed to move by scaling the
problem differently (the details are given below) while in figure (3.9) the dryout point is fixed
at z = 1.

From the results shown in figure (3.11), it is obvious that an increase (decrease) in the
mass transfer parameter 7, results in a decrease (increase) in the thickness of the liquid
film. It may not be obvious nevertheless as to what this result, in the present form, may
imply about the physics of the problem. Equation (3.35), together with the appropriate
boundary conditions have been proposed so that predictions for the dryout point can be
made. However, for numerical convenience, the approach that has been adopted in solving
the problem hides the fact that this is a moving boundary problem. Presumably 7 should
determine the establishment of the dryout at an order Lj length from the onset of the annular
flow. It should then be of practical interest to know how the dryout point varies with the

mass transfer parameter n. To accomplish this, we rescale the variables in equation (3.35).
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Figure 3.11: Plots of the effects of varying the mass transfer parameter n on liquid film free
surface h(Z) when 7 = 1.0 (n = 100).
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We set h(Z) = hoH(X) where X is appropriately defined by Z = hoX and hg = h(0). In this

case (3.35) becomes
H3 (75 He(®) Fooo 1

where k = nh. It is then important to note that (3.35) can be solved in the form of
equation (3.63) subject to boundary conditions H(0) = 1, Hx(0) = 0, % (1/hg) = 0 and
H(X) ~ (125h2 |tan (37/5) /47]|)1/5 (1/ho — X)/° near the dryout point X = 1/kq. However,
there is no need to solve the problem again at this point, for we have got all the information
we need at hand. Since the solution to equation (3.63) does not exist for every arbitrarily
prescribed parameters 7, 7 and hg , then the relationship between the length to the dryout
point L(0) = Ly and 5 can be achieved from the data we already have by plotting H(X)
against X for various values of n and hg (at a fixed value of 7) for which the solution to (3.35)
(and hence (3.63)) exists and satisfies all the prescribed boundary conditions. Ilustrative
results are shown in figures (3.12) and (3.13). Both figures (3.12) and (3.13) indicate that,

3 T T ¥ T T T v T

L) | .

-

N

Figure 3.12: Plots of the length to dryout point, Lg, against the heat mass transfer parameter

7.

as one would expect, an increase in 7 (or using a liquid with larger latent heat) the mass
transfer is small and dryout is postponed further downstream. On the other hand, for n <« 1
(or a liquid with small latent heat) the mass transfer is so high that the liquid film may not

be established and dryout occurs immediately. In figure (3.12), each point on the curve is
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H(X)

Figure 3.13: Plots of the liquid film free surface H(X) for various values of the mass transfer

parameter 7, for a fixed traction parameter 7 = 1.0.

painstakingly obtained by numerically solving equation (3.35). It is observed from this curve
that when 7 is roughly less or equal to 1, a small increase in 7 leads to a large increase in the
length to the dryout point Lyg. When 7 > 1, the increase in the length to the dryout due to
an increase in 1 becomes less vigorous and seems to approach a steadily linear relationship
between 7 and Lg. Since it is increasingly difficult to obtain the numerical solutions for h(Z)

as 7) gets very small, in this work computations have been performed down to n = 0.001.

1t is evident from the results in figure (3.14) that an increase in 7 (the tangential traction
provided by the fast flow of vapour in the gas core) results in a decrease in the thickness of the
liquid film but it is difficult to make an analysis of the physical implications of these results
in the present form. However, from the later scaled form of the problem, equation (3.63), it
appears (see figure (3.15)) that the increase in the traction parameter 7 tends to slowly but
gradually stretch the liquid layer and hence the position of the dryout point. Figure (3.16)
shows the relationship between the length to the dryout point and the traction parameter
7. It is fascinating to observe from this graph that even for large values of 7, the length to
the dryout point is still merely O(1) and it seems it is likely to remain so even for values of

T — 00.
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Figure 3.15: Plots of the liquid film free surface H(X) for various values of the tangential

parameter 7, for a fixed mass transfer parameter n = 1.0.
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Figure 3.16: Plots of the length to dryout point, Lo, against the traction parameter 7.

3.2.5.1 Pressure and Pressure Gradient Effects

To reiterate, numerical solutions to (3.59) have been obtained through prescribing the pres-
sure gradient (3.58), instead of pressure, at the onset of the annular flow regime. We recall

that in this problem, the pressure is given by

PooUZ, al £E-%
Thus, pressure can be calculated from the numerically computed k(Z) at every point Z. It
makes sense then to pose a question; can a solution h(Z) to (3.59) always be obtained for
any prescribed value of pressure gradient (and/or pressure) at Z = 0? This is investigated
numerically by solving (3.59) numerous times prescribing (3.58) and holding 7 a constant
while 77 is being varied. The process is then repeated with n kept constant while T is varied.
Then the pressure at £ = 0 is calculated from (3.64) and a graph of pressure against pressure
gradient at Z = 0 is plotted. The results are depicted in figure (3.17). What is fascinating
is the observation that these results produce a single curve instead of a family of curves
corresponding to either values of 7 or 7. From this curve it is very compelling to argue
that the relationship between the pressure gradient and pressure at the onset of annular
flow regime, for those solutions which exist, is a one-to-one relationship irrespective of the
parameter values of the problem. Physically, this result reinforces the view that indeed the

solution h(Z) is unique. Further, it appears from the graph that as the magnitude of the
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Figure 3.17: Plots of the pressure p, against the pressure gradient pyz at the onset of the

annular flow z = 0, for various values of 7 and 7.

pressure gradient values at the onset of the annular flow tend to infinity, the values of the
pressure there approach a constant 0.27. Thus suggesting that there may not be any solutions,
h(Z), to equation (3.59) for prescribed values of the pressure approximately less or equal to
0.27. Similarly, it can be inferred from the graph that as values of the pressure at Z = 0 are
increased indefinitely, then the corresponding values of the pressure gradient there tend to a
negative constant nearly equal to -110,0. Henre suggesting that there may not exist solutions

to equation (3.59) for the values of the pressure gradient greater than -110.0.

Having computed (3.64), we can now look at other interesting pressure related phenomena.
Figures (3.18) and (3.19) show the pressure profiles in the annular flow regime and far
downstream of dryout for an increase in both 7 (7 held constant) and 7 (n kept constant). In
general, the pressure is positive at T = 0 before rising sharply to reach a positive maximum
near the start of the annular flow. It then decreases, rapidly near T = 0, and then gradually
downstream to achieve an infinite negative minimum at the dryout point before increasing
gradually to almost zero far downstream of dryout. The results in figures (3.18) and (3.19)
can be presented in another form as shown in figures (3.20) and (3.21) respectively. In this
case, it is easy to observe the effects of both 7 and 7 on the value of the pressure minimum
point. We observe from figure (3.20) that, apart from translating the dryout point, changes

in 17 do not have any effect on the value of the pressure minimum point. On the other hand,
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Figure 3.18: Plots of the pressure py(Z) in the annular flow regime and far downstream of

the dryout point, for various values of  when 7 is held constant at 7 = 0.0.
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Figure 3.19: Plots of the pressure §4(Z) in the annular flow regime and far downstream of

the dryout point, for various values of T when 7 is held constant at n = 1.0.
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Figure 3.20: Plots of the pressure p¢(Z) in the annular flow regime and far downstream, for

various values of  where 7 is held constant at 7 = 0.0.
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Figure 3.21: Plots of the pressure 4(Z) in the annular flow regime and far downstream, for

various values of 7 where 7 is held constant at n = 1.0.
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from figure (3.21) it is clear that, in addition to translating the position of the dryout point,
the increase in 7 does gradually decrease the minimum value of the pressure. The infiniteness
of the negative minimum in the pressure at the dryout point is attributed to the singularity of
hs(Z) there. It is not difficult to construct examples to illustrate analytically that if the liquid
film free surface attaches tangentially at the dryout point, i.e. hz(1) = 0, then this negative
minimum should be smooth (and this is verified by the results of problem (4.1), figures (4.12)
to (4.15) in chapter 4). We must mention that in reality, this singularity in hz(Z) at the
dryout might be smoothed out by other processes, for example the deposition of the droplets
from the gas core onto the liquid film, which are not accounted for in the current model. The
plots of pressure are usually very important (for example, in wind tunnel experiments) for
comparison between theoretical and experimental results. It has proved, however, impossible
to obtain any literature (if at all available) concerning experimental work with regard to this
problem. It is nevertheless hoped that when such literature is available and obtainable, it

will compare very well with our results for the current conditions of interest.

We proceed here to make further observations. In figures (3.22) and (3.23), we illustrate

T — T T T
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1 " I o I n i "
0.25 0.35 0.45 0.55 0.65

Pressure at the onset of annular regime

Figure 3.22: Plots of the length to the dryout L(0) against the pressure p(Z) at Z = 0 for

various of the traction parameter 7 and mass transfer parameter 7.

the influence of both pressure and pressure gradient at the onset of the annular flow Z = 0,
respectively. Both graphs are obtained by solving (3.59) numerous times for various values of
n (keeping 7 a constant) and vice versa. Then the length to the dryout L(0), or equally Ly,

is calculated, as explained earlier in this section, from each result. The fascinating physical

78



L(0)3

1 L 1 2 ! L { ' { s
-550 -450 -350 -250 -150 -50
Pressure gradient at the onset of annular flow

Figure 3.23: Plots of the length to the dryout L(0) against the pressure gradient pz(Z) at

Z = 0 for various of 7 and 7.

implication of these two graphs is that it is absolutely possible to control the length to the
dryout L(0) by simply dictating appropriate values of pressure and pressure gradient at the
onset of the annular flow Z = 0. For example, if it is possible in an industrial setting to arrange
the system so that at Z = 0, pressure is small and pressure gradient is large in magnitude
(consistent with figure (3.17)), then the dryout point can be accordingly postponed further
downstream. On the other hand, if at £ = 0 the pressure is large and the pressure gradient
is small in magnitude, then the dryout point will accordingly occur closer to the onset of
the annular regime. This finding, fascinating as it is, should however be understood in the
correct context. Since both the pressure and the pressure gradient in the annular regime are
functions of the thickness of the liquid film, they can be controlled through specification of
the appropriate parameters 7 and 7. We know, for example, that 1 depends on the properties
of the liquid film - its latent heat of vapourisation A and its thermal conductivity k. Thus,
in an industrial setting n may be appropriately fixed by choosing a liquid with desirable
known properties. 7, on the other hand, is less obvious to fix in reality because it depends
on the viscosities of both the vapour py and the liquid g (and in general, on the second
derivative of the liquid film thickness hzz(Z) as well). However, we can loosely say that it can
be fixed by choosing a liquid with desirable viscosity and which evaporates into a gas with
appropriate viscosity, in the conditions of interest. The relationships between the pressure

at the onset of the annular flow, Z = 0, and both 7 and 7 are shown in figures (3.24) and
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(3.25) respectively. The relationships between the pressure gradient at Z = 0 and both the
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Figure 3.24: Plots of the pressure 5(Z) at Z = 0 for various values of 7 when 7 is kept constant
at n = 1.0.

parameters 7 and 77 may be obtained in a similar fashion. However, this is not necessary for
any practical purposes, because once an appropriate pressure at Z = 0 is identified (say from
either figure (3.24) and (3.25)), then the corresponding pressure gradient at Z = 0 can be
read off from figure (3.17).

Finally, the effects of T at varous points of the liquid free surface are investigated by plotting
h(Z = %) (for some known point Z) for varteus values of 7, at a given value of . A typical
curve is shown in figure (3.26) for h(0). The result suggests that each point on the surface
of the liquid film is dragged in an almost exponential decay form due to the increase in 7.
Even though negative 7 may not have a clear physical interpretation in this problem, it is

observed in figure (3.26) that the stretching does not depend on the magnitude of 7 but the

increase in 7.
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Figure 3.25: Plots of the pressure p(Z) at = 0 for various values of  when 7 is held constant
at 7 = 1.0.
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Figure 3.26: Plot of the liquid film free surface h(Z) at Z = 0 against the traction parameter
7 (n = 100).
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Chapter 4

Steady State Solutions: A
Non-constant Wall Temperature

Problem

In this chapter, we solve the steady case of the nondimensional equation (2.66) which is

W ([ he(€) T12 h
— —=2-d — —h = 4.1
{3W(°§_i£i 2 z n’ )
subject to the usual boundary conditions 2(Z) = 0 at the dryout point Z = 1, hz(Z) = 0
at the onset of the annular flow Z = 0, h(0) = ho is a known parameter and the pressure
condition -

l lhf(g)d =pg_pOO=_
mJo §—Z fpooUgo g’

or the corresponding pressure gradient condition has to be satisfied at = 0.

Before we proceed, we should recall the differences between equations (4.1) and (3.35). The
main difference between these two equations is how the unknown function h appears on the
right hand side. In equation (4.1), h appears in the numerator while it is in the denominator
in equation (3.35). This feature alone causes a big difference in the asymptotic behaviour of
h near the dryout point Z = 1 (where h vanishes) between these two problems. From the
experience of solving (3.35) and the previous paradigm problems, we know that the knowledge
of the behaviour of h plays a significant role in the numerical solution of the problem. In
particular, for equation (3.35) it has been found that A ~ (1 — )3/% as Z — 1. Thus, the
problem had to be regularised accordingly in order to remove the singularity in hz(Z) as
Z — 1 prior to undertaking any numerical manipulations. Here, it will be seen however, that
in equation (4.1) the unknown function h(Z) — 0 as 1 — % near Z = 1. Therefore, we expect

this problem may be solved directly without resorting to any regularisations since there is no
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singularity in hz(Z) as £ — 1. However, the problem will be first solved extensively using the
modified numerical code that has been employed to solve equation (3.35). From the results,
we will then be able to demonstrate that the infiniteness of the pressure minimum point at
the dryout point Z = 1, from the pressure curves obtained when solving equation (3.35), is
simply a result of the singularity in hz(Z) at that point and not in anyway a consequence of

the numerical code.

Moreover, owing to the complexity of equation (3.35), the problem has been solved by
prescribing the pressure gradient condition at the onset of the annular flow regime, Z = 0. In
reality however, it is more likely that the pressure (as opposed to the pressure gradient) at
that point can be measured. Although the values of pressure can be obtained directly from
those of the pressure gradient, it is still of interest to investigate the possibility of solving this
problem when the pressure at Z = 0 is directly prescribed. One such possibility is investigated

later in this chapter by considering equation (4.1), a relatively simpler problem.

4.1 Asymptotics

Prior to undertaking any numerical computations for (4.1), it is crucial to determine the
behaviour of h(z) as Z — 1. We have seen in chapter 3 that knowledge of the asymptotics
of h(Z) near the dryout point Z = 1 plays a very important role when solving the problem

numerically.

By inspection, we observe here that for every possible asymptotic balance in (4.1), A(Z) ~
1-Zz asz — 1. It is easier to check self-consistency of these asymptotics in the special case
when 7 = 0. On assuming that near the dryout point the dominant contribution from the
Cauchy-principal value integral in equation (4.1) comes from a small region near Z = 1, we

substitute A(Z) = 1 — Z in the singular integral term and then solve for h from a Bernoulli

equation
- (1-2z) - «_ \To1
h: — ———=h=—-2(1 —Z)h™". 4.2
P 3z0-7) nx( z) (4.2)
Employing standard techniques, (4.2) solves to give
7o z=1 1 -
z—h—‘—z =2—ﬂ{i(1—2ﬂf)f%(1—f)%+— —_zdx—z}a (4.3)
Z5(1-17)3 |, n |10 10 Jz z3(1 - %)3

and we observe that indeed as Z — 1, (4.3) is consistent with the asymptotics h ~ 1 — 7.
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4.2 Regularised Problem and Pressure Gradient Condition

4.2.1 Numerical Solutions

Since the asymptotics indicate that there are no singularities in hz(Z) as Z — 1 in this
problem, then it is sensible and convenient to modify and employ the numerical code that
has been used successfully in chapter 3 to solve (2.62) (as explained in sections (3.2.3) to
(3.2.4)). The problem can be solved directly, as briefly demonstrated in section (4.3), without
resorting to any regularisation processes. However, since we also intend to illustrate that the
infiniteness of the pressure minimum point at the dryout for problem (3.35) is not a result of
the numerical code we have used (but the singularity in hz(Z) at that point), it makes sense
to employ the same code here with some appropriate modifications. That means that in this

case we have to solve the regularised problem (cf. equation (3.59))

() if>{—§—i(12sx) [t ety >}

(][1 —If“—(%du) , (4.4)
0 y§ —us3 y

subject to H(0) = 0, Hy(1) = 0 and H(1) is a specified constant which must satisfy the

pressure gradient condition (cf. equation (3.58))

4
12 5 1
5w \ 4n 0 y3 —u3 v

5 47’] % 1 2
= —— H(u)d
30 (125x) /0u3 (w)du +
y=1

1 (125)(
2

§ oo
477) H21)7.  (45)

Thus, in the numerical scheme, the term
2
3 /1\3
o I

in equation (3.60) is modified accordingly to become

() e s ()

(3 (4, —ud) =2
Z{gm ulyy —uf —g(muj'—Hj) ufy—ulo,

=1

where, we recall that in each subinterval [u;,uj;1], H(u) is approximated by the linear

functions
H(u) = mu — (mu; — Hj)
and
_Hjn - Hj
Ujbl = Uj
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The numerical procedure is as detailed in chapter 3 section (3.2.4). We continue here to
present and discuss those converged numerical solutions which satisfy all of the prescribed

boundary conditions.

4.2.2 Numerical Results and Discussions

Figures (4.1), (4.2) and (4.3) illustrate the effects of the increase in the mass transfer param-
eter 7 on the film thickness and the length to the dryout point, while the traction parameter

7 is held constant. We should mention that figures (4.1) and (4.2) are essentially the same.

3 N T N T T T T T

h(x)

X

Figure 4.1: Plots of the liquid film free surface h(Z) when the traction parameter 7 = 0.0 and

the mass transfer parameter 7 is varied (number of mesh points n = 100).

The results in figure (4.1) are obtained by directly solving (4.1) numerically and thus the
dryout point is fixed at Z = 1. On the other hand, the results in figure (4.2) are obtained by

considering the scaled equation

1 —_
3w, i), -
3t \Jo ¢ - X x 7
where H(X) = h(z)/ho and X = Z/ho. Owing to the apparent uniqueness of the numerical
solutions corresponding to each combination of the prescribed parameters 7, 7 and hg, the

results of figure (4.2) and those of figure (4.3) are accordingly obtained from the results of
figure (4.1). The profile of the curve in figure (4.3) is similar to that of figure (3.12). Thus,
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Figure 4.2: Plots of the liquid film free surface H(X) when the traction parameter 7 = 0.0

and the mass transfer parameter 7 is varied (number of mesh points n = 100).
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Figure 4.3: Plot of the length to the dryout Ly (= L(0)) against the mass transfer parameter

7 with the traction parameter 7 = 0.0.
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it confirms as well that indeed for 7 3> 1 (a liquid with large latent heat) the mass transfer
is small and dryout will not occur, while for < 1 (a liquid with small latent heat) the mass

transfer is so high that the liquid film will not form at all.

Figures (4.4) and (4.5) show the effects of an increase in the traction parameter 7 on the
film thickness and the length to the dryout point while the mass transfer parameter, 7, is

kept at a constant. It is observed (as in chapter 3 figures (3.14) and (3.15)) that an increase

3 T T T T T T T T
~—— — 1=0.1
T~ —— 1=02
T~ --- 1=03
2 SO0 N 1=0.5 -
_—— ~ —--1=1.0
- T~ N
h(X) -------------- S~ ~
___________ ~. ~
......... ~o ~
—— T ~. ~
~. T ~
1 ~\~\~ .......... \\\ \\
B ~_. e - ~o N _
~. T ~ o ~N
~._ < N
\s ...... \\ \
\\\ ......... \\\ N
TSL TN N
~ RSN AN\
\"\~:"--\.,:\ N
O L | 1 L~~-‘“’.
0 0.2 0.4 0.6 0.8 1
X

Figure 4.4: Plots of the liquid film free surface A(Z) when the traction parameter 7 is varied

and the mass transfer parameter n = 1.0 (number of mesh points n = 100).

in the traction parameter 7 stretches the liquid film and hence increases the length to the
dryout point. It is also evident from the curves in figures (4.4) and (4.5) that there is a
value above which, when 7 is increased, the converged numerical solutions cease to have
monotonic second derivatives near the dryout point. The results of figures (4.6) and (4.7)
further suggest that there is some competition going on between 7 and 7 near the dryout
point. In an attempt to understand this phenomenon, we consider a limiting case near the
dryout point when 7 ~ O(672), 7 ~ O(e) and h ~ O(e), for some small positive parameters
€ and ¢ which are of comparable order order of magnitude. In this case equation (4.1), to

order e, gives
hg=——~——, (4.6)
It is then clear from (4.6) that the increase in 7 (or equally €), tends to flatten the slope of

the liquid film thickness hz. While the increase in 7 (or similarly §2) steepens the slope of
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Figure 4.5: Plots of the liquid film free surface H(X) when the traction parameter 7 is varied

and the mass transfer parameter = 1.0 (number of mesh points n = 100).
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Figure 4.6: Plots of the liquid film free surface h(Z) when the traction parameter 7 = 0.3 and

the mass transfer parameter 7 is varied (number of mesh points n = 100).
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Figure 4.7: Plots of the liquid film free surface H(X) when the traction parameter 7 = 0.3

and the mass transfer parameter 7 is varied (number of mesh points n = 100).

the liquid thickness layer.

Since an increase in 7 increases the steepness of the slope of the liquid film free surface
near T = 1, it is instructive to look at the case where n —» oo and 7 is comparatively small.
In this case, figure (4.8) displays an example of typical solutions. The solutions still approach
the dryout point linearly, but the slopes are very steep as one would expect. Figures (4.9)
and (4.10) show the comparison between the results in figure (4.8) and the results when the

value of 7 is relatively small.

Figure (4.11) depicts a typical plot of the length to the dryout point Ly for an increase in
the traction parameter 7, when the heat transfer parameter 7 is held constant. These results,
in comparison with the results in chapter 3 figure (3.16), show rather unexpected behaviour.
From the results of figure (3.16), we recall that it has been found that for a fixed value of 7,
the increase in T slowly and gradually stretches the length to the dryout point. Here, from
figure (4.11), on the other hand, we observe that even for small values of 7 there are regions
where the increase in 7 does not do as much stretching of the length to the dryout as in
other regions. Moreover, it is also evident that for a fixed mass transfer parameter 7, there
is a point (approximately 7 = 1.1 when n = 1.0) above which the increase in the traction
parameter 7 no longer effects any increase in the length to the dryout point. At this stage,
the increase in T only plays the role of flattening the slope of the liquid film thickness towards

the dryout point. It is difficult and not obvious to interpret this result. However, we should
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Figure 4.8: Plots of the liquid film thickness layer h(Z) when the traction parameter 7 = 0.0

and the mass transfer parameter n = 1000.0 (number of mesh points n = 100).
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Figure 4.9: Plots of the liquid film free surface A(Z) when the traction parameter 7 = 0.0 and

the mass transfer parameter 7 is varied (number of mesh points n = 100).

90



0.8 - — 1=1000.0, 1=0.0 .
\ ——- 1=10.0, 7=0.0
\
0.6 | \ i
\
HX) |
\
0.4 \ 1
\
\
0.2 - \\ T
\
\
0 \ |
0 1 3 4

2
X

=
il

©
o

Figure 4.10: Plots of the liquid film free surface H(X) when the traction parameter

and the mass transfer parameter 7 is varied (number of mesh points n = 100).
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Figure 4.11: Plot of the length to the dryout Ly against the traction parameter 7 when the

mass transfer parameter n = 1.0.
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recall from equation (2.56) that we observed that 7 includes effects of gravity. Therefore, what
we are experiencing in figure (4.11) is some sort of competition between the gravity effects
and another component of 7 which provides the pulling/stretching of the dryout point. The
gravity effects play the role of flattening the slope of the film free surface near the dryout
point. When the gravity effects dominate over the stretching/pulling effects, we see more of
the flattening of the free surface near the dryout point than the increase in the length to the
dryout point, and vice versa. It is clear from figure (4.11) that, in the case of n = 1.0 when
7 =1, the gravity effects totally dominate over the stretching/pulling effects. Thus, there is
absolutely no increase in L(0)(= Lg) as 7 is increased. It should be pointed out that in the
results of chapter 3, the increase in 7 does not in any way play a role of flattening the slope
of the unknown function h near the dryout point. Therefore, it may be deduced there that

the stretching/pulling effects totally dominate over the gravity effects.
Figures (4.12), (4.13), (4.14) and (4.15) show pressure profiles in the annular regime and far
downstream of the dryout for increases in both 7 (7 held constant) and 7 (n held constant).

In fact the main difference between figures (4.12) and (4.13) [similarly figures (4.14) and

6 T T T T T T

Pressure

Figure 4.12: Gas core pressure in the annular flow regime and far downstream of the dryout

point, for various values of the mass transfer parameter 1 (7 held constant at 7 = 0.0).

(4.15)] is that in figure (4.12) [and hence figure (4.14)] the length to the dryout point is fixed at
z = 1 while in figure (4.13) [and hence figure (4.15)] the dryout point is allowed to move and

the pressure is scaled with hy. In general, the pressure is positive at the entry to the annular
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Figure 4.13: Gas core pressure in the annular flow regime and far downstream of the dryout

point, for various values of the mass transfer parameter 7 (7 held constant at 7 = 0.0).
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Figure 4.14: Gas core pressure in the annular flow regime and far downstream of the dryout

point, for various values of the traction parameter 7 (n held constant at n = 1.0).
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Figure 4.15: Gas core pressure in the annular regime and far downstream of the dryout point,

for various values of the traction parameter 7 (7 held constant at n = 1.0).

flow £ = 0. It then increases rapidly to a positive maximum near z = 0 before decreasing
gradually to a smooth negative minimum at the dryout point. (This is not the case for the
solutions of equation (3.35) where there is a singularity in hz(Z) near the dryout point. In
that case, it has been observed that the negative pressure minimum is infinite. Therefore, this
feature is solely attributed to the singularity in hz near the dryout point, not a consequence of
the numerical code.) Finally, (in the cases where solutions to equation (4.1) are monotonic)
the pressure increases gradually to an almost negative equilibrium far downstream. In the
cases where solutions to (4.1) are non-monotonic however, there are some apparent sharp
inflexion points corresponding to the dryout points in the curves. Owing to the scaling of the
gas core pressure with hg, it is easy to observe the effects of changing n and 7 in figures (4.13)
and (4.15) respectively. It is clear that apart from translating the dryout point, the changes
in 1 do not have any effect on the size of the pressure at the minimum point. The increase in
7 tends to decrease the magnitude of the minimum pressure, in addition to translating the
dryout point.

Figure (4.16) shows the relationship between the gas core pressure and the pressure gradient
at z = 0 for the converged numerical solutions. Unlike the results in figure (3.17) in chapter 3,
there are no indications from this graph whether there may be regions (e.g. when the pressure

gradient tends to minus infinity and/or when its magnitude becomes small), where there may
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Figure 4.16: Gas core pressure p, against the gas core pressure gradient py; at the inset of

the annular flow = 0, for various values of 7 and 7.

be no numerical solutions, h, to (4.1) for some prescribed values of pressure.

4.3 Nonregularised Problem and Pressure Gradient Condi-

tion

Since there are no singularities in hz(Z) as Z — 1 in equations (4.1), then it would be sensible
to attempt to solve (4.1) without resorting to the regularisation process. In this section, we
briefly demonstrate therefore (without going into too much technical detail) that indeed (4.1)
may be solved directly. We begin by integrating (4.1) to yield

B3 Y he(€) Tio, 1 [l _
- ( _d{)i - §h? + ;/i h(u)du = 0, (4.7)

0 %

where the fact that h — 1 — Z as Z — 1 has been exploited to evaluate the constant of
integration. Thus, it is equivalent to prescribing the pressure gradient condition, at the onset
of the annular flow,

E@ ( U—l_f(ﬂdg)

3 of—.’i

7o 11
- 2(0) + ;/0 h(u)du = 0, (4.8)

=0
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in equation (4.1). This condition, in physical terms, implies that in equation (4.1) the mass

flux vanishes at the dryout, i.e. at the dryout point Z = 1

B ( ][1 he (5))
3r E-Z z
Equation (4.7) may now be solved numerically subject to the boundary conditions hz(0) = 0,

h(1) = 0 and the parameter h(0) = hg should be specified and altered until equation (4.8) is
satisfied.

=0.

z=1

4.3.1 Numerical Results

The conventional discretisation of (4.7) [as described in section (3.1.4.1) chapter 3] leads to

a set of nonlinear algebraic equations

nzﬁ;; n—2 _ _
o {2 (hj+1 ~ hj)In

=1

(25 —2i+1)2
(2j -2 —1)(2j —2i +3)

} 5 : 27”7 {Z hn 1} (49)

after applying all the boundary conditions. The trapezoidal rule has been used to approximate
the last term on the left hand side of (4.7) and 2 < i < n — 2. It should be noted that the
discretised version of (4.8) is simply (4.9) with : = 0. Equation (4.9) may then be solved
iteratively for the values of h; by Powell’s method using the NAG library routine CO5NBF

with hg prescribed and altered until the converged numerical solutions satisfy the discretised

- hn—l X

(2n —2i — 1)?
(2n —2i — 3)(2n ~ 21+ 1)

In

version of (4.8) within some specified tolerance T (in this particular case, |T| < 1 x 1075 was
used). It should be pointed out that even for this seemingly simple problem, it is still very
challenging to obtain converged results for this numerical scheme, thus making the study of
this problem difficult. Extensive numerical experimentation suggests that the initial estimate
to the solution is crucial. Once an appropriate estimate is obtained, the numerical method
converges quickly without any difficulties whatsoever. For a typical numerical solution shown

in figure (4.17), the initial guess for h is h &~ 1 — Z; in each subinterval [z}, z;41].

4.4 Nonregularised Problem and the Pressure Condition

In practice, it might be easier to measure the pressure as opposed to the pressure gradient in
the pipes. We should recall that in the solution of the previous problems a condition (on the
mass flux at the dryout point) which results in the pressure gradient condition at the onset
of the annular flow, is prescribed. Then the pressure is obtained by appropriate calculations

from the converged numerical solutions. In this section we make an initial attempt to solve
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Figure 4.17: Plot of the liquid film free surface h(Z) when the traction parameter 7 = 1.0

and the mass transfer parameter n = 2.3 (n = 100).

(4.1) where the pressure at the onset of the annular flow Z = 0, P (P = [pg0 — Poo) /€PocU%),
is directly prescribed. The same procedure could have been undertaken on equation (3.35).
However, working with equation (3.35) is more tricky than dealing with (4.1) because (3.35)
involves singularities in hz(Z) as Z — 1 and this may require the regularisation of the problem
in advance and hence a big increase in the amount of algebra to be handled. Therefore we
choose to attempt this approach first on a relatively simpler problem, equation (4.1). For

clarity of presentation, we drop bars from now on until it may be necessary to employ them.

4.4.1 Analytical Manipulations

We continue by integrating (4.1) twice with respect to z and applying the pressure boundary

condition Lhe(6)
1 ][ €
ol —=2>lde = P, 4.10
- Petlae (4.10)
at the onset of the annular flow z = 0. We obtain
1 7 he(€) T z dA P
— =2 h(N)d —_— = 4.11
35 fo E—z % 2 h / R (o) {/ )A}d‘HCl/O oy T3 (D

where C] is a constant of integration. On inverting (4.11) we get
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= S ([0

€ dx Pl d¢ C3
C1/0 m+§}§_m+ el =2) (4.12)

where the parameter Cj is obtained by applying the boundary condition h;(z) =0 at z =0

and it is therefore given by
SR AR S ) o ARUSS &
ST 7 Jo VRN 2Jo AN " 3

/h3 (/ A dA)da}-——g(df—_g. (4.13)

On integrating (4.12) with respect to = between z and z = 1 and applying the boundary

condition A(1) = 0 we obtain

£ d>\ LBy
Shia) = /,/1_ { A N
05 dA }/ 1-z d§ dz—C3 m — 2sin” 1(\/—)} (4.14)

We obtain C; by applying the boundary condition h(0) = hq in equation (4.14) to yield

=t [ L5 oy

£ dx =z dg
& [ w0y } / —ds — Cyr. (4.15)

Now, equations (4.13) and (4.15) combine, after some lengthy simplifications, to give

h P 1 d
= 1 [0 £

T— — —~+
2f0 _3_5_ lsm M d§ f() yh(zgf df 6 4 0 h(g)

[ 55 v—/mwhww+/wm§/wwﬁ

/ / h(/\)dAdf} (4.16)

Hence Cj3 is given by
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[ 2 fanl(VE)
o= | wgwh e %
1 hy P T 1 od¢
5 i e

5o iy — o e - i Y04 L B
— -1
2/ Vf(l vei-4), —%/1 /gh,\dxd§+l/0 sin (‘[)/ h(A\)drde

R3(£) h3(¢€)
,/{(1-— P 1 d¢ 7 [ sin~}(/€)
/ /” d*d5+3+2oh(§)’¥/o Re)

+5/0 E?’—(g_)/o h()\)d)\df—w—n/ M/ h(X)dAde.  (4.17)

It can be shown that
Py o e VD) + A8
e e R T v gl

Therefore, after some algebraic simplifications, equation (4.14) becomes

_ . P 7 [l de 7 [lsinT(E) 2
h(:c)—3(7r—231n 1(\/5)){"'3‘_2 o h_(§7+-7;/0 —h(§)_d§+7r_nx

/(; sm‘1 \/—) / R(\)dAdE + ( /01 sin}:;((g)/f)d - % 1 hfé)) G- /o1 {2hT(§)+

h30(§)} (sm_l( VE) - \/Tg)) de - L /0 sm};(g)f ?) / R(A)dADE +
1 4

}—‘/0{ 2oh(§:\\) /h3

€ VEIL - z) + z(1
/0 h(A)d)\do-}—Cl/O e }g ldg. (4.18)

Vel - z) —-’3(1—5)

On defining fi(z,£) by

1 zv/1—z(1 — /)
\/61——2: +\/7(1_ ’d€—§<2§—2x(1—x)+x2+(1—m)2) *

2z
(1 - f)’ - 5‘/5(1 V) (2z(1 —z)+a? 4+ (1~ f)2> ’
sin} () - l(1 - VaVI=a(1-6) -

VW EL - §),  (4.19)

fi(z, &) = /ln

then it can be shown, after some algebra, that
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folz,€) = [€m

Vel =2)+ /2= )| de = 3€In | fe1 =) + /o1 - )| +

zv/1—z(1 - /7) 1
(2:1;(1 —z)+ 12+ (1 —1z)? - ") hz,8)

1 221 - z(1 — /) .
+Z(1—\/E){2z(1—a:)+a:2+(l—x)2 _1}{ ¢ =8 =1 -2)sin 1(\/@}

—11—6\/5(1 ) {sin—1(1 —26) —2(1 —2¢) —2(1 — 2§)\/&(1 - 6)}
+VIT 2 - Va)(1 - 62, (420)

where the constants of integration in (4.19) and (4.20) have been omitted here for obvious

reasons. Hence, after some lengthy algebra and rearrangement of terms, equation (4.18) can
be written as

h(z) =3 (v — 25" (VE) fs = —fale) + L fs(a), (4.21)
where f3, fa(z) and f5(z) are respectively given by
_rpide T2 sin~ (V) V=D,
h=% me "z <%‘1)/0 ““2/ ThE ST

(1—%)/0 M/ R(\)dAdE

1 /11 3 P 2 rlsin™!
_%/0 h3—(§)/0 h(\dAdE - T + (;/0 h3(€) 2/ )
1 fo 1 VE(1- { 1 plsin” (\/_)

+ }IG) T nJo TRE
1sm (E ;0 €0~ E
% T(% Jo h3(£\/_ h3(&)

1 zv/1 - z(1 — \/x) 7
fale) = {§2x(1 —z)+z?2+(1-z)2 Infl - 2]+ Z\/E(l V)%

( 2z ~ ) VI —2(1 — \/7) [1(%
2z(l - z)+ 22+ (1 ~ z)? 20(1—z)+ 22+ (1—2z)2 [4

zv1 — z(l - Vz) T
2z(1—x)+x2+(1—x)2)1n|1“”3|+z\/5(1—x/5) x

2

2z 1 1 T =z
(2z(1—z)+z2+(1—x)2-1)}§§ﬁ(l_ﬁ)+(__(lvx)2_§+7>X
z 3 (P =t '
ln|1—x|+z—§z2+8}{3+2 i h3 / h3(§)/ h(A\)dAdE+

1 dé‘
C’1 o Wg_)}a

and
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1 . 1 3 Ch
fsl@) = | {M) o / MOVA+ s + }{f2( o+
(—Z(ﬁ - z)? - 2 a’{) In|¢ —=z|+ 62 - x—é} dé. (4.22)
Equation (4.22) can be further expanded to give

Pl 1 zv/1 - z(1 — /) 1 zv/1—z(1 — \/z) 5
f5<x)=—{—— Y ( v )x

22¢(1—z)+z2+(1—-z)2 \22z2(1—3)+ 22+ (1—z2)2 4

Int— 2] + V(1 - VE) + 3 (%\/5(1—\/5)—1 A CILEDID) )

2 22z(1 —z) + 22+ (1 — z)?

1 zv/1—z(1 - /x) 2 1
4\/1—.1v(1—\/_)+ (23:(1 )+x2+(1—m)2> ln|1—x|+§x

(1 - z)(1 - /7)? }_1[ 8

1
(1 - )3 - hndll — (1 - 23
8(1 z)°In|l —z| + A In |z| 9(1 z°)

2e(l-2)+a?+(1-2)?f 4
—g(x_l)]_%2[(1‘””){1““—m|—1}+xlnlzg]+§x2_§_§i
+§ [{;(1"“’)2” +I}1nll~m|+1z In |z| — ] / fsxé) gt +
- fe(x& / h(NdAE + C, 1z g -

x rl _de¢ 1 sin” 3( I 1 /61— 5
2 Jo R3(€) 0 T A3 §€— fo R3(E)
where fg(z, ) is given by

2

fo(2,8) = fo(a,€) + (—i(& a4 5o ‘—ff) g - o+ 562~ 22,

and we recall that C; is given by equation (4.16).

When P is an arbitrarily prescribed parameter, equation (4.21) contains no singular inte-
grals or derivatives. As a result, we believe that it may be solved numerically using direct
iteration techniques. It is likely that in this case some relaxation may have to be employed
in the numerical scheme (see for example, Fitt et al, 1985; Fitt & Stefanidis, 1998) [32]; [33)].
Here, however, solving (4.21) by direct iteration methods would be cumbersome owing to the
amount of algebra involved in this particular problem (and which would definitely increase
when discretising the equations). In order to proceed, we combine (4.11) and (4.16) so that

instead, we have to compute h from the equation
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{%/Jh?ér/”““ - [ gt {5 (F 155,
ERTNER U8 L
2/ 1_ 27,/ h3(€ / h(A)dAdE

__/ VEI=9) 1— /h Jdrdé — /0 S‘_"’ZE.}E\Q/O R(\)dME =0.  (4.24)

It is not easy to solve (4.24); however this approach reduces the amount of algebra involved

in computing h, in comparison to the earlier technique.

4.4.2 Numerical Treatment

We partition the interval [0, 1] into equal subintervals [{;,£;41] for 0 < j < n — 1, where n
is the number of mesh points. Since (4.24) is very complicated we assume here that in the
numerical scheme A is piecewise constant in each subinterval. To be precise, we approximate
h by h = (hj+1+ hj) /2 in [;,€41]). We employ finite differences to evaluate the derivative
of the singular integral term (the Hilbert transform term) and collocate (4.24) at the mid-
mesh points z;11/9, for 2 < i < n — 2. To evaluate the ordinary integrals, we employ the
trapezoidal rule (as has been explained repeatedly in this study). We outline here how the

double integrals may be evaluated using the trapezoidal rule. In particular, we approximate

/olh%/o{h( JAAdE ~ Z(h,+1+h) /§’+ /Eh(A)dAdf,

by the trapezoidal rule. This implies that
11 13 8 §i+a &
——— | h(N\)dXd — & / h(A)dX — / h(A)dA—
/0 h3(€) /o JardL = Z (hj+1 + hy)° {§’+1 o PG RO

L §h(§)d§} ,

J

after using integration by parts and the Leibnitz’s rule. Therefore we have

&1 &
/h3 /h(/\ dAd¢ = Z ]+1+h) {gjﬂ/fj h(A)dA+(§j+1—§j)/0 h(X\)dA—
h; h;
Bth(@,-g)). )

In this particular case, the second term in the curly brackets

&i
h(A)dA,
0
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in equation (4.25) is approximated by the less accurate numerical scheme

/ RNAA = E5ho + 565 (h; — ho),

for simplicity in the computations. (A better numerical approximation of this integral is to use
the trapezoidal rule. However, the latter approximation does not make any significant changes
in the final numerical results due to the shape our solution curves of h.) Equation (4.25) then

simplifies to give

l

/ e / R(N)dAE =~ mzu -
_ o
Z (h‘+18+h.)3 {§J+1(h];’;b1 + hj) + (€541 — &) [{,ho + EJ( 0)]
7=0 2 ]
s dha) (e -} )

By following similar arguments, after some algebra, we get

o
s e /oh( i~ Z(hg+l+h)

Z—: {(1\/5141( §]+1)——s1n (\/f]j ) + &jqpsin @))
Jj=0 J+1 +h ) 2

(hjy1 + hj)
2n

1 1 ey 4L
+[%\/£]+1—(1_?]:_§ (1 - ¢ ——2—sin_1( §j+1)+2sm (\/EJ—)'*'Q-HX

h; h;
sin™ (¢+1) — & Sin_l(&j)] [fjho + %fj(hj - ho)} - At

2

[(%gﬁl + %6) sin ™ (1/&+1) - (152 + i) sin™ (\/g) 4z ;H,/l — &
Y EREE NCRUE RS VR SE Sy
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1 ‘/ J—
/o i("’l(ﬁ) 2 / Narde = Z (hJ+1 + hj )
n—1 8 o 1
= ;:: m {(Z sin 1(\/§J'+1) - '8'\/§j+1(1 = &)1 — 2£j+1)> X
(Rj+1+ hy)
2n

+ E sin_l(\/f—j:;) - isin‘l(\/g) - %\/fj-{-l(l - &)1 = 260)+
/60— 6)0-2)| [(Egho + 564k = ho)]

@%nh—) [—-(§]+1[1 £i+1]) )2+ (51[1 &1) =

le

* 16
(1- zg,-H) sin~'(1 = 26;41) — i(l —2g;)sin~I(1 - 2;) +

SV RTIETIN —fg\/l—(l-z@)]} (4.29)

Thus, the discretised version of (4.24) is

n-1 4 n—1 I4j n—1 I5j
gy M gy Ly
=0 (hjs1 + hj)? E (hj+1 + hy)? ]Z: (hj+1 + hy)?

(25 — 26 +1)? T, o 1 <
(hj41— hj)In = ohi = 5= (hjs1 — b))
3r o (25 — 20—~ 1)(25 ——21—1—3) 2 2 =
ho P ard Iy T Is;
+3+7T6+2nzh,+1+h ~ i1 +h;  n b+ hy
n—1 n—1 n—1
4 I1_7 8 I3] 8 IQJ
= S B =0, 4.29)
77; (hj41 + hy)? 77]20(’11+1+h)3 Uz(hy+1+h) (

where I; and I5; are respectively given by

1gin~1
J h3<5 g~ Z

y+1+h ([éjﬂ ]Sm (\/€J—+: m
[ &+ JSm (\/Zj)_§M)’

514

HMT

=0 (hj+1+h
n— 9 1
- 4 - 26411 ~-2
=0 (hj+l + hj)3 (4 sin™ 8\/§]+1 éﬁJ'H ( §]+1)

—%sm (\/g) + —\/fy(l =& - 2§J)>
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4.4.3 Some Preliminary Numerical Results and Discussions

We solve (4.29) iteratively for the values of h by Powell’s method using the NAG library rou-
tine COSNBF. The initial guess to the solution (after an extensive numerical experimentation)
is taken to be a piecewise nonlinear function h; = (1 — a:j)l/ % in each subinterval [z}, ;1]
for 1 < j < n—1. In theory, the values of 7, 1, hg and P may be prescribed and varied at
will. However, we know from equation (4.15) that P and hg are directly related; hence they
cannot both be prescribed independently. Moreover, we know that hg (and hence P) depends
on the global behaviour of the unknown function A in [0,1], in addition to the values of the
mass transfer parameter  and the traction parameter 7. This makes the solution of (4.29)
very difficult. As purely a preliminary attempt at solving the system (4.29) numerically, we
fix the values of 7, 7 and hg. Then P is prescribed an initial value (in this particular case 1.0)
and then altered until a converged numerical solution satisfies the discretised version of (4.15)
within a given tolerance. Thus, in a sense we solve for h, and P is obtained simultaneously as
an eigenvalue of this problem. Typical results are shown in figures (4.18), (4.19) and (4.20).

The problem may be solved for h in the same way by fixing 7, n and P and then hg be

3 T T T T T T T T

h(x)

Figure 4.18: Plot of the liquid film free surface h(z); 5, 7 and P fixed at n = 1.0, 7 = 1.0,
P =1.076683 (n = 60).

obtained as part of the solution. However, this latter approach will require extra vigilance in
the numerical scheme as hy will appear implicitly from the discretised version of (4.15). The

numerical results in figures (4.18) to (4.20) seem to be sensible because they clearly show
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0 0.2 0.4 0.6 0.8 1
Figure 4.19: Plot of the liquid film free surface h(z); n, 7 and P fixed at n = 1.0, 7 = 1.0,

P = 1.076683 (n = 80).
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Figure 4.20: Plot of the liquid film free surface h(z); n, 7 and P fixed at n = 1.0, 7 = 1.0,
P = 1.076683 (n = 100).
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that h ~ 1 — z near z = 1, see for example figure (4.18) where the number of mesh points
is still small. However, the answer to the question of whether the results are accurate, and
valid beyond any doubt, at this stage remains open (as discussed later in this section, for

example) because we have not yet provided a simple but related check problem.

It is undoubtedly difficult to solve this problem and, as a result, it is very difficult and
tedious to attempt to investigate the effects of changes in the values of 7 and 7 in this problem.
In particular, it should be noted that equation (4.15) is

1 7 [l de 7 [lsinT!(VF) /‘ VE1-§) 1— Lod¢

3T T Re T2k TRE * T3 zn R3(€)

71’/0 Sm_lf) /h A)de + = / Vé(l /h Jdrde

w [l d¢ sm’l(\/_ VE 1-—
3| _/0 +/ ] (4.30)

Thus, from equations (4.30), (4.16) and (4.17) we get

P
—C’37r+—6+01|:

n—l —
—{ 7A+D} = ho—ﬂT 1 df 2/ s (‘/_dg—Q/ ved=¢)

4 Jo h h(&) h(é)
r 1 de 1 [Usin f) \/——
ok waah / roarat = - [P EGEE [Eran
he 7 [1 d§
‘A["?‘ 1) me "
Vel -¢§) 1— sin” ! (V&)
2/ g——/ h3(§)/ R(\)dAE + / G g) / R(N\)dAde
V€1 -§)
+ f T / h(A)d/\dg}
Lode 2 [1sin"}(VE)
“{ 0 () ;;/0 G
{ 1 [ ho [t de
Efol_étg__fol Sin;l((g)/_) 1 {(1{) 3 4 0 h({)

%/ Vel —¢) 1‘ g_—/ /h(A)dAd§+ /Smﬁl(‘ﬂ/ h(\)dAde

/ / h()) d/\d§:| }

h3(£)

T ! df 7 [!sin~1(/€)
2 0 h(f) _;/0 T_i_ﬁ/o h3(§)/ h(X)d d¢
_7:7/ sin™!( \/_)/ 3 )\)d)\df} (4.31)
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where A and D are given by

i £(1—¢
T g s - g 0 g %ds]

A =
1 1
Thg—h i 2 e - f3 l;f((s)s dg
de 1(/8)
7 fo w5 ~ 2 ) Smh o %

D =
sin™ 3{ 1-

5 1o w5ty — o h3<s)

Hence the discretised equation which is used to iteratively obtain the value of P is accordingly

6

—7mA+ D %
n-1 n—1 15] ar n—1 1

ho wr 2l 1
—— —_— 4T ——3+
{ 3 27L h_7+1 + h Z J+1 + h Z h]+1 + h’ nn j=0 (hj+1 + hJ)3

_n—l I,; g -l I3; A hy =T 712: 1
[ (Rj+1 + hy) niZo (hj+1 + hj)3 3 2n =0 hjt1+ hy
b TR Ly 8N Dy 8N Iy
=0 hjt1 + hj m o (hjs1+ hj)S = (Rj+1+ hy) miZo (Rjs1 + Ry)
n—1 n—1
I .
iy L B Dy
n 2o (hjr1+hy)” ™ i (R + hy)
b oS 1 R Ty dnis Dy
E| 3 2nighi+h  Shinthy 0 S (et hy)
U ]Zo (hjy1+hy)°  m E) (hj+1 +hy)? n ;:2 hj+1+ h;
21 T Iy 8% Ly 16 3 Iy 132
[ 2t sh P My it p M wewwe ) § AN
j=0 "+l ;=0 (Rj+r + hy) 1 =0 (hj+1 + hy)

where A and D are approximated by

n—1 Iyj Is;
I=0 (hj41+hy) +16 7 0 (hj41+h;)

41r n-—
—0 +h X

A = E ,
i 71 1 14;
D =~ n (h.7+1+h ) 162 (hjy1+hj)
E b
and FE is given by
n—1
I4j

e
= T D P .
n ; (hj+1 +h ) jzz:o (Rjs1 + hy)°

We should recall that the main reason why we have attempted the problem in this section
was to investigate the possibility of solving the original problem by directly specifying the

pressure (as opposed to the pressure gradient) at the onset of the annular flow regime. This
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approach is certainly very difficult and the algebra involved is very cumbersome. However,
the problem has been tackled to a level where the only remaining thing is to provide a simple
but related paradigm problem (which may be solved preferably in closed-form) so that our
numerical scheme can be tested. A suitable such problem has not been found yet. As a result,
the numerical results typified by the plots in figures (4.18), (4.19) and (4.20) are described
as preliminary.

One of the simplest paradigm problems related to the current problem here may be obtained

by assuming that n = 1/€ and 7 = ¢, for € — 0, in equation (4.1), so that to leading order we

() -2

for some constant B (which depends on the global behaviour of & in [0, 1]). The corresponding
boundary conditions are h(z) = 0 at z = 1, hy(z) = 0 at z = 0 and A(0) = ho. We further

know that - ©
1 ¢ _
. ]{) §rdE = P

It is however, nowhere near trivial to solve (4.33) numerically (as we illustrate below without

get

actually indulging in the computation for h in this problem).

On following the approach proposed in section (4.4.1), it may readily be shown (after much

algebra) that h(z) is given by

o 2B 1 sin~(/%)
h(z) = (7r—2sm 1(\/Z)) {7r C+B/ R(E) " 7 Jo T H3(E) g+
\/—(—1_— 2P 2B 3
[T }-—Fl()——(F1($) ) [ g
2B [! F3(z,&) + Fy(z,£)
+7 A w3 (E) dg, (4.34)
where B, C, F\(z), Fa(z), F3(z,£) and Fy(z,&) are respectively given by
hog 4 P (l — 1)
B = ~__TAm , (4.35)
2 Jy i
Ny L de 2 [lsinT'(VE)
¢ =3 +B{ o R3(6) 7T/o h3(€) dé}’ -3
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.HW¢)=—@—zﬂ&@—xy—gbnm—ﬂ+€§+%~_}&

If numerical computations for h are to be carried out for this paradigm problem, it will
have to be recognised from equation (4.33) that h ~ (1 — z)!/? near z = 1. Therefore, extra

care should be taken as some terms in equation (4.34) will have to be calculated analytically

110



near £ = 1, otherwise they will diverge in the numerical scheme. For example, near z =1

. T L P S
0 h3(§) /0 (1-¢)3 =T
/ T 1— —2+ 2 tanh™ (\/E)I1

—_/ f1—

= 2lim ! —gtanh (\/g)l

2 lsm"l(\/E)
f S

™ h3(€) Vi€

E=1/1T—-¢ =« £=0"
Thus, from equations (4.35) and (4.36), we obtain that
bde 2 (lsin}(V) I
0 h%g)‘%/o e X *ta h (\/E)LZO- (4.37)

It should be noted that the last integral in equation (4.34) produces many more terms which

should also be taken care of outside the numerical scheme near z = 1.

In conclusion, in this section we have solved equation (4.1) numerically for the special case
where hg, along with the parameter values n and 7, are fixed and the pressure P at Z = 0
is varied until a converged numerical solution for h satisfies all of the boundary conditions.
In reality, the parameter hg, instead of P, should be the one which is altered until all of
the boundary conditions are satisfied. However, as explained earlier, this would lead to
an even more difficult and cumbersome problem to tackle numerically. The main aim in
this section was to explore the possibility of solving (4.1) [and hence possibly the previous
problem, equation (3.35)] by directly specifying the pressure at the onset of the annular flow
region instead of the pressure gradient there. The results of this section suggest that such
a possibility may exist. However, there is still some way to go since a suitable paradigm
problem has yet to be provided so that the accuracy and hence the validity of the numerical
method proposed here can be tested. As a result, the results of this method have not been

used to make any predictions on the dryout point.
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Chapter 5
Unsteady Flows

In chapter 2, we have proposed a fully unsteady model for the problem and in chapters 3
and 4, the model has been solved numerically for specific cases in the steady state. Now,
the ultimate aim will be to solve the whole problem numerically for the unsteady cases. It
is almost customary and usually simple in the unsteady problems to seek similarity and/or
travelling wave solutions. However, a brief analysis of some simple cases of the problem in
section (5.2) shows that these solutions are physically unrealistic and therefore are not of
immediate interest here. Thus, in order that any predictions could be made for the dryout,
it is then inevitable that the whole unsteady problem must be solved numerically. It will
be, however, unthoughtful to embark on the task of solving the whole problem numerically
without investigating whether in reality its solutions exist or not. Hence in this chapter we
mainly address the question of linear stability for this problem. As a result, the literature
review in section (5.1) is concerned with the linear stability analysis of some related problems.
It should be mentioned nonetheless, that none of these models in the literature include the gas
core (such literature, to the best of our knowledge at the time of writing, is not available).
Nevertheless, we hope that some of their results will provide indications as to what we
may expect from the linear stability results of this problem, e.g. whether the mass transfer
parameter 7 is a stabilising factor or not. We will focus here on the linear stability of the

constant wall temperature problem though the other case can also be done.

5.1 Literature Review

The stability of thin liquid films adhering to heated walls is of practical importance in several
applications including the analysis of liquid metal cooled fast breeder reactors (Bankoff, 1971)
[8]. Therefore, this phenomenon has been of particular interest to a number of investigators.

Essentially, investigators analyse the order of magnitude of the dimensionless terms in their
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respective models for the disturbance waves at the interface in order to isolate the influence of
various terms on the stability criteria of the thin liquid films. Such terms include phase change
terms, vapour terms, thermocapillary terms, gravitational terms and physical variation terms,

to mention but a few.

Bankoff (1971) [8] investigates the linear stability of a Newtonian liquid layer, with zero
surface shear stress, draining down an inclined heated plane. On assuming that the liquid
film is extremely thin, Bankoff (1971) [8] employs long-wave theory (where it is assumed that
the disturbance waves have wavelengths much larger than the mean thickness of the liquid
layer or, equally, the waves have a small wavenumber) to obtain a critical Reynolds number,
above which the film flow is unstable, in terms of a heat flux parameter. It is then concluded
that evaporation at the free surface is always a destabilising factor while condensation has
a stabilising effect. This result, for example, suggests that an increase in the mass transfer
parameter 1 might be a stabilising factor in our problem since such an increase will, intuitively,
result in less amount of evaporation in this problem. In Bankoff’s analysis the temperature
of the free surface is taken to be a constant. This study was extended to allow temporal
temperature variations at the free surface and to include surface tension by Lin (1975) [51].
The results obtained by Lin confirm those of Bankoff and further suggest that variation of
surface tension with temperature is a destabilising factor in heated films but has an opposite

impact in cooled films.

The formulation of Bankoff’s (1971) [8] model is however, criticised in detail by Spindler
et al (1978) [82] for its discrepancies in the jump conditions at the free boundary. Spindler
(1982) [81] studies the linear stability of a liquid film flowing down an inclined plane with a
constant wall heat flux and interfacial phase change. It is assumed that there is no vapour flow
except very close to the vapour-liquid interface where it is assumed that the vapour motion
is induced by the film flow. Spindler’s model takes into account the variations of the physical
properties of the Newtonian fluid due to temperature changes, and a theoretical dryout length
is estimated even though the author points out that the model is not valid near the dryout
point. It is concluded that evaporation, in agreement with the other previous studies, has a

destabilising effect while condensation has a stabilising one.

Linear stability of the surface of a superheated liquid undergoing steady evaporation was
investigated, in a planar configuration, by Prosperetti & Plesset (1984) [67]. In the analysis,
both the vapour and the liquid are treated as incompressible and inviscid. The growth rate
of the perturbations is obtained as a function of the wavenumber and the destabilising effects
of the disturbances of the gas pressure and evaporative mass flux are discussed for a number
of basic temperature distributions in the liquid. It is also concluded that the interfacial
temperature changes do not play a significant role in the instabilities of the free surface. A

similar study is carried out by Higuera (1987) [39] in a three-dimensional configuration, to
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include effects of the fluid viscosities. The results of Prosperetti & Plesset (1984) [67] are
recovered and it is further found, as one would expect, that both gravity and surface tension

have stabilising effects on the free surface.

There has also been an interest in the nonlinear stability analysis of static evaporating
and condensing thin liquid films (see for example Burelbach et al, 1988) [14] to investigate
rupture in thin thermal liquid films, which is probably the limiting case for linear stability

analysis.

It should be mentioned that in all the above studies, the underlying models are nonlinear
partial differential equations. In our case (as a result of accounting for the dynamics of the
gas core pressure from the thin aerofoil theory perspective) we have to deal with nonlinear
singular integro-differential equations. We should mention, on the other hand, that there has
been a numerical investigation of linear stability of a two-dimensional unsteady sail (which is
a linear singular integro-differential equation of a semi-infinite range type) by Haselgrove &
Tuck (1976) [38]. Apart from the nonlinearity, the base state equations we tackle here differ
from those considered by Haselgrove & Tuck (1976) [38] in that, besides being of finite range
type, they also possess a singularity in one of the end boundary conditions. Thus, numerical
computations involved in obtaining solutions are formidable. Moreover, our model is a moving
boundary type problem, whose linear stability analysis (to the best of our knowledge) has

not been tackled before.

5.2 Similarity Solutions

We seek similarity solutions for simplified cases of equation (2.62) and analyse them with
respect to the physical situations. It will be seen that for practical purposes, these solutions

are not interesting. We recall that equation (2.62) is

1 B h3 1+1(t) hg({,t) h2

where for convenience, from now on (unless clearly stated) the unbarred variables should
be understood to be nondimensional. Assuming that A ~ O(e2?), t ~ O(e), n ~ O(e?) and
7 ~ O(1/€®), for some small positive parameter € — 0, in equation (5.1) we obtain

T 1
—h2> ht+— =0 5.2
(2 et =0, (5.2)

to leading order. (It should be mentioned however, that these asymptotics may not be
valid near the dryout point, where it may be anticipated that nonuniformities will manifest
themselves.) For similarity solutions, we follow standard techniques, see for example Ames

(1965) [2]. We employ a transformation h = A"H, z = AX and t = AT, for some parameter
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A and real numbers n and m, in equation (5.2) to get

)\l—n
nH

=0. (5.3)

A2n
(77H> + A" H +
X

From (5.3) we obtain that n = 1/3 and m = 2/3 for equation (5.2) to be invariant under the
above transformation. Thus, we have a similarity solution
h—ﬁH($t> (5.4)
A3/ )

Upon choosing z = A, without loss of generality, equation (5.4) gives
h=g5H (tz75) . (5.5)

Since h(z,t) vanishes at the dryout point z = 1 + I(¢) = G(t), then equation (5.5) implies
that

G(t) = Art2, (5.6)

for some constant A;. Thus we have a boundary condition H(A;) = 0. Since A; is not a
known parameter, we are allowed to prescribe one more boundary condition at the entry to

the annular flow regime, z = 0.

We proceed first by deriving an equation for H from equation (5.2). We define a variable
§=ta73,

so that h is given by
t

h= (Z) ey (5.7)

Therefore, substitution for z and h in equation (5.2) leads to an ordinary differential equation

for H

1 T 1 ¢
3 (35 - 2T§2H) He + §§H2 —gH+ g =0 (5.8)

Equation (5.8) may be solved numerically for H by standard methods if A; is known or one
more appropriate boundary condition is prescribed. For the purposes of checking whether
the similarity solution (5.5) makes sense physically, it is sensible to consider simpler cases
of (5.8) where closed-form solutions can be obtained. We therefore consider the case when

7 = 0. In this case, a closed-form solution from (5.8) is given by

() = ~/ne(-2Ing] + K), (5.9)

for some constant of integration K. The constant K may be obtained by applying the
boundary condition at the dryout point H(A;) = 0, i.e. K = 21ln|A;|. Since A; is not

a known parameter, we will prescribe an extra condition at the entry of the annular flow
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region, x = 0. Now, from equation (5.7) we observe that near £ =0, H ~ ¢ 1/2 Thus, from
equation (5.5), it follows that h(0) = O for all finite ¢t > 0. However, this condition is absurd
and unrealistic physically. Moreover, from equation (5.6), we observe that the dryout point
is always increasing (or decreasing) for any positive A; (or negative A;). Thus, we expect
h{0) to be greater than zero and increasing (or decreasing) accordingly at all times ¢ in order
to sustain the increase (or decrease) in the dryout point. Therefore, though this similarity
solution is mathematically fascinating, it is not physically sensible for this particular problem.

A similar analysis to the above one can be performed on equation (5.1) when 7 = 0. In

this case a similarity solution is given by
h=gz5H(tz"3).
The function G(t) at the dryout point is given
G(t) = Astt, (5.10)

for some constant As. We may, as before, then make a change of variables s = tr~% and

h=(t/s)\?H (s) in (5.1) to obtain a nonlinear ordinary integro-differential equation for H

12 1.4 Az (5¢)% (¢'1H(¢))¢ u -1y st
25_7r{83H <]€ s%—'t/)% dy s’e —s(s 2)8—;7?, (5.11)

where 7 = 0. Upon prescribing appropriate boundary and initial conditions, equation (5.11)

may be solved numerically for H by standard methods. However, as in the previous case
we observe from (5.10) that either the dryout point is either always increasing or decreasing
depending on whether A, is positive or negative, respectively. This result is restrictive since
it does not provide any opportunity for the dryout point to fluctuate back and forth (a
frequently observed phenomenon in reality). Therefore, we will not restrict our attention to
single transformations (be similarity and/or travelling waves solutions) to study this problem
since they are practically not interesting in this case. Rather, much focus should be directed
towards solving the whole problem numerically for the unsteady cases. However, as mentioned
earlier, it is important to check the linear stability of the problem first. After all, it is not

sensible go on to obtain solutions which may not be observable in reality.

5.3 Linear Stability Analysis

In this section, we will examine the linear stability of solutions obtained for our steady state

two-parameter model governed by equation (3.35),

I h3 Lhe(€,t) h?
5= e (F €50a) -5} .
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to check whether these basic solutions might be physically observable or not. In other words,
we wish to test the ability or inability of these solutions to sustain themselves against small
perturbations to which any physical system is subject. A more detailed general concept of
hydrodynamic stability may be obtained from now standard text books, for example, see
Drazin & Reid (1985) [26] and Chandrasekhar (1981) [17]. Here, we will proceed by first
assuming that the unsteadiness in equation (5.1) manifests itself as a small perturbation

about a basic steady solution hg(z) of (5.12).

Before we continue with the linear stability analysis of the full problem (5.1), it is however
sensible to first analyse the linear stability of some simplified cases of (5.1). The full nonlinear
problem (5.1) is very complex due to the presence of the Hilbert transforms and it is very
difficult to deal with. Therefore, we need to create some paradigm problems against which
we may test our linear stability results for the full problem. It must be emphasised though
that these problems are only idealisations and, as a result, falsifications. Nevertheless, we
hope that some of the features retained for discussion are of greatest importance in the linear
stability.

5.3.1 A Constant Pressure Gradient Problem

If we assume that pressure is linear in z (instead of being given by the Hilbert transform of

hz(z)) in equation (5.1) then we have a simplified problem

h3 T 1
2 p - k2N _p = 5.13
{37‘( T 9 }m t nha ( )
where P, is the pressure gradient. In general P; may be written conveniently in the form
P, = —apa(t), (5.14)

for some positive constant ag and a non-negative function a(t). (In the subsequent linear
stability analysis of this problem we will however, consider a simple case when «(t) is a
constant.) We take P, to be negative in order to allow h to vanish at some positive length
from the point x = 0. This choice of P, is of course physically natural in order to allow the
flow in the gas core to be in the desired direction, i.e. towards the turbines far downstream

of the dryout point.

Equation (5.13) is a first order partial differential equation and we are allowed to prescribe
one boundary condition and an appropriate initial condition. It is convenient to impose a
condition that h(0,t) = hg, for some positive constant hg. It should be mentioned however,
that h(0,t) can be allowed to be a function of ¢ but for simplicity and consistency with the
assumption to be applied to the full problem (5.1), it is sensible to proceed with the current

choice.
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5.3.1.1 A Non-Zero Pressure Gradient Problem

On assuming that h;(0,t) exists then, without loss of generality for real h(z,t), we specify

4
oy = —. (5.15)
nhg
Therefore equation (5.13) leads to
h? {kyha(t) + ko} hy + nhhy +1 =0, (5.16)

where k; = 4/h$ and ky = nr.
As mentioned earlier, we assume for simplicity that «(t) is just a constant, in particular

a(t) = 1 for convenience. Under these circumstances the steady case of equation (5.16) yields

B

i I

(5.17)

where B = h$/4 and C = nhi7/4. Equation (5.17) can easily be solved in closed form to give
¢
3
where D is a constant of integration which may be obtained by applying the boundary

ih‘i(x) + —h3(z) + Bz = D, (5.18)

condition at z = 0 to get

4 3
The zeros of (5.18) can be found analytically. However, the roots are in such a general form

D=h3(@+€).

that they are unhelpful in the subsequent linear stability analysis. We observe, on the other

hand, that in the special case 7 = 0, (5.18) gives a simple solution
h(z) = ho(1 — 7)3. (5.19)

It is particularly interesting to notice that (5.19) automatically mimics the dryout point only
at £ = 1, i.e. h(1) = 0 for any prescribed hg. This result is a direct consequence of the scaling
in equation (5.15) and it is highly convenient in the subsequent linear stability analysis for

this special case.

In order to proceed with the linear stability analysis, we first employ the method of char-
acteristics to solve (5.16) analytically when « is a constant (and without loss of generality

we take a = 1), i.e. we solve
h? {kih + ka} hy +nhhy + 1 =0. (5.20)
We parameterise in ¢
s = kih? + kah,
ty = 1,

1
hy = —1. (5.21)
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Equations (5.21) solve to give

1
h = {2(4-4q)}2,
t = ng+ B,

z = 2{k1 (A—g)q——\—/é—_z-kg(A—q)%}-}-C, (5.22)

where A, B and C are constants of integration. We prescribe an initial condition that when
t=0
g = 0,
T = P
h(z,0) = F(p),
for some arbitrary function F(p), so that (5.22) implies that

h(z,t) = V2 (%Fz(p) _ 73’) 2 (5.23)

where p is given by

_aa(k AN 2t)?
p-—z—2{3<h2(z,t)+n)n 5 [h3(x,t)+(h2(x,t)+ n) ]} (5.24)

Substitution of (5.24) into (5.23) leads to an implicit equation for h(z,t)

2t k t\ ¢
h2x,t+—=F2(w—2{—1—(h2z,t +—)——
(z,t) ” 5 (A (1) )

%2 [h3(m,t) + (h?(x,t) + %)} }) . (525)

In the special case 7 = 0 (i.e. only the effects of 7 on the linear stability of the problem

will be investigated under these circumstances), equation (5.25) reduces to

h2(m,t)+—277t:F2 <x—k1{h2(x,t)+—;-} %) (5.26)

We then investigate the linear stability of (5.26) by introducing a perturbation to the steady
state solution in the form
F(z) hs(z) + esin(Mz),
h(z,t) = hg(z) + ehy(z,t), (5.27)

for some real constant M, where hp(z,t) is the perturbation solution and we know the steady

state solution hs(z) from equation (5.19)
hs(z) = hgo(1 — )14, (5.28)
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Substituting the pair of equations (5.27) into (5.26) and employing equation (5.28) yields

h2(1 — 7)% + 2ehgo(1 - T)3hy(z, 1) + % = K2R (z,t) + ehsoRE (z,t) sin(M[z — Ry(z,1)]),

(5.29)
on neglecting terms of O(e?). The functions R(z,t), Ri(z,t) and Ra(z,t) are respectively
given by

R(z,t) = Ri(z,t)+ Ro(z,t),
t]t
Ri(z,t) = l—z+k [h§0(1—x)%+; o

Ry(z,t) = 2ekiheo(l — z)%—hy(z,t).

t
n

We may then expand both R2 (z,t) and R%(x, t) using standard methods to give

1
Ri(z,t) = RZ(z,t)+ Ri(x’t) + O0(é?),
2R} (z,t)
Ri (z,t) = R% (z,t) + i%gg(:c_,t) + O(€?).
2R} (z,t)

Thus, on comparing coefficients of € in equation (5.29), we obtain (to order €) an equation

for the liquid layer thickness perturbation hy(z, t)

{1 -z +ai(z,t)}3sin(M {z - e1(z,1)})
hy(z,t) = : T
(&) 2(1——z)2{[1—m+a1]§—2’71}

, (5.30)

where o;(z,t) is given by

or(z, 1) =4{16(1_x)%+%} ;t)- (5.31)

k1 has been replaced by its value k; = 4/h?%; and, for convenience, hso = 1. We notice that
(5.30) is not defined at the point z = 1. However, on excluding this point, we can still obtain
some important information on the linear stability from equation (5.30). Since 0 < z < 1 we
observe from (5.30) that the perturbation hy(z,t) grows for all values of n > 0 and ¢ > 0.
In other words, this results suggests, as one may expect and in agreement with the results
in the literature, that the mass transfer parameter n > 0 is a destabilising factor. For the
values of 7 < 0, on the other hand, it is clear from (5.30) that for all values of ¢t (0 < t < 1),
the perturbation h,(z,t) decays. It is important to recall at this stage that in this study 7 is
inversely proportional to the difference in the pipe wall temperature T3, and the saturation
temperature of the superheated liquid film T, n o« 1/ (T, — Ts). Therefore, the notion
of n < 0 here does not necessarily refer to condensation in the physical conception of the
problem, it should be understood only as a mathematical entity. On the other hand, n > 0

physically refers to an evaporating superheated liquid film. Literally, higher values of positive
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7 indicate a less superheated film. It is therefore interesting to observe from equation (5.30),

in particular, that for all values of ¢ (0 < ¢t < 1) when 7 — co the perturbation
1
hy(e,1) ~ 5(1~ )7 sin(Mz),

which, as one would expect, does neither grow or decay. (This is also the case when  — —oc.)
In other words, an increase in 7 > 0 is a stabilising factor in this problem (and so is the case
for an increase in the magnitude of n < 0). These results may also be complemented by

solving the unsteady problem
k1

4

numerically (after rewriting equation (5.20) in terms of H when 7 = 0), subject to an initial

(H2)z + Z-Ht = -1,

condition that is a slight perturbation of the steady state solution. The dependent variable
H is defined by H = h?. We will adopt this approach in the linear stability analysis of a zero

pressure gradient problem in section (5.3.1.2).

5.3.1.2 A Zero Pressure Gradient Problem

When P, = 0 in (5.13), we obtain an equation identical to (5.2)

1
Thhy + hi + — = 0. (5.32)
nh

We hope the linear stability results of this problem will give us a benchmark against which we
may compare the results of the full problem with regard to the effects of 7 # 0 and its changes
when 7 is kept constant in the problem. In order to proceed with the linear stability analysis
of equation (5.32), we set h = Hh(0), t = nh(0)T and z = nh(0)X, where we have assumed,
for simplicity, that at all times h(0,t) = h(0). Under these circumstances equation (5.32)
becomes

TH?Hx + HHr +1 =0, (5.33)

where 7 and H(0,T) are respectively given by 7 = 7/2 and H(0,T) = 1. The steady state

solution to equation (5.33) is given by
1
H(X) = (1 - g )3 , (5.34)
where we have dropped the bars for convenience. The steady solution has dryout at the
points X = 7/3.
It should be noted at this stage that an identical equation to (5.33) may be obtained

from the full nonlinear problem (5.1) by assuming that h ~ O(1), t ~ O(e), n ~ O(e) and
7 ~ O(e"!) in (5.1), so that to leading order we have the problem

Th?hy + hhy +1 =0, (5.35)
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which is (5.32). It should also be pointed out however, that these asymptotics may not be

valid near the dryout point where h is also small.

In order to analyse the linear stability of equation (5.33), we solve the unsteady problem

T (3 1

3 (’Hz)X +5 () =-1, (5.36)
numerically using finite differences with a mesh-step of 0.01 and a timestep of 0.00005, where
H = H?. Equation (5.36) is solved, for a wide range of specified 7 values, subject to initial
conditions which are perturbations of the steady state solution

2
n=(1-2x)", (5.37)
T

and, for simplicity, the boundary condition #(0,T) = 1. The typical results are illustrated
in figures (5.1) and (5.2) for 7 > 0 while figure (5.3) shows the typical results for 7 < 0.

1 ' ' ‘ ' ' )
o e
“ I' AN > — — T=0.0003
0.8 {f- - - - T=0.0076 7
......... T=0.0230
— - - T=0.0500
0.6 | _
H
0.4 | ﬂ
0.2 H _
0 : ' ' ' J 1 |
5 50 100 150 200

X

Figure 5.1: Evolutions of the perturbation to H(X,T) when 7 = 60.0.

In order to interpret the results here, we need to note a few things. Equation (5.32) is
asymptotically consistent with the full problem (5.1) when 7 is large and 7 is large (e.g.
equation (5.32) can be obtained from (5.1) by assuming that 7 ~ n ~ O(1/€®), h ~ O(€?),
t ~ O(e) and then considering the leading order problem). However, leading to (5.33) from
(5.32), we have scaled ¢ by t = ni(0)T, where h(0) is assumed to be of O(1). We further know
that for the linear stability analysis, ¢ is assumed to be small. Hence this implies that for

the linear stability results in this section, 7 is inherently small. Therefore, the linear stability
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Figure 5.2: Evolutions of the perturbation to H(X,T) when 7 = 2.7.
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Figure 5.3: Evolutions of the perturbation to H(X,T) when 7 = —2.5.
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results here should be compared to those of the full problem (5.1), when 7 is small and 7 is

large (e.g. results illustrated in figure (5.13)).
The typical results depicted in figures (5.1) and (5.2) clearly show that 7(> 0) is a stabilising

factor since all perturbations to H(X,T) decay as the time T increases. The results further
suggest that the increase in 7 is also a stabilising effect since when 7 is relatively large (e.g.
7 = 60.0 in figure (5.1)) the perturbations decay faster than in the case when 7 is relatively
small (e.g. 7 = 2.7 in figure (5.2)). The typical results shown in figure (5.3), on the other
hand, suggest that 7(< 0) is always a destabilising factor since the perturbations to H(X,T)
grow as 7 increases. It should be mentioned at this stage, for clarity, that all the graphs
shown here represent the typical results which have been obtained through an extensive

experimentation with the values of 7 in the range —10.0 < 7 < 100.0, 7 # 0.

These results may be complemented by plotting (using XMAPLE for example) the evolu-
tions in time ¢ < 1 (for a fixed value of 77(# 0) where various values of 7 are specified) of the

closed-form solution of the perturbation hy(z,t)

hp(,1) = — : : (5.38)

where ay(z,t) is given by

1

on(z, t) = (%) A-z)h+ 775 (5.39)

Equation (5.38) is obtained by solving (5.2) using the method of characteristics as in section
(5.3.1.1) to get

R2(z, 1) + %nf _ F? (w + 2 {h3(m,t) - (h(a:,t) + %’f) }) , (5.40)

for an arbitrary function F. Then we introduce a perturbation on the steady state solution

in the form

F(z) = (%)é(l—x)%—%ésin(Mx),

h(z,t) = (%)5(1—x)%+5h,,(x,t), (5.41)

for large enough real constant M. Substitution of equations (5.41) into (5.2) and comparison

of coefficients of §, after some algebra, leads to (5.38).

In the limit 7 — *oo in particular, we note from (5.39) that

2t
(12(t) ~ -’;7-
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Hence we obtain an asymptotic solution for hy(z,t)

1

9 (1-z)5M
{1801 - 2)5 — 3} V24

as 7 — %00, for increasing values of t at a fixed value of 5(# 0), z € [0,1] and -1 < M <

hp(z,t) ~ -0,

1. Thus suggesting that the perturbation h,(z,t) decays quickly to nearly zero for large

magnitudes of 7 values.

It will be seen later in this study that the characteristic behaviour of the results shown in
figures (5.1) and (5.2), when 7 > 0, are reflected by the numerical linear stability results for
the full problem (5.1) in figure (5.13) until 7 = 170, for n = 0.1, where 7 suddenly begins to

play a destabilising role (a physical reason for this will also be proposed).

In conclusion, it will be seen later in this study that the results of the paradigm problems
in this section suggest that indeed the numerical linear stability results for the full problem
(5.1) might be correct. Apart from these two paradigm problems, we could have presented
many others. However, the other paradigm problems require creation of other paradigm prob-
lems in order to test their numerical results and the process can become very cumbersome.
One such case (as an example and without going into too much technical details) presents
itself if we follow Tuck’s (1991) [86] approach and simply replace the Hilbert transform op-
erator { by a constant times a derivative operator 9;. Tuck (1991) [86]’s attitude is that
the resulting equation may exhibit some of the features of the application described by the
original equation, while not necessarily giving a quantitatively accurate solution. Applying
this approximation to our full nonlinear, steady state problem (5.12) implies we will have to
solve

T, 3 T2 1
T 3hyyy — Ch2L = 1 5.42
{37rh oz — 2 } o= (5.42)

where it has been assumed, in addition, that ¢ is small, h ~ O(€), 7 ~ O(1/€) and 5 ~ O(1/€?).

In the steady state case equation (5.42) may be rewritten, after some algebra, as

™ ()4 0,4 T3 =1
E (h )Ihxzm + 37rh (h:z::v:c)z 3 (h' ):c - ,,7' (543)
Equation (5.43) may be analysed by solving
TN, 4 T 3 1
—h*hype — = = - .44
{37r T 3h }I 7 (5.44)

This is rather a crude assumption. It is, nonetheless, not any better or worse than simply
replacing the Hilbert transform operator by a constant times a derivative operator just for
simplicity.
Equation (5.44) integrates to give
T

Y _ T3 _ T
37rh hezs 3h n+C’ (5.45)
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where C is a constant of integration. It may be demanded that (5.45) satisfy the regularity
condition h ~ (1 — z)3/3 of the original problem near the dryout point = 1. This requires
that C = —1/n and consequently,  and 7 should simultaneously be greater than zero at all

times. On scaling h = hgH, where hy = h(0), we will then have to solve
kiH*Hppo — ko H® = (z — 1), (5.46)

subject to boundary conditions H(1) = 0, H;(0) = 0 and H(0) = 1 for some constants
k1 = tn?h}/3n and ko = 7tnh3/3. (The existence of a solution to a nonlinear ordinary
differential equation cannot be taken for granted. We could not obtain any numerical solutions
to this problem in the cases of interest where 7 and 5 are large. However, some solutions
were obtainable when 7 and 7 were both of O(1).)

In the unsteady case we will have to solve, consistent with the regularity condition, a

problem
G(T)
kyH*Hypp — ko H® — 1 / HHypdu = 7 ~ G(T), (5.47)
xT
for some function G(T') and where t is scaled with ¢ = h3T. The boundary conditions

H(G(T),T) = 0, H,(0,T) = 0 and H(0,T) = 1 may be specified. For the linear stability

analysis, a perturbation of the form

H = Hy(z) + eHp(z)e’T,
G(T) =1+ eAe’7,

may be introduced, for some constant A, H; is the steady state solution, H,, is the pertur-
bation solution, o is a measure of the growth or decay rate to be found and it is complex.
This will require that we solve the following O(e) eigenvalue problem for all o values for any

non-zero solution Hy, and A,

1
ki H2 (HgHpzzr + Hszzo Hp) — 3ko H2Hy — no / H H,du = 0, (5.48)
T

subject to boundary conditions H,(0) = 0, Hp;(0) = 0 and Hp(1) = 0.

Equation (5.48) may be solved numerically for all eigenvalues o and preliminary results
suggest that the steady solutions to this problem might always be unstable in an oscillatory
manner. However, when it comes to the independent test for the numerical scheme, things

become a bit more tricky. The problem may require the introduction of a new variable

G(T)
F(z) = / H,(u)H,(u)du,

so that, after some lengthly algebra, and the use of

kzi‘ r—1

Hszzz =T T
W H, R
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equation (5.48) becomes

R, = S(z),
Sz = Q(z),
Qz =U(z),
Uz = = [f3(z; k1)U(2) + fa(z; k1) Q(2) + fr(z; k1, k2)S(z)+

fo(z;n,0)F ()] / fa(z; k1), (5.49)

with boundary conditions S(0) = 0, Q(0) = 0 and U(1) = 0. The functions S(z), Q(z) and
U(z) are defined by

F, = S5(z),
Fpr = Q(.’L‘),
Fppr = U(x).

While the terms f4 to fo are respectively given by

fa= -k H}(z),
f3 = 3ki H} () Hyz (),
f2 = ki H2(w) {3H2(2) Hoza(z) — 2H, (2) e (2) Hyzo () — 4H,(2) HE (@)
fi = k1 H2(z) {Hg(x)Hm(m) — 6H,(z)Hyz(7) Heolz) + 6H3 (x)} -
{kH}(z) + 4(z - n},
fo= —noH}(z).

Equation (5.49) is an ordinary differential equation. Therefore, it may seem to be in a perfect
form to be solved as an initial value problem using, for example, the NAG library routine
DO02PCF. The values of o obtained by our numerical method would then be specified in the
routine to check whether the solution satisfies the end condition U(1) = 0, thus checking the
accuracy of the computed o values. However, the fact that H; is obtained numerically and
that there is a singularity (that needs to be carefully dealt with) in H, at z = 1 makes this a
very tricky task and therefore we would still need another paradigm problem in order to test
the method and the results. On the other hand, the results for paradigm problems (5.20) and
(5.33) can be checked easily using some standard methods. Moreover and more importantly,

their steady state solutions can be obtained in closed-form and are therefore exact.

5.3.2 The Full Problem

Having analysed the linear stability of some related paradigm problems, we now move on to

examine the linear stability of the full problem (5.1). As mentioned earlier, we will proceed
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here by assuming that the unsteadiness in equation (5.1) manifests itself as a small pertur-
bation about the basic steady solution hs(z) of equation (5.12). We then seek an unsteady
perturbation of the form
h(z,t) = hs(z) + ehp(zx, 1), (5.50)
Ut) = ef(t), (5.51)
where €(> 0) is a small parameter and the function f(¢) is not known.

It is convenient to transform the moving boundary problem into a finite fixed interval [0, 1]

by setting

z = z(1+¢€f(t)),
t = T. (5.52)

The derivatives then transform into

9 _ _1__2

or 14+ ¢f(T) 0z

8 z i & 8

5 = T1tef(@)drTas " oT (5.53)

We then assume, as in (5.50), a perturbation in A of the form
h(z,T) = hs(z) + €hp(2,T). (5.54)

On substituting (5.54) into (5.1) and using equation (5.53) we obtain, to leading order,

RS [ 1! her(r) ) 2 | 1
{371_ (ﬁ —r—zdr ) 57 z—nhs, (5.55)

which is, as expected, identical to equation (5.12) that we have solved earlier. The associated

O(e) problem is then

3 z r 2 z
{”;2 ) (]{) fr ’T)dr>z B N ahy (2, T) = T2 F(T) —Ths(z)hp(z,T)}z

o 482

(5.56)

where N denotes here the Hilbert transforms of h,,, so that

N, = ][ hsi(r) ,

r— z
Equation (5.56) is linear in both h,(z,T) and f(T'), both of which are unknown at this stage.

In order to proceed with the linear stability analysis, a relationship between f(T') and
hy(z,T) must be found. Since in (5.56) f(T) is a function of T' alone and hy(z,T) is a

function of both T and 2, then if there has to be a relationship between the two functions
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if both are not constants, h,(z,T) must be separable. As a result, we assume that h,(z,T)

may be written as
h’p(zaT) = hp(z)g(T)a (557)

for some unknown functions h,(z) and g(T"). Then equation (5.56) becomes

3 z 2 z
{" 2O N g(T) + 22Ny (2)a() — A2 F(T) - ms<z)hp(z)g(T>}

dg i 35T 1hy2)

() g aT = i) 7hE)

+ zhs:(2) 7=

9(T), (5.58)
where N, is given by
pr(r)
M=

The boundary conditions to impose on hy(z) are
pa(0) = hp(0) = hp(1) =0, (5.59)

and an appropriate regularity condition which will be determined later in this section.

We continue with the linear stability analysis by proposing a relationship between the
functions ¢g(T') and f(T'). It is sensible to suppose that both of these functions determine
the growth rate of the perturbations. Therefore, we assume a simple and convenient linear

relationship between the two such that
f(T) = Ag(T), (5.60)

for some unknown constant A. (The case when A = 0 refers to the situation where the dryout
point is not allowed to move; and as mentioned in section (5.2), it is not of physical interest
here.) Under these circumstances, equation (5.58) is homogeneous and linear in both h, and

A so that h, = A =0 is a solution to this equation. We then let
g(T) =7, (5.61)

where o is a complex number. Therefore equation (5.61) means that we allow an infinitesimal
amount of deformation of the steady solutions in an unsteady oscillatory manner. Thus,
equation (5.58) becomes an auxiliary equation to determine a set of possible eigenvalues for
o for any non-zero solution, h, and A. Owing to the coupling behaviour depicted in the
driving equation (5.12) for the steady solutions, energy can be added or subtracted from the
problem hence resulting in the growth or decay, in time, of the magnitude of these oscillatory
perturbations. Hence in general, the eigenvalues o are complex numbers, the real part of
which determines whether the solutions are stable or not. The contour R](g) = 0 divides

the stable solutions with R](¢) < 0 from the unstable ones with R](c) > 0, i.e. small
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disturbances grow if R](o) > 0, they decay if R](0) < 0 and they neither grow nor decay if
R1(o) = 0. The imaginary part of o dictates the natural frequency of the vibrations. The
fact that o is complex implies that both h, in equation (5.57) and A in (5.60) are complex
too. Therefore the real part of their product with €7 in (5.61) is the physical value of the
perturbation quantity. But since both h, and A appear linearly in equation (5.58), then both
their real and imaginary parts are separately solutions of (5.58); therefore there is no need

to explicitly mention the taking of the real parts.

We know from solving equation (5.55) that near z =1
he(z) ~ (125x/4n)Y/5 (1 — 2)*/®, (5.62)
where x = [tan(37/5)|. This suggests that h, must also tend to zero like
hy ~ K(1 — 2)3/%, (5.63)

near z = 1, for some constant K(> 0), in order to obtain satisfactory asymptotic balances
near z = 1 in equation (5.58). Owing to the way that h, appears in (5.58), the constant K

cannot be obtained from this equation.

5.3.2.1 A Numerical Method

Owing to the nonlinear appearance of hs and the presence of the Hilbert transform of both
hsz and hp, in the characteristic equation for eigenvalues o, equation (5.58) can only be solved
numerically. The function h; is also known numerically from solving equation (5.55), and this
was one of the reasons why it was crucial to develop accurate methods for the steady problems
in chapters 3 and 4. We should mention that prior to any numerical computations in this
section, some analytical manipulations are required. The singularity in hs, near the dryout

point z = 1 needs to be dealt with before we can carry out any numerical computations.

5.3.2.2 Analytical Manipulations

We proceed by rewriting (5.58), after using (5.60) and (5.61), as

3r T

{h?(z)sz . hg(Z)sthp(z) — Th3(2)hy(2) — Th?(z)A} -

z

3z 2(z
{h‘;—;)/\/pz + %—)sthp(z) ~ Ths(z)hy(2) — Thf(z)A} 2hs(z) x
hsz(z) + %hp(z) - %hs(z)A =0 {h?(z)hp(z) - zhsz(z)hf(z)A} . (5.64)

In this way, we avoid using the asymptotics to balance infinite terms near z = 1 in equa-

tion (5.58), and instead both sides of (5.64) become zero at this point. In order to avoid the
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calculation of higher order derivatives in the subsequent numerical scheme, we integrate both

sides of (5.64) with respect to z to get
h3 h 3 4 2 [*,4
T Nos + = Nochy = Thihy — THAA - — /0 B (@) hou ()N pudu —
2 z z
;./0 hi’(u)hsu(u)NsuhP(u)du+27/0 2 (u)hsy (w)hp(u)du +
z 1 4 3 z
2r / B3 (w)how (u)dud + ~ / hp(w)du — > / he(u)dud
0 nJso nJo

—0 { /0 " R2 (u)hy (u)du — /0 ? uhz(u)hsu(u)duA} +C,  (5.65)

where C is a constant of integration. We then exploit the fact that we know both hg(z)
and hy(z) at z = 1 and their respective asymptotic behaviours as z — 1. We know, from
equations (5.62) and (5.63) respectively, that both h,(z) and h,(z) behave like (1 — z)3/% near
z = 1. We have seen earlier (see equations (3.50) and (3.51)) that the finite range Hilbert
transform of (1 — 2)?, 0 < p < 1, behaves like (1 — 2)? itself. As a result, the first four terms
on the left hand side of (5.65) are all zero at z = 1. Thus, C is given by

_3% /01 h‘;(u)hsu(u)Npudu — %/01 hi(u)hsu(u)/\fsuhp(u)du + 27 X
/1 R (u)hgy (u)hp(u)du + 27 /1 h3(u)hgy (u)duA
0 0
1 r1 3 rt 1
+7—’/0 hp(u)du — ;/0 hs(u)duA — o {/0 h2 () hy(u)du—

/01 uh?(u)hsy (u)duA} =C. (5.66)

Substituting (5.66) into (5.65) and performing the simplifications
1 1
/ hs(hsu(u)du = —2hg(2),

/21 uh?(uheu(u)du = —% (hg(z) + /zl hi(u)du) ’

(where the integration by parts and the fact that hs(1) = 0 have been exploited) we arrive

at the equation
h3 hs 3, 1 44 b2
S Nps + “EN oy = ThEy = 2ThEA + Fi(2) = 27 [ B2 (Wheu(whp(w)du -
z
11 3 ! 1, 1
;/z hp(u)du + -T;/z hs(u)duA = o {—/; hi(u)hp(u)du — 3 (hj:’-i-

1
/ hi(u)du) A} . (5.67)
The function Fj(z) is given by

Fi(z) = % / 1 hg (w)hsu (WNpudu + % /Z 1 h3 () Ry (0 Ny Bp (1) du (5.68)

We must then solve (5.67) subject to boundary conditions hp;(0) = hp(0) = 0 and hy(1) =0

to find all the eigenvalues o for any non-zero solution h, and A.
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5.3.2.3 Discretisation

We are now in a position to deal with the problem numerically. We will proceed by discretising
the equations to obtain a system of generalised eigenvalue matrix problems whose unknown
vector comprises of A and the values of h,. The system of equations will be solved for the
eigenvalues o using the QZ algorithm as implemented in the NAG library routine F02BJF.
The computation of the eigenvalues will allow investigations of the influence of the parameters
7 and 7 on the instability of this problem. The uniformity of the numerical method will be
checked during the course of the investigations by solving the system for different values of

the total number of mesh points while 7 and 7 are kept constant.

Now, we discretise the interval [0,1] by partitioning it into n equal subintervals [z;, zj11],
where 0 < j < n —1 and z; = j/n are the mesh points. Thus, n denotes the total number
of mesh points in the interval. In order to minimise the complexity in the numerical compu-
tations, we approximate the integrals in each subinterval using the trapezoidal rule. Finally,

we fit linear splines to each of hy(z) and hy(z) and write
hs = [1 —n(z — 2;)] hsj + n (2 — 2;) hsjy1,
hp =1 —n(z = 2j)) hp; + 1 (2 — 2;) hpjs1,
in each subinterval. We use finite differences and specify the mesh points z;, 1 <i <n — 1.

We then collocate at the mid-mesh points in the approximation of the derivatives of the
Hilbert transforms of both h, and h, (Np, and N, respectively) in equation (5.67).

The discretised version of equation (5.67), after imposing the boundary conditions hyy =

hpt = hpp, = 0 and performing tedious but straightforward algebra, is then

2
nh3, "l (2 = wiay) (21— wiy) (1 —wiy)
Z hpj In

+
= (1= isy) (5= y) (2 = i)
2h4~ n—1 (Z‘+1——u- l) (z"—'U'-l) 3
B b R - i

g n=l T = n—2 n—1
Fii + n > GiA- 2nn D hoi+ D hpiar p =27 D (hsjs1 — hej) Bihpst
7= J=i Jj=i J=t
n—2

n—1 n—2
> (hsjz1 — hsj) bjhpj+1} =0 {— > iy — D bihpyaa-
=i i=i

j=i
1 n—1
3 hfﬁ-Zéj A%, (5.69)
J=

for 1 <1 < n — 1. The quantities a;, l_;j, ¢j and g; are respectively given by

Zi41 -
/ ’ hf(u)hsu(u)hp(u)du ~n (hSJ'+1 - hsj) [ajhpj - bjhm‘+1] )
zj

132



_ 1 1
a; = {ahsj + é"ﬁhsj+1} hsj,
1 1 1 5Y\,2 , 1,9
bj =3 (3 + o 2) hsjhsjs1 + (2 12n> hss + g sin
1 1 1 1 1
CJ = / h3 Z’I;hgj + Ehgjhsj+1 + {'2; - 4n2 } hsjhs]+1 + 4an hg]-%-l?
Zj

g = (hs_1 + hs_7+1)

2

The discretisation of equation (5.68) warrants some comment. We assume, for simplicity,
that both the pressure gradient and the perturbation pressure gradient are constant in each

subinterval [z;, zj ;1] so that the discretised version of (5.68) is

F; = 3_n Z S_7+1 - hsj) {Npu /ZH’1 h;t(u)d’u. + 3N5"‘ /:”1 h‘g(u)hp(u)du} : (5'70)

Zj

On simplification, (5.70) becomes

2n on =1 ~
= 3_71' Z {NPU (h51+1 - hs] d } + — Z {Nsu (hsj+1 - hsj) ejhpj}
Jj=i j=t
2n n—1 _
+— > {Nou(hsjtr = hss) fihpj} (5.71)
Jj=t

where the terms Jj, €; and f_J are given by

_ Zj+1 6 1
d; = /zj By(u)du & —hl; + =hghejon + 35— 10 —hshsjen +
1 3\ ,2 3 3
(_ * 20n2) b + (4 2" Bn 3) haghsisa
1

0 hSJh‘s]+1 + 5n h?]-l»la
_ ~ Zj+1 3
&+ fi= /Z RS (u)hp(u)du
J

_ 6 31 1 1
g~ Eh;‘j Som —hZ, ihsjr1 + { + — 5007 } hsjhsﬁ1 + 50m hsj+1,

_ 1 3 3 1
= gt oot + (307 — ) P + e

3

We use finite differences to approximate N pu and N, in each subinterval and we then collocate

(5.71) at the mid-mesh points to get
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2
9n3 =1 (zk - uﬂ,z) (zk—l Uy
Fy = Pk Z si+1 = hsj) djIn 2

2n3 n—-1 {n-1
— > (hoksr —

=i k=0

nl (zk“ Ui+ %) (Zk Y3
z (hsk+1 — hsk) ( _

o3 122
+— ;

j=1

(hsj+1 - hsj) X
fibpir1.  (5.72)

Equations (5.69) and (5.72) form a generalised eigenvalue matrix problem, where the un-
known vector comprises of A and the values of hpj, 2 < j < n — 1. The system is solved
(through the NAG library routine FO02BJF) for all of the eigenvalues o using the QZ algo-
rithm. We expect one eigenvalue for each value of hpj and A. If at least one of the eigenvalues
has a positive real part, o, > 0, then we have unstable associated steady state solutions. If all
or < 0, we then have stable solutions. The instability is oscillatory if the relevant eigenvalues

have non-zero imaginary parts, o; # 0.

Since the normal recoil pressure, gravity and surface tension at the free surface do not
appear in this problem then we expect the instability to depend mainly on one or both of the
parameters 7 and 7. Thus, in the results below we plot the most unstable or the least stable
eigenvalues against either of the parameters 7 or 1 to check how these parameters influence

the instability in this problem.

Before proceeding with the discussion of results, we must point out that the method seems
to work satisfactorily. There is no doubt the system (5.69) and (5.72) form a large compu-
tational problem which needs some very careful coding. However, the limitation as to how
many points we consider is determined by the solution of the steady state solution which,
as explained earlier, is a formidable task. As a result, the maximum number of points we
take in the numerical scheme is n = 100. In order to check the uniformity of the numerical
method we apply it to the solution of the steady state problem when n = 20 and increase
n in steps of 20. Some typical results are shown for n = 20, n = 40, n = 60, n = 80 and

= 100 in figures (5.4) to (5.7) for the parameters 7+ = n = 1.0. The figures indicate
that the numerical method is consistent, the increase in n merely adds some more eigenvalues
without altering the size of the eigenvalues corresponding to a smaller value of n. Owing to
the nonlinearity and presence of the Hilbert transforms in the problem, however, it is unlikely
that any rigorous attempts to test whether the method converges to the correct solution will
be fruitful.
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Figure 5.4: The imaginary parts of the eigenvalues, o}, against the real parts of the eigenval-

ues, o,; (7 = 1.0 and n = 1.0).

10 - ! . , —
* 40 points
* 60 points )
5 | o ]
e
G, O e S 'n-w—-oﬁ::: -------------------------------------------------------------------------------- -
or .,
: .-
T
-5 + . -
-10 . !
-2 0 2 4
e)
,

Figure 5.5: The imaginary parts of the eigenvalues, o;, against the real parts of the eigenval-

ues, o,; (t = 1.0 and n = 1.0).
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Figure 5.6: The imaginary parts of the eigenvalues, o0;, against the real parts of the eigenval-
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20 I T
|
= 80 points l *
* 100 points | *
10 + : L :
l - " :
| oo
' [ 3
C ot - srsmemm—e— —
|
l Y
1 O
| *u
-10 - | * 4
| *
| *
|
-20 ' 1
-5 0 5 10
C.

Figure 5.7: The imaginary parts of the eigenvalues, 0;, against the real parts of the eigenval-

ues, o,; (7 = 1.0 and n = 1.0).
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5.3.2.4 Numerical Results

The results in figures (5.4) to (5.7) show a typical distribution of eigenvalues when the param-

eters 77 and 7 are changed, e.g. see also figures (5.8) and (5.9). The eigenvalues are crowded
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)

Figure 5.8: The imaginary parts of the eigenvalues, o0;, against the real parts of the eigenval-

ues, oy; (7 =10.0 and n = 1.0).

and the majority are complex with their real parts are greater than zero. Thus suggesting
that the steady state solutions to this problem are always unstable to small perturbation.
Physically, this means that the solutions for the unsteady problem (5.1) may not be visible
in reality. However, it should be recalled that this model is an idealisation of the annular
flow regime which is, in reality, a very complicated phenomenon. In modelling the problem,
we have ignored, for example, the processes of liquid droplet deposition from the gas core
into the liquid film and the entrainment of liquid droplets from the liquid film free surface
into the gas core. Thesc processes, in the current case of interest, may be insignificant (as
the typical parameter values from experiments suggest) for the formation or vanishing of
the liquid layer, but they may be playing a very important role in the stabilisation of the
developed liquid films. Furthermore, we have not included the surface tension term in the
current study in order to minimise the amount of the computational algebra (however, analy-
sis will show that the inclusion of this term would not ensure stable results for this problem).
Therefore, the fact that the numerical linear stability results suggest that the steady state

solutions obtained for this problem may be always unstable, should not be misunderstood to
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Figure 5.9: The imaginary parts of the eigenvalues, o, against the real parts of the eigenval-

ues, or; (7 = 2.0 and n = 10.0).

mean that the model is irrelevant. It is always a good practice in mathematical modelling
to build a model and analyse it from the simplest foundations first. Other realistic features
may be added to the model simply as a matter of improvements. We will continue therefore
to investigate the instability of the problem for other values of n and 7. This will be achieved

by plotting the most unstable or the least stable eigenvalues against either of the parameters.

Before we proceed however, a closer look at figures (5.6) and (5.7) gives an impression
that as n — oo all the eigenvalues with positive real parts lie on a straight line and the
most unstable eigenvalue tends to infinity. This may suggest that corresponding to the most
unstable eigenvalue as n — oo, both hy(2) and A can be scaled with n so that an asymptotic
relation between h,(z) and A may be obtained. In principle, the resulting relation may
be checked against the numerics if the steady state base solution could be obtained for
large enough n. Then, from the eigenvalues of the associated linear stability problem, the
eigenvector corresponding to the most unstable eigenvalue may be calculated. After which
hp(z) could be approximated from the vector along with the value of A so that the asymptotic
relationship could be tested. However, we proceed here to investigate the instability of the
problem when either of the parameters n and 7 is changed. We plot the most unstable

eigenvalue against either of the parameters.
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Figure (5.10) shows a typical plot of the most unstable eigenvalue against the mass transfer
parameter 1 when the traction parameter 7 is held constant. In general, for all the results
in this section, each point on the curves is obtained by first solving the steady state prob-
lem (5.12) for the given values of  and 7. Then the obtained value of h, is used in the
calculation of the eigenvalues, as described earlier, from the generalised eigenvalue problem
characterised by equations (5.69) and (5.72). The most unstable or least stable eigenvalue
corresponding to those particular values of  and 7 is then recorded. The process is then
repeated with a different set of values of 7 and 7 until a sufficient number of points is available
to plot a graph. Obviously, in the typical results shown in figure (5.10) for example, 7 is kept

constant at 7 = 1. The solid line in the graph reflects the relationship between the maximum
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Figure 5.10: The most unstable or least stable eigenvalue against the mass transfer parameter

7.

growth rate 0,5 against the parameter 7. The dotted lines indicate the relationship between
the imaginary parts of the most unstable eigenvalue o;ps and the mass transfer parameter
n. The results in figure (5.10) clearly show (in agreement with those of the paradigm prob-
lem (5.16)) that an increase in 7 > 0 is a stabilising factor in the problem. It should be
recalled that the parameter n is inversely proportional to the difference between the pipe
wall temperature T,, and the saturation temperature at the liquid film free surface Tg, i.e.

n o« 1/ (T, — Ts). Therefore, this result suggests that for a given traction parameter 7, it is
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easier to stabilise (or destabilise) a highly superheated liquid film through minute changes in
the heat mass transfer parameter 7 than to stabilise (or destabilise) a mildly or moderately
superheated one through large changes in 7. In other words, a highly superheated liquid film
evaporates much more rapidly than a mildly or moderately superheated one. Further, it is
evident from figure (5.10) that as 7 — oo, for a given O(1) parameter 7, the instability tends
to an oscillatory marginal stability. It is therefore instructive to consider plotting the most
unstable eigenvalues against the values of 7, especially for those large values of n, in order
to investigate whether there could be some regions in the (7,7) parameter space where the

problem may be stable.

6 T T T i T 1 T T T T

0 50 100 150 200 250 300
T

Figure 5.11: The real part of most unstable or least stable eigenvalue against the traction

parameter 7.

Figures (5.11) and (5.12) illustrate a family of curves of the real parts of the most unstable
eigenvalues o,ps against the values of the traction parameter 7 for different constant values
of the heat mass transfer parameter 7. It is clear from these curves that an increase in 7 is a
stabilising effect, in agreement with the results of the paradigm problem (5.33), but only up
to a transition point where it abruptly becomes a destabilising factor. This transition point
does not only depend on the values of 7 but also on those of . The smaller the value of 5, the
further away from the origin (along both the lines of zero o, and zero 7) is the transition

point. However, the change in positioning of the transition point is not proportional to the
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Figure 5.12: The real part of most unstable or least stable eigenvalue against the traction

parameter 7.

increase in 1. In fact the relationship between the transition point and the increase in 7
appears to be of an exponential decay form. For relatively small values of 7, an increase in 7
effects a considerable decrease in the transition point from the origin. However, the transition
point seems to approach a constant value for any increase in 7 for those large values of 7.
(The idea here, as mentioned above, was to investigate whether for some combination of the
parameters 1 and 7 we can find any values of 0,3 < 0. Hence the reason why in some of the
curves, calculations have been stopped almost immediately after the transition point where

the values of o, start to increase.)

It is further illustrated in figures (5.13) and (5.14) that at the transition point, there is
an exchange of instability from an oscillatory one to a purely growing instability in which
oim = 0. Owing to the sharpness of this instability exchange point, it appears that this point
could be a branching point, where the curve coming from the left coming curve proceeds
continuously through the point to the right without change in direction, and likewise the
right outgoing curve continues to the left through the transition point without change in
direction, so that the two curves cross each other at the transition point. This will imply
that there may be some regions where the problem becomes stable as one of the curves (or
both) will cross the o,pr = 0 line. It is, nonetheless, difficult to sustain this view since our

numerical method does not indicate any of such branching curves. Besides, such a result would
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Figure 5.13: a graph of both the real and imaginary parts of most unstable or least stable

eigenvalue against the traction parameter 7.
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against the traction parameter 7.

142



inherently mean that the solution to the steady problem is not unique for some particular
values of the prescribed parameters n and 7. Therefore, in the light of the results illustrated
in figures (5.10) to (5.14), it is compelling to conclude that all the base steady state solutions

to this problem (5.1) are unstable to small perturbations.

The indications, from both figure (5.11) and (5.12), that the increase in 7 plays a stabilising
role up to a transition point where it begins to be a destabilising factor may be given a physical
explanation. We will recall from equation (2.56) that it was observed that in general, 7 may
be understood to include the effects of gravity. Therefore, these two results suggest that for
a given value of 7, there is a range of 7 values where gravity is a dominant factor (i.e. where
7 plays a stabilising role). The results for a set of 7 values beyond this range provokes an
impression that the dominant factor is the pulling/stretching provided by the fast flowing
gas in the core, and this tends to increase the growth of the perturbations on the liquid film

free surface.

In summary, the findings here imply that the solutions to the the full unsteady prob-
lem (5.1) may not be observable in reality for virtually all values of n and 7. Thus, it will
not be sensible to continue to solve (5.1) numerically. Since in reality these thin films are
physically visible in real life, then the results here give an impression that the process of
droplet deposition from the gas core onto the liquid film may be playing a crucial role in
the stabilisation of the developed films in the problem. This impression is supported by the
results of section (5.3.2.5). In section (5.3.2.5), we show analytically that the surface tension
term in this problem will have to be infinitely large in order to ensure stable results. We
do this by considering the problem when there is neither mass transfer nor shear stress at
all, i.e. we consider the problem on the (—oo,c0) range. In this case, the surface tension
term competes only with the gas core pressure term, and we will first show analytically that
the gas core pressure plays a destabilising role in this problem. Therefore, in future the
process of droplet deposition probably needs to be accounted for in the model for the linear
stability purposes even though, at the current conditions of interest, the typical values of
the experimental results suggest that the droplet deposition is negligible in the formation
of these liquid films. The inclusion of this term in the model will undoubtedly increase the
amount of algebra involved in solving this model and/or we may even require totally different

techniques to solve the resulting problem.

5.3.2.5 Analytical Results: Gas Core Pressure and Surface Tension Effects

We investigate the role of the gas core pressure with regard to the instability of (5.1). In this

problem, the gas core pressure is given by the Hilbert transform of the gradient of the free
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In order to isolate the effects of the gas core pressure alone, it is intuitively sensible to consider
a no-mass transfer, no-shear stress problem. In this case, it is physically logical to expect no

dryout point. Therefore, instead of (5.1), we will have to study the unsteady problem

{%3; (][_Z %f-(:ﬁ’xi)dg)z} —h;=0. (5.73)

T
Clearly, without loss of generality h = 1 is a solution of (5.73). For the linear stability, we

employ the method of normal modes in z and ¢ and write
h =1+ eetk=tot, (5.74)

where ¢ is this disturbance growth rate as seen earlier, k is the wavenumber and e(> 0) is a

small parameter. On substituting equation (5.74) into (5.73) and comparing coeflicients we

1 o (eikg) 13

T l)oso £€—x

obtain an O(e) problem

de¢| =o€ (5.75)
rxr

The term (in the brackets) which appears on the left hand side of (5.75) is (see for example
Pipkin (1991) [64])

d§ == lkl e’ik:z:,
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T E—2
Hence we get the dispersion relation

o = |k| k2,

which indicates that the pressure in the gas core is always a destabilising factor as o is always

real and positive.

If a similar analysis (i.e. normal modes linear stability analysis with 7 = 0 and n = o0)
is performed on the problem with surface tension, a version of equation (2.65) on the range

(—00,0), we obtain the dispersion relation

K2 (S
a—__ff—_(;k—l),

where we have used the fact that the wavenumber & is physically related to the wavelength
of the disturbance waves; therefore k must be positive. We recall that perturbations grow if
o > 0 and decay if ¢ < 0. It is then obvious from the dispersion relation that the surface
tension term S is a stabilising factor. The marginal stability is obtained when o = 0 and

thus the cutoff wavenumber is given by
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In the long wave theory (where the disturbance waves have wavelengths much larger than
the typical film thicknesses) this relation suggests that in this case S must tend to infinity.
We further observe that there is growth for all & satisfying

T
O<k<™
<kF<3

and the maximum growth occurs at do/dk = 0 when k = 37/45 and o = 973/256. This result
suggests that, if there has to be no unstable solutions in this problem, then the surface term
must be infinitely large. However, this is absurd because it means then that the wavenumber
k must be zero. As a result, we conclude that the inclusion of the surface tension term in the
linear stability analysis of the full problem (5.1) would not have altered the overall results
we have obtained for this problem. Therefore for future work, we anticipate that only the
inclusion of the droplets deposition term in in the model might be the best hope for the

stability purposes in this problem.
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Chapter 6

Conclusions

In this thesis a two-dimensional mathematical model for an evaporating superheated thin
liquid film adhering to a heated wall has been proposed. To achieve this, thin-layer lubrication
theory has been employed. The model is unsteady and takes into account the dynamics of
flow in the vapour core (produced by the evaporating liquid layer) through the application of
the thin aerofoil theory. Thus, the model is governed by a nonlinear partial singular integro-
differential equation. In a real world application, the model idealises the two-phase annular
flow of water and steam, along with the dryout point, in steam generating pipes. In reality
the two-phase annular flow in steam generating pipes is a very complex phenomenon. It
consists of, among other things, an evaporating superheated thin liquid film adhering to the
pipe walls and the dryout point. The liquid film surrounds a fast flowing gas core which may
be turbulent in nature, e.g. see Kirillov et al (1985) [46]. The continuous breakup of large
amplitude coherent waves on the liquid film free surface and the undercuttings of the surface
by the fast flowing gas in the core are believed to be major causes of the droplet entrainment
from the liquid layer into the vapour core. Moreover, there is a simultaneous deposition of
liquid droplets from the gas core onto the liquid layer. The rate at which these processes
occur is theoretically unknown. Under the current conditions of interest however, the typical
experimental results, e.g. see Collier (1972) [19], suggest that neither the droplet deposition
nor the droplet entrainment are of paramount importance in the formation or the vanishing
of the liquid film. Thus implying that the evaporation of the liquid film is the dominant
factor affecting the dryout point here.

Owing to the nonlinear singular nature of the governing equations, the model has been
solved numerically (in the steady state case) for various specified conditions at the pipe wall.
In chapter 3, the model has been solved for a constant wall temperature. In chapter 4,
the model has been solved for some specified non-constant wall temperature. In general,

the temperature at the wall must be determined by solving the problem in the liquid metal
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(flowing in the counter direction) in the outer casing of the steam generating pipes. However,
it has been found that the problem in the liquid metal was so difficult that it could only be

solved numerically and the solution would be unhelpful for the purposes of solving the model.

In chapters 3 and 4, the effects of the constant parameter values in the model on the
length to the dryout point from the onset of the annular regime have been investigated
from the computed results. It has been consistently found that an increase in the traction
parameter 7 leads to an increase in the length to the dryout point. In other words, the
traction supplied by the flow in the vapour core pulls and stretches the liquid layer. It has
also been found that the increase in the mass transfer parameter 7 (which should be recalled
that it is inversely proportional to the difference between the typical wall temperature and
the saturation temperature at the liquid film free surface) leads to an increase in the length to
the dryout point. Physically, this result implies (as one would expect) that for a liquid with
large latent heat, the mass transfer is small and dryout cannot occur. However, for a liquid

with small latent heat, the mass transfer is very high and dryout will occur immediately.

The governing equations for the model are very complex and a lot of insight into the
unknown solution for the liquid film free surface was required before any computational
techniques could be developed for the problem. It has been demonstrated extensively in the
thesis (by even providing some simple paradigm problems which could be solved analytically)
that the knowledge of the asymptotic behaviour of the unknown solution near the dryout point
is very important with regard to the numerical solution of the model. In the cases where
there is a singularity in the slope of the film free surface near the dryout point, it has been
found mandatory to employ some regularisation techniques in order to satisfactorily compute
solutions from the model. In these cases the problem has been regularised by considering an
appropriately stretched coordinate so that the solution approaches the dryout point linearly.
This ensures that there is no singularity in its slope there. It has been observed that the
regularisation technique, (despite increasing the amount of algebra involved in solving the
model tremendously) works very well. Another source of complexity in the model is partly
due to the fact that some of the boundary conditions in the model depend on the global
behaviour of the unknown solution and some boundary conditions are coupled nonlinearly.
In particular, the application of the pressure condition (which depends on the global behaviour
of the unknown solution in [0,1]) at the onset of the annular flow, z = 0 has been a great
challenge. The pressure condition can be applied directly if and only if the governing equation
in the model has been integrated twice with respect to the independent variable z. After
which, it is inevitable that the resulting equation should be inverted in order to make any
progress with it. However, the inversion of the equation leads to a very difficult problem to
tackle numerically as demonstrated by some computations in section (4.4.2). As a result,

we have been mostly restricted to solving the model by prescribing the pressure gradient
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condition at the onset of the annular region. In this case the resulting problem is still very

difficult to solve numerically, but there is comparatively less computational algebra involved.

The pressure and the pressure gradient are directly related in this problem (and they
both depend on the global behaviour of the unknown solution in [0, 1]) therefore one can be
calculated from the other. By plotting the values of pressure against the pressure gradient,
at the entry of the annular flow z = 0, it has been possible to demonstrate that in some
cases it might not be possible to obtain a converged numerical solution to the model, e.g. for
values of pressure less or equal to approximately 0.27 and pressure gradient values greater
or equal to about -110.0, at z = 0 for the constant wall temperature problem. In chapter 3,
the relationships between the length to the dryout point (from the entry of the annular flow
z = 0) and both the pressure and the pressure gradient at z = 0, have been obtained for the
constant wall temperature problem. For practical purposes and experimental comparisons,
these relationships may not be as useful as the plot of pressure profiles. Thus, for all problems
in chapters 3 and 4, the pressure profiles in the annular regime and far downstream of dryout
point have been plotted. It has been found consistently that, in general, the pressure is
positive at the entry of the annular regime, z = 0, and it rises sharply to reach a positive
maximum near z = 0. It then decreases, quickly near z = 0, and then gradually downstream
to achieve a negative minimum at (or very near to) the dryout point before increasing to
almost a negative constant far downstream of the dryout point. The negative minimum in
the pressure at the dryout point for the constant wall temperature problem is infinite solely
as a result of the singularity in the slope of the liquid film free surface near that point. This
conclusion has been verified by the results of the non-constant wall temperature problem in
chapter 4, where there is no singularity in the slope of the film free surface near the dryout
point.

In chapter 5, the linear stability of the constant wall temperature problem has been anal-
ysed numerically. This is a very complicated unsteady free moving boundary problem and
(to the best of our knowledge, by the time of writing) has never been tackled before. In order
to put it into a form conducive for the numerical linear stability treatment, the problem has
been appropriately transformed into an unsteady nonlinear partial singular integro-differential
equation of the finite type in the interval [0,1]. The equations were then discretised using
finite differences and the technique of collocation around singular points in the Hilbert trans-
form was employed. The resulting equations were then analysed for the linear stability by
solving for the eigenvalues using the QZ algorithm as implemented in the NAG library routine
F02BJF. The performed linear stability analysis suggests that the steady state solutions to
the constant wall temperature problem are always unstable to small perturbations. In reality,
this result implies that the solutions to the corresponding unsteady problem (5.1) may not be

physically observable. It must be emphasised that this result does not therefore mean that
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the model is totally irrelevant. (In fact the development of this model is a major achievement
since most, if not all, the models in the literature either deal with the liquid film only or
with the gas core alone. However, in this model, we have accounted the dynamic effects of
the flow in the gas core on the dynamic pressure for the flow in the liquid layer.) This result
simply tells us that there may be other physical processes which should not be ignored in
the model, under any circumstances, since they could be playing a very crucial role in the
linear stability of the problem. The linear stability analysis of the paradigm problem (5.73) in
section (5.3.2.5), where there is neither the mass transfer nor the traction in the problem, sug-
gests strongly that the droplet deposition could be the most viable process for this purpose.
It has been demonstrated analytically in this section that the pressure in the gas core is a
destabilising factor. It has also been shown in the same section that the surface tension term
would have to be infinitely large (which is unrealistic physically) in order to ensure that the
results are stable in this problem. Therefore, this finding leaves us with the possibility that
the droplet deposition from the gas core onto the liquid film (if accounted for in the model)

might ensure stable solutions because in practice, these thin films are reportedly observable.

The influence of the constant parameter values in the model on the instability of this
problem have also been investigated. It has been found, as one would expect, that the
increase in the mass transfer parameter 7, is always a stabilising factor. Physically, this
result suggests that (under the conditions which the model has been developed) the highly
superheated liquid film is very unstable to small perturbations compared to the minutely
superheated one. It has further been found that the increase in the traction parameter 7 is
a stabilising factor only up to a point (which is different for every value of the prescribed
constant n in the problem) where there is an exchange of instability from an oscillatory one
to a purely growing one. At this point, 7 suddenly starts to play a destabilising role. In
conclusion here, we should point out that due to the complexity of the governing equations
for our model, it has been very difficult to provide a test problem for the results of the full
linear stability problem. However, the analysis of the linear stability results for a few very
simplified problems in section (5.3) do suggest that indeed the results of the full problem

might be correct.

6.1 Avenues for Further Research

The ultimate aim in future is to solve the full unsteady model for this problem numerically. It
is only then that we can observe from the numerical results how the dryout point moves with
time. However, at the moment the linear stability results here suggests that the solutions
to the model as it stands are always unstable to small perturbations. This implies that the

solutions may not be observable in reality, yet it is reported that in practice these thin films
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can be physically seen. Therefore, we intend first to develop the model further to account
for, in particular, the droplet deposition from the flow in the gas core onto the liquid film.
As mentioned earlier, this process may not be important in the formation of the liquid layer
under the current conditions of interest (as suggested by the typical experimental results).
However, there is a strong impression from the linear stability results for both the full problem
and the paradigm problem (5.73) in section (5.3.2.5) that this process could be playing a very
important role in the stability of the film. It is still a big challenge at the moment how to
account, theoretically (i.e. without resorting to empirical relationships), for this process of
droplet deposition in the model. Clearly, the rate at which the liquid droplets deposit onto
the liquid film should be directly related to their concentration in the gas core. Logically, the
concentration of the liquid droplets in the gas core should also be directly related to the rate
at which droplets are entrained from the liquid film free surface into the gas core. However,
the process of droplet entrainment seems to be still a subtle matter. The ultimate challenge
will, therefore, be to develop some constitutive equations which relate these two processes of
droplet deposition and droplet entrainment to the unknown liquid film free surface. There
is no doubt that the model might become more complicated on the inclusion of these other
terms but, equally, it may result in some unforeseen simplifications in the numerical solution
of the problem, e.g. it could lead to a situation where there is no singularity in the slope of

the film free surface near the dryout point.

Last but not least, the steady state constant wall temperature problem where the surface
tension is included in the model has not been solved. This however, does not mean it could not
be solved. The problem was analysed asymptotically and it was observed that the presence
of the surface tension term in the model does not remove the singularity in the slope of
the unknown liquid film free surface near the dryout point. Therefore, the problem can be
solved in exactly the same way that the problem without the surface tension has been solved.
Moreover, the governing equation for the model when surface tension is present involves
higher orders (than one) of derivatives of the unknown liquid film free surface. Thus, in the
numerical solution it will no longer be permissible to approximate the unknown free surface
by linear splines but higher order splines e.g. cubic splines. This approach would result in
a tremendous increase in the already formidable amount of computational algebra involved
when there is no surface tension term. The same argument goes for the problem when the

traction parameter 7 is allowed to vary with space (and time) in the model.

Finally, we still wish to develop, if at all possible, an alternative numerical approach which
is preferably easier to handle than the ones employed to tackle the steady state problems

here and suggestions are welcome.
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Appendix A

Nomenclature and Boiler Tube

Typical Values

[

R B R

Hg

sHegy gy

Typical tube radius (~ 7 mm)

Typical thickness of wall liquid layer (~ 0.1 - 1 mm)

Length to dryout point (m)

Steady length to dryout point (m)

Typical heated length of boiler pipe (~ 6.1 m)

acceleration due to gravity (~ 9.8 m/s?)

Small parameter ho/Lg (~ 1.64 x 1074)

Typical liquid specific heat (~ 15.646 kJ/kg/K at 180 bar, 633 K)

Typical liquid thermal conductivity (~ 0.412 W/m/K at 180 bar, 633 K)
Typical latent heat of vapourisation of water (~ 603.5 kJ/kg at 198 bar)
Typical heat flux from liquid sodium (~ 595 W/m?)

Typical dynamic viscosity of liquid (~ 6.44 x 107> N sec/m? at 200 bar, 633 K)
Typical dynamic viscosity of vapour (~ 3.48 x 107% N sec/m? at 210 bar, 643 K)
Typical density of liquid (~ 491 kg/m? at 198 bar)

Typical density of gas core flow upstream of dryout (~ 171 kg/m3 at 200 bar)
Dimensional mass flow from liquid to gas core (kg/s/m?)

Non-dimensional mass flow from liquid to gas

Typical pressure in the gas core far upstream of dryout (~ 200 bar)

Typical gas core velocity (~ 12 m/s)

Typical liquid velocity (~ 0.01 m/s)

Typical saturation temperature (~ 638.15 K at 200 bar)

Typical wall temperature (~ 640 K)

151



Bibliography

[1] M.Z. Alpabhai, N.I. Georgikopoulos, D. Hasnip, R.K.D. Jamie, M. Kim, and P. Wilmott.
A model for the value of a business, some optimization problems in its operating proce-
dures and valuation of its debt. IMA J. Appl. Math., 59(3):273-285, 1997.

(2) W.F. Ames. Nonlinear Partial Differential Equations in Engineering, volume 18. Aca-
demic Press, 1965.

[3] G. Arfken. Mathematical Methods for Physicists. Academic Press Inc., 1985.

[4] J. Asavanant and J.M. Vanden-Broeck. Free-surface flows past a surface-piercing object
of finite length. J. Fluid Mech., 273:109-124, 1994.

[5] R.W. Atherton and G.M. Homsy. On the derivation of evolution equations for interfacial

waves. Chemical Eng. Communications, 2:57-77, 1976.

[6] D. Azbel. Two-Phase Flows in Chemical Engineering. Cambridge University Press,
1981.

(7] G.F. Babits. Applied Thermodynamics. Allyn and Bacon Inc. Boston, 1968.

[8] S.G. Bankoff. Stability of liquid flow down a heated plane. Int. J. Heat Mass Transfer,
14:377-385, 1971.

[9] S.G. Bankoff. Significant questions in thin liquid heat transfer. Trans. ASME, J. Heat
Transfer, 116:10-16, 1994.

[10] A.W. Bennett, G.F. Hewitt, R.K.F. Keeys, and P.M.C. Lacey. Flow visualization studies
of boiling at high pressure. Proc. Inst. Mech. Engineers, 180:260-270, 1965.

[11] A.E. Bergles and S. Ishigai. Two-Phase Flow Dynamics. Hemisphere Publishing Corpo-
ration, 1981.

[12] M.I.G. Bloor. Large amplitude surface waves. J. Fluid Mech., 84:167-179, 1978.

152



(13] R.E. Bolz and G.L. Tuve, editors. Handbook of tables for Applied Engineering Science
2nd edition. CRC Press, 1973.

[14] J.P. Burelbach, S.G. Bankoff, and S.H. Davis. Nonlinear stability of evaporat-
ing/condensing liquid films. J. Fluid Mech., 195:463-494, 1988.

[15] G.F. Carrier, M. Krook, and C.E. Pearson. Functions of a Complez Variable. McGraw
Hill, 1966.

[16] A. Chakrabarti and T. Sahoo. Solution of singular integral equations with logarithmic
and Cauchy kernels. Proc. Indian Acad. Sci. (Math. Sei.), 106(3):261-270, 1996.

[17] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover Publications,
1981.

[18] D.. Chisholm. Two-Phase Flow in Pipelines and Heat Exchangers. Longman Inc. New
York, 1983.

[19] J.G. Collier. Convective Boiling and Condensation. McGraw Hill, 1972.

[20] J.G. Collier and J.R. Thome. Convective Boiling and Condensation. Clarendon Press
Oxford, 1994.

[21] J.A. Cuminato. Numerical solution of Cauchy-type integral equations of index-1 by
collocation methods. Appl. Math. Lett., 10(3):57-62, 1996.

[22] S.H. Davis. Thermocapillary instabilities. Ann. Rev. Fluid Mech., 19:403-435, 1987.

[23] J.I. De Klerk, D. Eyre, and L.M. Venter. Lp-approximation method for the numerical
solution of singular integral equations. Appl. Math. Comp., 72:285-300, 1995.

[24] J.M Delhaye. Jump conditions and entropy sources in two-phase systems. local instant
formulation. Int. J. Multiphase Flow, 1:395-409, 1974.

[25] J.N. Dewynne, S.D. Howison, J.R. Ockendon, L.C. Morland, and E.J. Watson. Slot
suction from inviscid channel flow. J. Fluid Mech., 200:265-282, 1989.

[26] P.G. Drazin and W.H. Reid. Hydrodynamic Stability. Cambridge University Press, 1985.

[27] R.B. Duffy and S.K. Wilson. Thin-film and curtain flows on the outside of a rotating
horizontal cylinder. J. Fluid Mech., 394:29-49, 1999.

[28] H. Etherington, editor. Nuclear Engineering Handbook. McGraw Hill, 1958.

[29] S.A. Fisher and D.L. Pearce. An annular flow model for predicting liquid carryover into
austenitic superheaters. Int. J. Multiphase Flow, 19(2):295-307, 1993.

153



(30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

[38]

39]

[42]

(43]

[44]

A.D. Fitt, A.D. Kelly, and C.P. Please. Crack propagation models for rock fracture in a
geothermal energy reservoir. SIAM J. Appl. Math., 55(6):1592-1608, 1995.

A.D. Fitt and T.B.R. Lattimer. A high-Reynolds-number cross-flow with injection and
suction. . JI. Mech. Appl. Math., 50:48-68, 1996.

A.D. Fitt, J.R. Ockendon, and T.V. Jones. Aerodynamics of slot-film cooling: theory
and experiment. J. Fluid Mech., 160:15-27, 1985.

A.D. Fitt and V. Stefanidis. Film cooling effectiveness for subsonic slot injection into
cross flow. Acta Mechanica, 128:233-242, 1998.

A.D. Fitt and P. Wilmott. Slot film cooling - the effect of separation angle. Acta
Mechanica, 103:79-88, 1994.

L.K. Forbes and L.W. Schwartz. Free-surface flow over a semicircular obstruction. J.
Fluid Mech., 114:299-314, 1982.

J.I. Frankel. A nonlinear heat transfer problem: solution of a nonlinear, weakly singular
Volterra integral equation of the second kind. Eng. Analy. with Boundary Elements,
8(5):231-238, 1991.

J.I. Frankel. A Galerkin solution to a regularised Cauchy singular integro-differential
equation. Q. Appl. Math., LIII(2):245-258, 1995.

M.K. Haselgrove and E.O. Tuck. Stability properties of the two-dimensional sail model.
The Society of Naval Architects and Marine Engineers, pages 8.1-8.11, 1976.

F.J. Higuera. The hydrodynamic stability of an evaporating liquid. PF, 30(3):679-686,
1987.

S.D. Howison, J.A. Moriarty, J.R. Ockendon, E.L. Terrill, and S.K. Wilson. A mathe-
matical model for drying paint layers. J. Eng. Math., 32:377-394, 1997.

T.F. Irvine and J.P. Hartnett, editors. Steam and Air Tables in S.I. Units. Hemisphere
Publishing Corporation, Washington D.C., 1976.

P. Junghanns. Numerical analysis of Newton projection methods for nonlinear singular
integral equations. J. Comp. Appl. Math., 55:145-163, 1994.

S. Kim. Solving singular integral equations using Gaussian quadrature and overdeter-

mined system. Computers and Mathematics Applications, 35(10):63-71, 1998.

A.C. King and M.I.G. Bloor. Free-surface flow over a step. J. Fluid Mech., 84:167-179,
1987.

154



[45] A.C. King and E.O. Tuck. Thin liquid layers supported by steady air-flow surface trac-
tion. J. Fluid Mech., 251:709-718, 1993.

[46] P.L. Kirillov, V.M. Kashcheyev, Yu.S. Muranov, and Yu.S. Yuriev. A two-dimensional
mathematical model of annular-dispersed and dispersed flows - i and ii. Int. J. Heat
Mass Transfer, 30(4):791-806, 1985.

[47] T.B.R. Lattimer and A.D. Fitt. Unsteady slot suction from a high-Reynolds-number
cross-flow. J. Eng. Math., 33:293-310, 1998.

[48] V.G. Levich and V.S. Krylov. Surface-tension-driven phenomena. Ann. Rev. Fluid Mech.,
4:293-316, 1968.

[49] J. Li and R.P. Srivastav. Computing the singular behaviour of solutions of Cauchy
singular integral equations with variable coefficients. Appl. Math. Lett., 10(3):57-62,
1997.

[50] D.R. Lide and H.P.R. Frederickse, editors. Handbook of Chemistry and Physics 77th
edition. CRC Press, 1997.

[51] S.P. Lin. Stability of liquid flow down a heated pipe. Lett. Heat and Mass Transfer,
2:361-370, 1975.

[52] S.D. McKinley, S.K. Wilson, and R.B. Duffy. Spin coating and air-jet blowing of thin
viscous drops. Phys. Fluids, 11(1):30-46, 1999.

[53] J.A. Moriarty and L.W. Schwartz. Dynamic considerations in the closing and opening
of holes in thin liquid films. J. Colloid Interface Sci., 161:335-342, 1993.

[64] N.I. Muskhelishvili. Singular Integral Equations. Noordhoff Groningen Holland, 1953.

[55] T.G. Myers and D.W. Hammond. Ice and water film growth from incoming supercooled
droplets. Private Communication through A.D. Fitt, 1998.

[56] J.N. Newman. Marine Hydrodynamics. The MIT Press, 1977.

[57] H. Ockendon and J.R. Ockendon. Variable-viscosity flows in heated and cooled channels.
J. Fluid Mech., 83(1):177-190, 1977.

[58] K. O’Malley, A.D. Fitt, T.V. Jones, J.R. Ockendon, and P. Wilmott. Models for high
Reynolds-number flow down a step. J. Fluid Mech., 222:139-155, 1991.

[59] A. Oron and P. Rosenau. On nonlinear thermocapillary in thin liquid layers. J. Fluid
Mech., 273:361-373, 1994.

155



[60] J.R.A. Pearson. On convective cells induced by surface tension. J. Fluid Mech., 19:489-
500, 1958.

[61}) J.R.A. Pearson. Variable-viscosity flows in channels with high heat generation. J. Fluid
Mech., 83(1):191-206, 1977.

[62] A.S. Peters. A note on the integral equations of the first kind with a Cauchy kernel.
Comm. Pure Appl. Math., XVI:57-61, 1963.

[63] A.S. Peters. Abel’s equation and the Cauchy integral equation of the second kind. Comm.
Pure Appl. Math., XXI:51-65, 1968.

[64) A.C. Pipkin. A Course on Integral Equations. Springer-Velarg, 1991.

[65] M.P. Pope. Mathematical Modelling of Unsteady Problems in thin aerofoil theory. PhD
thesis, University of Southampton, 1999.

[66] K.K. Prasad and R.G. Hering. Numerical integration of a nonlinear, singular integro-
differential equation. J. Comp. Phys., 6:406-416, 1970.

[67] A.Prosperetti and M.S. Plesset. The stability of an evaporating surface. PF, 27(7):1590-
1602, 1984.

[68] A.B. Ross, S.K. Wilson, and R.B. Duffy. Blade coating of a power-law fluid. Phys.
Fluids, 11(5):958-970, 1999.

[69] L.I. Rubinstein. The Stefan Problem, Transactions of Mathematical Monographs, vol-

ume 27. American Mathematical Society, 1971.
[70] K.J. Ruschak. Coating flows. Ann. Rev. Fluid Mech., 17:65-89, 1985.

[71] M. Sadatomi, C.M. Lorencez, and Chang T. Prediction of liquid level distribution in
horizontal gas-liquid stratified flows with interfacial level gradient. Int. J. Multiphase
Flow, 19(6):987-997, 1993.

[72] E. Schimidt, editor. Properties of Water and Steam in S.I. Units. Springer-Verlag, 1969.

(73] L.W. Schwartz and J.M. Vanden-Broeck. Numerical solution of the exact equations for
capillary-gravity waves. J. Fluid Mech., 95:119-139, 1979.

[74] A.H.P. Skelland. Non-Newtonian Flow and Heat Transfer. John Weley and Sons, 1967.

[75] G.D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford University Press, 1994.

[76] S.L. Soo. Fluid Dynamics of Multiphase Systems. Blaisdell Publishing Company, 1967.

156



[77] D.A. Spence, J.R. Ockendon, P. Wilmott, D.L. Turcotte, and L.H. Kellogg. Convective
mixing in the mantle: The role of viscosity differences. Geophy. Journal, 95:79-86, 1988.

[78] D.A. Spence and P. Sharp. Self-similar solutions of elastohydrodynamic cavity flow.
Proc. R. Soc. Lond., A400:289-313, 1985.

[79] D.A. Spence, P.W. Sharp, and D.L. Turcotte. Buoyancy-driven crack propagation: a
mechanism for magma migration. J. Fluid Mech., 174:135-153, 1987.

[80] M.R. Spiegel. Complex Variables. McGraw Hill, 1964.

[81] B. Spindler. Linear stability of liquid films with interfacial phase change. Int. J. Heat
Mass Transfer, 25:161-173, 1982.

[82] B. Spindler, J.N. Solesio, and J.M. Delhaye. On the equations describing the instabilities
of liquid films with interfacial phase change. In F. Durst, G.V. Tsiklauri, and N.H.
Afgan, editors, Two-Phase Momentum, Heat and Mass Transfer in Chemical Process

and Energy Engineering Systems, volume 1, pages 339-344. Hemisphere, 1978.
[83] M. Sprackling. Thermal Physics. Macmillian Education, London, 1969.

[84] R.P. Srivastav. Computing the singular behaviour of solutions of Cauchy singular integral
equations. Appl. Math. Lett., 5(6):95-98, 1992.

[85] B. Thwaites, editor. Incompressible Aerodynamics. Oxford Press, 1960.

[86] E.O. Tuck. Ship-hydrodynamic free-surface problems without waves. J. Ship Research,
35(4):277-287, 1991.

[87] E.O. Tuck and J.M. Vanden-Broeck. Ploughing flows. Euro. Jnl. of Applied. Mathemat-
ics, 9:463-483, 1998.

[88] M. Van Dyke. Perturbation Methods in Fluid Mechanics. Parabolic Press, 1975.

[89] E Varley and J.D.A. Walker. A method for solving singular integro-differential equations.
IMA J. Appl. Math., 43:11-45, 1989.

[90] G.B. Wallis. One Dimensional Two-Phase Flow. McGraw Hill, 1969.

[91] P.B. Whalley. The calculation of dryout in a rod bundle. Int. J. Multiphase Flow,
3:501-515, 1977.

[92] P.B. Whalley. Boiling, Condensation and Gas-Liguid Flow. Clarendon Press Oxford,
1987.

(93] C.R. Wilke. Introductory Nuclear Reactor Theory. Reinhold Publishing Company, 1963.

157



[94] M.B. Williams and S.H. Davis. Nonlinear theory of film rupture. J. Colloid Interface
Sci., 90(1):220-228, 1982.

[95] S.K. Wilson, S.H. Davis, and S.G. Bankoff. The unsteady expansion and contraction of
a long two-dimensional vapour bubble between superheated or subcooled parallel plates.
J. Fluid Mech., 391:1-27, 1999.

[96] L.M. Wyatt. The production of reactor fuel element - i. Nuclear Power, J. Brit. Nuclear
Engineering, 1:23-28, 1956.

[97] G. Yadigaroglu and R.T. Lahey. On the various forms of the conservation equations in
two-phase flow. Int. J. Multiphase Flow, 2:477-494, 1976.

158



