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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

MATHEMATICS

Doctor of Philosophy

PARTIAL SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS MODELS FOR

DRYOUT IN BOILERS

by Mphaka Joane Sankoela Mphaka

A two-dimensional model for the annular two-phase flow of water and steam, along with

the dryout, in steam generating pipes of a liquid metal fast breeder reactor is proposed. The

model is based on thin-layer lubrication theory and thin aerofoil theory. The exchange of mass

between the vapour core and the liquid film due to evaporation of the liquid film is accounted

for in the model. The mass exchange rate depends on the details of the flow conditions and

it is calculated using some simple thermodynamic models. The change of phase at the free

surface between the liquid layer and the vapour core is modelled by proposing a suitable Stefan

problem. Appropriate boundary conditions for the model, at the onset of the annular flow

region and at the dryout point, are stated and discussed. The resulting unsteady nonlinear

singular integro-differential equation for the liquid film free surface is solved asymptotically

and numerically (using some regularisation techniques) in the steady state case, for a number

of industrially relevant cases. Predictions for the length to the dryout point from the entry

of the annular regime are made. The influence of the constant parameter values in the model

(e.g. the traction r provided by the fast flowing vapour core on the liquid layer and the mass

transfer parameter 77) on the length to the dryout point is investigated.

The linear stability of the problem where the temperature of the pipe wall is assumed to be

a constant is investigated numerically. It is found that steady state solutions to this problem

are always unstable to small perturbations. From the linear stability results, the influence

on the instability of the problem by each of the constant parameter values in the model is

investigated. In order to provide a benchmark against which the results for this problem

may be compared, the linear stability of some related but simpler problems is analysed. The

results reinforce our conclusions for the full problem.
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Chapter 1

General Introduction

The study of multiphase flow dynamics is frequently undertaken in the areas of natural

sciences and engineering. A multiphase flow is simply described by Wallis (1969) [90] as the

simultaneous flow of several phases, where a phase is a state of matter, e.g. solid, liquid or

gas. There are numerous publications on this subject which cover fields such as blood flow,

dust storms, air pollution, fluidised beds, sedimentation and pneumatic conveyors. These

publications include those of Soo (1967) [76], Wallis (1969) [90], Bergles & Ishigai (1981)

[11], Azbel (1981) [6], Chisholm (1983) [18] and Whalley (1987) [92] to name but a few.

Owing to the vast and broad scope of the subject of multiphase flows, we do not attempt

to describe the study of all aspects of the subject here since this would distract the reader

from the main theme of this thesis. This thesis is devoted to mathematical modelling and

analysis of an "annular" two-phase flow of an evaporating thin viscous liquid film of water

(adhering to a heated wall) and its fast flowing "vapour/gas core" (the technical terminology

will become clearer as we describe the physical problem in section (1.1)).

It is important at this stage to mention that the modelling and the analysis of the annular

two-phase flows (for the current conditions of interest) will involve the study of thin liquid

flows. Owing to their frequent occurrence (both in nature and in engineering sciences),

the subject of thin film flows (isothermal and otherwise) has always been, and still is, of

paramount interest to both theorists and industrialists including experimentalists. As a

result, the literature in this area is very large in its extent. It seems that much of the

recent work performed on isothermal thin liquid films has been mostly motivated by painting

processes in industry. This is not entirely surprising since many industrial processes involve a

form of coating solid substrates with thin layers of paint, e.g. the electronics industry, the food

industry and the paint industry to name but a few. Examples are presented in a review by

Ruschak (1985) [70]. Among most recent publications in the literature (and many interesting

mathematical modelling problems which arise in this area), we can mention, as examples, the



investigations of the closing and opening of holes in thin liquid films by Moriarty & Schwartz

(1993) [53]; the study of drying paint layers by Howison et al (1997) [40]; the investigations on

the spreading of thin liquid drops on planar substrates when subjected to a jet of air blowing

normally to the substrate by McKinley et al (1999) [52]; the study of thin film curtain flows on

rotating cylinders by Duffy 8z Wilson (1999) [27]; and the investigations into the blade coating

phenomena by Ross et al (1999) [68]. A significant amount of the recent research involving

the flow of non-isothermal thin liquid films (including the current problem of interest), on

the other hand, has been largely motivated by the flows which are commonly observed in

aerospace, power and process engineering industries. Examples include the study of ice and

water film growth from incoming supercooled droplets by Myers & Hammond (1998) [55];

the study of the cooling of turbine blade tips, rocket engines, hot fuel element surfaces in

hypothetical nuclear reactor accidents (see for example, a review by Bankoff (1994) [9]); and

investigations on the growth of a vapour bubble in nucleate boiling by Wilson et al (1999)

[95].

In the problem studied here (whose motivation is explained in section (1.1)), a mathemat-

ical model for the two-phase annular flow of water and vapour in steam generating pipes of

a Liquid Metal Fast Breeder Reactor (LMFBR) is proposed and analysed. The main aim of

the model is to allow predictions to be made for the position of "dryout point". The model is

based on thin aerofoil theory and thin-layer lubrication theory and it takes into account the

mass exchange between the liquid film and the gas core due to evaporation from the liquid

film. The resulting governing equation is a partial nonlinear singular integro-differential equa-

tion for the liquid film free surface. It contains Hilbert transforms which are characterised

by a Cauchy kernel of the form (£ — a:)"1. The solutions of the equation are achieved by em-

ploying both appropriate asymptotic and numerical techniques. The linear stability of some

solutions is investigated as well. Therefore, this thesis concerns mathematical modelling,

asymptotic techniques and numerical methods.

1.1 The Physical Problem

Within a nuclear plant, the basis of nuclear energy development is natural uranium. This is

mainly because its two isotopes f/235 and f/238 possess nuclear characteristics which are most

favourable to the production of atomic energy in a reactor, see for example, Wyatt (1956)

[96] and Wilke (1963) [93]. A nuclear reactor is an essential invention in which the radioac-

tive substance concerned is converted into useful energy. In a very brief and over-simplified

summary, the nuclear reactor consists mainly of two components, namely a reactor/core com-

ponent (or a fuel element) and a boiling/heat exchange component. Fission and conversion

take place in the reactor component in which heat is generated and transferred to a coolant.



Heat is then transferred from the coolant to water in the boiling component where steam is

produced to drive turbines in order to create electricity. There are different kinds of nuclear

reactors depending on many factors one of which is the type of coolant that is used. Some

examples of these are explained in detail by Etherington (1958) [28]. In the Liquid Metal Fast

Breeder Reactor, for example, a liquid metal is used as the coolant, a common choice being

sodium since it has a high boiling point at atmospheric pressure and therefore the nuclear

reactor may operate virtually unpressurised. Thus, in the event of Loss of Coolant Accident

(LOCA) in which there is a break in the boundary of the nuclear system (Prosperetti &

Plesset, 1984) [67], the damage and spread of contaminated material is minimised.

1.1.1 Flow Patterns

The boiling component of the nuclear reactor is composed of bundles of steam generating

pipes. Water is pumped through the pipes, and heat is supplied from the liquid metal which

flows in a counter-current direction in outer casings surrounding the pipes. As the water

temperature increases, the water begins to vapourise resulting in a two-phase flow of water

and steam. In a typical heat generating pipe, the water and the steam generated take up a

variety of configurations known as flow patterns or flow regimes, see for example figure 1.1.

Which particular flow pattern pertains depends upon the amount of each phase present, some

external effects such as orientation of the pipe, and the flow conditions like pressure and heat

flux. Detailed descriptions of the various flow regimes are given, for example, by Wallis

(1969) [90], Collier k Thome (1994) [20]. In a brief summary, the flow essentially consists of

a single-phase subcooled region near to the water inlet. The water in the subcooled region is

heated to the saturation temperature. At some point beyond this region, along the pipe, the

water gets superheated and the bubbles start to form at some suitable sites on the pipe. As

the bubbles grow, they detach from the pipe wall and start to form a bubbly region. In this

region, the vapour phase is distributed as discrete bubbles in a continuous liquid phase. The

bubbles (whose sizes are negligible compared to the diameter of the pipe) are almost spherical

in shape. The bubbles which are nearer to the subcooled region are typically smaller than

those at the farther end of the bubbly region along the pipe. As more and more bubbles are

produced and continue to grow larger, they amalgamate to form a plug flow region which

gives way to annular flow region. Thus, plug flow is identified by large vapour bubbles which

almost cover the whole diameter of the pipe. The bubbles are separated from the pipe wall

and one another by a thin layer of liquid. At this stage, both the vapour and liquid flow rates

are higher than of those in the bubbly region. As a result of the breakup of the large vapour

bubbles in the plug region, a churn flow regime may be observed prior to the annular flow

region. Churn flow is characterised by irregular and disturbed bubbles through liquid which

is mainly found adjacent to the pipe wall.
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In the annular region, a flow of continuous liquid film along the pipe wall surrounds a core

of fast flowing gas. Typically, the gas contains some liquid droplets which are believed to be

a result of break up of waves which are usually present at the liquid film free surface, and

undercuttings of the liquid film free surface by the increasing velocities in the gas core. In

this region, the liquid film is superheated. Thus, formation of the vapour bubbles at the pipe

wall has significantly decreased to a point that it is negligible and the gas production is due to

evaporation of the thin liquid film free surface. The liquid droplets in the gas core continue to

exist and slowly evaporate beyond the annular flow region into a dispersed-drop flow region,

where all the liquid film along the pipe has evaporated as well. The liquid droplets in the

gas core continue to evaporate until only a single-phase vapour region is present. It should

be mentioned that there are many other intermediate flow regimes, e.g. wispy-annular flow,

but the ones described above represent the minimum which can sensibly be defined (Whalley,

1987) [92]. The description of the intermediate regimes is qualitative and subjective (Azabel,

1981) [6] and therefore different sources of literature may describe them differently. Wispy-

annular flow, for example, is differentiated from the annular flow by a thicker liquid film

(than one in the annular flow region) on the pipe wall and a higher concentration of liquid

droplets (which are larger and nearly amalgamated) in the gas core. We will not try to

describe these intermediate regimes in this study although the interested reader may consult

the cited literature.

It should be mentioned that the flow regimes are also influenced by the orientation of the

pipe at low water velocities at the inlet of the pipe. In horizontal pipes, for example, the

gas bubbles tends to concentrate and travel on the upper side of the pipe. There is also a

possibility that, at very low velocities, a stratified flow region may develop after the plug

flow. In this case both the liquid and vapour phase flow separately with arguably a smooth

interface. It is also usually the case that prior to the annular flow regime, a wavy flow region

develops as a result of the interface being disturbed by the coherent travelling waves as the

vapour velocities increase in the gas core. In the annular flow, the liquid film may not be

continuous around the whole circumference of the tube but it is thicker at the base of the

pipe. For high inlet water velocities, the influence of gravity is negligible and therefore the

difference between the flow regimes in the vertical pipe and the horizontal one is virtually

not existent.

1.1.2 The Annular Region and the Dryout Point

Within this study, we focus on the two-phase annular region for several reasons. Annular flow

is the predominant flow regime present in evaporators, condensation operations, natural gas

pipelines and steam generating systems (Wallis, 1969) [90]. This is well-supported by several

published flow pattern diagrams where the different two-phase flow regimes are identified



as functions of mixture quality and mass velocity. Moreover, at the operating conditions of

the liquid metal nuclear reactor, (which are approximately pressures of 200 bar and hence a

water saturation temperature of Ts = 365°C) the flow pattern maps of Bennett et al (1965)

[10] suggest that annular flow comprises at least 80 - 90% of the two-phase flow region.

Furthermore, the annular flow regime in steam generating pipes has a fundamental feature of

an exchange of mass between the liquid film and the gas core. This phenomenon consists of

evaporation of the liquid film, typically at the free boundary; droplet entrainment (from the

liquid film into the gas core) which is believed to be a result of the break up of large amplitude

coherent waves which are usually present at the surface of the liquid film; and deposition of

liquid drops from the gas core. The annular flow regime also contains the dryout point, where

complete evaporation of the liquid film occurs.

At the dryout point, there is a sharp increase in the temperature of the pipe wall because

the thermal conductivity of the gas phase, which is now in direct contact with the wall, is

much less than that of the liquid phase. The determination of the position of the dryout point

is not a trivial problem (see also Fisher &; Pearce, 1993) [29] since, for example, in the event

that deposition of liquid drops occurs rapidly, the liquid film may reform hence rewetting and

causing the temperature of the pipe wall to drop. If the processes of dryout and rewetting

occur periodically, thermal stresses may be set up in the wall which could lead to cracking of

the pipe. Therefore, a good understanding of the dryout phenomenon is essential to predict

the lifetime of the steam generating pipes, as this process directly affects the integrity of the

pipes. Moreover, the position of the dryout point affects the amount of evaporation which

can occur in the pipes for a given value of the heat flux, and it is of great importance in the

design of evaporators, steam boilers and nuclear reactors (Bankoff, 1994; Collier &: Thome,

1994) [9], [20].

1.1.3 Some Models which are Related to the Presented Problem

Since the studies on the dynamics of the two-phase systems encompass broad lines of dis-

ciplines in engineering and sciences, then it is almost inevitable that there exist numerous

related models to the current problem of interest. We do not make any attempt here to

review all of these models. It is, however, important to mention at this stage that the anal-

ysis of the available publications (e.g. Soo, 1967; Wallis, 1969; Chisholm, 1983) [76], [90],

[18] indicates that there is no standard type of equations generally agreed to describe the

two-phase (and of course multiphase) flows. Usually, most two-phase flows are characterised

by changes in many physical properties (e.g. density, viscosity, thermal conductivity) which

are, in general, functions of space, time and other variables. Frequently, the dynamics of

two-phase systems in pipes (as well as the current problem of interest) include heat and mass

transfer thermodynamics. Thus, it is extremely difficult to develop mathematical models of



these systems. The general attitude adopted in the literature is that two-phase flows obey

all the basic laws of fluid mechanics with equations more complicated and/or more numerous

than those describing the single-phase flows. Thus the models are based on the conservation

laws of mass, momentum and energy.

Practically all of the early literature indicates that the modelling of two-phase flows consid-

ered the mixture mass, momentum and energy conservation laws (see for example, a review

by Yadigaroglu & Lahey, 1976) [97]. This is a simple, but also not accurate, method of

analysing two-phase flows. The properties of the mixture, e.g. velocity, temperature, den-

sity and viscosity, are calculated average properties of the two phases. The challenge in the

mixture modelling is then of developing techniques to determine these weighted average prop-

erties and rearranging the resulting equations until they resemble equivalent equations of a

single-phase flow. There are numerous approaches in the literature adopted by researchers

and we are not going to make a review of them here. However, it is worth mentioning that a

frequently employed approach is to express the properties of each phase, in the conservation

of mass, momentum and energy equations, in terms of a mixture quality. A mixture quality

is defined as mass flux of one phase divided by total mass flux of the two phases. Later

models, on the other hand, consider separately the conservation laws for each phase in order

to improve accuracy of the mathematical representation. These equations can then be com-

bined to describe the total flow. The equations are many with numerous unknowns. Thus,

in general the problem is intractable. Therefore, it requires some simplifications and closure

conditions which can only be supplied by prescribing appropriate interaction laws of mass,

momentum and energy between the phases. This is non-trivial and researchers frequently

resort to a great number of hypotheses.

Some examples of models which are related to the current problem of interest include those

of Fisher & Pearce (1993) [29] and Whalley (1977) [91]. Fisher & Pearce (1993) [29] present

a model for annular flow of water and steam at high pressures (~ 149 bars) in electrically

heated (heat flux ranging from 60 to 65 KW/m2) horizontal serpentine evaporators with

typical radii and lengths of order 22.1 mm and 3.17 m, respectively. Fisher and Pearce's

model takes into account evaporation of the liquid film and droplet entrainment from the

gas core into the liquid layer. Whalley (1977) [91] proposes a two-phase annular flow model

to calculate the dryout in a vertical rod bundle of a nuclear reactor at pressures between 10

and 68 bars. The heated length of the tubes is of order 3.66 m. The processes of droplet

entrainment and deposition are both assumed to be major phenomena affecting the dryout

process in this model. To analyse their models, Whalley (1977) [91], Fisher & Pearce (1993)

[29] use numerous empirical engineering correlations. In fact these type of models, as put

by (Kirillov et al, 1985) [46], are not developed to investigate directly the parameters which

characterise the annular two-phase flow in pipes, but to describe analytically the conditions



of burnout or dryout heat transfer. The basic equations are that of the film flow rate, and

the flow characteristics are described very schematically and empirically.

1.1.4 An Overview of Work Performed in this Thesis

We now summarise the work of this thesis. In chapter 2, an unsteady two-dimensional

mathematical model for the two-phase flow of a thin liquid film (adjacent to a heated pipe

wall) and its fast flowing gas core, along with the dryout point, is proposed. A number

of assumptions, relevant to the current conditions of interest, are made and discussed in

detail. The thin liquid film is modelled by employing thin-layer lubrication theory. The flow

in the gas core is modelled as an incompressible, inviscid and irrotational flow. The liquid

film adjacent to the wall is treated as a small perturbation to the gas flow. This allows the

application of the thin aerofoil theory. A constitutive equation for the transfer of mass, by

evaporation, from the liquid film into the gas core is proposed by specifying an appropriate

Stefan problem.

Chapters 3 and 4 deal with numerical solutions of the steady state cases of the model when

a constant wall temperature is specified and when a specific non-constant wall temperature

is prescribed, respectively. Chapter 5 is mainly concerned with linear stability analysis (with

respect to small temporal perturbations) of the steady state numerical solutions obtained

for the constant wall temperature problem. The results are compared with those analysed

for some simple paradigm problems. Finally, chapter 6 summarises some conclusions and

discusses possible further work.

All of the numerical results presented in this thesis have been computed using programs

which the author has written in FORTRAN-77. In many cases, some specified NAG library

routines have been employed and a specific reference is given in the thesis whenever and

wherever one is used.



Chapter 2

The Full Unsteady Model

In this chapter, we systematically develop an unsteady mathematical model for the dry-

out front position. The resulting model amounts to a nonlinear singular integro-differential

equation for the unknown liquid film free surface. Plausible boundary conditions are stated.

Before we proceed with the mathematical modelling, however it is instructive to review some

previous relevant work.

2.1 Literature Review

2.1.1 Mathematical Modelling

Owing to some previous modelling of various physical phenomena, nonlinear singular integro-

differential equations already exist in the literature. Fitt et al (1985) [32] propose a simple

model which gives a steady nonlinear integro-differential equation to investigate the aerody-

namics of slot film cooling by injection of an inviscid fluid from a slot into a uniform cross

flow. The model assumes both the injected and the free-stream to be potential flows. In

order to ensure that the injection is weak, it is further assumed in the model that the slot

pressure exceeds the cross flow pressure by only a small amount. Some theoretical results

are obtained and are found to be in good agreement with experimental observations at low

injection rates. Some variations of the Fitt et al (1985) [32] model are investigated by several

other authors. The effects of altering the geometry of the upstream end of the slot on the

mass flow are studied by Fitt &; Wilmott (1994) [34]. In this paper the original model is

augmented with a term obtained from a known upstream end geometry. Fitt & Stefanidis

(1998) [33] include the energy equation in the original problem to enable predictions of the

film cooling effectiveness produced by the slot injection into the cross flow to be made. Fitt

&: Lattimer (1996) [31] extend the Fitt et al (1985) [32] problem to include the effects of

introducing a downstream suction slot. In the absence of the upstream injection slot, Lat-



timer Sz Fitt (1998) [47] investigate transient effects by assuming that the unsteadiness in

the resulting problem is driven by a time dependent suction slot pressure. Pope (1999) [65]

studies the problem of de-icing (removal of a thin ice layer) by the injection of heated fluid

from a slot. Just like the other models mentioned earlier, this problem is also a development

of the original model by Fitt et al (1985) [32]. A complementary problem of slot suction from

an inviscid channel flow, when the suction and free stream total pressure heads are equal, is

investigated by Dewynne et al (1989) [25]. Other authors use hodograph techniques (by using

Christofel transformations, for example) to model fluid flows in some complicated physical

geometries, and the resulting equations of motion are nonlinear singular integro-differential

equations. Forbes & Schwartz (1982) [35] tackle a two-dimensional problem of steady flow

of a fluid with a free surface over a semicircular obstacle on the bottom of a stream. A

hodograph variable is specified and the problem is transformed from an otherwise difficult

physical space into a simpler hodograph space. Similar techniques are employed to study

other problems in various difficult geometries by a number of authors. These include King

Sz Bloor (1987) [44] in their study of a steady free surface flow of an ideal fluid over a semi-

infinite step; Asavanant & Vanden-Broeck (1994) [4] who investigate two-dimensional flows

past a parabolic obstacle lying on the free surface in a fluid of infinite depth; and Tuck &

Vanden-Broeck (1998) [87] who study "ploughing flows", i.e. flows over shallowly-submerged

bodies which may be thought of as a model for an agricultural plough.

All of the above models concentrate exclusively on inviscid incompressible and irrotational

flows. There are a few models in the literature, however, which incorporate some viscous

effects. Spence & Sharp (1985) [78] study a pressure-driven fluid fracture problem whereas

Spence et al (1987) [79] consider the case of buoyancy-driven fluid fracture. These authors

formulate their problems in terms of singular integro-differential equations governing the

elastic deformations of the crack wall boundaries. The equations are then coupled with the

differential equations of lubrication theory for viscous incompressible flows in the cracks.

The resulting governing equations for the models are nonlinear singular integro-differential

equations. Another interesting physical problem which is closely related in structure to the

one which we model in this chapter, is the study of thin isothermal viscous liquid layers

supported by steady air flow surface traction (King & Tuck, 1993) [45]. The air not only

exerts the shear traction on the liquid layer, but also leads to a non-uniform pressure whose

size is determined by the shape of the layer. Upon employing thin aerofoil theory and

lubrication theory approximations, the problem is reduced to a nonlinear singular integro-

differential equation for the unknown shape of the liquid layer. This problem (like all the

other models which include viscous effects in this literature review) differs fundamentally

from the one that we model in this chapter because we account for both the transfer of mass

from the superheated (i.e. heated above saturation temperature) liquid layer into the gas
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core flow and the change of phase at the unknown boundary of the liquid layer. Therefore,

the associated boundary conditions also differ considerably.

2.1.2 Numerical Methods

It is worth mentioning at this point that, due to their frequent appearance in modelling

physical phenomena, a vast amount of literature is available on the numerical solution of

linear (or linearised) singular integral equations. The interested reader is referred to a wide

range of numerical techniques presented by various authors in the literature, see for example,

Tuck (1991) [86], Chakrabarti & Tsahoo (1996) [16], Cuminato (1996) [21], Kim (1998) [43],

De Klerk et al (1995) [23], Prankel (1995) [37] and Fitt et al (1995) [30]. Other authors

compute the singular behaviour of the linear Cauchy singular integral equations with both

constant and variable coefficients (Srivastav, 1992; Li Sz Srivastav, 1997) [84], [49]. Although

numerical methods for linear equations are interesting, they are not really applicable to

our problem. Here, we will therefore focus briefly on some of the references which employ

numerical techniques to solve nonlinear singular integro-differential equations and these are

much rarer. An obvious reason for undertaking this part of literature review is to learn of

what may be already available for application when we will be tackling the current problem

numerically later in this thesis.

In an analysis of a nonlinear singular integro-differential equation governing the local tem-

perature during transient radioactive heat transfer in a plane layer, Prasad &; Hering (1970)

[66] present a purely numerical method for solving the problem. Their technique uses a least

squares approximation for the function within the integral operator to reduce the equation to

a system of ordinary differential equations. Predictor-corrector methods are then employed

to solve the resulting system of differential equations. Owing to the complex nature of their

problem and approximations involved, the problem of analysing the convergence, stability

and error bounds for the numerical scheme is not even attempted. Spence & Sharp (1985)

[78], in their study of pressure-drive fluid fracture, and Spence et al (1987) [79], in their study

of buoyancy-driven fluid fracture, rearrange the original nonlinear singular integro-differential

equation into an alternative form in which the unknown function may be approximated using

an expansion technique. The basis functions chosen for the expansion are based on Cheby-

shev polynomials with unknown coefficients. The Chebyshev expansion is augmented by a

term possessing the correct singular behaviour at an appropriate point. The unknown coeffi-

cients are determined by a constrained nonlinear optimisation technique. On the other hand,

Spence et al (1988) [77] employ similarity techniques (self-similar) to analyse their unsteady

model. Fitt et al (1985) [32], O'Malley et al (1991) [58], Fitt & Wilmott (1994) [34], Fitt &

Stefanidis (1998) [33], Fitt & Lattimer (1996) [31] and Pope (1999) [65] all invert their sin-

gular integro-differential equations and then integrate the resulting equations appropriately
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to remove any derivatives of the unknown function. After applying the relevant boundary

conditions to evaluate the constants of integration and inversion, the problem is then solved

numerically by employing a direct iterative relaxation scheme. The success of this numeri-

cal technique is primarily made possible by the fact that the resulting equation contains no

principal-value integrals. It is not clear, however, whether the fact that the behaviour of the

unknown function at one (or more) end point contains a logarithmic singularity also plays

an important role. King & Tuck (1993) [45], instead, employ regularisation techniques to

deal with the singular behaviour of the derivative of the unknown function near an end point

prior to any numerical manipulations. Their resulting equation is then discretised using fi-

nite differences and a collocation method is employed to evaluate the Cauchy principal-value

integral. The final challenge of King &; Tuck (1993) [45] is to solve a set of nonlinear alge-

braic equations for the unknown function at discrete points, and this is done using a Powell's

method as implemented in the NAG library routine C05NBF.

As a result of using a conformal mapping technique to map a region of complicated geom-

etry, which is occupied by an irrotational inviscid fluid, to a region with a simpler geometry,

Bloor (1978) [12], Schwartz & Vanden-Broeck (1979) [73], Forbes & Schwartz (1982) [35]

and King & Bloor (1987) [44] also solve various nonlinear singular integral equations using

different, but closely related, computational techniques. In general, the methods are based

upon finite difference approximations. The domain of the independent variable is subdivided

into subintervals. The derivatives are approximated by appropriate finite difference formu-

lae. Evaluation of the Cauchy principal-value integrals includes use of Taylor expansions of

the integrand about a point, singularity removal by some elementary transformations and

singularity subtraction leaving a singular integral plus a natural-logarithm term. Ordinary

integrals are calculated using Simpson's rule. Finally, iterative methods are employed to solve

the resulting set of nonlinear algebraic equations.

An analysis of Newton iteration numerical methods is carried out by Junghanns (1994)

[42] for some classes of nonlinear singular integral equations. It might be useful to mention

at this stage that Varley Sz Walker (1989) [89] obtain analytical solutions (not numerical) to

certain classes of linear singular integro-differential equations over an infinite range. However,

the closed-form solution of nonlinear singular integro-differential equations over a finite range

still remains an open question.

2.2 A Model for Dryout Front Position

We now proceed to develop a mathematical model in order to allow predictions to be made

for the length to the dryout point. As mentioned in chapter 1 section (1.1.2), the annular

flow region is characterised by the transfer of mass at the interface between the liquid film
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and the gas core. Suggested mechanisms by which this phenomenon occurs are entrainment

of liquid drops from the liquid film to the gas core due to undercutting of crests on the

film free surface, deposition of liquid drops from the gas core and evaporation in the liquid

film. Typically, the liquid in the thin film is superheated (see for example Kirillov et al,

1985; Higuera, 1987; Prosperetti & Plesset, 1984) [46], [39], [67] and therefore evaporates

at the interface between the liquid film and the gas core. This superheating is possibly due

to suppression of a complex phenomenon of heterogeneous nucleation and ordinary boiling

by, for example, either heating or depressurising the liquid very rapidly (Higuera, 1987) [39].

The rate of evaporation depends on the external heat flux supplied to the boiling pipes. At

the operating conditions of interest the results of Collier (1972) [19] suggest that neither

entrainment nor deposition occurs rapidly. Therefore, we assume the dryout phenomenon

is mainly driven by evaporation of the liquid film. Deposition, as one might expect, seems

to be directly proportional to the concentration of liquid droplets in the gas core (Whalley,

1977, 1987; Fisher & Pearce, 1993) [91], [92], [29] while on the other hand, the process of

droplet entrainment appears to be a subtle matter. We adopt a simple approach in modelling

this problem, since in any mathematical modelling of a problem it is always good practice to

build a model from the simplest foundations (Alpabhai et al, 1997) [1]. It is rarely successful

to try and combine all realistic features into a model from the start. It should be noted,

however, that adjustments can be made in our models to account for these other factors. In

this study we concentrate exclusively on the problem when the dryout phenomenon is driven

by the evaporation process from the liquid film free surface.

2.3 Liquid Film Flow

We proceed by first considering the thin liquid layer adjacent to the heated pipe wall. The

flow in the gas core will be considered later. In order to suggest the qualitative details of

the flow in the liquid film, some typical parameter values are required. (It should be pointed

out that in this study, all of the thermal and physical values have been taken from Schmidt

(1969) [72], Irvine & Harnett (1976) [41] as at the pressures of interest, the literature is not

unanimous and different sources may give different values.) Typical operating conditions of

interest are given by parameter values in the nomenclature table in appendix A. We note, in

particular, that typical pipes have an internal radius of order a ~ 7 mm. Moreover, liquid

layer thicknesses and velocities of order ho ~ 0.1 - 1 mm and U ~ 1 cm/sec, respectively, are

considered typical. The pressure throughout the whole system is close to 200 bar so that the

saturation temperature of water is given by Ts = 365° C. On entry to the pipe, the water has

a temperature of 240°C and thus has a density of 491 kg/m3. For a typical mass flux of 2000

kg/m2/sec the water velocity at the pipe entry is thus about 4.07 m/sec. At the top of the
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pipe where all the water has been converted to steam, the vapour has density 171 kg/m3 and

by mass conservation the gas velocity here is thus approximately 11.70 m/sec.

We assume that the film consists of an incompressible Newtonian fluid (since water has

a low molecular weight, approximately 18.015 (Lide & Prederiskse, 1996 - 1997) [50], and is

thus a Newtonian fluid (Skelland, 1967) [74]). The layer is evaporating so that at the vapour-

liquid interface there is mass loss, momentum transfer and energy consumption. The liquid

in the thin film is superheated and therefore non-boiling except at the free boundary where it

is assumed to be at the saturation temperature. We also assume that initially the free surface

is not disturbed, i.e. there is no rippling. Since ho/a < 1, we analyse a two-dimensional

problem and neglect the effects of axisymmetry. Without loss of generality, we study the flow

in horizontally orientated pipes. We employ Cartesian coordinates to describe the system;

the schematic configuration is shown in figure (2.1). We assume that x = 0 corresponds

to an initial measurement of the film thickness y = h(x,t), while x = L(t) corresponds

to the dimensional length to the dryout point and is to be determined. The coordinates

x and y are the lateral and vertical coordinates respectively, and t denotes time. Under

flow of gas

y =

dryout point, x = L(t)

Figure 2.1: A schematic representation of the liquid-gas interface relative to the liquid film,

these circumstances, the flow in the liquid film is governed by the standard two-dimensional
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Navier-Stokes equations

UX+Vy = 0,

P (Ut + UUX + VUy) = ~PX + /i (UXX + Uyy) ,

p (vt + «ux + wy) = -pg-Py + n{vxx + vyy), (2.1)

where u and v are the a; and y components of velocity q of the liquid respectively and p is

pressure in the liquid film. The constants p and /z are the density and dynamic viscosity of the

liquid respectively, and g is the acceleration due to gravity in the system. Typical values for fi

and p at the operating conditions of interest are approximately given by 6.44 x 10~5 N sec/m2

and 491 kg/m3, respectively.

2.3.1 Interfacial Mass and Momentum Balances

The equations are now closed by prescribing appropriate conditions at the boundaries. At

the vapour-liquid interface y = h(x,t), there is a transfer of mass from the liquid layer into

the gas core by a phase change at a yet unknown rate. On denoting the mass per unit area

per unit time transferred from the liquid to the gas by M, and assuming that any mass

escaping at the free surface does so in the direction of the outward-pointing normal of the

free surface (since the mass in the tangential direction is not escaping, it is still part of the

film free surface), we have (Delhaye, 1974) [24]

M = p(q-<fc)-n, (2.2)

where q̂  is the velocity of the interface whose components are obtained from the kinematic

condition of the free surface,

V{ = ht + Uihx, (2.3)

and n is the outward-pointing unit normal to the interface. In two dimensions, h is given by

Thus, in two dimensions M is given by

Hence the application of (2.3) yields

(l ) ~ 1 . (2.4)

We now assume that surface tension s is a constant so- This is a valid approximation since

we assume, in the analysis, that all of the interface is at the saturation temperature Ts and
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therefore, if the surface tension is represented by an equation of state s = so — j(T — Ts)
r

(where r = 1,2 e.g. r = 1, Pearson (1958) [60], Davis (1987) [22] and Burelbach et al (1988)

[14]; r = 2, Oron & Rosenau (1994) [59]) for the surface tension gradient 7, for example, then

s = SQ the surface tension at the saturation temperature of the liquid. It should be mentioned

however, that surface tension may also depend on other scalar fields like the electrical field

and the concentration of foreign materials on the interface (Levich &: Krylov, 1968) [48];

for simplicity we consider a clean interface here. With this assumption of constant surface

tension, it implies that all the surface tension gradient terms are equal to zero. Thus, the

shear stress at the interface effectively vanishes so that conservation of momentum tangential

to the interface (Levich & Krylov, 1968) [48] yields

M(q-qs)-t-(T-Ts)-n-t = 0, (2.5)

where t is the tangential unit vector to the interface, q9 = (ug,vg) denotes the velocity in

the gas core and it is not yet known, Y and Tg are appropriate stress tensors of the liquid

and the vapour respectively. The term M (q — qs) • n is a reactive pressure at the interface

known as vapour recoil (Burelbach et al, 1988; Bankoff, 1971) [14], [8] exerted by the vapour

leaving normal to the interface. Both T and Tg are assumed to take an explicit form given

by

Vgx)

fi (Uy + VX) 2flVy j

Vg {Ugy + Vgx) \

\ Hg (Ugy + VgX) J

That is, for simplicity, we have assumed that the flow in the gas core is also incompressible.

The validity of the latter assumption will be justified later in section (2.4). We then define

the tangential traction T(X, t) exerted on the free surface of the liquid film by the fast moving

in the core by

Yg • n • t = —rt • t.

Thus, in two dimensions, r is given by

g (Ugy +Vgx)(l-kl)+ 2Hghx (v gy - UgX) } (l + h\) , (2.8)

where \ig is the dynamic viscosity of the vapour. However, for simplicity, we will assume that

r is a known parameter even though this is not a necessary requirement. Therefore, the shear

stress boundary condition at the interface gives

H [(uy + vx) (l - h^ + 2hx {vy - ux)] (l + hi) - 1 = r. (2.9)
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It should be noted that in deriving equations (2.8) and (2.9), we have employed a no-tangential

slip condition at the interface y = h(x,t) in equation (2.5), i.e.

(q - qfl) • t = 0. (2.10)

It should be noticed that the validity of (2.10) holds since neither of the two fluids has been

assumed to be inviscid at this stage.

The normal stress boundary condition at the interface balances the normal stress with the

product of surface tension times twice the mean Gaussian curvature of the interface (Atherton

& Homsy, 1976) [5] so that

3

*, (2.11)

where pg(x, t) is pressure in the gas core and is yet to be determined. In two dimensions

equation (2.11) leads to

jp (-uhx - ht+v) [-hx (ug - u) + vg - v] - 2/x \yy + uxh
2
x - hx (uy + vx)] j

x (l + hi)'' + N - (p -pg) = sQhxx (l + hi)'1 , (2.12)

where N is given by

N = 2fJ,g {Vgy + Ug^ - kX (Ugy + VgX) } ( l +

Finally, on the solid surface y = 0, the no-slip condition implies

u = v = 0. (2.13)

(It might be important to recall at this stage that M is still not yet known. A constitutive

equation for M is derived in terms of h in section (2.6).)

2.3.2 Nondimensionalisation

In order to compare terms we need to nondimensionalise the variables. Depending on the

choice of a timescale, this will lead to various nondimensional models. In the liquid film we

set x = LQX, y = eLoy, h = eLoh, u = Uu, v = eUv, and p = (pU2/e2Re)p, where LQ

is the length to the dryout point in the steady state case and it is unknown, e = ho/Lo,

Re = ULQ/V is the Reynolds number and v = fi/p is the dimensional kinematic viscosity of

the liquid. The scaling with the unknown length LQ merits some comment. It implies that

we have an idea about the order of magnitude for LQ and that we anticipate (as it is a case

in practice) the difference between the unsteady length L(t) and LQ to be of small order of

magnitude.
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With these scalings, only two timescales, each determined by the boundary condition (driv-

ing the unsteadiness of the problem) at the onset of the annular flow (x = 0), are enough.

This point will be reiterated again later in this chapter in section (2.6). We first develop our

models in detail under the fast timescale t = (Lo/U)i, and at the end we state and discuss

the models under the long timescale t = (La/eU)i. With the fast timescale t = (Lo/U)i,

equation (2.4) becomes

M = peU {-hxu - hi + v) ( e ^ l + l ) " , (2.14)

and therefore to lowest order in e we have

M = pUe {-hxu - hi + v). (2.15)

This effectively fixes the order of magnitude of the mass exchange required to produce dryout

in an order L(t) distance. On defining the nondimensional rate of mass flow m by M = pUem,

(2.15) becomes

rh= (-hsu - hi + v). (2.16)

In general, equation (2.16) is not valid at the tip where the assumptions of the thin-layer

lubrication theory break. There, the velocities in the x and y directions are comparable.

Therefore, the problem would need some new scalings near this point. However, for simplicity,

we will assume that (2.16) is valid up to the dryout point.

In order to proceed with the analysis of equation (2.16) we need expressions for u and v in

terms of h. These may be obtained by solving (2.1) subject to (2.9), (2.12) and (2.13). With

the above scalings, the nondimensional problem to solve is

UX+Vy = 0,

e2Re (ui + uux + vv,y) — -px + e2uxx + Uyy,

e2Re (vf + uvx + vvy) = —g 1 + e2vxx + Vyy, (2-17)
£

subject to the boundary conditions

\(uy + e2vx) ( l - e2h2
x) + 2e2hx {vy - ux)\ (l + e2hf) ~1 = f, (2.18)

\pU2 (-uhx -hf + v) \-hx (eiig - e2uj + [yg - e2ujj

2/J.U r 3 - 7 2 t (- 2- M 1 (-, 2I2N\~1

— levy + e uxhx - ehx I uy + e vx)\ > 11 + e hx)
eLg L \ /J j \ /

+N - 4irP + ePooUlfg = Sehxx (l + e2hf) ~'2 (2.19)

on y = h(x,i); and

u = v = 0, (2.20)
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on y = 0. The nondimensional quantities g, N and r are defined by g = (e2ReLo/U2) g,

N = {2/j.gUoo/Lo) N and r = (fiU/eLo)f, respectively. The dimensional variable N is given

by

N = 2-^ {v9S + e2h2ugi - ehs (ugy + vgi)} (l + Sh2)'1,

where, in the gas core (cf. section (2.4)), the variables x, y, pg and q s are respectively scaled

with x = LQX, y = Loy, q9 = ĈooQg ~ €~lUqg and pg = epooll^pg. The dimensional

parameters Uoo, Poo and /J.^ are respectively the typical speed, density and dynamic viscosity

of gas far upstream of the dryout point. It should be emphasised though, that the scalings

for T are correct only when fi(U/efj,gUoo) ~ O(l), which can be confirmed, by considering

the typical parameter values given in the nomenclature table, that fi(U/engUoo) ~ 9.58. The

surface tension so has been scaled with SQ = (3/iC//eLo)so following several studies of capillary

phenomena (see for example Williams & Davis, 1982) [94] where the surface tension is usually

scaled with the thickness of the liquid film. We will comment further about the scaling of the

surface tension in section (2.6). The nondimensional parameter 5 = (eLo/fiU)so is an inverse

capillary number and is therefore a measure of the importance of surface tension effects.

2.3.3 Thin-Layer Lubrication Analysis

Examining the orders of magnitude of the dimensionless constants involved, we find that

(approximating LQ using Lt ~ 6.1 m - the length of the tube that is heated) e ~ 1.64x 10~4 and

e2Re ~ 0.012, so that a thin layer analysis is appropriate, pU2 ~ 0.049, fiU/eLo ~ 6.54 x 10~4,

VgUoo/Lo ~ 6.85 x 10~5 which are small too, pU2/e2Re ~ 4.08 and epgll^ ~ 4.04 which are

both 0(1) and thus suggesting that to the leading order pressure is continuous across the

interface. The gravitational term g ~ 1.18 (which is of 0(1)) and thus e2g ~ 3.17 x 10~8 is

small. (It should be mentioned that even though we develop our models solely for the case of

horizontal pipes, it will be shown later however that even for vertical pipes the models, with

appropriate definition of variables, still hold.)

To leading order we therefore have to solve the familiar nondimensional lubrication equa-

tions

us + vv = 0, (2.21)

fi = Uyy, (2.22)

Py = 0, (2.23)

subject to the boundary conditions

uy = T, on y = h(x,i), (2.24)

and

u = v = 0 ony = 0. (2.25)
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In addition, p = p(x, t) is continuous across the interface and hence will be determined by

the dynamics in the gas core.

On solving (2.21), (2.22) and (2.23) for u and v subject to conditions (2.24) and (2.25) we

obtain

« = Ipxy (y ~ 2h) + f y,

) + TiPxy hx — —Txy • (2.26)
u 2 2

Substituting (2.26) into (2.16) we get a nondimensional equation for h in terms of rh

1 3 •*• - 1 2 \ t In o-7\
ti Tn I — /if, (L.Zl)

where p$ is to be derived in section (2.4).

2.4 Gas Core Flow

In order to find an expression for px in terms of h and therefore close equation (2.27), we

have to take into account the flow in the gas core. We assume that in the gas core, far away

from the interface, the gas is inviscid (this assumption is discussed further later on in this

section). In addition, velocities are much higher in the vapour core than in the liquid film

(Prosperetti & Plesset, 1984) [67]. Hence the changes in the vapour density originating at the

liquid-vapour interface are quickly convected away from the interface. As a result, we take

the vapour density as a constant in this study so that we have an incompressible flow of gas

in the core. Essentially, in the gas core, we assume an inviscid and irrotational incompressible

flow of gas in which the Bernoulli equation

-gy + — = C(t), (2.28)

holds, for some function C(t). We treat the flow in the liquid film adjacent to the pipe wall

as a perturbation to the main flow in the gas core (see Figure (2.2)). The function $(x, y, t) is

the velocity potential of the gas and therefore, the velocity components ug and vg respectively

satisfy ug = (j)xa.ndvg = <fiy. All other variables are as defined earlier, but are written with

a subscript g to signify their reference to the gas. Since the flow in the gas core is inviscid

and irrotational, it satisfies the Laplace equation

<t>xx + <t>yy = 0 . (2.29)

The assumption that the flow of gas in the core is inviscid warrants some discussion. If the

gas flow is inviscid it implies that the stress exerted is normal to the liquid-vapour interface,

i.e. there is no shear stress. In the previous section (2.3) however, we have assumed that
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y>

v z 4> = o

flow of gas

dryout point, x = L(t)

Figure 2.2: A schematic representation of the liquid-gas interface relative to the gas core.
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the fast flowing gas in the core provides a tangential traction on the liquid film free surface;

therefore the gas cannot be totally inviscid. We can expect, due to viscous effects, that

adjacent to the liquid film free surface there is a thin gas-flow viscous boundary layer. The

traction (in general a function of x and t) that is supposed to be produced by this boundary

layer on the liquid film is alternatively provided by the traction parameter T as explained

earlier in section (2.3). Furthermore, on assuming that the liquid film is sufficiently thin and

streamlined in such a way that separation cannot occur then we can treat the rest of the gas

in the core as inviscid (Newman, 1977; King & Tuck, 1993) [56], [45]. It should be pointed

out that in reality the flow in the gas is turbulent, see for example Kirillov et al (1985) [46].

However, as a first approximation which captures the modelling and analytical study of this

problem we adopt, for simplicity, a laminar flow.

2.4.1 Nondimensional isa t ion

We now proceed by nondimensionalising the variables in the gas core. It is appropriate to

set pg = epooU^pg, x = Lox, y = Loy, ug = J7oo%, vg = U^Vg, h = Loh, t = (L0/U)t ~

(Lo/eUtx)! and cj) = LoUocifi, where, as mentioned earlier, the dimensional parameters Uoo

and Poo are respectively typical speed and density of the gas upstream of dryout, far away

from the perturbation. This gives

Pgx = - \j>xt + t~l [UgUgS + VgVgx]) , (2.30)

from Bernoulli's equation (2.28), and

<Pxx + 4>yy = 0 , (2.31)

from the Laplace equation (2.29).

We now have to specify appropriate boundary conditions. Far away from the perturbation,

the disturbance must vanish hence we must have

4>x -*• 1, 4>v ->• 0, as x2 + y2 -> oo. (2.32)

On y = eh(x,t), mass conservation dictates that

M - -Pg (q9 - q i ) • n. (2.33)

In two dimensions, to leading order, equation (2.33) leads to

M = -pgUg {-ehxug - e2hi + uff) . (2.34)

We know, from section (2.3), that M = pUerh. We use this fact and a consistent approxima-

tion Ug ~ U/e (as seen earlier in section (2.3)) to write (2.34) as

-e2hf - ehx4>x + 4>s + — e2m = 0, (2.35)
Pa
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where we recall that ug = <j>x, vg = (f>y and (see the nomenclature table) p/pg ~ 2.87 which is

2.4.2 Thin Aerofoil Theory Approximation

We now seek an asymptotic expansion of the solution to (2.31) as the thickness parameter

e —> 0. In the limit, the liquid film thickness reduces to a line y = 0 which causes no

disturbance of the flow in the gas core. Thus, the basic solution is the uniform parallel flow

with speed Ug. We therefore expect ^ to be of the form

4>(x,y,t;e) = x + e4>i{x,y,t) + e 2 f c ( x , y , *) + •••• (2.36)

We adopt standard thin aerofoil theory assumptions (see for example Van Dyke, 1975; New-

man, 1977) [88], [56]. We calculate (2.36) at the free boundary y = eh(x,i). On assuming

that all the 4>i{x, y,t) (i = 1, 2, • • •) are analytic at y = 0, we then expand the right hand side

of (2.36) in Taylor series to obtain

4>{x,eh,t;e) = x + e^i(x,0,f) + e2 ^ ^

It then follows that

fe = 1 + 6 ^ ( 5 , 0 , t ) + e2 [JWi s(s ,0,

Hence equation (2.35) gives

- e 2 / i t - - e h s [1 + e<j>ix{x,y,t)-i ] + e(j>iy{x,y,i) + e 2 [hy4>\y{x,y,

h4>ly-y(x,y,t) + 4>2{x,y,t)] + - - - + e 2 — m = 0, (2.37)
Pg

at y — 0. The velocity potential 4>(x, y, t; e) in (2.31) thus satisfies, to order e,

4>lxx + <i>lyy = 0,

subject to the boundary conditions (from (2.32) and (2.37) respectively)

4>ix = 0, fay = 0, as x2 + y2 ->• oo,

<piy = hx, on y = 0.

By representing the interface y = eh(x,t) as a distribution of sinks and sources along the

x-axis, an appropriate velocity potential for the gas flow is given by

I /-i+/(f)
ti = 7T /(£, *) ln ((* - 02 + V2)dt (2.38)
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where /(£,£) is unknown and has to be determined. It has been assumed, for simplicity, that

L(i) can be written as L(i) = LQ + G{t) for some function G{t). Therefore l(t) is denned

by l(i) = G(t)/Lo and it is also not known at this stage. It should be mentioned that L{t)

may be written in other forms; however the current form is convenient for the linear stability

analysis of this problem that takes place later in this thesis.

The mass conservation at y = eh(x,t), equation (2.33), warrants some comment. In the

light of the above systematic analysis, (2.33) suggests that, since M is O(e) and the flow

velocity is much higher in the gas core than in the liquid film then as far as the gas core flow

is concerned, the interface y = eh(x,t) is a streamline. Thus the boundary condition that

must be imposed is

—e2hf — ehx<f>x + 4>y = 0, a t y = eh.

On differentiating fa in (2.38) with respect to y we obtain

Or - £) 2 + y2

Taking the limit of (piy as y —> 0 and applying the boundary condition at y = 0 we get

( 2 ' 4 0 )

where (2.40) is obtained from (2.39) by observing that as y —> 0 the integrand tends to

zero except for the point £ = x. At this point, the integrand tends to infinity. Thus,

y {(x — £)2 + y2}~ behaves like a delta Dirac function and hence we obtain (2.40). It then

follows that ug and vg respectively satisfy

() hc(f:
lim s = 1 + - 4 *Kq';d£, (2.41)

7T J-oo X — 4

= - lim fay — ehx(x,i), (2.42)
7T J / » 07T

where /-denotes a Cauchy Principal Value integral. Therefore, from equations (2.30), (2.41)

and (2.42), on assuming that hx(x,t) = 0 for x < 0, an expression for pgx is given by

Therefore, to lowest order, the equation for the dimensional pressure gradient in the gas core

^{i^ya)) (2.43)
where r(t) = 1
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The assumption that hx(x,t) = 0 for all x < 0 warrants some discussion. This assumption

implies that at all times the film layer is flat for all x < 0. This is obviously untrue as it

has already been discussed earlier that prior to the annular region, there are some several

complicated flow regimes. We however argue that, since the annular flow regime occupies

most of the boiler tube, there should be a point along the pipe where the annular flow regime

is of constant thickness (even if it was not flat, but the shape was known, then this could

easily be included). Therefore, for practical simplifications, we measure the length to the

dryout from this point. This assumption will be revisited again later in the analysis.

2.5 Shear Stress Constitutive Law-
Concerning a constitutive equation for the tangential stress r, we will assume here (in order

to keep the amount of algebra manageable when computing the solutions to this problem

later in this study) that r (and hence f) is a known prescribed constant. A constitutive

equation that has been adopted in the literature is a simple law r = fgwPocU^/2 (Thwaites,

1960; Sadatomi et al, 1993; King & Tuck, 1993) [85], [71], [45]. With the current scalings then

the nondimensional shear stress would be f = fgweLopCK1U%0/2[j,U. The parameter fgw > 0,

in the thin layer approximation, is the coefficient of friction of steam on the wet pipe wall.

Since f is expected to be of order 1, it then implies that fgw should be small. In general,

fgw is not known. It may however be determined empirically and experimentally for different

materials in various conditions of interest (see for example Whalley, 1987) [92]. In a general

case under the current conditions, the constitutive equation for the dimensional r should be

given by equation (2.8)

[(ugy + vg£) ( l -

Expressions for ug and vg at the unknown liquid free surface are obtained from the thin

aerofoil theory, equations (2.41) and (2.42) respectively, so that to leading order

r =

Thus the nondimensional f, under the current scalings, should be given by

T =
fill n

It can be confirmed from the parameter values given in the nomenclature that \xgl\i ~

0.54 which is of O(l). However, as stated earlier, we will assume here for convenience and

simplicity that f is a known constant.
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2.6 Mass Transfer Constitutive Law

We proceed to complete the development of the equation (2.27) for a general mass exchange

rate m. In general, rh depends on the details of the flow conditions and we will calculate

these using simple thermodynamics models.

We assume, for reasons explained earlier, that the transfer of mass from the liquid film to

the gas core is mainly affected by the evaporation process, i.e. deposition and entrainment

are ignored. We further recall that the liquid in the thin film is superheated, hence the mass

transfer is due to convective boiling (Whalley, 1987) [92] in which heat is transferred by

conduction and convection through the film and evaporation takes place at the liquid-vapour

interface. Thus, the interface is regarded as being at the saturation temperature.

On ignoring the viscous dissipation term, the flow of heat in the liquid film is governed by

the equation

pCp (Tt + uTx + vTy) = k {Txx + Tyy), (2.44)

where the parameters Cp and k are respectively the specific heat and thermal conductivity of

the liquid (typical values are given in the nomenclature table) and T denotes temperature. In

reality, Cp and k will be functions of T but are assumed to be constants here for convenience

and simplicity.

2.6.1 Robin Condition

We now have to prescribe appropriate boundary conditions for (2.44). The mass transfer is

by phase change at the liquid-vapour interface y = h(x,t), hence, as mentioned earlier, we

regard the interface to be at the saturation temperature T = TS. At the pipe wall y = 0, we

prescribe a general Robin boundary condition

kTy = -C(M) (r(M)ly=o -Trn) , (2-45)

where Tm is the typical temperature of the liquid metal, C(:c)^) is the heat transfer coefficient

which we regard as "known" and, for thermodynamic reasons (see for example, Babits, 1968;

Sprackling, 1991) [7], [83], is required to be a positive quantity.

2.6.1.1 Nondimensionalisation

In order to compare terms in (2.44), we proceed by scaling variables using the thin-layer

scalings x = Lox, y = eLoy, u = Uu, v = eUv, t = (L0/U)t and T = Ts + f(Tw- Ts), to

yield

% + ufs + vfv = j ^ - ( r « + £ f w ) , (2.46)
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where Tw is a typical wall temperature. On using the typical parameter values given in the

nomenclature table, it may be confirmed that

~ 32.76,

~ 8.81 x 1(T7.

Thus to the lowest order, equation (2.46) reduces to

Tyy = 0. (2.47)

In nondimensional variables (2.45) is

fy = -V(x,i), (2.48)

where V(x, t) is defined by

On solving (2.47) subject to (2.45) and T = Ts at y = h(x, t) we obtain

f = V(x,t)(h(x,t)-y).

2.6.2 Stefan Condition

The change of phase as the liquid boils at the interface must now be considered. On assuming

that the temperature in the gas core remains constant and neglecting the surface entropy

term, the standard Stefan condition (see for example Rubinstein, 1971) [69] asserts that

&«! = -P§i (V - h{x,t)) [x + \ ({(qff - m) • n}2 - {(q - <*) • n}2)} , (2.49)

where the square brackets indicate the jump in a quantity from the liquid to the gas side, A

is the latent heat of vapourisation of the liquid (typical value is given in the nomenclature

table), D/Dt = dt + q • V is the usual material derivative and, we recall, q̂  is the velocity of

the interface. Physically, this condition says that the thermal energy, which is conducted to

the interface from the liquid side, is partly conducted away into the vapour and in part used

to cause the phase change.

2.6.2.1 Nondimensionalisation

On invoking the thin-layer scalings x = LQX, y = eLoy, h = eL^h, u = Uu, v = el/v, t =

(L0/U)t and T — Ts +T (Tw - Ts) to nondimensionalise variables, equation (2.49) becomes

y = -(v- uh ~ hi) L + ̂ ^ [Ul (-ughs + vg- h? ~ U2 (-uhs + v - ]

(2.50)
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where 7? = (UpLo\e2/k (Tw — Ts)) is a nondimensional parameter which, as the analysis will

show, characterises the transfer of mass from the liquid film into the gas core. From the

typical values given in the nomenclature table, we observe that

~ 2.46 x 10"7,

- 6.59 x 10~15.

2 2
e3p£ot

Hence, to the leading order, Ty is given by

f9 = -r)(v- uhx - hi) • (2-51)

We recall, from equation (2.16), that m = v — uhx — /if, therefore we conclude from (2.51)

that

m = - - . (2.52)

Finally equations (2.48) and (2.52) give

m = V^X'1'. (2.53)
V

Equation (2.53) is a mass transfer constitutive law. It relates the interfacial mass flux m to

the heat transfer coefficient at the boundary pipe wall. It thus confirms that the parameter

r) indeed characterises the mass transfer from the liquid. For r\ 3> 1, i.e. a liquid with large

latent heat, the mass transfer is small and dryout may not occur. For liquids with small

latent heat, the mass transfer is so great that a liquid film may not be established and dryout

occurs immediately. For the operating conditions of interest, the typical parameter values

given in the nomenclature table imply

1.18
V ~ Tw-Ts'

indicating that with a few degrees of superheat in the liquid, dryout will occur at an 0(1)

distance from the inset of the annular flow.

2.7 The Full Model

Since both the mass transfer and the shear stress constitutive laws are now known, then

the final full nondimensional problem that must be solved, from equations (2.27), (2.43) and

(2.53), is

T) X-7T \ In f — r I 9
' ^ \ / X ) X

On the long timescale t > (Lo/eU)i, things change at a rate which is so slow that the problem

is equivalent to solving a steady problem at different times, a quasi-steady problem (this can
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easily be verified by following similar analysis as above). In this case, equation (2.54) reduces

to

ZJ^ffMJ^) _£,} . (2.55)
2 j

It may also easily be verified that timescales greater than t = (Lo/U)i are not allowable in

the current model. In such cases M S> 0(1), relative to the liquid film. Physically, this

means that the layer does not form at all.

For vertical pipes, it can be shown (by going through similar analysis as above) that under

the current conditions of interest and appropriate redefining of variables, we obtain models

very similar to (2.54) and (2.55). That is to say, in the fast timescale t = (LQ/U)1 for example,

the final equation that must be solved is

where in this case x refers to a vertical Cartesian coordinate and y denotes the lateral ones.

It is evident from (2.56) that in this case the gravitational term g is important. It should

be mentioned however, that solving (2.56) cannot be mathematically different from solving

(2.54) as the constant g can be absorbed into the traction parameter f. Henceforth we assume

that f includes the effects of gravity.

As a final comment on (2.54), we consider what would happen if surface tension was to be

included. In section (2.3), in order to keep the surface tension in the problem, we could scale

the surface tension SQ with SQ = (3fiU/e2Lo) so instead of SQ = (3^iU/eLo) so- Thus, in the

fast timescale t — (Lo/U)t, to leading order the normal stress boundary condition (2.19) at

the interface y = h(x,i) would become

-p + Cpg = Shxx,

where C and S are respectively given by C = e3Rep00U%0/pU2 and S = Se2Re/pU2. From

the typical parameter values given in the nomenclature table in the appendix, it can be

confirmed that C ~ 1.01 which is of 0(1) and 5 ~ 4.01 x 10~55 (which suggests that

the inverse capillary number S has to be very large in order that surface tension effects are

important in this problem). The thin aerofoil analysis in section (2.4) together with equations

(2.53) and (2.27) lead to a nondimensional equation for h

VjC-h* (f MiJU - | 4 - % - f (S'iU)., (2.57,
V [ 3 7 r \^y0 Z - x ) . 2 j . 3?r V I x

instead of equation (2.54). In this thesis, we will not generally use equation (2.57) though.
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2.7.1 Heat Transfer Coefficient Constitutive Laws

For practical purposes, a constitutive equation for the heat transfer coefficient V(x, i) in

equation (2.53) must be proposed in order to make any progress with calculations on the full

model (2.54) (or with (2.55), (2.56) or (2.57)). This may be tackled in a number of ways.

Here we will consider a case where the temperature at the pipe wall is assumed to be a known

function of x and t, i.e. T\ Q = T\y{x,t). Other ways would include the case when V(x,t)

is assumed to be constant (we will comment again about this case later in this section).

We proceed here by solving equation (2.47) for T. As mentioned earlier, we assume the

temperature at the wall y = 0 is a known function of x and t, T\ 0 = T\y(x,t). Solution of

(2.47) subject to T = Ts on y = h(x, t) and T = Tw{x, t) at y = 0 yields

In this case, (2.52) gives
(Tw(x,t)-T,\ 1

m={ Tw-Ts )jh> (2-59)

where (2.59) is the constitutive law for the mass transfer. Thus, the constitutive equation for

the heat transfer coefficient V(x,i) in this case, from (2.53), is given by

(2.60)

2.7.2 Constant Wall Temperature Problem

We suppose that in practice boilers, evaporators etc., are arranged in such a way that the

wall temperature is as close to constant as possible (in circumstances where this might not

be the case, another problem in the liquid metal should be solved). We therefore assume for

simplicity that T\y{x,t) —Tw, so that (2.59) implies

m=-L (2.61)
rjh

which is singular at the dryout point h = 0. The final full nondimensional problem that must

be solved, from equation (2.54), with V(x,t) given by V(x,t) = 1/h from equation (2.61), is

then

T]h [3TT \JO Z-OC ) _ 2 j .

Similarly, equations (2.55), (2.56) and (2.57) will respectively become
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(2.65)

Evidently, the nonlinear singular nature of the above equations renders it extremely unlikely

that it will be possible to find closed-form solutions. In the steady state analysis in chapter 3,

we solve (2.62) using both asymptotic and numerical techniques. We will begin by considering

some special limiting cases which will motivate a numerical method for the full problem. It

will also be argued later, in the same chapter, that solving (2.65) numerically should not be

fundamentally different from solving (2.62).

2.7.3 A Varying Wall Temperature Problem

As mentioned in section (2.7.2), in the case when the wall temperature is not constant then a

problem in the liquid metal should be solved for temperature profiles. However, this is a non-

trivial task. It requires careful modelling of the flow problem and the knowledge of pressure

(which is in general a function of x and i) in the liquid metal. Further, in some cases (see

for example, Ockendon Sz Ockendon, 1977; Pearson, 177) [57], [61] it may be appropriate to

propose a constitutive equation for the liquid metal viscosity (which is in general a function

of temperature). It is extremely unlikely that the resulting model could be solved in closed-

form. Hence, it is unhelpful for the current purpose. An outline for this problem, in the

current conditions of interest, will be briefly presented in section (2.8). Here, we observe that

if the temperature at the pipe wall is given by

lw\X,t) = J-s + [J-w — ±s)n j

(in which case V(x,t) is given by V(x,i) = h(x,t)) then from (2.54) we obtain

T) ~ \ 37T \J0

This problem may not have any obvious physical relevance whatsoever (though it will be

seen that the results for this case are realistic). However equation (2.66) is relatively simpler

to solve (as it will be seen later in this study) than both equations (2.62) and (2.67). Hence

solving (2.66) encourages different numerical techniques (which are tackled in chapter 4) for

these types of problems. Further, the steady state solutions to (2.66) help us to explain some

of unexpected behaviour in the numerical results (in particular, the pressure profile curves)

of equations (2.62) and (2.67).

2.7.4 Constant Wall Heat Flux Problem

In industrial settings, it is customary to assume a constant heat flux at the pipe wall supplied

by the liquid metal. In most cases the value of the flux quoted is simply a figure derived from
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the known properties of the total heat input provided by the reactor. It is questionable how

such a pointwise heat flux may be either measured or maintained, or whether it is reasonable

to assume that it does not change along the tube. However, if such is the case, then the

equation that must be solved, from (2.66) or (2.54), is

where the nondimensional heat transfer coefficient V(x,t) is simply a constant and has been

absorbed into the heat mass transfer parameter 77 in equation (2.67).

2.7.5 Initial and Boundary Conditions of the Full Model

The modelling formulation must be completed by the specification of appropriate initial and

boundary conditions. The boundary conditions for this problem are far from trivial. To

begin with, it should be observed that (2.62) [or (2.66) or (2.67)] requires the prescription of

at least four boundary conditions (the reasons for this will become clearer as we discuss these

conditions further in the particular case in chapter 3). At the dryout point, where the liquid

film vanishes at all times, the obvious boundary condition to impose is that h(r(t)) = 0. The

function r(t) is not known a priori. We require that h(x, i) ~ (r(i) — x)p as x —> r(t), for the

appropriate real value p to be determined as part of solution. We assume that at the onset of

the annular flow x = 0, h(O,t) is known at all times t. It is convenient to assume that h(O,t)

is a constant equal to ho (say) for all t. Another boundary condition may be obtained by

assuming that in practice the pressure at x = 0 can be measured and therefore it is known.

Equally, we may require that JIQ satisfy the pressure gradient condition (which is obtained

by insisting that the mass flux should always vanish at the dryout point) at x — 0. The final

boundary condition comes from the fact that we do not allow infinite values of pressure at

x = 0 so that hx{0,t) = 0 (again this condition will become clearer as it is discussed further

in chapter 3). As far as the initial conditions are concerned, it is sensible to assume that

h(x, 0) = h(x), for some steady state solution h(x), and r(i) = 1 at t = 0.

2.8 Problem in the Liquid Metal

In this section we set up a plausible problem in the liquid metal. This problem should be

important for obtaining the boundary temperature to be prescribed at the wall y = 0 when

solving the problem in the liquid layer. We should mention, however, that it is not our main

aim to solve this problem here (since it is highly unlikely that the problem may be solved in

closed-form, hence rendering it unhelpful for the purposes of solving any of the problems in

the liquid layer). It should be emphasised that we will not return to this problem, but we
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just set it up to show that it could be done. Figure (2.3) shows a schematic representation of

the whole problem. For convenience, the dryout point is at x = 0 measured from the entry to

Flow of gas

y=0 Liquid film

x=0 u=v=0 T (x,t)w x=L(t)

Liquid metal flow

y=-H

T=T (t)
E

u=v=0 T (x,-H)=O

Figure 2.3: A schematic representation of the problem in the liquid metal.

the annular regime at re = L(t). We assume, for simplicity, that the flow in the liquid metal

has the characteristic velocity Um, constant density pm, constant specific heat Cpm, constant

thermal conductivity km, typical temperature Tm and dynamic viscosity fi(x,T) to account

for some essential coupling between the energy and momentum equations.

Considering the pipes (in which the liquid metal flows) whose typical length is approx-

imately equal to the typical length of the steam generating pipes (6.1 m) and possess a

characteristic diameter H ~ 0.012 m, we consider here a two-dimensional problem. For

simplicity and to avoid unnecessary complications, we consider a quasi-steady state and in-

compressible flow in the liquid metal. It is convenient to write L(t) as L(t) = LQ + SG(t), for

some function G(t), LQ is the length to the dryout point in the steady state case and 8(> 0)

is small and is defined by 8 = H/LQ. On approximating LQ by the characteristic length of

the pipe then 5 ~ 1.97 x 10~3.

We now nondimensionalise variables by setting (thin-layer scalings but in a different layer)

x = Lox, y = 6Loy = Hy, u = Umu, v = 5Umv, p = (pmU^l/8
2Rern)p, T = Tm +

T(TW - T m ) , t = (L0/8Um) i and n = nmp,(x,T) where Rem = UmLQpmj\im and fj,m are

respectively the Reynolds number and the typical dynamic viscosity of the flow in the liquid

metal. All the other variables retain their usual meanings but they should be understood

to refer to the flow in the liquid metal in this section. Under these circumstances, the two-
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dimensional Navier-Stokes equations for the flow in the liquid metal become

Ux+Vy = 0,

S2Rem {Suf + uux + vuv) = -px + 62 {fi(x,f)us)- + (/2(z,T)u5)_

Vy) = -g - ^ | + 82 {ji{x,T)vx) (x,f)vs).,

where the nondimensional parameters g, A and B are respectively given by

A =

and

82RemL0

"-T71

~g^~uirg'

(Tw-Tm)L0'
where g is, as usual, the acceleration due to gravity and Tw is the typical temperature of the

heated pipe wall at y = 0. In the energy equation, only the dominant term (uy/8)2 from the

viscous dissipation term has been included.

In order to suggest the qualitative details of the flow in the liquid metal, typical orders of

magnitude for 52Rem, A and B are required. However, getting typical parameter values is not

easy for this problem. In this section, all the typical physical parameter values for the liquid

metal have been taken from Bolz & Tuve (1973) [13] (different sources in the literature may

give different values). At typical operating temperatures of 673 K, the physical parameter

values for liquid sodium are typically given by Cpm ~ 1280.30 J/kg/K, pm ~ 858.56 kg/m3,

km ~ 71.09 W/m/K, p,m ~ 2.85 x 10"4 Ns/m2 and Tm ~ 673 K while Tw ~ 640 K. Therefore,

for a typical velocity of Um ~ 0.1 m/s in the liquid metal, A ~ 1.06 x 10~4, B ~ -7.86 x 10~13

and thus B/62 ~ 2.01 x 10~7 (which is small) while A/82 = A ~ 27.31 (and it is of 0(1)).

The parameters 82Rem and g are typically (and respectively) given by 82Rem ~ 7.13 (which

is of 0(1)) and g ~ 713g, where the magnitude of g is g ~ 9.8 (hence 82g ~ 2.77 x 10~3# and

it is small).

Therefore, to leading order, the Navier-Stokes equations reduce to

ux + vy = 0, (2.68)

uux + vuy = -px + (fl(x,f)uy)v, (2.69)

Py = 0, (2.70)

UTX+VTy = ATyy. (2.71)

The sensible boundary conditions to impose on the equations (2.68) - (2.71) are u = v = 0,

(the no-slip condition) at the pipe boundary walls y = 0 and y = — 1 and Ty = 0 at y = — 1
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(i.e. the outer casing wall is assumed to be totally insulated). Finally, we assume that both

the dimensional pressure and temperature, PE{1) and TE(<) respectively, can be measured

and therefore are known at the entry to the annular regime x = L(t). The dimensional

temperature T — Tw{x,t) at the pipe wall y = 0 is unknown and it has to be found. Since

p.(x,T) in equation (2.69) does not appear in the energy equation (2.71), then it is reasonable

and convenient to treat it as a constant and ignore the dependence on x.

The system of equations (2.68) - (2.71) is very challenging to solve numerically (due to

nonlinearity and coupling of some dependent variables). However, we observe that when the

flow in the liquid metal is a fully developed Poiseuille flow at all times, we can then write

for some function F(t). Then we obtain that v(x, y, t) = 0 so that the no-slip condition holds

at the boundary walls. As a result, equation (2.70) tells us that the pressure p is a function

of x and t only. From equation (2.69), in nondimensional form, we have

Px =

so that on integrating with respect to x we obtain

p = ™ F(t)x + a constant.
52L£

We apply the boundary contain p = PE(<) at x = L{t) to yield

Thus, in nondimensional variables, p is given by

to leading order. The nondimensional function PE$) is given by

The dimensional temperature T has to be obtained by solving (2.71)

F(t)y (jj + l ) Tx = ALoHTyy, (2.72)

subject to the boundary conditions Ty = 0 at y = —H, T = TE(£) at x = L(t) and T =

Tw(x,t) at y = 0 is to be calculated. For any given nonzero F(t), (2.72) can only be solved

numerically and (for reasons given earlier in this section) we do not pursue this problem any

further in this study.
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Chapter 3

Steady States for the Constant

Wall Temperature Problem

Prior to any attempts to solve the unsteady problem subject to appropriate initial and bound-

ary conditions, it is instructive to analyse and try to understand steady state situations. Ow-

ing to the nonlinear singular nature of the governing equation, it is extremely unlikely that

the problem can ever be solved in closed-form except for particular special cases. Therefore,

it is inevitable that we have to resort to asymptotic and numerical techniques in order to

obtain any information from the model. We start by analysing some paradigm problems,

mainly to motivate an appropriate numerical method for the full nonlinear problem (steady

state version of (2.62)) which will be tackled in section (3.2).

3.1 Limiting Cases and Paradigm Problems

We define M by M = Qx, where Q is the dimensional rate of mass transfer per unit length

at the free surface. In this case the dimensional version of equation (2.27) may be integrated,

where we recall that in the liquid film M = pUem, x = LQX, h = eLoh, r = (I^U/CLQ) f,

p = (pU2/e2Re) p and Re = ULop/fi. On assuming that px is finite at the dryout point h = 0

(or if it is not, then at least it does not blow up faster than h3 tends to zero at this point),

we impose, for simplicity, the boundary condition Q = 0 there. Under these circumstances

we have

from which we get
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where Q has been appropriately scaled, from (3.1), by Q = pUL^eQ and Q is nondimensional.

Comparing equation (3.2) and a steady case of (2.43), i.e. closing the equation by matching

the dimensional pressure gradients px and pgx across the interface y = eh, leads to

(3.3)

where 6 = p00f7^e3Lo/3C//i is a nondimensional parameter and measures the relative orders

of magnitude of the pressures in the two regions of flow. Using the typical parameter values

given in the nomenclature table, it may be confirmed that 0 ~ 0.32 and hence is of order 1.

3.1.1 Boundary Conditions

We now need to prescribe appropriate boundary conditions for this problem. We note that

due to the nonlinearity and singular nature of these equations, no theory exists to determine

sufficient conditions for existence and uniqueness of solutions. However, since equation (3.3)

has two derivatives and one Hilbert transform we might expect to specify three conditions

to uniquely determine the solution. To emphasise this point we look at an example of a very

simple singular integral equation of the finite type

/
Joo £ —

= I- (3.4)

Equation (3.4) possesses one Hilbert transform and a derivative. However, a general solution

of (3.4) is

h(x) = C2 + Ci sin"1 {y/i) - y/x{\-x). (3.5)

Equation (3.5) has two constants, C\ from the inversion of (3.4) and C2 from the integration

of hx(x) with respect to x. Thus, we would have to specify two boundary conditions in order

to obtain a unique solution h(x) from (3.5). Therefore, it is sensible to anticipate prescription

of three boundary conditions in order to determine a unique solution to (3.3) if it exists.

The annular flow regime occupies most of the boiler tube, therefore we assume that at

some point along the tube, the annular flow regime is of known constant thickness and the

gas core pressure is known at this point. Moreover, from the steady state of the Bernoulli

equation (2.28), we observe that the dimensional pressure in the gas core, to lowest order, is

The dimensional parameter poo is the typical pressure in the gas core far upstream of dryout.

At x = 0 equation (3.6) yields
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Thus, (3.7) indeed suggests that hx(0) = 0 for the integral to exist. In other words, hx(0) = 0

is a boundary condition which is consistent with the thin aerofoil theory which has been used

to model the pressure in the gas core in order to have finite pressure at the onset of annular

flow, x = 0. We also know that the dryout point is at x — 1. Therefore we have to solve (3.3)

subject to

M 0 ) = 0 , M l ) = 0 , Pg=pgo, (3.8)

where pgo is dimensional gas core pressure at x = 0. If the dimensional thickness h(0) is

known from measurements, we can then calculate the dimensional length to dryout from

Lo = 7WY ( }

In other words, we need to solve the dimensional equation with a known h(0), hx(0) — 0,

pg — pgo and h(Lo) = 0. This determines LQ. It is like an eigenvalue problem.

It would be ideal if the dryout length could be calculated from the conditions prescribed at

the entry to the boiler tube. However, it is evident that to determine the length of the annular

flow and hence the dryout point, requires some initial data concerning the annular regime

itself. Since the flow regimes prior to annular are very complicated, it might be very difficult

to take measurements there. Therefore the conditions described in (3.8), approximate as they

are, seem to be practically reasonable.

3.1.2 Analysis of the Integral Equation

As mentioned earlier equation (3.3) is nonlinear, therefore any attempts to determine closed-

form solutions for general mass exchange rates are likely to prove fruitless. These difficulties

imply that we are mostly restricted to using asymptotic and numerical methods. However,

the well-posedness of the problem may be checked for a few special cases. We analytically

solve one such simple case below.

A relatively easy special case of (3.3) is obtained when Q — k-[h3 and f = Ik-ih, for some

constants k\ and &25

L fl Mld(: = Kx - Cl, (3.10)
7T JO £ — X

where K9 = k\ + &2 and C\ is an arbitrary constant of integration. Physically, this implies

that we assume the rate of liquid mass escaping at free surface per unit area is directly

proportional to the product of the square of the film free surface, h2, and its slope, hx.

While the traction on the free surface (provided by the flow of vapour in the gas core) is

directly proportional to the thickness of the liquid layer, h. It should be mentioned that

these assumptions may not be realistic at all; however, using them we can obtain a closed-

form solution. Equation (3.10) may then be inverted by standard methods (for example see

38



Muskhelishvili, 1953) [54] to yield

£ z ^( l a;)x

where C2 is an arbitrary constant arising from inversion of the singular integral in (3.10).

Simplification of (3.11) leads to

H I ( f ) ^ (3.12)

and upon imposing the boundary condition (3.8), hx{x) = 0 at x = 0, gives

Cx + C2 = j . (3.13)

From the pressure condition (3.7) and equation (3.12), at x = 0, we get

which simplifies to give
i f _ (PgQ ~ Poo) 7T

C2 - — = Yn '
2 ePooL/4

Integration of equation (3.12) with respect to x leads to

h{x) = (d -\K + 2C2\ sin"1 (VI) + ( d - j - y x) sjx (1 - x) + A.

On imposing the boundary condition h(l) = 0 at the dryout point implies

so that, on using (3.13) and (3.14), we have

where P ( < 0) is given by P = (p5o — Poo) /ePoo^oo- ^n t m s c a s e t n e dryout length is given,

from (3.9), by

u n(K-AP)'

It is then evident that, for any finite fixed /i(0), the length to the dryout LQ is inversely

proportional to K — AP. Since P < 0 then for any any K > 0, the liquid film cannot be

formed for values of K — AP —> oo. On the other hand, if we can allow K < 0 then there will

be some cases when the dryout point cannot be established at all. Such cases are possible

when K — AP = 0, e.g. when K = 0 and the pressure through the pipe is a constant equal to

Poo- This example may be unrealistic in its physical conception but it however suggests that

the problem may be well-posed. Other choices of Q and f which make the integral equation

linear in h may be possible but we now wish to move on to solving the nonlinear problem

(3.3) in the cases where the mass exchange rates are considered known.
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3.1.3 An Inversion Technique Using Properties of Abel's Equation

Before we proceed to solve (3.3) numerically, it should first be mentioned however, for com-

pleteness, that (3.10) can also be inverted alternatively using properties of Abel's equation.

We briefly outline here a method due to Peters (1963, 1968) [62], [63]. For convenience and

ease of notation we drop bars and write hx(x) = <f>(x) and (Kx — C\)TT = f(x). The left

hand side of (3.10) is then rewritten as

£ = / —S——MZW
Jo c - x

(3.15)

- x

Jo Jo £ —

where use of (3.10) has been employed. Substitution of (3.15) into (3.10) then gives

which can be rewritten as
o c, —

£ . So

Equation (3.16) may be integrated with respect to x to yield

- / In
Jo

(3.16)

(3-17)

It is observed that the integral

f dp

so that the definite integral

fx dp
/ ,, = In

Jo

= - 2 In

= ln

+ a constant,

= - I n

Therefore (3.17) can be rewritten as

c\
+ 2Vx~ C </>{£)<%• (3-18)

Jo

An appropriate change of order of integration on the left hand side terms of equation (3.18)

yields

{ •
2v^ C

Jo
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which simplifies to

— P
= f'

Jo

(3.19)

It is then noted that the solution to Abel's equation

is given by (see for example Arfken, 1985) [3]

)
Jo Vx P / x

where integration by parts has been used. Thus, an application of this result on equation

(3.19) yields

f1

Jpp \/£ — p vr Jo
dx /

x Jo

(3.20)

where use of the result
f dx
I = = 7T.

Jo y/x(/3 — x)

has been employed. It is noted that the solution to the integral equation

can be deduced from the Abel's equation as

Therefore, equation (3.20) leads to

y/xf(x)d,X

")<•
(3.21)

where use of the integral

Jo

and hence

have been employed. Upon changing the order of integration in the second term on the right

hand side of (3.21), the equation can then further be manipulated (the details are given in

Peters (1963) [62]) to give a standard inversion formula

--1 y/x(l - x)f(x) , C</>(£) = ] - /
TrV^i-O J°

-dx — (3.22)
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where C is a constant given by

— / (f>(x)dx.
n Jo

It should be recalled that, in relation to the paradigm problem in section (3.1.2), cp(x) and

f(x) are given by $(x) = hx(x) and /(x) = Kx — C\ respectively (where bars are omitted

for convenience). Thus, we could invert (3.10) using (3.22) instead of (3.11) to get

hx(x) = r± T / Vi{1 ° (Ci - K£) d{ + f . (3.23)
n^x(l - x) Jo £-x \A(1 - x)

However, it would be very difficult to proceed analytically. It can be shown, using standard

techniques, that

i
x7

6x4(l - x)4 + 4x2(l - x)& + 4z6(l - x)2 + x8 + (1 - x)

2 [3x4(l - x)2 + (1 - x)2 + (1 - x)6 + xe + 3x2(l - x)4]

3x2 [4(1 - x)2 + 3x2] 5x2 1
+ 1 6 [(1 - xY + 2x2(l - x)2 + x4] 16 [(1 - xf + x2] J "

Therefore, in this case, it would be very difficult to proceed (as in section (3.1.2)) to solve

(3.10) in closed-form using the inversion formula (3.23).

3.1.4 Numerical Solution

3.1.4.1 A Conventional Method

As an initial step to solving (3.3) numerically, we start by first solving a very special case

i) =1, (3.24)

J
subject to the boundary conditions (3.8). We do this as (3.24) can be solved analytically

and therefore we can compare our numerical solution to the analytical one, thus checking the

accuracy of our numerical method.

As far as numerical methods are concerned, we pretend that (3.24) cannot be integrated

explicitly with respect to x and thus treat it as if it were nonlinear in h(x). We discretise

the interval [0,1] by dividing it into n equal subintervals [£j,£j+i], where £j = j/n are mesh

points, n denotes the number of mesh points and 0 < j < n — 1. We use finite differences
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(see for example Smith, 1994) [75] to approximate px, where

at mesh points and we collocate p at mid-mesh points where it can be evaluated. We assume

that the Cauchy integral

Jo £- x

may be approximated by the sum of the integrals in each subinterval [£j,£j-n]- Essentially,

we are approximating the integral using a trapezoidal rule. We further suppose that hx(x)

is a constant in each subinterval, i.e. we approximate the solution h by linear functions in

each subinterval. It is then clear from the boundary condition hs(0) = 0 that JI(XQ) = h(xi).

Then assuming that we know h(£o), a parameter that has to be chosen in order that the

solution satisfies the pressure condition, equation (3.24) becomes

2 = 1, 2 < i < n - 1, (3.25)

where Pi±i/2 and £j±i/2 a r e respectively given by

Pfcti =

n

and are the mid-mesh points.

Equation (3.25) can also be written as

where /ij = h(£j). After integrating and imposing the boundary conditions /io = hi and

ftn = 0 we get an (n — 2) x (n — 2) system of linear equations

n - l j - 2t + I)2

3)(2j-2*-l)
7T

In
(3 -

(1 - 2t)(5 - 2i)

We solve this system for values of hj using the NAG library routine F04ATF and hi = ho

is a prescribed parameter. The method uses an LU factorisation with partial pivoting and

iterative refinement. Results are plotted against the mesh points for different values of n. In

each case the numerical results, see for example figures (3.1), (3.2) and (3.3), are compared

with the analytical solution of (3.24) which, for example when h(0) = 3?r/8, is

M*) = -4< (3.26)
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Figure 3.1: Graph of h(x) (n = 5).
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Figure 3.2: Graph of h(x) (n = 55).
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Figure 3.3: Graph of h(x) (n = 495).

It is observed that the results of this conventional method are not satisfactory in comparison

to the analytic solution. For n = 5, a curve for the analytic solution appears to be an average

of the numerical solution. However, as the number of mesh points is increased, the numerical

results do not approximate the analytic solution satisfactorily at all (see figures (3.1) to

(3.3)). Therefore, it is necessary to devise other computational methods in order to obtain a

satisfactory numerical solution to this problem.

3.1.4.2 A Different Approach

It is obvious from the analytical solution (3.26) that near x = 1, h(x) —> 0 like \A — ^-

Therefore, there is a singularity in the slope of h(x) as hx(x) —> oo near x = 1. It is this

singularity in h(x) at x = 1 which disrupts the conventional numerical scheme. As a remedy,

we instead solve a regularised problem by considering a stretched coordinate where h(x) —> 0

linearly near x = 1. We put

where y2 — 1 - x.Hx) = H(y),

Under these circumstances equation (3.24) becomes

-/2 _
9=2y, (3.27)

y2 - / y

subject to the boundary conditions H{y) = 0 at y = 0, Hy(y) — 0 at y = 1 with H(l) a

known parameter.
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Equation (3.27) is then discretised in the conventional way, as described in section (3.1.4.1),

to give an (n - 2) x (n — 2) system of linear equations

n - 3

j=0

2t-

1

In
2j + 3)(2i - 2j - l)(2t

(2* - 2; - l)(2t + 2j 3)(2t -

2 t - l
In

(2i + 2; + l)(2t - 2j - l)(2t - 2(j + 1) - 3)(2t + 2(j + 1) - 1)
i - 2; - 3)(2t + 2j - l)(2t -

—TTT - hi
n4

1
In

(2t + 2(n - 2) + 3)(2t - 2(n - 2) + 1)

2i- 1
In

(2t - 2(n - 2) - l)(2t + 2(n - 2)

(2t + 2(n - 2) + 1)(2* - 2(n - 2) - 1) I \
(2t - 2(n - 2) - 3)(2* + 2(n - 2) - 1) |

1 < i < n - 2.

The system is then solved for values of hj, as explained earlier, using the NAG library routine

F04ATF. Results of this method compare well with the analytical results (see figures (3.4),

(3.5), and (3.6)). The transformation removes the singularity in hx{x) at x = 1 so that the
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Figure 3.4: Graph of h(x) (n = 11).

numerical method works better. However, there is evidently a price to be paid because the

transformation enormously increases the amount of algebra involved in the problem.
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Figure 3.6: Graph of h(x) (n = 100).
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3.1.5 A Nonlinear Problem

The previous paradigm problem in section (3.1.2) could be solved in closed-form. Hence the

asymptotic behaviour of the solution could be deduced from the analytical solution itself. The

numerical solution could also be compared with the closed-form solution in order to check

the validity and the accuracy of the computational method. On the other hand, the full

problem we intend finally to solve is highly nonlinear and the chances are extremely remote

that closed-form solutions could be obtained. Therefore, we need to develop some asymptotic

techniques in order to get an insight into the behaviour of the unknown solution near the end

point x = 1 (where non-uniformities may be anticipated to arise). We will further require

some techniques for testing the accuracy of our numerical method in this case. In order

to proceed, we first consider a nonlinear special case of the finite range nonlinear singular

integro-differential equation (3.3) where the dynamics of m and f are ignored. In other words,

(3.3) is solved for h given that m and f are prescribed parameters. In general m = m(h(x)),

details of which have been given previously by simple thermodynamic models and we must

solve the steady case of problems (2.62) and (2.63). However, we hope this special case,

physically unrealistic as it may be in its conception, will give us an insight as to how and

whether we can solve the full nonlinear problem numerically. In equation (3.3), it is not

known whether in general the quantity Q has to be negative or positive.

We recall that m = Qx with the boundary condition Q = 0 imposed at the dryout point,

x = 1. Therefore, with this fictitious approximation of a constant TO, Q = m (x — 1). It

is obvious that if m > 0 then Q < 0 for all x in [0,1]. We now have to solve (3.3), written

explicitly in this case as,

k { £ ^ h <3-28)
In effect it can be observed that (3.28) is identical to the constant heat flux problem from

equation (2.67)

in the special case when m = 3/rj, r = 3f and 0 = 1. To show this, we assume that the mass

flux

vanishes at the dryout point x = 1 where h(x) = 0. Effectively, this fixes the regularity

condition for this problem. Integration of (3.29) with respect to x then gives

Cj - ^ 2 = - - ( l - x ) . (3.30)
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Now, equation (3.30) can obviously be rewritten as

and hence the result follows.

For simplicity and for demonstration purposes, in the subsequent section (3.1.5.1) we will

solve a far much simpler case than equation (3.28). (Equation (3.28) may be solved in exactly

the same way but the amount of algebra will be more involved.) We will therefore assume

that in equation (3.3) the quantity Q is taken to be a negative constant —Q. Physically,

this corresponds to the case where the mass transfer from the film is constant and does not

depend on the film thickness (so that m = 0). This problem will serve to demonstrate both

the asymptotic analysis and the numerical technique.

3.1.5.1 Asyrnptotics and Regularisation

At the upstream end x = 1 (dryout point) the thickness h(x) must vanish. Therefore, the

nonlinear term —Q/h3, which dominates the left hand side of (3.28), must be balanced by at

least one other large term in the equation.

In the earlier special case considered, we recall that the singular integral equation was linear

and it could be solved all in closed-form. Then from the analytical solution, one could observe

how the problem should be regularised so that the numerical method could be employed

to satisfactorily solve the problem. In the current case we do not know h(x) analytically,

therefore in order to proceed we resort to asymptotic approximations. We assume that the

main contribution from the Cauchy integral comes from a small region near x = 1 where

we suppose h(x) ~ ^4(1 — x)p, for some positive constants A and p(< 1) to be determined

by performing an asymptotic balance in the equation. Intuitively, in this particular case the

nonlinear term —Q/h3 must be balanced by the large negative gas flow pressure gradient on

the right hand side of (3.28). This implies that as x —> 1, h(x) must tend to zero as

Encouraged by our experience of solving the paradigm problem (3.24), and the work by

King & Tuck (1993) [45] (who solved a steady nonlinear singular integro-differential equation

to determine the unknown shape of a thin liquid layer supported by steady air-flow surface

traction) we set

h(x) = (Op- J * H{y), where y2 = l-x,
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to regularise (3.28). We then have to solve

Hu{u)

with H(y) —>• 0 as y —>• 0, Hy(l) = 0 and H(l) is prescribed. The regularisation of the

thickness h(x) is important since, as seen earlier, the singular behaviour of hx{x) as x —> 1

seriously degrades conventional discretisations of the integro-differential equation.

Equation (3.31) may now be conventionally discretised and solved numerically for H where

three parameters, Hn, Q and f would have to be specified and varied at will. However, it is

numerically convenient to set h(x) = hog(x) in (3.3) so that we have to solve

, (3.32)

where M and Y are respectively M = Q/h^i Y = T/2JIQ, subject to boundary conditions

g{0) = 1, g£(0) = 0 and g(l) = 0, for any h0 > 0.

On performing asymptotic approximations of (3.32), as detailed above, we obtain that as

x —> 1, g(x) must tend to zero as

The problem is then regularised by setting

g(x) = f —— j G{y) with y1 = 1 - x.

We now have to solve a regularised problem

subject to boundary conditions G{1) = (e/4Mn)1/4, Gy{\) = 0 and G?(0) = 0.

3.1.5.2 Numerical Scheme and Results

Equation (3.33) is then discretised in the conventional way, i.e. a mesh Uj = j/n is defined

on the interval [0,1] with Gu(u) assumed constant in each subinterval [UJ,UJ+I\. In other

words, the function G is approximated by linear functions in each subinterval. The pressure

gradient

o y2 -u2
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is evaluated by finite differences. We collocate (3.33) at the mid-mesh points and the resulting

(n — 2) x (n — 2) set of nonlinear algebraic equations is given by

1

(2t - 2j -

2j -

2 t - l
i

~M8

In
\i - 2j - 3)

e

X

G? \AMTT

= 0,

(3.34)

for 1 < % < n - 2, where Go = 0, Gn - Gn-\ = (6>/(4MTT))1 /4 and M and V are specified.

The system is then solved iteratively for values of Gj by Powell's method using the NAG

library routine C05NBF. This method uses a combination of Newton and steepest-descent

iterations. An initial guess for the solution is taken to be linear functions in each subinterval

[UJ,UJ+I]. The gj values are recovered from those of Gj using a relationship

/ 4 M T T V ^
n • — I - 1 (^ • M ^ i ^ ti

The values of gj are then plotted against Xj, Xj = 1 — u? for 0 < j < n (see for example

figure (3.7)).

8(X)

o

Figure 3.7: Graph ofg(x), M = 1.0, T = 1.0 (n = 60).

The residual error in the numerical method is checked by evaluating each side of (3.33)

using the computed numerical results for G, and with just 60 points, the error is of order
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between 10 8 and 10 10. The sensitivity of the numerical method's accuracy to the choice

of grid is examined by increasing the number of mesh points and there is no change at all.

Respective illustrative results are shown in tables (3.1) and (3.2).
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Table 3.1: The computed left and right hand sides of equation (3.33), n = 60.

(left-hand side of equation (3.33))/n3

-3.4319983209766 xlO"0 8

-5.7219241008031 xlO-°8

-8.0151785494553 xlO~08

-1.0313309239400 xlO-°7

-1.2617864099689 xlO"0 7

-1.4930415355307xl0-°7

-1.7252544690301 xlO~07

-1.9585866046224xl0-07

]

-6.8519016656996 xlO"0 7

-7.1495301153696xl0-°7

-7.4531852115604xl0-°7

-7.7632459123378 xlO~07

-8.0801138340682xl0-°7

-8.4042176207048 xlO-°7

-8.7360133805391 xHT 0 7

-9.0759896848271 xlO-°7

-1.6833040542487xl0-06

-1.7474296200718 xlO-°6

-1.8149122203705 xlO~06

-1.8861343835772 xlO-°6

-1.9615636688746xl0-°6

-2.0417926323933 xlO-0 6

-2.1276141594599xl0-°6

-2.2201965660681 xlO-°6

(right-hand side of equation (3.33))/n3

-3.4319983364776xl0-°8

-5.7219241027164xl0-°8

-8.0151785544487xl0-°8

-1.0313309230887xl0-°7

-1.2617864096696xl0-°7

-1.4930415364852 xlO- 0 7

-1.7252544683381 x 10~07

-1.9585866048016xl0-°7

-6.8519016652359xl0-°7

-7.1495301176883xl0-°7

-7.4531852093556 xlO"0 7

-7.7632459101436X10"07

-8.0801138357576 xHT 0 7

-8.4042176215384xl0-07

-8.7360133805839xl0-°7

-9.0759896858032xl0~07

-1.6833040543052xl0-°6

-1.7474296200179xl0~06

-1.8149122204215xl0-06

-1.8861343835772xl0-°6

-1.9615636688746xl0-°6

-2.0417926323933xl0-°6

-2.1276141594599xl0-°6

-2.2201965660681 xlO- 0 6
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Table 3.2: The computed left and right hand sides of equation (3.33), n = 70.

(left hand side of equation (3.33))/n3

-1.6117973461395 x l (T 0 8

-2.6869707487590 xHT 0 8

-3.7632536402413 xlO~08

-4.8411608283313xl0-°8

-5.9212069825471 xlO"0 8

-7.0039127925471 xlO-°8

-8.0898010164976 xlO-°8

-9.1794023212022 xlO-0 8

-3.8030660960309 xlO-°7

-3.9426232171084xl0-°7

-4.0845574463214 xlO"0 7

-4.2289956801862 xlO- 0 7

-4.3760718913259 xlO- 0 7

-4.5259271530648 xlO- 0 7

-4.6787108051342 xlO"0 7

-4.8345805856406 xlO~07

-9.5563633056128 xlO-0 7

-9.8692301430570xl0-°7

-1.0196929169265xl0-°6

-1.0541068106002xl0-°6

-1.0903614932174xl0-06

-1.1287069918118xl0-°6

-1.1694793502372xl0-06

-1.2131770497869xl0-°6

(right hand side of equation (3.33))/n3

-1.6117973114169xl0-°8

-2.6869707358407xl0~08

-3.7632536670543 xlO- 0 8

-4.8411608328744xl0-°8

-5.9212069696528xl0-°8

-7.0039127913953 xlO"0 8

-8.0898010267356xl0-°8

-9.1794023212022 xlO- 0 8

;

-3.8030660964884X10"07

-3.9426232154198xl0-°7

-4.0845574480995 xlO- 0 7

-4.2289956800995X10-07

-4.3760718905604xl0-°7

-4.5259271533573xl0-°7

-4.6787108052335 xlO"0 7

-4.8345805863114X10"07

-9.5563633051395 xlO- 0 7

-9.8692301425888xl0-07

-1.0196929168999X10"06

-1.0541068106390xl0-°6

-1.0903614933002xl0-°6

-1.1287069917665X10"06

-1.1694793501831 xlO- 0 6

-1.2131770498170xl0-°6

54



3.2 The Full Nonlinear Problem

We are now in a position to solve the full steady nonlinear problem where the dynamics of

m are taken into account. We recall that the equation is

• g r (3-35)

It should be recalled that equation (3.35) has to be solved subject to the boundary conditions

hx{0) = 0, h(x) = 0 at the dryout point x = 1, h(0) = ho is known and the pressure gradient

condition or the related pressure condition, from equation (3.6),

i:
has to be satisfied at x = 0.

3.2.1 Analytical Treatment

We continue here by first deriving the integral equation that has to satisfied by h(x). This

integral equation does not contain any derivatives of the unknown function h(x) or principal-

value integrals. Therefore, it may be possible to compute h(x) from this equation by direct

iterative methods, see for example Pope (1999) [65], Fitt & Wilmott (1994) [34]. It is not

obvious nonetheless, whether this numerical technique can be successful in solving the cur-

rent problem. In the previous problems where this technique has been used successfully, the

behaviour of the unknown function at one (or more) end point contains a logarithmic singu-

larity which, as it will be shown, is not the case here. Our main interest here of deriving the

integral equation for h(x) however, is to explore, in the process, whether in general it may be

possible to solve this problem numerically using some interpolation techniques as in Spence

et al (1987) [79], for example, who solves a problem which contains a singularity stronger

than logarithm near an end point. We proceed by assuming that in (3.35), we can write

= /,<*), (3.36)

for some function f(x). Equation (3.36) then integrates to give

where C\ is a constant of integration. On inverting (3.37) by standard methods we obtain

C2 (3.38)
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where C2 is an arbitrary constant arising from inversion of the singular integral. We apply

the boundary condition hx(x) — 0 at x = 0 to get

==d£>. (3.39)

Upon imposing the pressure boundary condition at x — 0, we obtain

f I 1 / I — ft 1 /•* / £ Ci -

y0 v^-r~pt yr^i f3 4 0 )

' ( 3 - 4 0 )

where we recall that pgo = p9(0) is the dimensional gas core pressure at the onset of the

annular flow x = 0. It can easily be shown by using standard techniques that

i v 1̂
c2 = 2C2 lim

Thus, (3.40) becomes

lim J l ^ + 2C2 lim o \«)l
. (3.41)

Using integration by parts, we can write

In

tan " 1

and

Hence we get

+
/(O (3.42)

Therefore, (3.41) and (3.42) imply
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2d lim 2C2 lim
/3->0

2 lim - x

~Poo) (3.43)

However, by equation (3.39), we find

lim 2 C 2 , i m i , i ^ = 2 1 i m . / 1 - ' 3 w 1 /«)
ft Jo

so that the constants C\ and C2 are respectively given by

7e(0in

/(0

- Poo)

(3.44)

(3.45)

Integration of (3.38) with respect to x and application of the boundary condition h{\) = 0

yield

h(x) = l-l + shr1VE+yJx(l-x)\\c1-- f1 f® Jf I , ^ >,

(3.46)

The constants C\ and C2 are respectively given by equations (3.44) and (3.45). Thus, (3.46)

implies

r - l7r 1 rl [ r1

h{x) = --C2 + - /
2 TT Jx [Jo

+C2 I ^x(l - x) + sin"1 7 l | • (3.47)

The system (3.35) and (3.47) may be solved numerically using interpolation techniques. We

continue however, for completeness, to obtain the integral equation which has to be satisfied

by h(x). The parameter h(0) = ho is not independent of the dimensional pressure drop

(PgO — Poo) and it has to be specified in such a way that

r _ AP9o-Poo)

7
In

From (3.45), C2 should also satisfy

- 2 _2_ r1

n n2 Jo

. (3.48)

(3.49)
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It will be become clearer in section (3.2.2) that from (3.35), h3(x) fx(x)\x=0 ~ 0 near x = 1,

with the result that

Mx) = *J. 3 [l &
JxK ' 2h(x) h3(x)Jx r,h{P)'

Thus, h(x) satisfies the integral equation

where C2 and ho are related by

2 2 r1 I / 3 f d\

3.2.2 Asymptotic Analysis

We have seen in our examination of the previous two paradigm problems that the knowledge

of the asymptotic behaviour of the unknown solution is very important in the numerical

computation of this type of problem. Therefore, it is sensible to perform the asymptotic

analysis of the current problem under consideration. It can easily be observed from (3.47)

in section (3.2.1), that if (3.45) is defined and finite near x = 1, then h(x) ~ (1 — x)1!2

In which case, an inspection of (3.35) then reveals that f must be specifically equal to zero

and fx(x) ~ —6(1 — x)~l/r) near x — 1. We observe that in order to treat equation (3.47)

numerically using interpolation techniques (see for example Spence et al, 1987) [79], we may

write
N

f£(x) = [x(l - x)}-1 £ AjTj (X(x)),

for some positive integer N, so that fx{%) ~ x~l near x — 0 and fx{x) ~ (1 — x)~l near

x = 1. The functions Tj are the Chebyschev series and the function X(x) has to be ingeniously

chosen so that, if at all possible, the integrals

In

f1

Jo

1:

Tj(X{0)

£ ( i - 0

Tj(X(0)
£ ( i - 0

In

In

7 £ ^

7(1 - X)£ + y/x(\
V £ - *

L - 0

-0

can be evaluated in closed-form. The coefficients Aj may then be obtained by demanding that

equation (3.35) be satisfied within some specified tolerance. We do not pursue this approach
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further here since it is restrictive to the special case r = 0 and more importantly, it may

not always be possible to find some suitable functions X(x) in this problem. It is therefore

instructive to consider other appropriate asymptotic expansions of (3.35) for general values

off.

At the dryout point, x = 1, where h(x) vanishes, there is only one possibility that the

nonlinear term 1/rjh balances with the first term on the left hand side of equation (3.35).

That is to say that near x = 1, on assuming the power law h(x) ~ A(l — x)p for some positive

constants A and p (< 1), we have

We now make a substitution 1 - £ = (1 - x)u under the integral sign so that (3.50), in the

asymptotic limit near x = 1, leads to

Equation (3.51) implies p ~ 3/5 so that h(x) ~ A(l - x)3/5 and hence hx{x) ~ -3A(l -

x)~2/5/5 near x — 1. The semi-infinite range integral on the right hand side of (3.51) exists

in the Cauchy principal sense and we calculate it using standard complex variable techniques

(see for example Spiegel, 1964; Carrier et al, 1966) [80], [15]. We consider

ZP-II -dz, z = u + iv.
Jrz-1

We choose F to be a contour as shown in the schematic figure (3.8) where z = 0 is a branch

and the positive real axis is the branch line. The integrand has a simple pole at z = 1. In

reality, the lines BC and DA coincide with the real axis. The integral from A to B is equal

to zero by Cauchy theorem and the integral from C to D is also zero in the limit radii e —> 0

and R —> oo. Therefore, the only contributing integrals are

fR UP-I
I 7"ui

from D to A, and

I ue
-du,ue2-Ki _ _

from B to C where the argument of z has changed by 2n. The two integrals have residues 1

and e2ni(p~^ respectively. Thus, by residue theorem and on taking the limits e —> 0, R —> oo

we have

/o u — l
which implies that

i: u
d = TTl
du = T T l : : r r

u - 1 e-P™ - eP
nie~2ni

= — 7rcot(p7r).
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Figure 3.8: a schematic figure showing z in the complex plane (u, v)
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As a result, A is given by A = (125 |tan (3vr/5)| /4r?)1/5.

Before we proceed, we observe that, after going through similar asymptotics as above on

the problem with surface tension included (equation (2.65)), the only possibility is that near

the dryout point x = 0 the nonlinear term l/r]h must be balanced by the surface tension

term S (h?hxxx)s /3TT. Hence, as one would expect, the singularity in hx(x) is reduced since

now h(x) ~ B(l — x)4/5 and thus hx(x) ~ -4B(l - x)~1//5/5, for a positive constant B,

near x = 1. However, since the surface tension term does not completely flatten the layer

thickness h(x) near x = 1 (unlike in other studies, e.g. King & Tuck (1993) [45]), then as

far as the numerical method is concerned, the approach cannot be different from the one we

employ to solve (3.35).

3.2.3 Regularisation and Pressure Gradient Condition

We now proceed to regularise the problem (3.35) by setting

h(x) = H(y) with y3 = 1 - x,

so that, after integration with respect to y (in order to avoid calculations of higher order

derivatives numerically in the subsequent numerical solution), we then have to solve

ul /125 X \ t 1 H3 ( fi Hu(u)
S T y V ^ x J 7o i ? H V 4ry J 5vr y I VJ0 yf _ . fi dU

2

(3.52)

where C is a constant of integration and x = |tan (37r/5)|.

We solve (3.52) subject to boundary conditions (3.8), i.e. H(y) — 0 at y = 0, Hy(l) = 0,

H{y) = (4T//125X)1 ^(0) at y = 1 and the pressure condition has to be satisfied here.

From the pressure condition (3.6), in nondimensional form, we obtain the pressure gradient

condition

x x=0

We then obtain, in the regularised variables,

' -1 Hu{u)
\J0 yd, — U3

du

where we recall that pg is the nondimensional pressure in the gas core. The quantity Pgy\y=1

may be or may not be measurable in practice. If it is, then the constant C in equation (3.52)

can be evaluated trivially. Nonetheless, whether this is the case or not, since pressure gradient
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is an unknown function which depends on H (y) in this problem, we are not physically allowed

to dictate both H(y) a,ndpgy at y = 1 independently. Therefore, it is mathematically sufficient

to calculate C directly from (3.52), using known properties of the solution H(y), and this will

give us an appropriate physical pressure gradient condition which must be satisfied at y = 1.

We exploit the regularity condition, H(y) ~ y near y = 0, in order to obtain the pressure

gradient condition at the onset of the annular flow, y = 1, in terms of H (1). We note from

(3.52) that in actual fact C is given by

(3.53)

as y near y = 0. We define a variable 2 by y < z < 1. We then write

10
3

du. (3.54)
y3 — 7J3 JO y3 — 7J3 Jz 7J3

We know that H(y) is continuously differentiate at the points y = 1 and y = 0 since we

recall that Hy(y) = 0 at y = 1, H(y) ~ y and therefore Hy(y) ~ 1 near y = 0. In addition,

we require that H is continuously differentiate at z. We then use integration by parts to

expand the terms on the right hand side of equation (3.54) to give

- 7 J 3

-Hu(0)
du

u=0

-f
Jo

H,,
du

-t(H,(u)[d4)\ -H^)([d4
IV J U3/lu=l V-/ 7J3

5
— 7J3

U3

du

-v1 f -^
J Z U 3

(3.55)

which implies that

5 5
y3 — us

- r HUU{U) r
— 7J3

7J3

du

(3.56)

On the right hand side terms of equation (3.55) (in order to arrive at (3.56)), Hy(0) ~ 1 has

been used in the second term, Hy(l) = 0 has been employed so that the fourth term vanishes

and finally, the fact that 1/ < z has been exploited so that in the asymptotic limit the first

term on the right hand side of (3.55) is

U3
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and it cancels with the fifth term in the equation. We further make an important observation

that the third and the sixth terms on the right hand side of (3.55) perfectly cancel with

each other. The reason is, in the third term, the contribution only comes from the integral

evaluated at u = z as Hyy and all other higher order derivatives of H are zero at y — 0. On

the other hand, the contribution from the sixth term only comes from the integral evaluated

at u = z since H(l) is a constant and therefore all its derivatives are equal to zero. Finally,

it is important to observe that all other remaining terms on the right hand side of (3.55)

are very small, in particular the leading order term is of O(y/z2)5/3. Thus, to leading order,

equation (3.56) is simply
du

(3.57)

u=o
We use two consecutive substitutions (u/y)5^6 = sin(0) and sin(0) = t5 to transform the

integral
du

V5/3 _ u5/3

into

2/3 ft* rdt.
y

This term can now be evaluated by partial fractions to yield

J 7/3 — v,3 = ^ - I o l n

In | (2s2 + s - VEs + 2) (2s2 + s + VEs + 2) (2s2 - s - VEs + 2) (2s2 - s + VEs + 2) |

(2s2 + s + VEs + 2) (2s2 - s - VEs + 2)

2VE+1

20^10 + 2VE

2VE-1
tan

20^10 - 2\/5

where s = (u/y)1^. Thus, equations (3.53) and (3.57) imply that

C ~ lim w3 { —-- f a constantl > = 0 .

This is equivalent to a condition which dictates that at the onset of the annular flow y = 1,

the pressure gradient is

fl Hu(u)
T i 5
/0 y3 — u3

du

y=l
377 \125XJ Jo H(u

du

(3.58)
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Rearranging and simplifying (3.52) implies that we have to solve

2 2 / • _ _ . . . 3

\125X

2

y3 25 / 4T?

3r? V 125x7 Jo , (3.59)

subject to if(0) = 0, Hy(l) — 0 and H(l) is a specified constant which satisfy equation

(3.58).

3.2.4 Numerical Scheme

The nonlinear regularised problem (3.59) may now be solved numerically. The problem is

discretised in the conventional way as repeatedly described in the previous paradigm prob-

lems. We define a mesh Uj = j/n for 0 < j < n — 1 on the interval [0,1], where n is as usual

the number of mesh-points. We then assume, for simplicity, that H can be approximated by

linear functions in each subinterval [UJ,UJ+I]. The pressure gradient on the right hand side

of (3.59), pgy, is approximated by finite differences and (3.59) is collocated at the mid-mesh

points by insisting that pgy is satisfied exactly there. In order to keep a balance of accuracy,

speed and complexity in the numerical computations, we further assume that the singular

integral
_ f1 Hu(u)

JO y3 — U3

may be approximated using the trapezoidal rule so that it is equal to the sum of the integrals

in each subinterval [UJ, Uj+{\. We therefore have to solve a set of nonlinear algebraic equations

^TT > , 1 < * < " - 2- (3-60)

The integrals 7i± and I2 are respectively given by

- /
-du, (3.61)

/J> —

j=\

^+1 U3

^(u)
dtt.

The integral in equation (3.62) is approximated by

/ '
Ju

'J+l

~ u In u -Q]

uj-Q]

(3.62)
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tan-Jif H i + 1 H - tarW 4=

where H(u) has been approximated by piece-wise linear functions

H(u) = mu — (muj — Hj),

in each interval [UJ,UJ+{\. Clearly, m and Qj are respectively given by

Uj+l - Uj

m

As a result of calculating (3.57), we find that the integrals I2 and h±, after putting in the

limits and performing some straightforward algebraic simplifications, are respectively given

by

l 3(j + l ) 3 - j 3
2

7J.3

X

In
((j + l)n(HJ+1 - Hj))? - (n2 (Hj+1 - Hj) j -

(jn {Hj+l - Hi))* - (n2 (Hj+1 - Hj) j - Hj)*

((j + 1) (Hj+1 - H^)* + ((j + 1) (Hj+1 - Hi) (n2 (Hj+1 - Hj)j - H3)Y +
(j (Hj+1 - H^)* + (j (Hj+1 - Hi) (n2 {Hj+l - H3)j - H3

+ v / 3 ^ t a n ~ 1 | ^ | 2 + 1 -

t a n " 1 I '- I 2
3 I \n2(HJ+1-H3)j-H3

+ 1

and
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2 ( j j f) § + (iff) ^ (l +

The system (3.60) is then solved iteratively for the values of H by Powell's method as

implemented in the NAG library routine C05NBF. As explained earlier, this method uses

a combination of Newton and steepest descent iterations. The initial guess to the solution

is taken to be a function which is piecewise linear on [0,1], i.e. linear in each subinterval

[UJ, Uj+i]. The system (3.60) is solved subject to the boundary conditions Ho = 0, Hn = Hn-\

and H„ has to be prescribed such that the numerical solution satisfies the pressure boundary

condition (3.58). The parameters f and rj are specified and may be varied at will. For fixed

values of f and 77, Hn is altered until the converged numerical solution satisfies the boundary

condition (3.58) within some specified tolerance. Thus, Hn (and hence the nondimensional

length to the dryout point) is obtained as an eigenvalue to this problem. Essentially, this
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implies that it may not be always possible to obtain a numerical solution which satisfies

all the prescribed boundary conditions for arbitrarily specified values of rj and f. Once Hn

(together with the computed solution for H(y)) is obtained, it is then trivial to calculate the

dimensional length to the dryout point from equation (3.9) if the dimensional h(0) can be

measured in practice. For clarity, it should be mentioned that due to the complexity of the

computations in this problem, a tolerance (or absolute error) of magnitude less or equal to

1 x 10~5 has been employed for convenience in this study. It should also be noted that the

discrete version of (3.58) is exactly (3.60) with i = n.

In general, a numerical solution may be easily obtained for n < 17. For n > 17, a

continuation method (where a previous converged numerical solution is used as a starting

value) has to be employed. It should be mentioned however, that even when n < 17, it is

possible for the numerical scheme not to converge which may lead to wrong impressions that

a solution does not exist for some combinations of certain values of the specified parameters

r] and f. Therefore, it is crucial in this problem that the initial guess to the solution must

be close enough to the required solution and this requires a lot of intuition. As a result,

the method can take a long time before one satisfactory converged numerical solution is

obtained. It is customary in numerical computations to quote the exact amount of time the

numerical scheme takes for it to converge to the correct solution. It is almost impossible to

do that here because the amount of time taken is controlled by many parameters, e.g. how

far the initial guess to the solution is from the solution itself, after how many points can the

continuation method be employed, how long does it take to find the appropriate ho so that

the numerical solution satisfies all the appropriate boundary conditions for each combination

of the prescribed parameters Hn, r\ and f. This implies that it would not be abnormal in

this problem for the numerical method to take completely different amounts of time to reach

the same converged numerical solution if the choice of initial parameters is different. The

accuracy of the numerical results, on the other hand, can be checked by evaluating each side

of equation (3.59). Illustrative results are shown in table (3.3) for r/ = f = 1.0 where the

number of mesh points n = 100. The values of hj are recovered from those of Hj using the

relationship

and the results are shown and discussed in the next section below.

3.2.5 Numerical Results and Discussions

In this section we present and discuss numerical solutions of equation (3.60). We begin with

figure (3.9) which shows plots of different numerical solutions to (3.60). None of the solutions

shown by various dotted lines in this figure satisfy the boundary condition (3.58) and hence
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Table 3.3: a table showing the computed left and right hand sides of equation (3.59) when

n = 100 points.
(left hand side of equation (3.59))

-1348.6295919936

-1853.5718199877

-961.56742628979

-710.18724183416

-584.98065706458

-506.91613418576

-452.17521258971

-410.97677037539

-169.20973850158

-165.58172052767

-162.14296448477

-158.87808700445

-155.77337996565

-152.81658414089

-149.99669906233

-147.30382245842

-108.17057086541

-106.97304065314

-105.80816643502

-104.674546504705

-103.570860944285

-102.495865689865

-101.448387123678

-100.427317141391

(right hand side of equation (3.59))

-1348.6295919946

-1853.5718199890

-961.56742628957

-710.18724183411

-584.98065706462

-506.91613418565

-452.17521258918

-410.97677037547

-169.20973850169

-165.58172052758

-162.14296448483

-158.87808700443

-155.77337996573

-152.81658414092

-149.99669906234

-147.30382245842

-108.17057086546

-106.97304065312

-105.80816643501

-104.674546504705

-103.570860944285

-102.495865689865

-101.448387123678

-100.427317141391
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hx(x) = 0 at x = 0. Thus, the results depicted in this figure suggest that for each combination

0.8

0.6

h(x) 0. 4 -

0.2 -

0

1 ' 1 - '

\

\

"""""" ^ * ^ f ^ 5 ^ * a ! ^

I . I ,
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I . I .

0.2 0.4 0.6 0.8

Figure 3.9: Plots of the liquid film free surface h(x) when r = 1.0 and 77 = 1.0 for n = 100

points.

of the parameters TIQ, f and 77, there is a unique solution which satisfies all the prescribed

boundary conditions to the problem. It is further observed that only the acceptable solution

is monotonic. In figure (3.10), it is moreover illustrated that these other solutions are not

only unsatisfactory (with regard to the boundary conditions at the onset of the annular flow

x = 0) but they also give a false length to the dryout point. Figures (3.10) and (3.9) are

essentially the same but in figure (3.10) the dryout point is allowed to move by scaling the

problem differently (the details are given below) while in figure (3.9) the dryout point is fixed

at x = 1.

From the results shown in figure (3.11), it is obvious that an increase (decrease) in the

mass transfer parameter 77, results in a decrease (increase) in the thickness of the liquid

film. It may not be obvious nevertheless as to what this result, in the present form, may

imply about the physics of the problem. Equation (3.35), together with the appropriate

boundary conditions have been proposed so that predictions for the dryout point can be

made. However, for numerical convenience, the approach that has been adopted in solving

the problem hides the fact that this is a moving boundary problem. Presumably 77 should

determine the establishment of the dryout at an order LQ length from the onset of the annular

flow. It should then be of practical interest to know how the dryout point varies with the

mass transfer parameter 77. To accomplish this, we rescale the variables in equation (3.35).
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1.5

H(X)

A Numerical Solution

1.5

Figure 3.10: Plots of the liquid film free surface U{X) when f = 1.0 and rj = 1.0 (n = 100).
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Figure 3.11: Plots of the effects of varying the mass transfer parameter r/ on liquid film free

surface h(x) when f = 1.0 (n = 100).
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We set h(x) = hoH(X) where X is appropriately defined by x =

case (3.35) becomes

and /io = h(0). In this

(3.63)

where K = Ty/ip. It is then important to note that (3.35) can be solved in the form of

equation (3.63) subject to boundary conditions %(0) = 1, Hx(0) = 0, H (l/^o) = 0 a nd

H(X) ~ (125/i§ |tan (3vr/5) /4T?|)1/5 (1/ /I0 - X)3/5 near the dryout point X = l/h0. However,

there is no need to solve the problem again at this point, for we have got all the information

we need at hand. Since the solution to equation (3.63) does not exist for every arbitrarily

prescribed parameters f, rj and ho , then the relationship between the length to the dryout

point L(0) = Lo and 77 can be achieved from the data we already have by plotting K(X)

against X for various values of rj and ho (at a fixed value off) for which the solution to (3.35)

(and hence (3.63)) exists and satisfies all the prescribed boundary conditions. Illustrative

results are shown in figures (3.12) and (3.13). Both figures (3.12) and (3.13) indicate that,

2 -
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•

•
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Figure 3.12: Plots of the length to dryout point, Lo, against the heat mass transfer parameter

V-

as one would expect, an increase in 77 (or using a liquid with larger latent heat) the mass

transfer is small and dryout is postponed further downstream. On the other hand, for 77 -C 1

(or a liquid with small latent heat) the mass transfer is so high that the liquid film may not

be established and dryout occurs immediately. In figure (3.12), each point on the curve is
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Figure 3.13: Plots of the liquid film free surface H(X) for various values of the mass transfer

parameter 77, for a fixed traction parameter f = 1.0.

painstakingly obtained by numerically solving equation (3.35). It is observed from this curve

that when 77 is roughly less or equal to 1, a small increase in 77 leads to a large increase in the

length to the dryout point LQ. When 77 > 1, the increase in the length to the dryout due to

an increase in 77 becomes less vigorous and seems to approach a steadily linear relationship

between 77 and LQ. Since it is increasingly difficult to obtain the numerical solutions for h(x)

as 77 gets very small, in this work computations have been performed down to 77 = 0.001.

It is evident from the results in figure (3.14) that an increase in f (the tangential traction

provided by the fast flow of vapour in the gas core) results in a decrease in the thickness of the

liquid film but it is difficult to make an analysis of the physical implications of these results

in the present form. However, from the later scaled form of the problem, equation (3.63), it

appears (see figure (3.15)) that the increase in the traction parameter f tends to slowly but

gradually stretch the liquid layer and hence the position of the dryout point. Figure (3.16)

shows the relationship between the length to the dryout point and the traction parameter

f. It is fascinating to observe from this graph that even for large values of f, the length to

the dryout point is still merely 0(1) and it seems it is likely to remain so even for values of

T —>• OO.
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Figure 3.14: Plots of the liquid film free surface h(x) when r\ = 1.0 (n = 100).
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Figure 3.15: Plots of the liquid film free surface H(X) for various values of the tangential

parameter f, for a fixed mass transfer parameter 77 = 1.0.
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Figure 3.16: Plots of the length to dryout point, Lo, against the traction parameter r.

3.2.5.1 Pressure and Pressure Gradient Effects

To reiterate, numerical solutions to (3.59) have been obtained through prescribing the pres-

sure gradient (3.58), instead of pressure, at the onset of the annular flow regime. We recall

that in this problem, the pressure is given by

Pg (3.64)

Thus, pressure can be calculated from the numerically computed h(x) at every point x. It

makes sense then to pose a question; can a solution h(x) to (3.59) always be obtained for

any prescribed value of pressure gradient (and/or pressure) at x = 0? This is investigated

numerically by solving (3.59) numerous times prescribing (3.58) and holding f a constant

while r] is being varied. The process is then repeated with rj kept constant while f is varied.

Then the pressure at x — 0 is calculated from (3.64) and a graph of pressure against pressure

gradient at x = 0 is plotted. The results are depicted in figure (3.17). What is fascinating

is the observation that these results produce a single curve instead of a family of curves

corresponding to either values of f or rj. From this curve it is very compelling to argue

that the relationship between the pressure gradient and pressure at the onset of annular

flow regime, for those solutions which exist, is a one-to-one relationship irrespective of the

parameter values of the problem. Physically, this result reinforces the view that indeed the

solution h(x) is unique. Further, it appears from the graph that as the magnitude of the
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Figure 3.17: Plots of the pressure pg against the pressure gradient p9x at the onset of the

annular flow x — 0, for various values of f and 77.

pressure gradient values at the onset of the annular flow tend to infinity, the values of the

pressure there approach a constant 0.27. Thus suggesting that there may not be any solutions,

h(x), to equation (3.59) for prescribed values of the pressure approximately less or equal to

0.27. Similarly, it can be inferred from the graph that as values of the pressure at x — 0 are

increased indefinitely, then the corresponding values of the pressure gradient there tend to a

negative constant nearly equal to -110,0. Hence suggesting that there may not exist solutions

to equation (3.59) for the values of the pressure gradient greater than -110.0.

Having computed (3.64), we can now look at other interesting pressure related phenomena.

Figures (3.18) and (3.19) show the pressure profiles in the annular flow regime and far

downstream of dryout for an increase in both 77 (f held constant) and f (77 kept constant). In

general, the pressure is positive at x = 0 before rising sharply to reach a positive maximum

near the start of the annular flow. It then decreases, rapidly near x = 0, and then gradually

downstream to achieve an infinite negative minimum at the dryout point before increasing

gradually to almost zero far downstream of dryout. The results in figures (3.18) and (3.19)

can be presented in another form as shown in figures (3.20) and (3.21) respectively. In this

case, it is easy to observe the effects of both 77 and f on the value of the pressure minimum

point. We observe from figure (3.20) that, apart from translating the dryout point, changes

in 77 do not have any effect on the value of the pressure minimum point. On the other hand,
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Figure 3.18: Plots of the pressure pg(x) in the annular flow regime and far downstream of

the dryout point, for various values of 77 when f is held constant at f = 0.0.
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Figure 3.19: Plots of the pressure pg{x) in the annular flow regime and far downstream of

the dryout point, for various values of f when 77 is held constant at 77 = 1.0.
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Figure 3.20: Plots of the pressure pg(x) in the annular flow regime and far downstream, for

various values of rj where f is held constant at f = 0.0.

T=0.0
T=10.0
T=20.0
T=75.0

0

Figure 3.21: Plots of the pressure pg(x) in the annular flow regime and far downstream, for

various values of f where 77 is held constant at 77 = 1.0.

77



from figure (3.21) it is clear that, in addition to translating the position of the dryout point,

the increase in f does gradually decrease the minimum value of the pressure. The infiniteness

of the negative minimum in the pressure at the dryout point is attributed to the singularity of

hx(x) there. It is not difficult to construct examples to illustrate analytically that if the liquid

film free surface attaches tangentially at the dryout point, i.e. /ix(l) = 0, then this negative

minimum should be smooth (and this is verified by the results of problem (4.1), figures (4.12)

to (4.15) in chapter 4). We must mention that in reality, this singularity in hx{x) at the

dryout might be smoothed out by other processes, for example the deposition of the droplets

from the gas core onto the liquid film, which are not accounted for in the current model. The

plots of pressure are usually very important (for example, in wind tunnel experiments) for

comparison between theoretical and experimental results. It has proved, however, impossible

to obtain any literature (if at all available) concerning experimental work with regard to this

problem. It is nevertheless hoped that when such literature is available and obtainable, it

will compare very well with our results for the current conditions of interest.

We proceed here to make further observations. In figures (3.22) and (3.23), we illustrate

4 *
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0.25 0.35 0.45 0.55
Pressure at the onset of annular regime

0.65

Figure 3.22: Plots of the length to the dryout L(0) against the pressure p(x) at x = 0 for

various of the traction parameter f and mass transfer parameter r\.

the influence of both pressure and pressure gradient at the onset of the annular flow x = 0,

respectively. Both graphs are obtained by solving (3.59) numerous times for various values of

rj (keeping f a constant) and vice versa. Then the length to the dryout L(0), or equally Lo,

is calculated, as explained earlier in this section, from each result. The fascinating physical
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Figure 3.23: Plots of the length to the dryout L(0) against the pressure gradient px(x) at

x — 0 for various of f and rj.

implication of these two graphs is that it is absolutely possible to control the length to the

dryout L(0) by simply dictating appropriate values of pressure and pressure gradient at the

onset of the annular flow x = 0. For example, if it is possible in an industrial setting to arrange

the system so that at x = 0, pressure is small and pressure gradient is large in magnitude

(consistent with figure (3.17)), then the dryout point can be accordingly postponed further

downstream. On the other hand, if at x = 0 the pressure is large and the pressure gradient

is small in magnitude, then the dryout point will accordingly occur closer to the onset of

the annular regime. This finding, fascinating as it is, should however be understood in the

correct context. Since both the pressure and the pressure gradient in the annular regime are

functions of the thickness of the liquid film, they can be controlled through specification of

the appropriate parameters f and rj. We know, for example, that rj depends on the properties

of the liquid film - its latent heat of vapourisation A and its thermal conductivity k. Thus,

in an industrial setting r\ may be appropriately fixed by choosing a liquid with desirable

known properties, f, on the other hand, is less obvious to fix in reality because it depends

on the viscosities of both the vapour ng and the liquid p, (and in general, on the second

derivative of the liquid film thickness hxx(x) as well). However, we can loosely say that it can

be fixed by choosing a liquid with desirable viscosity and which evaporates into a gas with

appropriate viscosity, in the conditions of interest. The relationships between the pressure

at the onset of the annular flow, x = 0, and both f and 77 are shown in figures (3.24) and
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(3.25) respectively. The relationships between the pressure gradient at x = 0 and both the

0.7

200

Figure 3.24: Plots of the pressure p(x) at x = 0 for various values of r when r/ is kept constant

at 7/ = 1.0.

parameters f and r\ may be obtained in a similar fashion. However, this is not necessary for

any practical purposes, because once an appropriate pressure at x = 0 is identified (say from

either figure (3.24) and (3.25)), then the corresponding pressure gradient at x = 0 can be

read off from figure (3.17).

Finally, the effects off at varous points of the liquid free surface are investigated by plotting

h(x = x~k) (for some known point x^) for various values of f, at a given value of 77. A typical

curve is shown in figure (3.26) for h(0). The result suggests that each point on the surface

of the liquid film is dragged in an almost exponential decay form due to the increase in f.

Even though negative f may not have a clear physical interpretation in this problem, it is

observed in figure (3.26) that the stretching does not depend on the magnitude of f but the

increase in f.
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Figure 3.25: Plots of the pressure p(x) at x = 0 for various values of 77 when r is held constant

at f = 1.0.
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Figure 3.26: Plot of the liquid film free surface h(x) at x = 0 against the traction parameter

f (n = 100).
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Chapter 4

Steady State Solutions: A

Non-constant Wall Temperature

Problem

In this chapter, we solve the steady case of the nondimensional equation (2.66) which is

subject to the usual boundary conditions h(x) = 0 at the dryout point x = I, hs{x) = 0

at the onset of the annular flow x = 0, h(0) — ho is a known parameter and the pressure

condition

epUi7T Jo £ - X e p o o g

or the corresponding pressure gradient condition has to be satisfied at x = 0.

Before we proceed, we should recall the differences between equations (4.1) and (3.35). The

main difference between these two equations is how the unknown function h appears on the

right hand side. In equation (4.1), h appears in the numerator while it is in the denominator

in equation (3.35). This feature alone causes a big difference in the asymptotic behaviour of

h near the dryout point x = 1 (where h vanishes) between these two problems. Prom the

experience of solving (3.35) and the previous paradigm problems, we know that the knowledge

of the behaviour of h plays a significant role in the numerical solution of the problem. In

particular, for equation (3.35) it has been found that h ~ (1 - i ) 3 / 5 as x —>• 1. Thus, the

problem had to be regularised accordingly in order to remove the singularity in hx{x) as

x —> 1 prior to undertaking any numerical manipulations. Here, it will be seen however, that

in equation (4.1) the unknown function h(x) —>• 0 as 1 — x near x = 1. Therefore, we expect

this problem may be solved directly without resorting to any regularisations since there is no
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singularity in h£(x) as x —>• 1. However, the problem will be first solved extensively using the

modified numerical code that has been employed to solve equation (3.35). From the results,

we will then be able to demonstrate that the infiniteness of the pressure minimum point at

the dryout point x = 1, from the pressure curves obtained when solving equation (3.35), is

simply a result of the singularity in hs (x) at that point and not in anyway a consequence of

the numerical code.

Moreover, owing to the complexity of equation (3.35), the problem has been solved by

prescribing the pressure gradient condition at the onset of the annular flow regime, x — 0. In

reality however, it is more likely that the pressure (as opposed to the pressure gradient) at

that point can be measured. Although the values of pressure can be obtained directly from

those of the pressure gradient, it is still of interest to investigate the possibility of solving this

problem when the pressure at x — 0 is directly prescribed. One such possibility is investigated

later in this chapter by considering equation (4.1), a relatively simpler problem.

4.1 Asymptotics

Prior to undertaking any numerical computations for (4.1), it is crucial to determine the

behaviour of h(x) as x —> 1. We have seen in chapter 3 that knowledge of the asymptotics

of h(x) near the dryout point x = 1 plays a very important role when solving the problem

numerically.

By inspection, we observe here that for every possible asymptotic balance in (4.1), h(x) ~

1 — l a s i ^ l . It is easier to check self-consistency of these asymptotics in the special case

when f = 0. On assuming that near the dryout point the dominant contribution from the

Cauchy-principal value integral in equation (4.1) comes from a small region near x = 1, we

substitute h(x) = 1 — x in the singular integral term and then solve for h from a Bernoulli

equation

Employing standard techniques, (4.2) solves to give

,.** . , } , (4-3)

and we observe that indeed as x —> 1, (4.3) is consistent with the asymptotics h ~ 1 — x.
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4.2 Regularised Problem and Pressure Gradient Condition

4.2.1 Numerical Solutions

Since the asymptotics indicate that there are no singularities in hx(x) as x —> 1 in this

problem, then it is sensible and convenient to modify and employ the numerical code that

has been used successfully in chapter 3 to solve (2.62) (as explained in sections (3.2.3) to

(3.2.4)). The problem can be solved directly, as briefly demonstrated in section (4.3), without

resorting to any regularisation processes. However, since we also intend to illustrate that the

infiniteness of the pressure minimum point at the dryout for problem (3.35) is not a result of

the numerical code we have used (but the singularity in hx(x) at that point), it makes sense

to employ the same code here with some appropriate modifications. That means that in this

case we have to solve the regularised problem (cf. equation (3.59))

2 2 / • „ . . . 3

125x
J

37? \l25x

(4.4)

subject to H(0) = 0, Hy(l) = 0 and H(l) is a specified constant which must satisfy the

pressure gradient condition (cf. equation (3.58))

_5_ 477 r 2
u3H(u)du

(4.5)

Thus, in the numerical scheme, the term

3 fl\i
2 U,

in equation (3.60) is modified accordingly to become
ii i ... . ii

Ti 11 \n

-m | uj+1 - - Hj)

where, we recall that in each subinterval [UJ,UJ+I], H(u) is approximated by the linear

functions
H(u) — mu —

and

- Uj
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The numerical procedure is as detailed in chapter 3 section (3.2.4). We continue here to

present and discuss those converged numerical solutions which satisfy all of the prescribed

boundary conditions.

4.2.2 Numerical Results and Discussions

Figures (4.1), (4.2) and (4.3) illustrate the effects of the increase in the mass transfer param-

eter rj on the film thickness and the length to the dryout point, while the traction parameter

f is held constant. We should mention that figures (4.1) and (4.2) are essentially the same.

h(x)

Tl=1.0
TI=2.0

r|=3.0
TI=4.0

TI=5.0

TI=10.0

X

Figure 4.1: Plots of the liquid film free surface h(x) when the traction parameter r = 0.0 and

the mass transfer parameter r/ is varied (number of mesh points n = 100).

The results in figure (4.1) are obtained by directly solving (4.1) numerically and thus the

dryout point is fixed at x = 1. On the other hand, the results in figure (4.2) are obtained by

considering the scaled equation

where T-L(X) = h(x)/ho and X = x/ho. Owing to the apparent uniqueness of the numerical

solutions corresponding to each combination of the prescribed parameters 77, f and ho, the

results of figure (4.2) and those of figure (4.3) are accordingly obtained from the results of

figure (4.1). The profile of the curve in figure (4.3) is similar to that of figure (3.12). Thus,
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Figure 4.2: Plots of the liquid film free surface %(-X") when the traction parameter r = 0.0

and the mass transfer parameter r) is varied (number of mesh points n = 100).
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Figure 4.3: Plot of the length to the dryout LQ (= 1/(0)) against the mass transfer parameter

r] with the traction parameter f = 0.0.
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it confirms as well that indeed for 77 S> 1 (a liquid with large latent heat) the mass transfer

is small and dryout will not occur, while for 77 <C 1 (a liquid with small latent heat) the mass

transfer is so high that the liquid film will not form at all.

Figures (4.4) and (4.5) show the effects of an increase in the traction parameter f on the

film thickness and the length to the dryout point while the mass transfer parameter, 77, is

kept at a constant. It is observed (as in chapter 3 figures (3.14) and (3.15)) that an increase

3

2 -

h(X)

0

T=0.1

0.2
X

Figure 4.4: Plots of the liquid film free surface h(x) when the traction parameter r is varied

and the mass transfer parameter 7/ = 1.0 (number of mesh points n = 100).

in the traction parameter f stretches the liquid film and hence increases the length to the

dryout point. It is also evident from the curves in figures (4.4) and (4.5) that there is a

value above which, when f is increased, the converged numerical solutions cease to have

monotonic second derivatives near the dryout point. The results of figures (4.6) and (4.7)

further suggest that there is some competition going on between f and 77 near the dryout

point. In an attempt to understand this phenomenon, we consider a limiting case near the

dryout point when 77 ~ O(S~2), f ~ O(e) and h ~ O(e), for some small positive parameters

e and 5 which are of comparable order order of magnitude. In this case equation (4.1), to

order e, gives
1 S2

(4.6)
1 S2

/** = - — ~ ,
rjT e

It is then clear from (4.6) that the increase in f (or equally e), tends to flatten the slope of

the liquid film thickness hx. While the increase in 77 (or similarly S2) steepens the slope of
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Figure 4.5: Plots of the liquid film free surface %{X) when the traction parameter r is varied

and the mass transfer parameter r\ = 1.0 (number of mesh points n = 100).
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Figure 4.6: Plots of the liquid film free surface h(x) when the traction parameter r = 0.3 and

the mass transfer parameter 77 is varied (number of mesh points n = 100).
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Figure 4.7: Plots of the liquid film free surface V.{X) when the traction parameter r = 0.3

and the mass transfer parameter 77 is varied (number of mesh points n = 100).

the liquid thickness layer.

Since an increase in 77 increases the steepness of the slope of the liquid film free surface h

near x = 1, it is instructive to look at the case where 77 —> 00 and f is comparatively small.

In this case, figure (4.8) displays an example of typical solutions. The solutions still approach

the dryout point linearly, but the slopes are very steep as one would expect. Figures (4.9)

and (4.10) show the comparison between the results in figure (4.8) and the results when the

value of 77 is relatively small.

Figure (4.11) depicts a typical plot of the length to the dryout point LQ for an increase in

the traction parameter r, when the heat transfer parameter 77 is held constant. These results,

in comparison with the results in chapter 3 figure (3.16), show rather unexpected behaviour.

From the results of figure (3.16), we recall that it has been found that for a fixed value of 77,

the increase in f slowly and gradually stretches the length to the dryout point. Here, from

figure (4.11), on the other hand, we observe that even for small values of f there are regions

where the increase in f does not do as much stretching of the length to the dryout as in

other regions. Moreover, it is also evident that for a fixed mass transfer parameter 77, there

is a point (approximately f = 1.1 when 77 = 1.0) above which the increase in the traction

parameter f no longer effects any increase in the length to the dryout point. At this stage,

the increase in f only plays the role of flattening the slope of the liquid film thickness towards

the dryout point. It is difficult and not obvious to interpret this result. However, we should
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Figure 4.8: Plots of the liquid film thickness layer h(x) when the traction parameter r = 0.0

and the mass transfer parameter 77 = 1000.0 (number of mesh points n = 100).
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Figure 4.9: Plots of the liquid film free surface h{x) when the traction parameter r = 0.0 and

the mass transfer parameter 77 is varied (number of mesh points n = 100).
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Figure 4.10: Plots of the liquid film free surface %{X) when the traction parameter r = 0.0

and the mass transfer parameter 77 is varied (number of mesh points n = 100).
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Figure 4.11: Plot of the length to the dryout LQ against the traction parameter r when the

mass transfer parameter 77 = 1.0.
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recall from equation (2.56) that we observed that r includes effects of gravity. Therefore, what

we are experiencing in figure (4.11) is some sort of competition between the gravity effects

and another component of f which provides the pulling/stretching of the dryout point. The

gravity effects play the role of flattening the slope of the film free surface near the dryout

point. When the gravity effects dominate over the stretching/pulling effects, we see more of

the flattening of the free surface near the dryout point than the increase in the length to the

dryout point, and vice versa. It is clear from figure (4.11) that, in the case of r) = 1.0 when

f = 1, the gravity effects totally dominate over the stretching/pulling effects. Thus, there is

absolutely no increase in L(0)(= LQ) as f is increased. It should be pointed out that in the

results of chapter 3, the increase in f does not in any way play a role of flattening the slope

of the unknown function h near the dryout point. Therefore, it may be deduced there that

the stretching/pulling effects totally dominate over the gravity effects.

Figures (4.12), (4.13), (4.14) and (4.15) show pressure profiles in the annular regime and far

downstream of the dryout for increases in both 77 (r held constant) and r (77 held constant).

In fact the main difference between figures (4.12) and (4.13) [similarly figures (4.14) and

I
00

a 0

-2

-4
0 0.5 1

X
1.5

Figure 4.12: Gas core pressure in the annular flow regime and far downstream of the dryout

point, for various values of the mass transfer parameter 77 (f held constant at r = 0.0).

(4.15)] is that in figure (4.12) [and hence figure (4.14)] the length to the dryout point is fixed at

i = l while in figure (4.13) [and hence figure (4.15)] the dryout point is allowed to move and

the pressure is scaled with ho. In general, the pressure is positive at the entry to the annular
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Figure 4.13: Gas core pressure in the annular flow regime and far downstream of the dryout

point, for various values of the mass transfer parameter 77 (f held constant at r = 0.0).
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Figure 4.14: Gas core pressure in the annular flow regime and far downstream of the dryout

point, for various values of the traction parameter r (77 held constant at 77 = 1.0).
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Figure 4.15: Gas core pressure in the annular regime and far downstream of the dryout point,

for various values of the traction parameter r (77 held constant at 77 = 1.0).

flow x = 0. It then increases rapidly to a positive maximum near x = 0 before decreasing

gradually to a smooth negative minimum at the dryout point. (This is not the case for the

solutions of equation (3.35) where there is a singularity in hx(x) near the dryout point. In

that case, it has been observed that the negative pressure minimum is infinite. Therefore, this

feature is solely attributed to the singularity in hx near the dryout point, not a consequence of

the numerical code.) Finally, (in the cases where solutions to equation (4.1) are monotonic)

the pressure increases gradually to an almost negative equilibrium far downstream. In the

cases where solutions to (4.1) are non-monotonic however, there are some apparent sharp

inflexion points corresponding to the dryout points in the curves. Owing to the scaling of the

gas core pressure with ho, it is easy to observe the effects of changing 77 and r in figures (4.13)

and (4.15) respectively. It is clear that apart from translating the dryout point, the changes

in 77 do not have any effect on the size of the pressure at the minimum point. The increase in

r tends to decrease the magnitude of the minimum pressure, in addition to translating the

dryout point.

Figure (4.16) shows the relationship between the gas core pressure and the pressure gradient

at x = 0 for the converged numerical solutions. Unlike the results in figure (3.17) in chapter 3,

there are no indications from this graph whether there may be regions (e.g. when the pressure

gradient tends to minus infinity and/or when its magnitude becomes small), where there may
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Figure 4.16: Gas core pressure pg against the gas core pressure gradient pgx at the inset of

the annular flow x = 0, for various values of r and rj.

be no numerical solutions, h, to (4.1) for some prescribed values of pressure.

4.3 Nonregularised Problem and Pressure Gradient Condi-

tion

Since there are no singularities in hx{x) as x —> 1 in equations (4.1), then it would be sensible

to attempt to solve (4.1) without resorting to the regularisation process. In this section, we

briefly demonstrate therefore (without going into too much technical detail) that indeed (4.1)

may be solved directly. We begin by integrating (4.1) to yield

(4.7)

where the fact that h —>• 1 — l a s i - > 1 has been exploited to evaluate the constant of

integration. Thus, it is equivalent to prescribing the pressure gradient condition, at the onset

of the annular flow,

3TT
_=(j

(4.8)
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in equation (4.1). This condition, in physical terms, implies that in equation (4.1) the mass

flux vanishes at the dryout, i.e. at the dryout point x = 1

= 0.
1 = 1

Equation (4.7) may now be solved numerically subject to the boundary conditions /i2(0) = 0,

h(l) = 0 and the parameter h(0) = ho should be specified and altered until equation (4.8) is

satisfied.

4.3.1 Numerical Results

The conventional discretisation of (4.7) [as described in section (3.1.4.1) chapter 3] leads to

a set of nonlinear algebraic equations

3TT \ ^

(2j -2i + If

In
(2n - 2» -

( 2 n - 2 t - 3 ) ( 2 n - 2 t

after applying all the boundary conditions. The trapezoidal rule has been used to approximate

the last term on the left hand side of (4.7) and 2 < i < n — 2. It should be noted that the

discretised version of (4.8) is simply (4.9) with i = 0. Equation (4.9) may then be solved

iteratively for the values of hj by Powell's method using the NAG library routine C05NBF

with ho prescribed and altered until the converged numerical solutions satisfy the discretised

version of (4.8) within some specified tolerance T (in this particular case, \T\ < 1 x 10~5 was

used). It should be pointed out that even for this seemingly simple problem, it is still very

challenging to obtain converged results for this numerical scheme, thus making the study of

this problem difficult. Extensive numerical experimentation suggests that the initial estimate

to the solution is crucial. Once an appropriate estimate is obtained, the numerical method

converges quickly without any difficulties whatsoever. For a typical numerical solution shown

in figure (4.17), the initial guess for h is h w 1 — XJ in each subinterval [XJ,XJ+{\.

4.4 Nonregularised Problem and the Pressure Condition

In practice, it might be easier to measure the pressure as opposed to the pressure gradient in

the pipes. We should recall that in the solution of the previous problems a condition (on the

mass flux at the dryout point) which results in the pressure gradient condition at the onset

of the annular flow, is prescribed. Then the pressure is obtained by appropriate calculations

from the converged numerical solutions. In this section we make an initial attempt to solve

96



Figure 4.17: Plot of the liquid film free surface h(x) when the traction parameter r = 1.0

and the mass transfer parameter j] = 2.3 (n = 100).

(4.1) where the pressure at the onset of the annular flow x = 0, P (P = [p9o - Poo] APoo^),

is directly prescribed. The same procedure could have been undertaken on equation (3.35).

However, working with equation (3.35) is more tricky than dealing with (4.1) because (3.35)

involves singularities in hx{x) as x —> 1 and this may require the regularisation of the problem

in advance and hence a big increase in the amount of algebra to be handled. Therefore we

choose to attempt this approach first on a relatively simpler problem, equation (4.1). For

clarity of presentation, we drop bars from now on until it may be necessary to employ them.

4.4.1 Analytical Manipulations

We continue by integrating (4.1) twice with respect to x and applying the pressure boundary

condition

at the onset of the annular flow x = 0. We obtain

where C\ is a constant of integration. On inverting (4.11) we get
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* d\ da

[* dX P\ d£
;, (4-12)

where the parameter C3 is obtained by applying the boundary condition hx(x) = 0 at x = 0

and it is therefore given by

= Ci fl i [*_d*_\ dL dX P

/o n{Aj j V S U - f ) "" -/o [2 7o h{X)

1 [r^(
t] Jo h3{a) \Jo

h(A)dA d<7 (4.13)

On integrating (4.12) with respect to x between x and x = 1 and applying the boundary

condition h(l) — 0 we obtain

( 4 1 4 )

We obtain C\ by applying the boundary condition h(0) = ho in equation (4.14) to yield

1. 1 f1 I £ [ T /* dA 1 ff T , da P1 /•« f

-dx — (4.15)

Now, equations (4.13) and (4.15) combine, after some lengthy simplifications, to give

1

it r\

2 Jo
r l sin

2 Jo M O 277 7 0

. (4.16)

Hence C3 is given by
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L1 f1 s111'1
W3 Jo h*(0 Wo X

1
7T r l d^ _ r l
2 JO H^(|) JO

1 sin Hy/l) j t _ rl

i

h0 p
71"

T) JO

It can be shown that

r V^
Therefore, after some algebraic simplifications, equation (4.14) becomes

MO T»7

0 /i3(0 Vf

V Jo

(4.18)

On denning /i(x,^) by

In

~ 2 ^ ? 2x{l-x) + x2 + {l-x)2
j

2x

-t), (4.19)

then it can be shown, after some algebra, that
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Xy/1 —

- x) + x2 + (1 - x- xf

X) \ 2x(l - x) + x2 -\

~VZ(l ~ y/x) \saT\\ - 20 - 2(1 - 20 - 2(1 - 2 0 ^ ( 1 -

- 0 2 , (4-20)

where the constants of integration in (4.19) and (4.20) have been omitted here for obvious

reasons. Hence, after some lengthy algebra and rearrangement of terms, equation (4.18) can

be writ ten as
/ \ fi fi

u(~\ _ o / _ o, ;n- lf C u f„ _ _ fA(r\ A- — fc(r\ (A 911
it y ju i — o i /( — & oil! i y j i i i j 3 — j 41x1 T̂  — j 5 \ •** 11 \ }

^ ' 7T 7T

where fa, fi{x) and /s(x) are respectively given by
T [i d£ r (2

MO i"i

1 - -

77 JO h3(^) ° f 7? JO

7T r l df_ f l
2 JO 7?m JO h?w

- 1
2x(l - x) + x2 + (1 - x)2 J 2x(l - x) + x2 + (1 - x):

\ J ' 2)]n\l-x\ + -ry/x{l-y/x) X
- T.) 4 - Tl 4 - 1 1 — T.\l I 4x)2

2x(l - x ) + x2 - - + — x

4 8 8 J I 3 2

and
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(4.22)

Equation (4.22) can be further expanded to give

-x(l-y/x) (l xy/T^x{\ - y/x)P j 1 s
3 \ 2 2x(l -x) + x2 + (l-x)2 \22x{l-x)+x2 + {l-x)2 4- 4 *

1 / xVl^x(l - yfx)

- | ( i - l ) ] - y [ ( l - x ) {In l l - ^ l -

(4.23)

where fe(x,£) is given by

•i« 4 '

and we recall that C\ is given by equation (4.16).

When P is an arbitrarily prescribed parameter, equation (4.21) contains no singular inte-

grals or derivatives. As a result, we believe that it may be solved numerically using direct

iteration techniques. It is likely that in this case some relaxation may have to be employed

in the numerical scheme (see for example, Fitt et al, 1985; Fitt & Stefanidis, 1998) [32]; [33].

Here, however, solving (4.21) by direct iteration methods would be cumbersome owing to the

amount of algebra involved in this particular problem (and which would definitely increase

when discretising the equations). In order to proceed, we combine (4.11) and (4.16) so that

instead, we have to compute h from the equation
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T L 2 1 rx,,^.,\ h0 P T f1 dXT L 2 1
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It is not easy to solve (4.24); however this approach reduces the amount of algebra involved

in computing h, in comparison to the earlier technique.

4.4.2 Numerical Treatment

We partition the interval [0,1] into equal subintervals [£j,£j+i] for 0 < j < n — 1, where n

is the number of mesh points. Since (4.24) is very complicated we assume here that in the

numerical scheme h is piecewise constant in each subinterval. To be precise, we approximate

h by h w (/jj+i + hj) /2 in [£j,£j+i]- We employ finite differences to evaluate the derivative

of the singular integral term (the Hilbert transform term) and collocate (4.24) at the mid-

mesh points Zj±i/2, for 2 < i < n — 2. To evaluate the ordinary integrals, we employ the

trapezoidal rule (as has been explained repeatedly in this study). We outline here how the

double integrals may be evaluated using the trapezoidal rule. In particular, we approximate

h(\)d\d£ ^ Y ? / / h(\)d\d£,
K1 j^{hi+1 + hjfk Jo

by the trapezoidal rule. This implies that

IIhWdXd( * % ( s r ^ W ( U i t l h{X)dX - ^ fh{X)dX-

after using integration by parts and the Leibnitz's rule. Therefore we have

r1 1 /"£ ^ J 8 [ ftj+i ftj
/ ~^TT / hWdXd£ ^ Y 3 <̂ ^ + i / h{X)dX + (^-+1 - £j) /
Jo h (£) Jo _g {hj-\-\ -\-hj) y Jij Jo

h^ + h>(e3+,-if)}- (4.25)

In this particular case, the second term in the curly brackets

/ 3 h{X)dX,
Jo
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in equation (4.25) is approximated by the less accurate numerical scheme

for simplicity in the computations. (A better numerical approximation of this integral is to use

the trapezoidal rule. However, the latter approximation does not make any significant changes

in the final numerical results due to the shape our solution curves of h.) Equation (4.25) then

simplifies to give

+

(4.26)

By following similar arguments, after some algebra, we get

f1 sm~1(
Jo h*i

2n

( 4 - 2 7 )
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r fts«)

n-l

j=0

2n

16

Thus, the discretised version of (4.24) is

I _ n—l A n—i T

(4.28)

n—1
hj

hj)*

n - l

3?r
j=o

- 2»

j-2i + 3)
n - l , n - l

"T + 7r"6+2^
hj

n

hj

n - l n—1

= 0, (4.29)

where I±j and I5J are respectively given by

n - l

n-l

ho ̂

n—l

j=0 l^J + 1

2 /

j+i + /ij) V

8

+ h3)
3

4 S m

1
4

-& + i

+

+ -^oii - 2^))
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4.4.3 Some Preliminary Numerical Results and Discussions

We solve (4.29) iteratively for the values of h by Powell's method using the NAG library rou-

tine C05NBF. The initial guess to the solution (after an extensive numerical experimentation)

is taken to be a piecewise nonlinear function hj = (1 - Xj)1^2 in each subinterval [XJ,XJ+I]

for 1 < j < n — 1. In theory, the values of r, 77, ho and P may be prescribed and varied at

will. However, we know from equation (4.15) that P and ho are directly related; hence they

cannot both be prescribed independently. Moreover, we know that ho (and hence P) depends

on the global behaviour of the unknown function h in [0,1], in addition to the values of the

mass transfer parameter 77 and the traction parameter T. This makes the solution of (4.29)

very difficult. As purely a preliminary attempt at solving the system (4.29) numerically, we

fix the values of T, 77 and ho- Then P is prescribed an initial value (in this particular case 1.0)

and then altered until a converged numerical solution satisfies the discretised version of (4.15)

within a given tolerance. Thus, in a sense we solve for h, and P is obtained simultaneously as

an eigenvalue of this problem. Typical results are shown in figures (4.18), (4.19) and (4.20).

The problem may be solved for h in the same way by fixing r, 77 and P and then ho be

3

X

Figure 4.18: Plot of the liquid film free surface h(x); 77, T and P fixed at 77 = 1.0, r = 1.0,

P = 1.076683 (n = 60).

obtained as part of the solution. However, this latter approach will require extra vigilance in

the numerical scheme as ho will appear implicitly from the discretised version of (4.15). The

numerical results in figures (4.18) to (4.20) seem to be sensible because they clearly show
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Figure 4.19: Plot of the liquid film free surface h(x); r), T and P fixed at 77 = 1.0, r = 1.0,

P = 1.076683 (n = 80).

2 -

h(x)

Figure 4.20: Plot of the liquid film free surface h(x); 77, r and P fixed at 77 = 1.0, r = 1.0,

P = 1.076683 (n = 100).
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that h ~ 1 — x near x ~ 1, see for example figure (4.18) where the number of mesh points

is still small. However, the answer to the question of whether the results are accurate, and

valid beyond any doubt, at this stage remains open (as discussed later in this section, for

example) because we have not yet provided a simple but related check problem.

It is undoubtedly difficult to solve this problem and, as a result, it is very difficult and

tedious to attempt to investigate the effects of changes in the values of r and 77 in this problem.

In particular, it should be noted that equation (4.15) is

3 ° 7r4 7o h(0 2 Jo h{t) ^2j0 M O 2 r j J 0

6 [2 JQ h3(Z) Jo &(£) Jo

Thus, from equations (4.30), (4.16) and (4.17) we get

3 -n4

2 Jo h{t) 2r] Jo / i3(0 Jo r) Jo h3i()

ry-^io
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where A and D are given by

A =

D =

I JO hrfg) ~ JO /l3(^) d ? + JO hs(O

TL f^ d£ _ f l !

2 JO 7I3(|) Jo

_ f l if r> f l

Jo

TL f1 d£ _ fl s m ( y€ )^ f fi y£l
2 Jo 71^) Jo P(f) a? Jo / i 3

Hence the discretised equation which is used to iteratively obtain the value of P is accordingly

•p

n - l
^ 0 TTT ^

3 2n £ j hj+1

n—1 r n—1 j- A n—1

E i4, ^—v J57 47T r̂—r

J J^O J' J J^O ** ' ^ ' J:=0

/i n—1 1
47T X - ^ 1

n—1 r Q n—1 j

,
n - l

n—1 n—1

A
r, j

n—1 —1

[ °
n-l

«

16 ^ 72

.B
ho n - l n - l

1
47T

h
n - l

-5-X

, n - l
i

V^ J3j

-7 +

n + / l ,

7T ^

where A and £) are approximated by

16 n - l

(4.32)

•i=0
hi

and E is given by
1 n - l

n j=0

hj

We should recall that the main reason why we have attempted the problem in this section

was to investigate the possibility of solving the original problem by directly specifying the

pressure (as opposed to the pressure gradient) at the onset of the annular flow regime. This
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approach is certainly very difficult and the algebra involved is very cumbersome. However,

the problem has been tackled to a level where the only remaining thing is to provide a simple

but related paradigm problem (which may be solved preferably in closed-form) so that our

numerical scheme can be tested. A suitable such problem has not been found yet. As a result,

the numerical results typified by the plots in figures (4.18), (4.19) and (4.20) are described

as preliminary.

One of the simplest paradigm problems related to the current problem here may be obtained

by assuming that 77 = 1/e and r = e, for e —> 0, in equation (4.1), so that to leading order we

get

= 4 (4-33)

for some constant B (which depends on the global behaviour of h in [0,1]). The corresponding

boundary conditions are h(x) = 0 at x — 1, hx(x) = 0 at x = 0 and h(0) = ho- We further

know that

n Jo £
It is however, nowhere near trivial to solve (4.33) numerically (as we illustrate below without

actually indulging in the computation for h in this problem).

On following the approach proposed in section (4.4.1), it may readily be shown (after much

algebra) that h(x) is given by

2B fF3(x,Q + Fi(x,0^
/ * (4"34)

where B, C, F\(x), F2{x), Fs(x,£) and ^4(0;, £) are respectively given by

B = * + "il^. ' , (4.35)

MR) ' 4 <436)
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- 1 x
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If numerical computations for /i are to be carried out for this paradigm problem, it will

have to be recognised from equation (4.33) that h ~ (1 — x)1/2 near x = 1. Therefore, extra

care should be taken as some terms in equation (4.34) will have to be calculated analytically
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near x = 1, otherwise they will diverge in the numerical scheme. For example, near x — 1

sm

Thus, from equations (4.35) and (4.36), we obtain that

2 r1 sin"1

-if sm

7T Jo / l 3 !

(4.37)

It should be noted that the last integral in equation (4.34) produces many more terms which

should also be taken care of outside the numerical scheme near x = 1.

In conclusion, in this section we have solved equation (4.1) numerically for the special case

where ho, along with the parameter values 77 and r, are fixed and the pressure P at x = 0

is varied until a converged numerical solution for h satisfies all of the boundary conditions.

In reality, the parameter ho, instead of P, should be the one which is altered until all of

the boundary conditions are satisfied. However, as explained earlier, this would lead to

an even more difficult and cumbersome problem to tackle numerically. The main aim in

this section was to explore the possibility of solving (4.1) [and hence possibly the previous

problem, equation (3.35)] by directly specifying the pressure at the onset of the annular flow

region instead of the pressure gradient there. The results of this section suggest that such

a possibility may exist. However, there is still some way to go since a suitable paradigm

problem has yet to be provided so that the accuracy and hence the validity of the numerical

method proposed here can be tested. As a result, the results of this method have not been

used to make any predictions on the dryout point.
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Chapter 5

Unsteady Flows

In chapter 2, we have proposed a fully unsteady model for the problem and in chapters 3

and 4, the model has been solved numerically for specific cases in the steady state. Now,

the ultimate aim will be to solve the whole problem numerically for the unsteady cases. It

is almost customary and usually simple in the unsteady problems to seek similarity and/or

travelling wave solutions. However, a brief analysis of some simple cases of the problem in

section (5.2) shows that these solutions are physically unrealistic and therefore are not of

immediate interest here. Thus, in order that any predictions could be made for the dryout,

it is then inevitable that the whole unsteady problem must be solved numerically. It will

be, however, unthoughtful to embark on the task of solving the whole problem numerically

without investigating whether in reality its solutions exist or not. Hence in this chapter we

mainly address the question of linear stability for this problem. As a result, the literature

review in section (5.1) is concerned with the linear stability analysis of some related problems.

It should be mentioned nonetheless, that none of these models in the literature include the gas

core (such literature, to the best of our knowledge at the time of writing, is not available).

Nevertheless, we hope that some of their results will provide indications as to what we

may expect from the linear stability results of this problem, e.g. whether the mass transfer

parameter 77 is a stabilising factor or not. We will focus here on the linear stability of the

constant wall temperature problem though the other case can also be done.

5.1 Literature Review

The stability of thin liquid films adhering to heated walls is of practical importance in several

applications including the analysis of liquid metal cooled fast breeder reactors (Bankoff, 1971)

[8]. Therefore, this phenomenon has been of particular interest to a number of investigators.

Essentially, investigators analyse the order of magnitude of the dimensionless terms in their
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respective models for the disturbance waves at the interface in order to isolate the influence of

various terms on the stability criteria of the thin liquid films. Such terms include phase change

terms, vapour terms, thermocapillary terms, gravitational terms and physical variation terms,

to mention but a few.

Bankoff (1971) [8] investigates the linear stability of a Newtonian liquid layer, with zero

surface shear stress, draining down an inclined heated plane. On assuming that the liquid

film is extremely thin, Bankoff (1971) [8] employs long-wave theory (where it is assumed that

the disturbance waves have wavelengths much larger than the mean thickness of the liquid

layer or, equally, the waves have a small wavenumber) to obtain a critical Reynolds number,

above which the film flow is unstable, in terms of a heat flux parameter. It is then concluded

that evaporation at the free surface is always a destabilising factor while condensation has

a stabilising effect. This result, for example, suggests that an increase in the mass transfer

parameter T] might be a stabilising factor in our problem since such an increase will, intuitively,

result in less amount of evaporation in this problem. In Bankoff's analysis the temperature

of the free surface is taken to be a constant. This study was extended to allow temporal

temperature variations at the free surface and to include surface tension by Lin (1975) [51].

The results obtained by Lin confirm those of Bankoff and further suggest that variation of

surface tension with temperature is a destabilising factor in heated films but has an opposite

impact in cooled films.

The formulation of Bankoff's (1971) [8] model is however, criticised in detail by Spindler

et al (1978) [82] for its discrepancies in the jump conditions at the free boundary. Spindler

(1982) [81] studies the linear stability of a liquid film flowing down an inclined plane with a

constant wall heat flux and interfacial phase change. It is assumed that there is no vapour flow

except very close to the vapour-liquid interface where it is assumed that the vapour motion

is induced by the film flow. Spindler's model takes into account the variations of the physical

properties of the Newtonian fluid due to temperature changes, and a theoretical dryout length

is estimated even though the author points out that the model is not valid near the dryout

point. It is concluded that evaporation, in agreement with the other previous studies, has a

destabilising effect while condensation has a stabilising one.

Linear stability of the surface of a superheated liquid undergoing steady evaporation was

investigated, in a planar configuration, by Prosperetti & Plesset (1984) [67]. In the analysis,

both the vapour and the liquid are treated as incompressible and inviscid. The growth rate

of the perturbations is obtained as a function of the wavenumber and the destabilising effects

of the disturbances of the gas pressure and evaporative mass flux are discussed for a number

of basic temperature distributions in the liquid. It is also concluded that the interfacial

temperature changes do not play a significant role in the instabilities of the free surface. A

similar study is carried out by Higuera (1987) [39] in a three-dimensional configuration, to
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include effects of the fluid viscosities. The results of Prosperetti & Plesset (1984) [67] are

recovered and it is further found, as one would expect, that both gravity and surface tension

have stabilising effects on the free surface.

There has also been an interest in the nonlinear stability analysis of static evaporating

and condensing thin liquid films (see for example Burelbach et al, 1988) [14] to investigate

rupture in thin thermal liquid films, which is probably the limiting case for linear stability

analysis.

It should be mentioned that in all the above studies, the underlying models are nonlinear

partial differential equations. In our case (as a result of accounting for the dynamics of the

gas core pressure from the thin aerofoil theory perspective) we have to deal with nonlinear

singular integro-differential equations. We should mention, on the other hand, that there has

been a numerical investigation of linear stability of a two-dimensional unsteady sail (which is

a linear singular integro-differential equation of a semi-infinite range type) by Haselgrove &:

Tuck (1976) [38]. Apart from the nonlinearity, the base state equations we tackle here differ

from those considered by Haselgrove &; Tuck (1976) [38] in that, besides being of finite range

type, they also possess a singularity in one of the end boundary conditions. Thus, numerical

computations involved in obtaining solutions are formidable. Moreover, our model is a moving

boundary type problem, whose linear stability analysis (to the best of our knowledge) has

not been tackled before.

5.2 Similarity Solutions

We seek similarity solutions for simplified cases of equation (2.62) and analyse them with

respect to the physical situations. It will be seen that for practical purposes, these solutions

are not interesting. We recall that equation (2.62) is

h) (5.1)

where for convenience, from now on (unless clearly stated) the unbarred variables should

be understood to be nondimensional. Assuming that h ~ O(e2), t ~ O(e), r\ ~ O(e3) and

T ~ O(l/e3), for some small positive parameter e —> 0, in equation (5.1) we obtain

<5-2)

to leading order. (It should be mentioned however, that these asymptotics may not be

valid near the dryout point, where it may be anticipated that nonuniformities will manifest

themselves.) For similarity solutions, we follow standard techniques, see for example Ames

(1965) [2]. We employ a transformation h = \nH, x = XX and t = AmT, for some parameter
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A and real numbers n and m, in equation (5.2) to get

( ) ^ = 0. (5.3)( T )

From (5.3) we obtain that n = 1/3 and m = 2/3 for equation (5.2) to be invariant under the

above transformation. Thus, we have a similarity solution

( 5 '4 )

Upon choosing x = A, without loss of generality, equation (5.4) gives

(5.5)

Since h(x,t) vanishes at the dryout point x = 1 + l(t) = G(t), then equation (5.5) implies

that

G(t)=A1t~2, (5.6)

for some constant A\. Thus we have a boundary condition H{A\) = 0. Since A\ is not a

known parameter, we are allowed to prescribe one more boundary condition at the entry to

the annular flow regime, x = 0.

We proceed first by deriving an equation for H from equation (5.2). We define a variable

so that h is given by

(£~2 (5.7)
Therefore, substitution for x and h in equation (5.2) leads to an ordinary differential equation

for H

i ( ^ ) ^ I ^ 0 . (5.8)

Equation (5.8) may be solved numerically for H by standard methods if A\ is known or one

more appropriate boundary condition is prescribed. For the purposes of checking whether

the similarity solution (5.5) makes sense physically, it is sensible to consider simpler cases

of (5.8) where closed-form solutions can be obtained. We therefore consider the case when

r = 0. In this case, a closed-form solution from (5.8) is given by

| + m, (5-9)

for some constant of integration K. The constant K may be obtained by applying the

boundary condition at the dryout point H{A\) = 0, i.e. K = 21n|^4i|. Since A\ is not

a known parameter, we will prescribe an extra condition at the entry of the annular flow

115



region, x = 0. Now, from equation (5.7) we observe that near £ = 0, H ~ (t
1^2. Thus, from

equation (5.5), it follows that h(0) = 0 for all finite t > 0. However, this condition is absurd

and unrealistic physically. Moreover, from equation (5.6), we observe that the dryout point

is always increasing (or decreasing) for any positive A\ (or negative A\). Thus, we expect

/i(0) to be greater than zero and increasing (or decreasing) accordingly at all times t in order

to sustain the increase (or decrease) in the dryout point. Therefore, though this similarity

solution is mathematically fascinating, it is not physically sensible for this particular problem.

A similar analysis to the above one can be performed on equation (5.1) when r = 0. In

this case a similarity solution is given by

h = x~sH{tx~s).

The function G{t) at the dryout point is given

l (5.10)

for some constant A2- We may, as before, then make a change of variables s = tx~$ and

h = (t/s) ' H(s) in (5.1) to obtain a nonlinear ordinary integro-differential equation for H

where r = 0. Upon prescribing appropriate boundary and initial conditions, equation (5.11)

may be solved numerically for H by standard methods. However, as in the previous case

we observe from (5.10) that either the dryout point is either always increasing or decreasing

depending on whether A? is positive or negative, respectively. This result is restrictive since

it does not provide any opportunity for the dryout point to fluctuate back and forth (a

frequently observed phenomenon in reality). Therefore, we will not restrict our attention to

single transformations (be similarity and/or travelling waves solutions) to study this problem

since they are practically not interesting in this case. Rather, much focus should be directed

towards solving the whole problem numerically for the unsteady cases. However, as mentioned

earlier, it is important to check the linear stability of the problem first. After all, it is not

sensible go on to obtain solutions which may not be observable in reality.

5.3 Linear Stability Analysis

In this section, we will examine the linear stability of solutions obtained for our steady state

two-parameter model governed by equation (3.35),

) £ \ (5,2)•qh [ 3n \Jo £ - x ) x 2
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to check whether these basic solutions might be physically observable or not. In other words,

we wish to test the ability or inability of these solutions to sustain themselves against small

perturbations to which any physical system is subject. A more detailed general concept of

hydrodynamic stability may be obtained from now standard text books, for example, see

Drazin & Reid (1985) [26] and Chandrasekhar (1981) [17]. Here, we will proceed by first

assuming that the unsteadiness in equation (5.1) manifests itself as a small perturbation

about a basic steady solution hs(x) of (5.12).

Before we continue with the linear stability analysis of the full problem (5.1), it is however

sensible to first analyse the linear stability of some simplified cases of (5.1). The full nonlinear

problem (5.1) is very complex due to the presence of the Hilbert transforms and it is very

difficult to deal with. Therefore, we need to create some paradigm problems against which

we may test our linear stability results for the full problem. It must be emphasised though

that these problems are only idealisations and, as a result, falsifications. Nevertheless, we

hope that some of the features retained for discussion are of greatest importance in the linear

stability.

5.3.1 A Constant Pressure Gradient Problem

If we assume that pressure is linear in x (instead of being given by the Hilbert transform of

hx(x)) in equation (5.1) then we have a simplified problem

*•-£• (513)

where Px is the pressure gradient. In general Px may be written conveniently in the form

Px = -aoa(t), (5.14)

for some positive constant ao and a non-negative function a(t). (In the subsequent linear

stability analysis of this problem we will however, consider a simple case when a(t) is a

constant.) We take Px to be negative in order to allow h to vanish at some positive length

from the point x = 0. This choice of Px is of course physically natural in order to allow the

flow in the gas core to be in the desired direction, i.e. towards the turbines far downstream

of the dryout point.

Equation (5.13) is a first order partial differential equation and we are allowed to prescribe

one boundary condition and an appropriate initial condition. It is convenient to impose a

condition that h(O,t) = ho, for some positive constant ho. It should be mentioned however,

that h(O,t) can be allowed to be a function of t but for simplicity and consistency with the

assumption to be applied to the full problem (5.1), it is sensible to proceed with the current

choice.
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5.3.1.1 A Non-Zero Pressure Gradient Problem

On assuming that hx(O,t) exists then, without loss of generality for real h(x,t), we specify

a0 = ^j. (5.15)

Therefore equation (5.13) leads to

h2 {kiha(t) + k2} hx + r\hht + 1 = 0, (5.16)

where k\ = 4//ig and k2 — r\r.

As mentioned earlier, we assume for simplicity that a(t) is just a constant, in particular

a(t) = 1 for convenience. Under these circumstances the steady case of equation (5.16) yields

where B = /ip/4 and C = 77/1^/4. Equation (5.17) can easily be solved in closed form to give

h\) + h3{)h\x) + jh{x) + Bx D, (5.18)

where D is a constant of integration which may be obtained by applying the boundary

condition at x = 0 to get

4 3
The zeros of (5.18) can be found analytically. However, the roots are in such a general form

that they are unhelpful in the subsequent linear stability analysis. We observe, on the other

hand, that in the special case r = 0, (5.18) gives a simple solution

It is particularly interesting to notice that (5.19) automatically mimics the dryout point only

at x = 1, i.e. /i(l) = 0 for any prescribed ho- This result is a direct consequence of the scaling

in equation (5.15) and it is highly convenient in the subsequent linear stability analysis for

this special case.

In order to proceed with the linear stability analysis, we first employ the method of char-

acteristics to solve (5.16) analytically when a is a constant (and without loss of generality

we take a = 1), i.e. we solve

h2 {hh + k2} hx + T)hht + 1 = 0. (5.20)

We parameterise in q

xq =

tg = V,

hq = ~ . (5.21)
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Equations (5.21) solve to give

h = {2(A-q)}2,

t = m + B,

x = 2L1(^A-^jq-^k2(A-q)H+C, (5.22)

where A, B and C are constants of integration. We prescribe an initial condition that when

t = 0

q = 0,

x = p,

h(x,0) = F(p),

for some arbitrary function F(p), so that (5.22) implies that

h(x,t) = V2~(^F2(p)-t-y , (5.23)

where p is given by

p^.^lK^^^^-l^x,^^,^^)1]}. (5.24)
Substitution of (5.24) into (5.23) leads to an implicit equation for h(x, t)

- 2
2

6 [ S) + v X) + v) J / y
In the special case T = 0 (i.e. only the effects of rj on the linear stability of the problem

will be investigated under these circumstances), equation (5.25) reduces to

h2(x,t) + - = F2(x-k1 \h2(x,t) + -}-). (5.26)

We then investigate the linear stability of (5.26) by introducing a perturbation to the steady

state solution in the form

F(x) = hs(x) + es'm(Mx),

h(x,t) = hs(x)+ehp(x,t), (5.27)

for some real constant M, where hp(x, t) is the perturbation solution and we know the steady

state solution hs(x) from equation (5.19)

(5.28)
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Substituting the pair of equations (5.27) into (5.26) and employing equation (5.28) yields

h2
sO(l-x)2 +2ehs0{l -x)*hp(x,t) + — = h2

s0R5(x,t) + ehs0R*(x,t) sin(M[x - i?i(a;,<)]),
V

(5.29)

on neglecting terms of O(e2). The functions R(x,t), Ri(x,t) and Rz(x,t) are respectively

given by

R{x,t) = Ri(x,t) + R2(x,t),

Ri(x,t) = l - x + fc

R2(x,t) = 2ekihso{l-x)*-hp(x,t).

We may then expand both Ri{x,t) and R*(x,t) using standard methods to give

= R?{x,t)+ R2^Xit) +O(e2),
2R*(x,t)

jt) +O(e 2) .

Thus, on comparing coefficients of e in equation (5.29), we obtain (to order e) an equation

for the liquid layer thickness perturbation hp(x,t)

= { l x + a1(xt)}tsin(M{ a :a1(x, t)»
2(l-x)i{[l-x + a1]*-f}

where ai(x, f) is given by

a i ( x , t ) = 4 ( l 6 ( l - a ; ) 3 + - l - , (5.31)

fci has been replaced by its value k\ = 4//i^0 and, for convenience, hSQ = 1. We notice that

(5.30) is not defined at the point x = 1. However, on excluding this point, we can still obtain

some important information on the linear stability from equation (5.30). Since 0 < x < 1 we

observe from (5.30) that the perturbation hp(x,t) grows for all values of 77 > 0 and t > 0.

In other words, this results suggests, as one may expect and in agreement with the results

in the literature, that the mass transfer parameter 77 > 0 is a destabilising factor. For the

values of 77 < 0, on the other hand, it is clear from (5.30) that for all values of t (0 < t <^ 1),

the perturbation hp(x,t) decays. It is important to recall at this stage that in this study 77 is

inversely proportional to the difference in the pipe wall temperature Tw and the saturation

temperature of the superheated liquid film Ts, 77 oc 1/ (Tw — Ts). Therefore, the notion

of 77 < 0 here does not necessarily refer to condensation in the physical conception of the

problem, it should be understood only as a mathematical entity. On the other hand, 77 > 0

physically refers to an evaporating superheated liquid film. Literally, higher values of positive
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rj indicate a less superheated film. It is therefore interesting to observe from equation (5.30),

in particular, that for all values of t (0 < t <C 1) when TJ ->• oo the perturbation

hp(x,t) ~ -(1 — x)i sin(M:r),

which, as one would expect, does neither grow or decay. (This is also the case when 77 —> —00.)

In other words, an increase in 77 > 0 is a stabilising factor in this problem (and so is the case

for an increase in the magnitude of r\ < 0). These results may also be complemented by

solving the unsteady problem

numerically (after rewriting equation (5.20) in terms of H when r = 0), subject to an initial

condition that is a slight perturbation of the steady state solution. The dependent variable

H is denned by H = h2. We will adopt this approach in the linear stability analysis of a zero

pressure gradient problem in section (5.3.1.2).

5.3.1.2 A Zero Pressure Gradient Problem

When Px — 0 in (5.13), we obtain an equation identical to (5.2)

rhhx + ht + -V = 0. (5.32)

We hope the linear stability results of this problem will give us a benchmark against which we

may compare the results of the full problem with regard to the effects of T ̂  0 and its changes

when 7] is kept constant in the problem. In order to proceed with the linear stability analysis

of equation (5.32), we set h = Hh(0), t = r]h(0)T and x = r]h(0)X, where we have assumed,

for simplicity, that at all times h(0,t) = h(0). Under these circumstances equation (5.32)

becomes

fH2Hx + HHT + 1 = 0, (5.33)

where f and if(0,T) are respectively given by f = T/2 and H(0,T) = 1. The steady state

solution to equation (5.33) is given by

( * y , (5.34)

where we have dropped the bars for convenience. The steady solution has dryout at the

points X = T / 3 .

It should be noted at this stage that an identical equation to (5.33) may be obtained

from the full nonlinear problem (5.1) by assuming that h ~ O(l), t ~ O(e), r/ ~ O(e) and

T ~ O(e-1) in (5.1), so that to leading order we have the problem

rh2hx + hht + 1 = 0, (5.35)
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which is (5.32). It should also be pointed out however, that these asymptotics may not be

valid near the dryout point where h is also small.

In order to analyse the linear stability of equation (5.33), we solve the unsteady problem

numerically using finite differences with a mesh-step of 0.01 and a timestep of 0.00005, where

% = H2. Equation (5.36) is solved, for a wide range of specified r values, subject to initial

conditions which are perturbations of the steady state solution

(5.37)

and, for simplicity, the boundary condition H(0, T) = 1. The typical results are illustrated

in figures (5.1) and (5.2) for r > 0 while figure (5.3) shows the typical results for r < 0.

1
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\
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Figure 5.1: Evolutions of the perturbation to 'H(X,T) when r = 60.0.

In order to interpret the results here, we need to note a few things. Equation (5.32) is

asymptotically consistent with the full problem (5.1) when r is large and rj is large (e.g.

equation (5.32) can be obtained from (5.1) by assuming that r ~ r) ~ O(l/e3), h ~ O(e2),

t ~ O(e) and then considering the leading order problem). However, leading to (5.33) from

(5.32), we have scaled thy t — r]h(0)T, where h(0) is assumed to be of 0(1). We further know

that for the linear stability analysis, t is assumed to be small. Hence this implies that for

the linear stability results in this section, 77 is inherently small. Therefore, the linear stability
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Figure 5.2: Evolutions of the perturbation to H{X,T) when r = 2.7.
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Figure 5.3: Evolutions of the perturbation to H(X,T) when r = -2.5.
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results here should be compared to those of the full problem (5.1), when 77 is small and r is

large (e.g. results illustrated in figure (5.13)).

The typical results depicted in figures (5.1) and (5.2) clearly show that r(> 0) is a stabilising

factor since all perturbations to H{X,T) decay as the time T increases. The results further

suggest that the increase in r is also a stabilising effect since when r is relatively large (e.g.

T = 60.0 in figure (5.1)) the perturbations decay faster than in the case when T is relatively

small (e.g. r = 2.7 in figure (5.2)). The typical results shown in figure (5.3), on the other

hand, suggest that r(< 0) is always a destabilising factor since the perturbations to 7i(X,T)

grow as T increases. It should be mentioned at this stage, for clarity, that all the graphs

shown here represent the typical results which have been obtained through an extensive

experimentation with the values of r in the range —10.0 < r < 100.0, T ^ 0 .

These results may be complemented by plotting (using XMAPLE for example) the evolu-

tions in time ( < 1 (for a fixed value of 77(7̂  0) where various values of r are specified) of the

closed-form solution of the perturbation hp(x,t)

M M ) = — ^—5 1 ^ - 7 , (5-38)

where a2(x,t) is given by

Equation (5.38) is obtained by solving (5.2) using the method of characteristics as in section

(5.3.1.1) to get

(5.40)h2(x,t) + 21 = F2L + ̂ <h*{x,t) - (h(x,t) + *

for an arbitrary function F. Then we introduce a perturbation on the steady state solution

in the form
1

F(x) = (—V (1 -x)* +6sin(Mx),
\T]TJ

h(x,t) = (—Y(l-x)k*+5hp(x,t), (5.41)
\T]TJ

for large enough real constant M. Substitution of equations (5.41) into (5.2) and comparison

of coefficients of 5, after some algebra, leads to (5.38).

In the limit r —> ±00 in particular, we note from (5.39) that

2i
a2(t) .

V
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Hence we obtain an asymptotic solution for hp(x,t)

hp(x,t) ~ -—r— *,"'".-> r^ -* °.T i \ r—

r? |18(l-a;)3 - 3 ] y/2t

as T —> ±oo, for increasing values of t at a fixed value of 77(7̂  0), x 6 [0,1] and — 1 < M <

1. Thus suggesting that the perturbation hp(x,t) decays quickly to nearly zero for large

magnitudes of T values.

It will be seen later in this study that the characteristic behaviour of the results shown in

figures (5.1) and (5.2), when r > 0, are reflected by the numerical linear stability results for

the full problem (5.1) in figure (5.13) until r w 170, for 77 = 0.1, where r suddenly begins to

play a destabilising role (a physical reason for this will also be proposed).

In conclusion, it will be seen later in this study that the results of the paradigm problems

in this section suggest that indeed the numerical linear stability results for the full problem

(5.1) might be correct. Apart from these two paradigm problems, we could have presented

many others. However, the other paradigm problems require creation of other paradigm prob-

lems in order to test their numerical results and the process can become very cumbersome.

One such case (as an example and without going into too much technical details) presents

itself if we follow Tuck's (1991) [86] approach and simply replace the Hilbert transform op-

erator f- by a constant times a derivative operator dx. Tuck (1991) [86]'s attitude is that

the resulting equation may exhibit some of the features of the application described by the

original equation, while not necessarily giving a quantitatively accurate solution. Applying

this approximation to our full nonlinear, steady state problem (5.12) implies we will have to

solve

f? \^ 2 ) \ (5-42)7T 2 J x T]h

where it has been assumed, in addition, that t is small, h ~ O(e), r ~ O(l/e) and 77 ~ O(l/e2).

In the steady state case equation (5.42) may be rewritten, after some algebra, as

5 ( f cV? (5-43)
Equation (5.43) may be analysed by solving

This is rather a crude assumption. It is, nonetheless, not any better or worse than simply

replacing the Hilbert transform operator by a constant times a derivative operator just for

simplicity.

Equation (5.44) integrates to give

^ ^ ^ C, (5.45)
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where C is a constant of integration. It may be demanded that (5.45) satisfy the regularity

condition h ~ (1 — a;)3/5 of the original problem near the dryout point x = 1. This requires

that C = — 1/r/ and consequently, 77 and r should simultaneously be greater than zero at all

times. On scaling h = hoH, where ho = h(0), we will then have to solve

kiH4Hxxx - k2H
3 = (x - 1), (5.46)

subject to boundary conditions H(l) = 0, Hx(0) = 0 and H(Q) = 1 for some constants

fci = rr72/io/37r and k2 = Tijhl/3. (The existence of a solution to a nonlinear ordinary

differential equation cannot be taken for granted. We could not obtain any numerical solutions

to this problem in the cases of interest where r and 77 are large. However, some solutions

were obtainable when r and r] were both of 0(1).)

In the unsteady case we will have to solve, consistent with the regularity condition, a

problem
rG(T)

fcii^flsxs - k2H
3 - r) / HHTdu = x~ G{T), (5.47)

for some function G(T) and where t is scaled with t = h^T. The boundary conditions

H(G(T),T) = 0, HX(O,T) = 0 and H(Q,T) = 1 may be specified. For the linear stability

analysis, a perturbation of the form

H - Hs{x) + eHp{x)e'7T,

G(T) = 1 + eAeaT,

may be introduced, for some constant A, Hs is the steady state solution, Hp is the pertur-

bation solution, a is a measure of the growth or decay rate to be found and it is complex.

This will require that we solve the following O(e) eigenvalue problem for all o values for any

non-zero solution Hp and A,

hH3
s {HsHpxxx + HSXXXHP) - 3k2H

2
sHp - w [ HsHpdu = 0, (5.48)

Jx

subject to boundary conditions Hp(0) = 0, Hpx(0) = 0 and Hp(l) = 0.

Equation (5.48) may be solved numerically for all eigenvalues a and preliminary results

suggest that the steady solutions to this problem might always be unstable in an oscillatory

manner. However, when it comes to the independent test for the numerical scheme, things

become a bit more tricky. The problem may require the introduction of a new variable

F(x) = [ Hs{u)Hp{u)du,
Jx

so that, after some lengthly algebra, and the use of

" s i n — , u T

fei Hs
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equation (5.48) becomes

Rx = S(x),

Sx = Q{x),

Qx = u(x),

fo(x;r],a)F(x)]/f4(x;kl), (5.49)

with boundary conditions 5(0) = 0, Q(0) = 0 and 17(1) = 0. The functions S(x), Q(x) and

U(x) are defined by

Fx = S(x),

Fxx = Q(x),

Fxxx = U(x).

While the terms fi to /o are respectively given by

U = -hH5
s(x),

h = 3fcifr,4(x)ffM(x),

^) {3Fs
2(x)iJSII(x) - 2Hs(x)Hsx(x)Hsxx(x) - AHs{x)H2

sx{x)) ,

(x) {H*(X)HSXX(X) - 6Hs(x)Hsx(x)Hsxx(x) + 6H3
s(x)} -

{k2H
3
s(x)+4(x-l)},

/o = -wH*s(x).

Equation (5.49) is an ordinary differential equation. Therefore, it may seem to be in a perfect

form to be solved as an initial value problem using, for example, the NAG library routine

D02PCF. The values of a obtained by our numerical method would then be specified in the

routine to check whether the solution satisfies the end condition U(l) = 0, thus checking the

accuracy of the computed a values. However, the fact that Hs is obtained numerically and

that there is a singularity (that needs to be carefully dealt with) in Hs at x = 1 makes this a

very tricky task and therefore we would still need another paradigm problem in order to test

the method and the results. On the other hand, the results for paradigm problems (5.20) and

(5.33) can be checked easily using some standard methods. Moreover and more importantly,

their steady state solutions can be obtained in closed-form and are therefore exact.

5.3.2 The Full Problem

Having analysed the linear stability of some related paradigm problems, we now move on to

examine the linear stability of the full problem (5.1). As mentioned earlier, we will proceed
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here by assuming that the unsteadiness in equation (5.1) manifests itself as a small pertur-

bation about the basic steady solution hs(x) of equation (5.12). We then seek an unsteady

perturbation of the form

h{x, t) = hs{x) + ehp(x, t), (5.50)

W = ef(t), (5.51)

where e(> 0) is a small parameter and the function f(t) is not known.

It is convenient to transform the moving boundary problem into a finite fixed interval [0,1]

by setting

X = Z(l + £/(«)),

(5.52)

The derivatives then transform into•m

d
dx

X

t

into

]

= z(l

= T.

1
l + ef(T)

+ */(*)),

a
dz"

*- = Z rdf d I 9

dt l + e/(T) dTdz dT'

We then assume, as in (5.50), a perturbation in h of the form

h(z,T) = hs(z)+ehp(z,T). (5.54)

On substituting (5.54) into (5.1) and using equation (5.53) we obtain, to leading order,

( M B )r - z ~ J M 2 ' j z r ^ '

which is, as expected, identical to equation (5.12) that we have solved earlier. The associated

O(e) problem is then

f h?(z) ( T1 h (r T)

where Ns denotes here the Hilbert transforms of hsz, so that

Jo r - z

Equation (5.56) is linear in both hp(z,T) and /(T), both of which are unknown at this stage.

In order to proceed with the linear stability analysis, a relationship between f(T) and

hp(z,T) must be found. Since in (5.56) f{T) is a function of T alone and hp(z,T) is a

function of both T and z, then if there has to be a relationship between the two functions
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if both are not constants, hp(z,T) must be separable. As a result, we assume that hp(z,T)

may be written as

hp(z,T) = hp(z)g(T), (5.57)

for some unknown functions hp{z) and g(T). Then equation (5.56) becomes

- rh2
s{z)f{T) - rhs{z)hp{z)g{T)

where Afp is given by

-£/o r - z

The boundary conditions to impose on hp(z) are

MO) = Mo) = Mi) = o, (5.59)

and an appropriate regularity condition which will be determined later in this section.

We continue with the linear stability analysis by proposing a relationship between the

functions g(T) and f(T). It is sensible to suppose that both of these functions determine

the growth rate of the perturbations. Therefore, we assume a simple and convenient linear

relationship between the two such that

f(T) = Ag(T), (5.60)

for some unknown constant A. (The case when A = 0 refers to the situation where the dryout

point is not allowed to move; and as mentioned in section (5.2), it is not of physical interest

here.) Under these circumstances, equation (5.58) is homogeneous and linear in both hp and

A so that hp = A = 0 is a solution to this equation. We then let

g(T) = e°T, (5.61)

where a is a complex number. Therefore equation (5.61) means that we allow an infinitesimal

amount of deformation of the steady solutions in an unsteady oscillatory manner. Thus,

equation (5.58) becomes an auxiliary equation to determine a set of possible eigenvalues for

a for any non-zero solution, hp and A. Owing to the coupling behaviour depicted in the

driving equation (5.12) for the steady solutions, energy can be added or subtracted from the

problem hence resulting in the growth or decay, in time, of the magnitude of these oscillatory

perturbations. Hence in general, the eigenvalues a are complex numbers, the real part of

which determines whether the solutions are stable or not. The contour TZ\(a) = 0 divides

the stable solutions with TV\ {a) < 0 from the unstable ones with 7£] (a) > 0, i.e. small
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disturbances grow if 1Z\ (a) > 0, they decay if 7£] (a) < 0 and they neither grow nor decay if

TZ~\ (cr) = 0. The imaginary part of a dictates the natural frequency of the vibrations. The

fact that a is complex implies that both hp in equation (5.57) and A in (5.60) are complex

too. Therefore the real part of their product with eaT in (5.61) is the physical value of the

perturbation quantity. But since both hp and A appear linearly in equation (5.58), then both

their real and imaginary parts are separately solutions of (5.58); therefore there is no need

to explicitly mention the taking of the real parts.

We know from solving equation (5.55) that near z = 1

(5.62)

where x — |tan(37r/5)|. This suggests that hp must also tend to zero like

hp ~ K(l - zflb, (5.63)

near z = 1, for some constant K(> 0), in order to obtain satisfactory asymptotic balances

near z = 1 in equation (5.58). Owing to the way that hp appears in (5.58), the constant K

cannot be obtained from this equation.

5.3.2.1 A Numerical Method

Owing to the nonlinear appearance of hs and the presence of the Hilbert transform of both

hsz and hpz in the characteristic equation for eigenvalues a, equation (5.58) can only be solved

numerically. The function hs is also known numerically from solving equation (5.55), and this

was one of the reasons why it was crucial to develop accurate methods for the steady problems

in chapters 3 and 4. We should mention that prior to any numerical computations in this

section, some analytical manipulations are required. The singularity in hsz near the dryout

point z = 1 needs to be dealt with before we can carry out any numerical computations.

5.3.2.2 Analytical Manipulations

We proceed by rewriting (5.58), after using (5.60) and (5.61), as

- rhs(z)hp(z) - rh2
s(z)A\ 2hs(z) xj

hsz{z) + -hp(z) - \(z)A = a {h2
s{z)hp{z) - zhsz(z)h2

a(z)A\ . (5.64)

In this way, we avoid using the asymptotics to balance infinite terms near z = 1 in equa-

tion (5.58), and instead both sides of (5.64) become zero at this point. In order to avoid the
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calculat ion of higher order derivatives in t h e subsequent numerical scheme, we integrate b o t h

sides of (5.64) wi th respect to z to get

h5 h4 2 rz

7r-Npz -\ J\fSzhp - Th\hp - rh4A — — / hA(u)hsu(u)J\fpudu —
3TT 7r 3TT JO

2 fz Cz

— / hz
s{u)hsu{u)Msuhp{u)du + 2 r / h2Au)hsu{u)hp{u)du-\-

n Jo Jo
rz \ fz 3 fz

2T / h?.(u)hsu(u)duA -\— / hv(u)du / hs(u)duA
Jo r] Jo V Jo

= a\ [ h2
s(u)hp(u)du - / uh2

s(u)hsu{u)duA\ + C, (5.65)
[.Jo Jo )

where C is a constant of integration. We then exploit the fact that we know both hs(z)

and hp(z) at z = 1 and their respective asymptotic behaviours as z —> 1. We know, from

equations (5.62) and (5.63) respectively, that both hs(z) and hp(z) behave like ( 1 - z ) 3 / 5 near

z — \. We have seen earlier (see equations (3.50) and (3.51)) that the finite range Hilbert

transform of (1 - z)v•, 0 < p < 1, behaves like (1 - z)p itself. As a result, the first four terms

on the left hand side of (5.65) are all zero at z — 1. Thus, C is given by
2 Z"1 2 r1

~T~ / h4
s{u)hsu{u)Afpudu - - / /i2(u)/iatt(u)A/-,tt/ip(

rl r\

I h2
s{u)hsu(u)hp(u)du + 2r / ^ ( u ) / i s u

H— / hv(u)du / h s ( u W i M - C T ^ / h2(u)hv(u)du-
V Jo rj Jo L Jo

/" uh2
s(u)hsu{u)duA\ =C. (5.66)

Substituting (5.66) into (5.65) and performing the simplifications

J\3
s(u)hsu(u)du = ~ht(z),

J uh2
s(u)hsu(u)du = ~ (h3

s{z) + J h3
s{u)

(where the integration by parts and the fact that hs(l) = 0 have been exploited) we arrive

at the equation

^Mpz + ^Mszhp - rh3
shp - \ A + Fi(z) - 2r C h2{u)hsu{u)hp{u)du -

J %

hp(u)du + - / /is(u)cft^4 = a <- h2
s(u)hp(u)du - - (/if+

/ /if(«)du^AJ. (5.67)

The function Fi (2) is given by

Fi{z) = ~ f hA
s{u)hsu{u)hTpudu + - [ hz

s(u)hsu(u)Afsuhp(u)du. (5.68)

We must then solve (5.67) subject to boundary conditions hpx(0) = hp(0) = 0 and hp(l) = 0

to find all the eigenvalues a for any non-zero solution hp and A.
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5.3.2.3 Discretisation

We are now in a position to deal with the problem numerically. We will proceed by discretising

the equations to obtain a system of generalised eigenvalue matrix problems whose unknown

vector comprises of A and the values of hp. The system of equations will be solved for the

eigenvalues a using the QZ algorithm as implemented in the NAG library routine F02BJF.

The computation of the eigenvalues will allow investigations of the influence of the parameters

T and 77 on the instability of this problem. The uniformity of the numerical method will be

checked during the course of the investigations by solving the system for different values of

the total number of mesh points while r and 77 are kept constant.

Now, we discretise the interval [0,1] by partitioning it into n equal subintervals [ZJ,ZJ+I],

where 0 < j < n — 1 and Zj — j/n are the mesh points. Thus, n denotes the total number

of mesh points in the interval. In order to minimise the complexity in the numerical compu-

tations, we approximate the integrals in each subinterval using the trapezoidal rule. Finally,

we fit linear splines to each of hs(z) and hp(z) and write

hs = [1 — 71 (z — Zj)] hsj + 71 (z — Zj) ,

hp = [1 — n (z — Zj)] hpj + n(z - Zj),

in each subinterval. We use finite differences and specify the mesh points Zj, l < i < n — 1.

We then collocate at the mid-mesh points in the approximation of the derivatives of the

Hilbert transforms of both hp and hs (A/"p2 and Afsz respectively) in equation (5.67).

The discretised version of equation (5.67), after imposing the boundary conditions hpo =

hpi = hpn = 0 and performing tedious but straightforward algebra, is then

,2

hpi--rhilA

3=1

(5.69)

for 1 < i < n — 1. The quantities aj, 6j, Cj and gj are respectively given by

/ h2
s(u)hsu(u)hp{u)du ~ n hsj) [ajhpj - bjhpj+i] ,
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9j = ^

The discretisation of equation (5.68) warrants some comment. We assume, for simplicity,

that both the pressure gradient and the perturbation pressure gradient are constant in each

subinterval [ZJ,ZJ+I] so that the discretised version of (5.68) is

r+1 (u)du + 3Afsu [ZJ+1 h3
s(u)hp(u)du\ . (5.70)

J )

On simplification, (5.70) becomes

t\ n—1

YL - hSj) ejhpj
2 n—1 t\ n—1

j=i

2n n~1

H 5Z {M'su
 (^*J+I ~ ^«j) fjhpj+i} , (5-71)

where the terms dj, ej and fj are given by

2 2
h

6 0 31 L 2 , r 1 3 1 , L 2 1 . 3
j h s j h ^ + 20^^+ 1 '

1 1 / 3 3 \ 1

We use finite differences to approximate Mpu and A/"su in each subinterval and we then collocate

(5.71) at the mid-mesh points to get
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2n3 ^ f ^— E E
j=i [k=o

(5.72)

Equations (5.69) and (5.72) form a generalised eigenvalue matrix problem, where the un-

known vector comprises of A and the values of hpj, 2 < j < n — 1. The system is solved

(through the NAG library routine F02BJF) for all of the eigenvalues a using the QZ algo-

rithm. We expect one eigenvalue for each value of hPj and A. If at least one of the eigenvalues

has a positive real part, ar > 0, then we have unstable associated steady state solutions. If all

aT < 0, we then have stable solutions. The instability is oscillatory if the relevant eigenvalues

have non-zero imaginary parts, a\ ^ 0.

Since the normal recoil pressure, gravity and surface tension at the free surface do not

appear in this problem then we expect the instability to depend mainly on one or both of the

parameters r and 77. Thus, in the results below we plot the most unstable or the least stable

eigenvalues against either of the parameters r or 77 to check how these parameters influence

the instability in this problem.

Before proceeding with the discussion of results, we must point out that the method seems

to work satisfactorily. There is no doubt the system (5.69) and (5.72) form a large compu-

tational problem which needs some very careful coding. However, the limitation as to how

many points we consider is determined by the solution of the steady state solution which,

as explained earlier, is a formidable task. As a result, the maximum number of points we

take in the numerical scheme is n = 100. In order to check the uniformity of the numerical

method we apply it to the solution of the steady state problem when n = 20 and increase

n in steps of 20. Some typical results are shown for n = 20, n = 40, n = 60, n = 80 and

n — 100 in figures (5.4) to (5.7) for the parameters r = 77 = 1.0. The figures indicate

that the numerical method is consistent, the increase in n merely adds some more eigenvalues

without altering the size of the eigenvalues corresponding to a smaller value of n. Owing to

the nonlinearity and presence of the Hilbert transforms in the problem, however, it is unlikely

that any rigorous attempts to test whether the method converges to the correct solution will

be fruitful.

134



2 -

>«• 0 - <

-2 -

-4

1

— : - : - • : • • - — •

_

i

•

•

• 20 points
• 40 points

-

t

*

*

*
•

-1 0

Figure 5.4: The imaginary parts of the eigenvalues, a,, against the real parts of the eigenval-
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ues, crr; (T = 1.0 and rj = 1.0).
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5.3.2.4 Numerical Results

The results in figures (5.4) to (5.7) show a typical distribution of eigenvalues when the param-

eters r\ and r are changed, e.g. see also figures (5.8) and (5.9). The eigenvalues are crowded

a, 0 _

-10

a

Figure 5.8: The imaginary parts of the eigenvalues, CTJ, against the real parts of the eigenval-

ues, ay; (T = 10.0 and rj = 1.0).

and the majority are complex with their real parts are greater than zero. Thus suggesting

that the steady state solutions to this problem are always unstable to small perturbation.

Physically, this means that the solutions for the unsteady problem (5.1) may not be visible

in reality. However, it should be recalled that this model is an idealisation of the annular

flow regime which is, in reality, a very complicated phenomenon. In modelling the problem,

we have ignored, for example, the processes of liquid droplet deposition from the gas core

into the liquid film and the entrainment of liquid droplets from the liquid film free surface

into the gas core. These processes, in the current case of interest, may be insignificant (as

the typical parameter values from experiments suggest) for the formation or vanishing of

the liquid layer, but they may be playing a very important role in the stabilisation of the

developed liquid films. Furthermore, we have not included the surface tension term in the

current study in order to minimise the amount of the computational algebra (however, analy-

sis will show that the inclusion of this term would not ensure stable results for this problem).

Therefore, the fact that the numerical linear stability results suggest that the steady state

solutions obtained for this problem may be always unstable, should not be misunderstood to
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Figure 5.9: The imaginary parts of the eigenvalues, CTJ, against the real parts of the eigenval-

ues, CTr; (r = 2.0 and rj = 10.0).

mean that the model is irrelevant. It is always a good practice in mathematical modelling

to build a model and analyse it from the simplest foundations first. Other realistic features

may be added to the model simply as a matter of improvements. We will continue therefore

to investigate the instability of the problem for other values of rj and r. This will be achieved

by plotting the most unstable or the least stable eigenvalues against either of the parameters.

Before we proceed however, a closer look at figures (5.6) and (5.7) gives an impression

that as n —> oo all the eigenvalues with positive real parts lie on a straight line and the

most unstable eigenvalue tends to infinity. This may suggest that corresponding to the most

unstable eigenvalue as n —̂  oo, both hp(z) and A can be scaled with n so that an asymptotic

relation between hp(z) and A may be obtained. In principle, the resulting relation may

be checked against the numerics if the steady state base solution could be obtained for

large enough n. Then, from the eigenvalues of the associated linear stability problem, the

eigenvector corresponding to the most unstable eigenvalue may be calculated. After which

hp(z) could be approximated from the vector along with the value of A so that the asymptotic

relationship could be tested. However, we proceed here to investigate the instability of the

problem when either of the parameters r\ and r is changed. We plot the most unstable

eigenvalue against either of the parameters.
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Figure (5.10) shows a typical plot of the most unstable eigenvalue against the mass transfer

parameter 77 when the traction parameter T is held constant. In general, for all the results

in this section, each point on the curves is obtained by first solving the steady state prob-

lem (5.12) for the given values of 77 and r. Then the obtained value of hs is used in the

calculation of the eigenvalues, as described earlier, from the generalised eigenvalue problem

characterised by equations (5.69) and (5.72). The most unstable or least stable eigenvalue

corresponding to those particular values of 77 and r is then recorded. The process is then

repeated with a different set of values of 77 and r until a sufficient number of points is available

to plot a graph. Obviously, in the typical results shown in figure (5.10) for example, r is kept

constant at T = 1. The solid line in the graph reflects the relationship between the maximum
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Figure 5.10: The most unstable or least stable eigenvalue against the mass transfer parameter

V-

growth rate GTM against the parameter 77. The dotted lines indicate the relationship between

the imaginary parts of the most unstable eigenvalue <7JM and the mass transfer parameter

T]. The results in figure (5.10) clearly show (in agreement with those of the paradigm prob-

lem (5.16)) that an increase in 77 > 0 is a stabilising factor in the problem. It should be

recalled that the parameter 77 is inversely proportional to the difference between the pipe

wall temperature Tw and the saturation temperature at the liquid film free surface Ts, i.e.

77 oc 1/ (Tw - Ts). Therefore, this result suggests that for a given traction parameter T, it is
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easier to stabilise (or destabilise) a highly superheated liquid film through minute changes in

the heat mass transfer parameter 77 than to stabilise (or destabilise) a mildly or moderately

superheated one through large changes in 77. In other words, a highly superheated liquid film

evaporates much more rapidly than a mildly or moderately superheated one. Further, it is

evident from figure (5.10) that as 77 —)• 00, for a given 0(1) parameter T, the instability tends

to an oscillatory marginal stability. It is therefore instructive to consider plotting the most

unstable eigenvalues against the values of T, especially for those large values of 77, in order

to investigate whether there could be some regions in the (r, 77) parameter space where the

problem may be stable.
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Figure 5.11: The real part of most unstable or least stable eigenvalue against the traction

parameter T.

Figures (5.11) and (5.12) illustrate a family of curves of the real parts of the most unstable

eigenvalues aru against the values of the traction parameter T for different constant values

of the heat mass transfer parameter 77. It is clear from these curves that an increase in T is a

stabilising effect, in agreement with the results of the paradigm problem (5.33), but only up

to a transition point where it abruptly becomes a destabilising factor. This transition point

does not only depend on the values of r but also on those of 77. The smaller the value of 77, the

further away from the origin (along both the lines of zero aTu and zero r) is the transition

point. However, the change in positioning of the transition point is not proportional to the
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Figure 5.12: The real part of most unstable or least stable eigenvalue against the traction

parameter r.

increase in rj. In fact the relationship between the transition point and the increase in r\

appears to be of an exponential decay form. For relatively small values of 77, an increase in rj

effects a considerable decrease in the transition point from the origin. However, the transition

point seems to approach a constant value for any increase in 77 for those large values of 77.

(The idea here, as mentioned above, was to investigate whether for some combination of the

parameters 77 and r we can find any values of aru < 0. Hence the reason why in some of the

curves, calculations have been stopped almost immediately after the transition point where

the values of OTM start to increase.)

It is further illustrated in figures (5.13) and (5.14) that at the transition point, there is

an exchange of instability from an oscillatory one to a purely growing instability in which

0"tM = 0. Owing to the sharpness of this instability exchange point, it appears that this point

could be a branching point, where the curve coming from the left coming curve proceeds

continuously through the point to the right without change in direction, and likewise the

right outgoing curve continues to the left through the transition point without change in

direction, so that the two curves cross each other at the transition point. This will imply

that there may be some regions where the problem becomes stable as one of the curves (or

both) will cross the OTM = 0 line. It is, nonetheless, difficult to sustain this view since our

numerical method does not indicate any of such branching curves. Besides, such a result would

141



250 300

Figure 5.13: a graph of both the real and imaginary parts of most unstable or least stable

eigenvalue against the traction parameter r.

10

5 -

250 300

Figure 5.14: Both the real and imaginary parts of most unstable or least stable eigenvalue

against the traction parameter r.

142



inherently mean that the solution to the steady problem is not unique for some particular

values of the prescribed parameters 77 and r. Therefore, in the light of the results illustrated

in figures (5.10) to (5.14), it is compelling to conclude that all the base steady state solutions

to this problem (5.1) are unstable to small perturbations.

The indications, from both figure (5.11) and (5.12), that the increase in T plays a stabilising

role up to a transition point where it begins to be a destabilising factor may be given a physical

explanation. We will recall from equation (2.56) that it was observed that in general, r may

be understood to include the effects of gravity. Therefore, these two results suggest that for

a given value of 77, there is a range of r values where gravity is a dominant factor (i.e. where

r plays a stabilising role). The results for a set of r values beyond this range provokes an

impression that the dominant factor is the pulling/stretching provided by the fast flowing

gas in the core, and this tends to increase the growth of the perturbations on the liquid film

free surface.

In summary, the findings here imply that the solutions to the the full unsteady prob-

lem (5.1) may not be observable in reality for virtually all values of 77 and r. Thus, it will

not be sensible to continue to solve (5.1) numerically. Since in reality these thin films are

physically visible in real life, then the results here give an impression that the process of

droplet deposition from the gas core onto the liquid film may be playing a crucial role in

the stabilisation of the developed films in the problem. This impression is supported by the

results of section (5.3.2.5). In section (5.3.2.5), we show analytically that the surface tension

term in this problem will have to be infinitely large in order to ensure stable results. We

do this by considering the problem when there is neither mass transfer nor shear stress at

all, i.e. we consider the problem on the (—00,00) range. In this case, the surface tension

term competes only with the gas core pressure term, and we will first show analytically that

the gas core pressure plays a destabilising role in this problem. Therefore, in future the

process of droplet deposition probably needs to be accounted for in the model for the linear

stability purposes even though, at the current conditions of interest, the typical values of

the experimental results suggest that the droplet deposition is negligible in the formation

of these liquid films. The inclusion of this term in the model will undoubtedly increase the

amount of algebra involved in solving this model and/or we may even require totally different

techniques to solve the resulting problem.

5.3.2.5 Analytical Results: Gas Core Pressure and Surface Tension Effects

We investigate the role of the gas core pressure with regard to the instability of (5.1). In this

problem, the gas core pressure is given by the Hilbert transform of the gradient of the free
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surface

£
In order to isolate the effects of the gas core pressure alone, it is intuitively sensible to consider

a no-mass transfer, no-shear stress problem. In this case, it is physically logical to expect no

dryout point. Therefore, instead of (5.1), we will have to study the unsteady problem

3TT V 7 - C

Clearly, without loss of generality h = 1 is a solution of (5.73). For the linear stability, we

employ the method of normal modes in x and t and write

h = l + eeikx+<Tt, (5.74)

where a is this disturbance growth rate as seen earlier, k is the wavenumber and e(> 0) is a

small parameter. On substituting equation (5.74) into (5.73) and comparing coefficients we

obtain an O(e) problem

= aeikx. (5.75)

X I

The term (in the brackets) which appears on the left hand side of (5.75) is (see for example

Pipkin (1991) [64])

vr J-c
d£ = - \k\ eikx,

o s •£

Hence we get the dispersion relation

a=\k\k2,

which indicates that the pressure in the gas core is always a destabilising factor as a is always

real and positive.

If a similar analysis (i.e. normal modes linear stability analysis with T = 0 and r\ = oo)

is performed on the problem with surface tension, a version of equation (2.65) on the range

(—00,00), we obtain the dispersion relation

where we have used the fact that the wavenumber k is physically related to the wavelength

of the disturbance waves; therefore A; must be positive. We recall that perturbations grow if

a > 0 and decay if a < 0. It is then obvious from the dispersion relation that the surface

tension term S is a stabilising factor. The marginal stability is obtained when a — 0 and

thus the cutoff wavenumber is given by
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In the long wave theory (where the disturbance waves have wavelengths much larger than

the typical film thicknesses) this relation suggests that in this case S must tend to infinity.

We further observe that there is growth for all k satisfying

and the maximum growth occurs at da/dk = 0 when k = 3TT/45 and a = 97T3/256. This result

suggests that, if there has to be no unstable solutions in this problem, then the surface term

must be infinitely large. However, this is absurd because it means then that the wavenumber

k must be zero. As a result, we conclude that the inclusion of the surface tension term in the

linear stability analysis of the full problem (5.1) would not have altered the overall results

we have obtained for this problem. Therefore for future work, we anticipate that only the

inclusion of the droplets deposition term in in the model might be the best hope for the

stability purposes in this problem.
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Chapter 6

Conclusions

In this thesis a two-dimensional mathematical model for an evaporating superheated thin

liquid film adhering to a heated wall has been proposed. To achieve this, thin-layer lubrication

theory has been employed. The model is unsteady and takes into account the dynamics of

flow in the vapour core (produced by the evaporating liquid layer) through the application of

the thin aerofoil theory. Thus, the model is governed by a nonlinear partial singular integro-

differential equation. In a real world application, the model idealises the two-phase annular

flow of water and steam, along with the dryout point, in steam generating pipes. In reality

the two-phase annular flow in steam generating pipes is a very complex phenomenon. It

consists of, among other things, an evaporating superheated thin liquid film adhering to the

pipe walls and the dryout point. The liquid film surrounds a fast flowing gas core which may

be turbulent in nature, e.g. see Kirillov et al (1985) [46]. The continuous breakup of large

amplitude coherent waves on the liquid film free surface and the undercuttings of the surface

by the fast flowing gas in the core are believed to be major causes of the droplet entrainment

from the liquid layer into the vapour core. Moreover, there is a simultaneous deposition of

liquid droplets from the gas core onto the liquid layer. The rate at which these processes

occur is theoretically unknown. Under the current conditions of interest however, the typical

experimental results, e.g. see Collier (1972) [19], suggest that neither the droplet deposition

nor the droplet entrainment are of paramount importance in the formation or the vanishing

of the liquid film. Thus implying that the evaporation of the liquid film is the dominant

factor affecting the dryout point here.

Owing to the nonlinear singular nature of the governing equations, the model has been

solved numerically (in the steady state case) for various specified conditions at the pipe wall.

In chapter 3, the model has been solved for a constant wall temperature. In chapter 4,

the model has been solved for some specified non-constant wall temperature. In general,

the temperature at the wall must be determined by solving the problem in the liquid metal
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(flowing in the counter direction) in the outer casing of the steam generating pipes. However,

it has been found that the problem in the liquid metal was so difficult that it could only be

solved numerically and the solution would be unhelpful for the purposes of solving the model.

In chapters 3 and 4, the effects of the constant parameter values in the model on the

length to the dryout point from the onset of the annular regime have been investigated

from the computed results. It has been consistently found that an increase in the traction

parameter r leads to an increase in the length to the dryout point. In other words, the

traction supplied by the flow in the vapour core pulls and stretches the liquid layer. It has

also been found that the increase in the mass transfer parameter rj (which should be recalled

that it is inversely proportional to the difference between the typical wall temperature and

the saturation temperature at the liquid film free surface) leads to an increase in the length to

the dryout point. Physically, this result implies (as one would expect) that for a liquid with

large latent heat, the mass transfer is small and dryout cannot occur. However, for a liquid

with small latent heat, the mass transfer is very high and dryout will occur immediately.

The governing equations for the model are very complex and a lot of insight into the

unknown solution for the liquid film free surface was required before any computational

techniques could be developed for the problem. It has been demonstrated extensively in the

thesis (by even providing some simple paradigm problems which could be solved analytically)

that the knowledge of the asymptotic behaviour of the unknown solution near the dryout point

is very important with regard to the numerical solution of the model. In the cases where

there is a singularity in the slope of the film free surface near the dryout point, it has been

found mandatory to employ some regularisation techniques in order to satisfactorily compute

solutions from the model. In these cases the problem has been regularised by considering an

appropriately stretched coordinate so that the solution approaches the dryout point linearly.

This ensures that there is no singularity in its slope there. It has been observed that the

regularisation technique, (despite increasing the amount of algebra involved in solving the

model tremendously) works very well. Another source of complexity in the model is partly

due to the fact that some of the boundary conditions in the model depend on the global

behaviour of the unknown solution and some boundary conditions are coupled nonlinearly.

In particular, the application of the pressure condition (which depends on the global behaviour

of the unknown solution in [0,1]) at the onset of the annular flow, x = 0 has been a great

challenge. The pressure condition can be applied directly if and only if the governing equation

in the model has been integrated twice with respect to the independent variable x. After

which, it is inevitable that the resulting equation should be inverted in order to make any

progress with it. However, the inversion of the equation leads to a very difficult problem to

tackle numerically as demonstrated by some computations in section (4.4.2). As a result,

we have been mostly restricted to solving the model by prescribing the pressure gradient
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condition at the onset of the annular region. In this case the resulting problem is still very

difficult to solve numerically, but there is comparatively less computational algebra involved.

The pressure and the pressure gradient are directly related in this problem (and they

both depend on the global behaviour of the unknown solution in [0,1]) therefore one can be

calculated from the other. By plotting the values of pressure against the pressure gradient,

at the entry of the annular flow x — 0, it has been possible to demonstrate that in some

cases it might not be possible to obtain a converged numerical solution to the model, e.g. for

values of pressure less or equal to approximately 0.27 and pressure gradient values greater

or equal to about -110.0, at x = 0 for the constant wall temperature problem. In chapter 3,

the relationships between the length to the dryout point (from the entry of the annular flow

x = 0) and both the pressure and the pressure gradient at x — 0, have been obtained for the

constant wall temperature problem. For practical purposes and experimental comparisons,

these relationships may not be as useful as the plot of pressure profiles. Thus, for all problems

in chapters 3 and 4, the pressure profiles in the annular regime and far downstream of dryout

point have been plotted. It has been found consistently that, in general, the pressure is

positive at the entry of the annular regime, x — 0, and it rises sharply to reach a positive

maximum near x — 0. It then decreases, quickly near x = 0, and then gradually downstream

to achieve a negative minimum at (or very near to) the dryout point before increasing to

almost a negative constant far downstream of the dryout point. The negative minimum in

the pressure at the dryout point for the constant wall temperature problem is infinite solely

as a result of the singularity in the slope of the liquid film free surface near that point. This

conclusion has been verified by the results of the non-constant wall temperature problem in

chapter 4, where there is no singularity in the slope of the film free surface near the dryout

point.

In chapter 5, the linear stability of the constant wall temperature problem has been anal-

ysed numerically. This is a very complicated unsteady free moving boundary problem and

(to the best of our knowledge, by the time of writing) has never been tackled before. In order

to put it into a form conducive for the numerical linear stability treatment, the problem has

been appropriately transformed into an unsteady nonlinear partial singular integro-differential

equation of the finite type in the interval [0,1]. The equations were then discretised using

finite differences and the technique of collocation around singular points in the Hilbert trans-

form was employed. The resulting equations were then analysed for the linear stability by

solving for the eigenvalues using the QZ algorithm as implemented in the NAG library routine

F02BJF. The performed linear stability analysis suggests that the steady state solutions to

the constant wall temperature problem are always unstable to small perturbations. In reality,

this result implies that the solutions to the corresponding unsteady problem (5.1) may not be

physically observable. It must be emphasised that this result does not therefore mean that
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the model is totally irrelevant. (In fact the development of this model is a major achievement

since most, if not all, the models in the literature either deal with the liquid film only or

with the gas core alone. However, in this model, we have accounted the dynamic effects of

the flow in the gas core on the dynamic pressure for the flow in the liquid layer.) This result

simply tells us that there may be other physical processes which should not be ignored in

the model, under any circumstances, since they could be playing a very crucial role in the

linear stability of the problem. The linear stability analysis of the paradigm problem (5.73) in

section (5.3.2.5), where there is neither the mass transfer nor the traction in the problem, sug-

gests strongly that the droplet deposition could be the most viable process for this purpose.

It has been demonstrated analytically in this section that the pressure in the gas core is a

destabilising factor. It has also been shown in the same section that the surface tension term

would have to be infinitely large (which is unrealistic physically) in order to ensure that the

results are stable in this problem. Therefore, this finding leaves us with the possibility that

the droplet deposition from the gas core onto the liquid film (if accounted for in the model)

might ensure stable solutions because in practice, these thin films are reportedly observable.

The influence of the constant parameter values in the model on the instability of this

problem have also been investigated. It has been found, as one would expect, that the

increase in the mass transfer parameter 77, is always a stabilising factor. Physically, this

result suggests that (under the conditions which the model has been developed) the highly

superheated liquid film is very unstable to small perturbations compared to the minutely

superheated one. It has further been found that the increase in the traction parameter r is

a stabilising factor only up to a point (which is different for every value of the prescribed

constant rj in the problem) where there is an exchange of instability from an oscillatory one

to a purely growing one. At this point, T suddenly starts to play a destabilising role. In

conclusion here, we should point out that due to the complexity of the governing equations

for our model, it has been very difficult to provide a test problem for the results of the full

linear stability problem. However, the analysis of the linear stability results for a few very

simplified problems in section (5.3) do suggest that indeed the results of the full problem

might be correct.

6.1 Avenues for Further Research

The ultimate aim in future is to solve the full unsteady model for this problem numerically. It

is only then that we can observe from the numerical results how the dryout point moves with

time. However, at the moment the linear stability results here suggests that the solutions

to the model as it stands are always unstable to small perturbations. This implies that the

solutions may not be observable in reality, yet it is reported that in practice these thin films
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can be physically seen. Therefore, we intend first to develop the model further to account

for, in particular, the droplet deposition from the flow in the gas core onto the liquid film.

As mentioned earlier, this process may not be important in the formation of the liquid layer

under the current conditions of interest (as suggested by the typical experimental results).

However, there is a strong impression from the linear stability results for both the full problem

and the paradigm problem (5.73) in section (5.3.2.5) that this process could be playing a very

important role in the stability of the film. It is still a big challenge at the moment how to

account, theoretically (i.e. without resorting to empirical relationships), for this process of

droplet deposition in the model. Clearly, the rate at which the liquid droplets deposit onto

the liquid film should be directly related to their concentration in the gas core. Logically, the

concentration of the liquid droplets in the gas core should also be directly related to the rate

at which droplets are entrained from the liquid film free surface into the gas core. However,

the process of droplet entrainment seems to be still a subtle matter. The ultimate challenge

will, therefore, be to develop some constitutive equations which relate these two processes of

droplet deposition and droplet entrainment to the unknown liquid film free surface. There

is no doubt that the model might become more complicated on the inclusion of these other

terms but, equally, it may result in some unforeseen simplifications in the numerical solution

of the problem, e.g. it could lead to a situation where there is no singularity in the slope of

the film free surface near the dryout point.

Last but not least, the steady state constant wall temperature problem where the surface

tension is included in the model has not been solved. This however, does not mean it could not

be solved. The problem was analysed asymptotically and it was observed that the presence

of the surface tension term in the model does not remove the singularity in the slope of

the unknown liquid film free surface near the dryout point. Therefore, the problem can be

solved in exactly the same way that the problem without the surface tension has been solved.

Moreover, the governing equation for the model when surface tension is present involves

higher orders (than one) of derivatives of the unknown liquid film free surface. Thus, in the

numerical solution it will no longer be permissible to approximate the unknown free surface

by linear splines but higher order splines e.g. cubic splines. This approach would result in

a tremendous increase in the already formidable amount of computational algebra involved

when there is no surface tension term. The same argument goes for the problem when the

traction parameter r is allowed to vary with space (and time) in the model.

Finally, we still wish to develop, if at all possible, an alternative numerical approach which

is preferably easier to handle than the ones employed to tackle the steady state problems

here and suggestions are welcome.
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Appendix A

Nomenclature and Boiler Tube

Typical Values

a Typical tube radius (~ 7 mm)

ho Typical thickness of wall liquid layer (~ 0.1 - 1 mm)

L(t) Length to dryout point (m)

LQ Steady length to dryout point (m)

Lt Typical heated length of boiler pipe (~ 6.1 m)

g acceleration due to gravity (~ 9.8 m/s2)

e Small parameter ho/Lo (~ 1.64 x 10~4)

Op Typical liquid specific heat (~ 15.646 k J / k g / K at 180 bar, 633 K)

k Typical liquid thermal conductivity (~ 0.412 W / m / K at 180 bar, 633 K)

A Typical latent heat of vapourisation of water (~ 603.5 kJ /kg at 198 bar)

q Typical heat flux from liquid sodium (~ 595 W/m 2 )

/x Typical dynamic viscosity of liquid (~ 6.44 x 10~5 N sec/m2 at 200 bar, 633 K)

fig Typical dynamic viscosity of vapour (~ 3.48 x 10~5 N sec/m2 at 210 bar, 643 K)

p Typical density of liquid (~ 491 kg/m 3 at 198 bar)

Poo Typical density of gas core flow upstream of dryout (~ 171 kg /m 3 at 200 bar)

M Dimensional mass flow from liquid to gas core (kg/s/m2)

m Non-dimensional mass flow from liquid to gas

Poo Typical pressure in the gas core far upstream of dryout (~ 200 bar)

UOQ Typical gas core velocity (~ 12 m / s )

U Typical liquid velocity (~ 0.01 m/s)

Ts Typical saturation temperature (~ 638.15 K at 200 bar)

Tw Typical wall temperature (~ 640 K)
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