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Abstract 

 

The Gini coefficient (Gini, 1914) has proved valuable as a measure of income inequality. 

In cross-sectional studies of the Gini coefficient, information about the accuracy of its 

estimates is crucial. We show how to use jackknife and linearization to estimate the 

variance of the Gini coefficient, allowing for the effect of the sampling design. The aim is 

to show the asymptotic equivalence (or consistency) of the generalised jackknife 

estimator (Campbell, 1980) and the Taylor linearization estimator (Kovačević and 

Binder, 1997) for the variance of the Gini coefficient. A brief simulation study supports 

our findings. 
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1. The Gini coefficient 

 

In this section, we introduce some notations, define the Gini coefficient and define its 

estimators. 

Consider a finite population denoted by },...,,...,1{ NiU = , where N  is the 

number of individuals in this population. Let 0≥iy  denote the income of an individual 

labelled i . The finite population Gini coefficient is defined by (Glasser, 1962) 

∑
∈

−=
Ui

ii yyF )1)(2(
1

τ
γ ,              (1) 

where ∑ ∈
=

Ui iyτ . The function )(yF  denotes the income distribution function 

defined by 

∑
∈

≤δ=
Ui

i yy
N

yF }{
1

)( , 

where }{ yyi ≤δ  takes the value 1 if yyi ≤  and the value 0 otherwise. 

 When ji yy ≠  for all ji ≠ , equation (1) can be re-expressed as 
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1
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where 
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and N/τµ = . The quantity *γ  is an alternative expression for the Gini coefficient 

proposed by Anand (1983) and by Lerman and Yitzhaki (1984).   

More generally, γ  becomes *γ  when we replace )( iyF  in (1) with the smooth 

(or mid-interval) distribution function *( ) [ ( ) ( 0)] / 2= + −i i iF y F y F y , where 

( 0) lim ( ).↑− =
i

i y yF y F y   Note that )(* iyF  is not a cumulative discrete distribution, as 

)(* iyF  is not the fraction of observation less or equal to iy . This adjustment to the 

cumulative distribution allows the Gini coefficient to be computed using (3) (see Lerman 

and Yitzhaki, 1989). In other words, using the smooth distribution function effectively 

takes into account the correction N/1  in (2).  For simplicity, we will ignore this 

correction in what follows. 

Suppose that iy  is known only for the sampled individuals si ∈ , where s  denote 

a sample or subset of the population U . Hence, the Gini coefficient in (1) is an unknown 

population parameter, as it depends on unobserved quantities iy  ( si ∉ ). Thus, it has to 

be estimated from the observed sampled values iy  ( si ∈ ). A substitution estimator for γ 

is given by (Kovačević and Binder, 1997): 

∑
∈

−=
si

iii yyFw )1)(ˆ2(
ˆ

1
ˆ

τ
γ ,              (4) 

where 

∑
∈
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si
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ˆ
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with isi i yw∑ ∈
=τ̂ , ∑ ∈

=
si iwN̂ , and 1−= iiw π  denotes the Horvitz-Thompson 

(1952) weights of individual i . The quantity iπ  is the first-order inclusion probability of 

i ; that is, the probability that individual i  is in the sample. Using the Horvitz-Thompson 

weights guarantee that γ̂  is an approximately unbiased estimator for γ . 

 Nygård and Sandström (1985) proposed an alternative estimator. Their *γ̂  is 

given by (4) after replacing )(ˆ
iyF  with the sample smooth (or mid-interval) distribution 

function ˆ ˆ ˆ*( ) [ ( ) ( 0)] / 2= + −i i iF y F y F y , where ˆ ˆ( 0) lim ( )↑− =
i

i iy yF y F y . Taking a 

slightly different approach, Lerman and Yitzhaki (1989) proposed substituting )(*ˆ
iyF  

into (3). Using 2/ˆ/)(*ˆ NyF isi i =∑ ∈ π , it can be shown that their estimator reduces to 

*γ̂ . Deville (1997) likewise proposed an estimator algebraically equivalent to *γ̂ . 

The estimator *γ̂  is asymptotically identical to γ̂  under mild conditions, as 

νγγ += *ˆˆ , where Nsiwi
ˆ/}:max{|| ∈<ν . Thus, γ̂ *γ̂  when ||ν 0  or when 

)/1(ˆ/ nONw pi =  uniformly; that is, when none of the weights is disproportionately large 

(Krewski and Rao, 1981). In this situation, the quantity ν  is of probability order n/1 , 

which implies that the difference between the variances of γ̂  and *γ̂  is of probability 

order 2/1 n  (Deville, 1997). This difference can be ignored in the estimation of the 

variance. We will assume that the sample size is large enough that the same expression 

can be used to estimate the variance of both γ̂  and *γ̂ . 

In what follows, we investigate the jackknife and the linearization variance of the 

estimator γ̂  in (4) based on the estimate of the distribution function (5). 

 Lerman and Yitzhaki (1984) and Ogwang (2000) showed that the Gini coefficient 

can be easily estimated using the regression coefficient of an ordinary least squares 
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regression. By assuming this regression model true, the variance of the regression 

coefficient can be used to estimate the variance of the Gini coefficient (Ogwang, 2004, 

Giles, 2004). Unfortunately, this model-driven approach can give biased estimates for the 

variance in practice, as the residuals of the regression model are rarely independent 

(Ogwang, 2004). For example, Modarres and Castwirth (2006) showed that the 

regression technique can significantly overestimate the true variance. An additional 

problem with  this approach is that it ignores the sampling design.  

In this paper, we do not assume a model. Instead, we propose variance estimators 

based on a design-based approach in which the variability of γ̂  comes from the random 

selection of the sample.  This allows us to account for the complexity of the sampling 

design.  For further details about the model-based approach see Sandström (1983) and 

Nygård and Sandström (1985). 

 

2. Variance estimation by linearization 

 

We now consider estimating the variance of γ̂  in (4). The basic idea of the linearization 

method (e.g., Krewski & Rao, 1981; Robinson and Särndal, 1983; Särndal et al., 1992, 

p.175; Andersson and Nordberg, 1994; Deville, 1999) is to use ‘pseudo-values’ iz  such 

that )ˆvar(γ )ˆvar( zτ , where isi iz zw∑ ∈
=τ̂ . The approximation  is justified by some 

large-sample arguments (see Krewski & Rao, 1981).  The variance is defined with 

respect to the sampling design; that is, with respect to the probability distribution )(sp  of 

the randomly-selected sample s . The linearization variance estimator (Robinson and 

Särndal, 1983; Särndal et al., 1992, p.175) is then the design-based estimator for the 

variance of zτ̂ . This estimator is given by 
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 ∑∑
∈ ∈

∆=
si sj

jijiijL zzww
�

)ˆr(âv γ              (6) 

where 1)( −−=∆ ijjiijij ππππ
�

, and ijπ  denotes the joint inclusion probability of 

individuals i  and j ; that is, the probability that both i  and j  are in the sample. 

Unfortunately, the estimator in (6) can take negative values (Cochran 1977, p.261). This 

issue will be discussed briefly in Section 3. 

The form of the pseudo-values jz  can be illustrated in the simplest case when the 

sampling variation of )(ˆ
iyF  in γ̂  is ignored. In this case, γ̂  is a ratio of two sums and 

the Taylor linearization of this ratio gives naïve pseudo-values given by 

[ ]jjjj yyFyz )1ˆ()(ˆ2
ˆ

1
+−= γ

τ
.             (7) 

This method was cautiously suggested by Nygård and Sandström (1985) who reported 

that it over-estimates the variance significantly (see also Sandström et al., 1985, 1988).  

In Section 4, we empirically confirm that using the pseudo-value in (7) does not result in 

accurate estimates for the variance. This is because the sampling variation in )(ˆ
iyF  has a 

nonnegligible contribution into the variance of γ̂ . 

Kovačević and Binder (1997) (see also Deville, 1997, 1999) showed that 

additional terms were needed in the pseudo-values.   They set 












≤+







 ++−= ∑
∈si

ijiijjjj yyyw
NN

yyFyz }{
ˆ

2

ˆ

ˆ
)1ˆ()(ˆ2

ˆ

1
δ

τ
γ

τ
.         (8) 

In Section 3 and 4, the linearization estimator in (6) with jz  given by (8) will be 

compared with the generalised jackknife estimator to be defined in Section 3. 
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3. The jackknife estimator for the variance 

 

The jackknife is a numerical method which can be used to estimate a variance (Miller, 

1974). In particular, the jackknife technique is commonly employed to estimate the 

variance of the Gini coefficient (Yitzhaki, 1991; Karoly,1992; Karagiannis and 

Kovačević, 2000; Newson, 2006 and Frick et al., 2006). In this section, we compare the 

jackknife estimator with the linearization estimator. We show that these estimators are 

asymptotically equivalent and consistent under mild conditions. 

Campbell (1980) proposed a generalised jackknife variance estimator that fully 

captures the impact of the sampling design. Berger and Skinner (2005) showed that, 

under mild conditions, this estimator is consistent for a parameter expressible as a 

function of means. Although, γ̂  is not expressible as a function of means, we show in 

this section that the generalised jackknife variance estimator is a consistent estimator for 

the variance of γ̂  provided that the linearization estimator in (6) is consistent. 

Campbell's generalised jackknife variance estimator (see also Berger and Skinner, 

2005) is given by 

 ∑∑
∈ ∈

∆=
si sj

jijiijGJ zzww ~~)ˆr(âv
�

γ ,             (9) 

where the quantities jz~  are pseudo-values: 

 )ˆˆ)(ˆ1(~
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j
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isi ij yw
j

∑ ∈
=

)(
)(̂τ , 

∑ ∈
=

)(
)(

ˆ
jsi ij wN , and }{\)( jss j = , the last being s  with the j -th individual deleted. 

Berger and Skinner (2005) showed that under simple random sampling without 

replacement, the variance estimator (9) reduces to the customary jackknife estimator with 

finite population correction (e.g. Miller, 1974) given by 

 ∑
∈

−
−








 −=
si

jCJ
nnN

n 2)ˆ(
)1(

1
1)ˆr(âv γγγ ,          (11) 

where )(ˆ)1(ˆˆ jj nn γγγ −−=  and ∑ ∈
=

si jn γγ ˆ)/1( .  Moreover, the generalised jackknife 

estimator in (9) remains consistent under unequal probabilities sampling (Berger and 

Skinner); whereas the customary jackknife estimator in (11), does not, because the finite 

population correction factor 1 – n/N  is  ad hoc. 

In the Appendix, we demonstrate that jz~  defined by (10) can be re-written as 

 
)()( ˆˆ

2
ˆ

ˆ~

j

jj
j

j
j

N

yw
zz

ττ
τ

−= ,            (12) 

where jz  is given by (8). This means that jz~  is approximately equal to jz  given by (8), 

provided that )/1(1ˆ/ˆ )( nOpj +=ττ  and )/1()ˆˆ/( )( nONyw pjjj =τ . Hence, the jackknife 

estimator in (9) and the linearization estimator in (6) are approximately equal when the 

jz  are given by (8). As a consequence, the generalized jackknife estimator is consistent 

provided that the linearization estimator is. 
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4. Simulation study 

 

In this section, the jackknife estimators in (9) and (11) are compared numerically with 

two linearization estimators (see (6)): the naïve linearization estimator that uses the 

pseudo values in (7) and the linearization estimator that uses the pseudo values in (8). 

We evaluate three populations each of 500=N   iy  values, generated by the 

following probability distributions: a Gamma distribution (shape parameter = 2.5, rate = 

1), a Lognormal distribution (mean = 1.119, standard deviation = 0.602) and a Weibull 

distribution (shape= 0.8, scale = 1). We focus on these distributions as they are good 

approximation of income distributions (Salem and Mount, 1974; McDonald, 1984). 

We use the Chao (1982) sampling design for selecting units with unequal 

inclusion probabilities iπ .  These are set proportional to a size variable ix  generated 

from the  model iii eyx ++= ρα , where  the ie  come from a normal distribution with 

mean zero and variance ∑ ∈
− −−−=

Ui ie yN
2122 )()1)(1( µρσ ,  µρα += 5 , 7.0=ρ , 

and N/τµ =  is the population mean of the iy . The ix  are treated as fixed after they are 

generated. The ijπ  are computed exactly using the recursive formula proposed by Chao 

(1982). 

For each population, 00010=B  samples are selected.  The empirical relative bias 

is defined here as 

)ˆ(MSE

))ˆr(â(vBias
RB

γ
γ

= , 

where ))ˆr(â(vBias γ  and )ˆ(MSE γ  denote respectively the empirical bias and the 

empirical mean square error of γ̂ .  Furthermore,  
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)ˆvar()ˆr(âv
1

))ˆr(â(vBias
B

1b

γγγ −= ∑
=

b
B

, and 

∑
=

−
−

=
B

1b

2)ˆ(
1

1
)ˆ(MSE γγγ b

B
, 

where bγ̂  is the estimate for the b -th sample, whereas b)ˆr(âv γ  is an estimate of its 

variance.  

The quantity )ˆvar(γ  denotes the empirical variance of γ̂ , which is  

∑
=

−
−

=
B

1b

2)]ˆ(Eˆ[
1

1
)ˆvar( γγγ b

B
, 

where 

∑
=

=
B

1b

ˆ
1

)ˆ(E b
B

γγ . 

The empirical relative root mean square error of ˆ ˆvar( )γ  is 

)ˆ(MSE

))ˆr(â(vMSE
))ˆr(â(vRRMSE

2/1

γ
γ

γ = , 

where 

∑
=

−
−

=
B

1b

2)]ˆ(var)ˆr(â[v
1

1
))ˆr(â(vMSE γγγ b

B
. 

 

Table 1 displays the empirical expectation of γ̂  and *γ̂  and the ratio of their 

empirical variances under the distributions for several sample sizes. Table 1 shows that 

both γ̂  and *γ̂  can have large absolute biases when the sample size is small. The ratio of 

the variances is close to one when the sample size is sufficiently large. This is a result we 

expect, as the difference between the variances of γ̂  and *γ̂  is of order 2/1 n  (see 

Section 1). Thus, the variance estimators developed here for estimating the variance of γ̂  
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can also be used to estimate the variance of *γ̂  provided that the sample size is 

sufficiently large. For small sample sizes, γ̂  and *γ̂  may be biased, and the linearization 

technique and the jackknife are not recommended for variance estimation. 

 
 Gamma 

34.0=γ  and 34.0* =γ  

 Lognormal 

28.0=γ  and 27.0* =γ  

 Weibull 

60.0=γ  and 60.0* =γ  

n  )ˆ(E γ  *)ˆ(E γ  

*)ˆ(var

)ˆ(var

γ
γ   )ˆ(E γ  *)ˆ(E γ  

*)ˆ(var

)ˆ(var

γ
γ   )ˆ(E γ  *)ˆ(E γ  

*)ˆ(var

)ˆ(var

γ
γ  

 0.47 0.28 0.83  0.42 0.22 0.90  0.67 0.49 0.75 

5 0.37 0.33 0.96  0.30 0.26 0.98  0.62 0.58 0.93 

25 0.35 0.33 0.98  0.29 0.27 0.99  0.61 0.60 0.97 

50 0.35 0.34 0.99  0.28 0.27 0.99  0.61 0.60 0.98 

100 0.34 0.34 0.99  0.28 0.27 1.00  0.61 0.60 0.99 
            

 

Table 1: Empirical expectation and ratio of variance of γ̂  and *γ̂ , for the three 

distributions and several sample sizes. 
 

 Gamma   34.0=γ   Lognormal   28.0=γ   Weibull   60.0=γ  

   Linearization   Jackknife  Linearization   Jackknife    Linearization   Jackknife 

n  (7) (8) (11) (9)  (7) (8) (11) (9)  (7) (8) (11) (9) 

               
5 209% -6.3%  7.1%  5.2%  254% -5.7% 4.5%  5.1%  127% -30.1% 24.9% 26.8% 

25 366    -4.0     4.4     2.8     522    -5.2    3.0     2.9     104    -10.5      9.2      6.4    

50 391    -4.9    -0.8    -0.9     598    -4.9    1.5     0.1     102      -3.9    11.0      4.6    

100 394    -2.8    -2.8    -0.6     694     0.8    8.4     3.7       93      -0.9    18.2      3.0    

150 369    -2.7    -5.3    -1.2     692    -3.0    7.5    -1.1       73      -0.2    29.0      2.1    

               
 

Table 2: Empirical RB (%) of the variance estimator based upon (7), (8), (9) and (11) for 
the three distributions and several sample sizes. 

 

Table 2 and 3 display the RB and the RRMSE of the linearization and  jackknife 

variance estimators for several sample sizes. Table 4 provides the empirical coverages of  

95% confidence intervals computed in the following manner: 

∑
=

≤=
B

b
bz

B 1

)96.1|(|
1

Coverage δ , 

with 2/1)ˆr(âv)ˆ( −−= bbbz γγγ  and (| | 1.96)bzδ ≤  equal to 1 when 96.1|| ≤bz , 0 otherwise. 
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 Gamma   34.0=γ   Lognormal   28.0=γ   Weibull   60.0=γ  

   Linearization   Jackknife    Linearization   Jackknife    Linearization   Jackknife 

n  (7) (8) (11) (9)  (7) (8) (11) (9)  (7) (8) (11) (9) 

               
5 217% 19.9% 34.6% 31.1%  258% 17.1% 29.1% 31.3%  159% 41.4% 86.3% 96.5% 

25 369   27.4    30.7    29.1     524    32.0    38.0    37.8     114    30.0    42.1    39.3    

50 394    23.0    23.0    23.1     599    26.7    30.4    28.8     108    19.8    28.1    22.6    

100 395    18.2    17.0    18.2     694    19.1    24.6    20.3     96    12.9    24.4    13.7    

150 370    15.5    14.4    15.5     693    13.2    18.8    13.3     75    10.7    31.4    11.1    

               
 

Table 3: Empirical RRMSE (%) of the variance estimator based upon (7), (8), (9) and 
(11) for the three distributions and several sample sizes. 

 

 Gamma   34.0=γ   Lognormal   28.0=γ   Weibull   60.0=γ  

 Linearization Jackknife   Linearization Jackknife   Linearization. Jackknife 

n  (7) (8) (11) (9)  (7) (8) (11) (9)  (7) (8) (11) (9) 

               
5 99% 55% 69% 68%  100% 38% 56% 56%  93% 73% 87% 87% 

25 100 89 91 91  100 89 91 91  98 90 93 93 

50 100 92 93 93  100 92 93 93  99 93 95 94 

100 100 94 94 94  100 94 95 94  99 94 96 95 

150 100 94 94 94  100 94 95 94  99 95 97 95 
               

 

Table 4: Empirical Coverage (%) of the confidence interval based on the variance 
estimator based upon (7), (8), (9) and (11) for the three distributions 

and several sample sizes. 
 

The naïve variance estimator based upon (7) is not recommended, as it clearly 

over-estimates the variance significantly (see Table 2). However, the linearization 

variance estimator based upon (8) and the jackknife estimator in (9) have small RB and 

RRMSE. The jackknife estimators may slightly over-estimate the variance, and the 

linearization estimator may slightly under-estimate the variance. We observe that the 

RRMSE of the linearization estimator based upon (8) is smaller than the RRMSE of the 

generalised jackknife (9). 

The linearization and jackknife estimators also produce more reasonable coverage 

intervals than the naïve estimator based on (7).  Between the two, we have a slightly 

better coverage with the jackknife estimators. It is natural to have a poor coverage with 
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small sample sizes, as the normal assumption is not suitable when the sample size is too 

small. 

Both jackknife estimators have roughly the same RB for the Gamma and the 

Lognormal distribution. However with the Weibull distribution which has the largest Gini 

coefficient, the RB of the customary jackknife (11) is larger than the RB of the 

generalised jackknife (9). 

 

6. Discussion 

 

This paper showed that linearization technique proposed by Kovačević and Binder (1997) 

and the generalised jackknife are asymptotically equivalent and consistent under mild 

conditions. This finding is supported by a simulation study. 

 We assumed here that the survey weights were the Horvitz-Thompson weights. 

Our methodology can be easily extended to more complex weighting schemes. For 

example, under calibration the pseudo-values in (8) or (12) could be replaced by  linear-

regression residuals treating the pseudo-values themselves as the dependent variables and 

the calibration variables as the explanatory variables (Deville, 1999; Berger and Skinner, 

2003). 

The variance estimators in (6) and (9) depend on joint inclusion probabilities ijπ  

which can be cumbersome to compute under an unequal probability sampling scheme. 

Furthermore, both the linearization and generalized jackknife estimator   can be negative. 

Under a single stage, stratified,sampling design featuring unequal inclusion probabilities 

within strata, it is tempting to use the simplified Hájek (1964) variance estimator.  This 

estimator approximates the ijπ  employing only the first-order inclusion probabilities (see 

Berger, 2004). Berger (2007) proposed a ijπ -free jackknife estimator which is consistent 
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for a class of high-entropy stratified designs using Rao-Sampford unequal-probability 

sampling within strata (Rao, 1965; Sampford, 1967). This estimator also uses the pseudo-

values in (10) and could be employed to estimate the variance of the Gini coefficient. The 

estimator proposed by Berger (2007) is always nonnegative. 

Large national household surveys often employ two stage or multistage sampling. 

For such surveys, the joint inclusion probabilities ijπ  will often not be known, and stage-

wise approximations to them may be necessary. For that reason the generalised jackknife 

has more promise for single-stage business surveys. 

Many surveys use single imputation to handle item nonresponse. In this situation, 

one can use the Rao and Shao (1992) method, which consists of adjusting the imputed 

values whenever a responding unit is deleted. Berger and Rao (2006) showed how to 

implement the Rao and Shao (1992) method to accommodate imputed values with the 

generalized jackknife. They also showed that the resulting jackknife variance estimator is 

consistent under mild conditions. 

The computation of pseudo-values in (10) can be computationally intensive.  

Yitzhaki (1991), Karoly (1992), Karagiannis and Kovačević (2000) and Newson (2006) 

proposed simple methods to compute the customary jackknife with finite population 

correction in (11). Generalising these methods to Campbell’s jackknife in  (9) would be a 

fruitful direction for future research. 
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Appendix – Proof of (12) 
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which implies (12). This completes the proof. 
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