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Abstract

The Gini coefficient (Gini, 1914) has proved valuable as a measure of income inequality.
In cross-sectional studies of the Gini coefficient, information about the accuracy of its
estimates is crucial. We show how to use jackknife and linearization to estimate the
variance of the Gini coefficient, allowing for the effect of the sampling design. The aim is
to show the asymptotic equivalence (or consistency) of the generalised jackknife
estimator (Campbell, 1980) and the Taylor linearization estimator (Kovacevi¢ and
Binder, 1997) for the variance of the Gini coefficient. A brief simulation study supports

our findings.
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1. The Gini coefficient

In this section, we introduce some notations, define the Gini coefficient and define its
estimators.

Consider a finite population denoted by U ={l....,i,...., N}, where N is the
number of individuals in this population. Let y; 20 denote the income of an individual

labelled i. The finite population Gini coefficient is defined by (Glasser, 1962)

y=1S QFGH -1y, ()
TieU

where T:Z'eU v; - The function F(y) denotes the income distribution function
1

defined by

1
F(y) _NieZL:/S{yi <y},

where 6{y; < y} takes the value 1 if y; <y and the value 0 otherwise.

When y; # y; forall i # j, equation (1) can be re-expressed as

1
= yEp—, 2
YEYTEY (2)



where

_ 2cov(y, F(y))
p :
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and y#=7/N. The quantity y* is an alternative expression for the Gini coefficient
proposed by Anand (1983) and by Lerman and Yitzhaki (1984).
More generally, ¥ becomes y* when we replace F(y;) in (1) with the smooth

(or  mid-interval)  distribution  function  F*(y,)=[F(y;)+F(y; -0)1/2, where

F(y; =0)=1lim Ty, F(y). Note that F *(y;) is not a cumulative discrete distribution, as

F*(y;) is not the fraction of observation less or equal to y;. This adjustment to the

cumulative distribution allows the Gini coefficient to be computed using (3) (see Lerman
and Yitzhaki, 1989). In other words, using the smooth distribution function effectively
takes into account the correction 1/N in (2). For simplicity, we will ignore this
correction in what follows.

Suppose that y; is known only for the sampled individuals i€ s, where s denote

a sample or subset of the population U . Hence, the Gini coefficient in (1) is an unknown

population parameter, as it depends on unobserved quantities y; (i¢ s ). Thus, it has to
be estimated from the observed sampled values y; (i€ s). A substitution estimator for vy

is given by (Kovacevi¢ and Binder, 1997):

A1 ~
7= wF(y)-Dy;. e
Ties
where
A 1
F(y)=— 2 widlyi <1, 5)
i€s



with 7= Zieswiyi’ N = Ziawi , and w; =7; ! denotes the Horvitz-Thompson

(1952) weights of individual i. The quantity 7; is the first-order inclusion probability of

i ; that is, the probability that individual i is in the sample. Using the Horvitz-Thompson

weights guarantee that # is an approximately unbiased estimator for ¥ .

Nygard and Sandstrom (1985) proposed an alternative estimator. Their 7* is
given by (4) after replacing F( y;) with the sample smooth (or mid-interval) distribution

function F*(y;)=[F(y;)+F(y; —0)]/2, where ﬁ(yl-—O):limyTy, F(y;). Taking a

slightly different approach, Lerman and Yitzhaki (1989) proposed substituting F *(y;)

into (3). Using z F oy = N/ 2, it can be shown that their estimator reduces to

i€s

7*. Deville (1997) likewise proposed an estimator algebraically equivalent to §*.

The estimator 7* is asymptotically identical to 7 under mild conditions, as
y=7*+v, where |vI<max{w;:ie s}/N. Thus, 7 =~ 7* when IvI = 0 or when
w; / N=0 p(1/n) uniformly; that is, when none of the weights is disproportionately large

(Krewski and Rao, 1981). In this situation, the quantity v is of probability order 1/n,

which implies that the difference between the variances of % and #* is of probability

order 1/n? (Deville, 1997). This difference can be ignored in the estimation of the
variance. We will assume that the sample size is large enough that the same expression
can be used to estimate the variance of both ¥ and 7*.

In what follows, we investigate the jackknife and the linearization variance of the
estimator 7 in (4) based on the estimate of the distribution function (5).

Lerman and Yitzhaki (1984) and Ogwang (2000) showed that the Gini coefficient

can be easily estimated using the regression coefficient of an ordinary least squares



regression. By assuming this regression model true, the variance of the regression
coefficient can be used to estimate the variance of the Gini coefficient (Ogwang, 2004,
Giles, 2004). Unfortunately, this model-driven approach can give biased estimates for the
variance in practice, as the residuals of the regression model are rarely independent
(Ogwang, 2004). For example, Modarres and Castwirth (2006) showed that the
regression technique can significantly overestimate the true variance. An additional
problem with this approach is that it ignores the sampling design.

In this paper, we do not assume a model. Instead, we propose variance estimators
based on a design-based approach in which the variability of 7 comes from the random
selection of the sample. This allows us to account for the complexity of the sampling
design. For further details about the model-based approach see Sandstrom (1983) and

Nygard and Sandstrom (1985).

2. Variance estimation by linearization

We now consider estimating the variance of # in (4). The basic idea of the linearization
method (e.g., Krewski & Rao, 1981; Robinson and Sérndal, 1983; Séarndal et al., 1992,

p.175; Andersson and Nordberg, 1994; Deville, 1999) is to use ‘pseudo-values’ z; such
that var(y) =~ var(#,), where £, = Zies w;z; . The approximation = is justified by some
large-sample arguments (see Krewski & Rao, 1981). The variance is defined with

respect to the sampling design; that is, with respect to the probability distribution p(s) of

the randomly-selected sample s. The linearization variance estimator (Robinson and
Sarndal, 1983; Sdrndal et al., 1992, p.175) is then the design-based estimator for the

variance of 7, . This estimator is given by



Vé\ll'(j})L :ZzgijwinZiZj (6)

ies jes

where Eij = (m;j — M7 ;)7 I and zj; denotes the joint inclusion probability of

individuals i and j; that is, the probability that both i and j are in the sample.

Unfortunately, the estimator in (6) can take negative values (Cochran 1977, p.261). This
issue will be discussed briefly in Section 3.

The form of the pseudo-values z; can be illustrated in the simplest case when the

sampling variation of F( y;) in 7 is ignored. In this case, § is a ratio of two sums and

the Taylor linearization of this ratio gives naive pseudo-values given by
1 ~ .
2 =Py PO p=@+by;] ™)

This method was cautiously suggested by Nygard and Sandstrom (1985) who reported
that it over-estimates the variance significantly (see also Sandstrom et al., 1985, 1988).

In Section 4, we empirically confirm that using the pseudo-value in (7) does not result in
accurate estimates for the variance. This is because the sampling variation in F (y;) hasa

nonnegligible contribution into the variance of 7.

Kovacevi¢ and Binder (1997) (see also Deville, 1997, 1999) showed that
additional terms were needed in the pseudo-values. They set

A

1 ~ N T 2
z; :glzyj'F(yj)_(?/"‘l)(Yj +ﬁj+ﬁzwi)’i§{)’j < Vit (®)

i€es
In Section 3 and 4, the linearization estimator in (6) with z; given by (8) will be

compared with the generalised jackknife estimator to be defined in Section 3.



3. The jackknife estimator for the variance

The jackknife is a numerical method which can be used to estimate a variance (Miller,
1974). In particular, the jackknife technique is commonly employed to estimate the
variance of the Gini coefficient (Yitzhaki, 1991; Karoly,1992; Karagiannis and
Kovacevi¢, 2000; Newson, 2006 and Frick et al., 2006). In this section, we compare the
jackknife estimator with the linearization estimator. We show that these estimators are
asymptotically equivalent and consistent under mild conditions.

Campbell (1980) proposed a generalised jackknife variance estimator that fully
captures the impact of the sampling design. Berger and Skinner (2005) showed that,
under mild conditions, this estimator is consistent for a parameter expressible as a

function of means. Although, # is not expressible as a function of means, we show in

this section that the generalised jackknife variance estimator is a consistent estimator for

the variance of § provided that the linearization estimator in (6) is consistent.

Campbell's generalised jackknife variance estimator (see also Berger and Skinner,

2005) is given by
var(P)gy = D D AywiwiEE 9)
ies jes

where the quantities Z; are pseudo-values:

Zi=wi -w; N OG- 7)) (10)
with
N 1 ~
V() == Zwi(zF(yi)(j) -Dy;,
Wi

@)

A 1
F(y)(j ZWZES wioly; Syl
J



Tj)= Zies(j) Wi
N( )= Zie ) w; , and S(j) = s\{j}, the last being s with the j-th individual deleted.

Berger and Skinner (2005) showed that under simple random sampling without
replacement, the variance estimator (9) reduces to the customary jackknife estimator with
finite population correction (e.g. Miller, 1974) given by

1
nn—1)

>Fi-7. (1)

var(P)cy = (1 - %)
ies

where 7;=ny—(m—-1)9; and ¥=(1/n)) . ¥:. Moreover, the generalised jackknife
J () ics’J

estimator in (9) remains consistent under unequal probabilities sampling (Berger and
Skinner); whereas the customary jackknife estimator in (11), does not, because the finite
population correction factor 1 —n/N is ad hoc.

In the Appendix, we demonstrate that Z; defined by (10) can be re-written as

A

W. .
7= -2 (12)
T Nz jy

where z; is given by (8). This means that Z; is approximately equal to z; given by (8),

provided that f‘/f(j) =1+0,(1/n) and w /(Nf(j)) =0, (1/n). Hence, the jackknife

JYj
estimator in (9) and the linearization estimator in (6) are approximately equal when the

zj are given by (8). As a consequence, the generalized jackknife estimator is consistent

provided that the linearization estimator is.



4. Simulation study

In this section, the jackknife estimators in (9) and (11) are compared numerically with
two linearization estimators (see (6)): the naive linearization estimator that uses the
pseudo values in (7) and the linearization estimator that uses the pseudo values in (8).

We evaluate three populations each of N =500 y; values, generated by the
following probability distributions: a Gamma distribution (shape parameter = 2.5, rate =
1), a Lognormal distribution (mean = 1.119, standard deviation = 0.602) and a Weibull
distribution (shape= 0.8, scale = 1). We focus on these distributions as they are good
approximation of income distributions (Salem and Mount, 1974; McDonald, 1984).

We use the Chao (1982) sampling design for selecting units with unequal

inclusion probabilities 7z;. These are set proportional to a size variable x; generated

from the model x; =a+ p y; +e;, where the e¢; come from a normal distribution with
mean zero and variance o> = (1— p>)(N ‘1)_121-611 (y;—)*, a=5+pu, p=07,

and 4 =7/ N is the population mean of the y;. The x; are treated as fixed after they are
generated. The 7;; are computed exactly using the recursive formula proposed by Chao
(1982).

For each population, B =10 000 samples are selected. The empirical relative bias

is defined here as

B Bias(var(9))
MSE(})

where Bias(var(#)) and MSE()) denote respectively the empirical bias and the

empirical mean square error of . Furthermore,



B
Bias(var()) = % > var(), —var(y), and
b=1

. 1 8
MSE(})=—— S (), -2,

where 7}, is the estimate for the b-th sample, whereas var(y), is an estimate of its

variance.

The quantity var($) denotes the empirical variance of 7, which is

R X
var(y) :E 2[7[7 _E(7)]2 )
b=1

where
.18,
E<7>=EZ%.
b=1

The empirical relative root mean square error of var(y) is

A an1/2
RRMSE(var(§)) = ML)
MSE(7)
where

B
MSE(Var(9)) = —— > [var(#) - var(P)P
B-1lpg

Table 1 displays the empirical expectation of ¥ and 7* and the ratio of their
empirical variances under the distributions for several sample sizes. Table 1 shows that
both 7 and 7* can have large absolute biases when the sample size is small. The ratio of
the variances is close to one when the sample size is sufficiently large. This is a result we
expect, as the difference between the variances of ¥ and #* is of order 1/n? (see

Section 1). Thus, the variance estimators developed here for estimating the variance of

10



can also be used to estimate the variance of 7* provided that the sample size is
sufficiently large. For small sample sizes, 7 and #* may be biased, and the linearization

technique and the jackknife are not recommended for variance estimation.

Gamma Lognormal Weibull
7=0.34 and y* =0.34 y=0.28 and y* =0.27 7=0.60 and y* =0.60
n E() E(7%) var($) E(7) E(7%) var($) E(7) E(7%) var(§)
var(*) var(7%) var(7%)
0.47 0.28 0.83 0.42 0.22 0.90 0.67 0.49 0.75
5 0.37 0.33 0.96 0.30 0.26 0.98 0.62 0.58 0.93
25 0.35 0.33 0.98 0.29 0.27 0.99 0.61 0.60 0.97
50 0.35 0.34 0.99 0.28 0.27 0.99 0.61 0.60 0.98
100 0.34 0.34 0.99 0.28 0.27 1.00 0.61 0.60 0.99

Table 1: Empirical expectation and ratio of variance of 7 and #*, for the three
distributions and several sample sizes.

Gamma y=0.34 Lognormal y=0.28 Weibull  »=0.60
Linearization Jackknife Linearization Jackknife Linearization Jackknife
n (7 (3) (11) ) @) 3 aam (7 (3) aam
5 209% -6.3% 7.1% 5.2% 254% -57%  4.5% 5.1% 127%  -30.1% 249%  26.8%
25 366 -4.0 4.4 2.8 522 -5.2 3.0 2.9 104 -10.5 9.2 6.4
50 391 -4.9 -0.8 -0.9 598 -4.9 1.5 0.1 102 -3.9 11.0 4.6
100 394 -2.8 -2.8 -0.6 694 0.8 8.4 3.7 93 -0.9 18.2 3.0
150 369 -2.7 -5.3 -1.2 692 -3.0 7.5 -1.1 73 -0.2 29.0 2.1

Table 2: Empirical RB (%) of the variance estimator based upon (7), (8), (9) and (11) for
the three distributions and several sample sizes.

Table 2 and 3 display the RB and the RRMSE of the linearization and jackknife
variance estimators for several sample sizes. Table 4 provides the empirical coverages of

95% confidence intervals computed in the following manner:

B
Coverage = 1 > d(1z,1£1.96),
B,o

with zj, = (5}, — ») var(9); "/ ? and (1 z;, 1<1.96) equal to 1 when | z, I<1.96, 0 otherwise.

11



Gamma y=0.34 Lognormal y =0.28 Weibull  y=0.60

Linearization Jackknife Linearization  Jackknife Linearization Jackknife
n (7 (3) an O @) 3 an O 7N (3) an O
5 217% 199% 34.6% 31.1% 258% 17.1% 29.1% 31.3% 159% 41.4% 86.3% 96.5%
25 369 274 30.7 29.1 524 32.0 38.0 37.8 114 30.0 42.1 39.3
50 394 23.0 23.0 23.1 599 26.7 304 28.8 108 19.8 28.1 22.6
100 395 18.2 17.0 18.2 694 19.1 24.6 20.3 96 12.9 244 13.7
150 370 15.5 144 15.5 693 13.2 18.8 13.3 75 10.7 314 11.1

Table 3: Empirical RRMSE (%) of the variance estimator based upon (7), (8), (9) and
(11) for the three distributions and several sample sizes.

Gamma y=0.34 Lognormal y =0.28 Weibull ¥ =0.60
Linearization Jackknife Linearization Jackknife Linearization. Jackknife

no @ @ an @) ®) an o (N ®) an

5 9% 55% 69%  68% 100% 38%  56%  56% 93% 13% 87%  87%

25 100 89 91 91 100 89 91 91 98 90 93 93
50 100 92 93 93 100 92 93 93 99 93 95 94
100 100 94 94 94 100 94 95 94 99 94 96 95
150 100 94 94 94 100 94 95 94 99 95 97 95

Table 4: Empirical Coverage (%) of the confidence interval based on the variance
estimator based upon (7), (8), (9) and (11) for the three distributions
and several sample sizes.

The naive variance estimator based upon (7) is not recommended, as it clearly
over-estimates the variance significantly (see Table 2). However, the linearization
variance estimator based upon (8) and the jackknife estimator in (9) have small RB and
RRMSE. The jackknife estimators may slightly over-estimate the variance, and the
linearization estimator may slightly under-estimate the variance. We observe that the
RRMSE of the linearization estimator based upon (8) is smaller than the RRMSE of the
generalised jackknife (9).

The linearization and jackknife estimators also produce more reasonable coverage
intervals than the naive estimator based on (7). Between the two, we have a slightly

better coverage with the jackknife estimators. It is natural to have a poor coverage with

12



small sample sizes, as the normal assumption is not suitable when the sample size is too
small.

Both jackknife estimators have roughly the same RB for the Gamma and the
Lognormal distribution. However with the Weibull distribution which has the largest Gini
coefficient, the RB of the customary jackknife (11) is larger than the RB of the

generalised jackknife (9).

6. Discussion

This paper showed that linearization technique proposed by Kovacevi¢ and Binder (1997)
and the generalised jackknife are asymptotically equivalent and consistent under mild
conditions. This finding is supported by a simulation study.

We assumed here that the survey weights were the Horvitz-Thompson weights.
Our methodology can be easily extended to more complex weighting schemes. For
example, under calibration the pseudo-values in (8) or (12) could be replaced by linear-
regression residuals treating the pseudo-values themselves as the dependent variables and
the calibration variables as the explanatory variables (Deville, 1999; Berger and Skinner,
2003).

The variance estimators in (6) and (9) depend on joint inclusion probabilities Tjj

which can be cumbersome to compute under an unequal probability sampling scheme.
Furthermore, both the linearization and generalized jackknife estimator can be negative.
Under a single stage, stratified,sampling design featuring unequal inclusion probabilities
within strata, it is tempting to use the simplified Hajek (1964) variance estimator. This

estimator approximates the 7;;

;j employing only the first-order inclusion probabilities (see

Berger, 2004). Berger (2007) proposed a 7;; -free jackknife estimator which is consistent

13



for a class of high-entropy stratified designs using Rao-Sampford unequal-probability
sampling within strata (Rao, 1965; Sampford, 1967). This estimator also uses the pseudo-
values in (10) and could be employed to estimate the variance of the Gini coefficient. The
estimator proposed by Berger (2007) is always nonnegative.

Large national household surveys often employ two stage or multistage sampling.

For such surveys, the joint inclusion probabilities 7z;; will often not be known, and stage-

wise approximations to them may be necessary. For that reason the generalised jackknife
has more promise for single-stage business surveys.

Many surveys use single imputation to handle item nonresponse. In this situation,
one can use the Rao and Shao (1992) method, which consists of adjusting the imputed
values whenever a responding unit is deleted. Berger and Rao (2006) showed how to
implement the Rao and Shao (1992) method to accommodate imputed values with the
generalized jackknife. They also showed that the resulting jackknife variance estimator is
consistent under mild conditions.

The computation of pseudo-values in (10) can be computationally intensive.
Yitzhaki (1991), Karoly (1992), Karagiannis and Kovacevi¢ (2000) and Newson (2006)
proposed simple methods to compute the customary jackknife with finite population
correction in (11). Generalising these methods to Campbell’s jackknife in (9) would be a

fruitful direction for future research.

14



Appendix - Proof of (12)

. 2 A
7=g w;yi F(y;)—1,

it can be shown that

N 2 W; y; Wiy
Yoy = sl X% l[zwké‘ki_wjé‘jij_ J J(Zwk%‘—wﬁjjj -1,
% Lies N \kes Nijy \kes
o) R R .
= T NZwiyiFm-)—ijwiyiéﬁ—w,-y,~NF<yj)+w§yj5,~,}—1,
NptpyL ies ies

2 . N% A 2
= =0 (7/"‘1)‘2 _szwiyiaji_ijjNF(yj)—i_wjyj}_l’
Nyt L ies

where 8;; =6{y; <y;}. Thus,

. 2 o . Nty . N#
7= = #{wjyany,-)wu)%—<7+1>7
Nje)
2
+wj2wiyi§ji—wjyj:|
ies
W . N/t -Nt
= %{%NF@,-HYH)M
Noy¥a Y (13)

+2z lelﬁﬂ—Zw]y]}
les
We have N(])’f(])—N’f:(N—WJ)(f—W]y])—Nf:—W](yjl\,\]-l—’f) which substituted into

(13) gives

A A W i A O A
P=T ) =—t—| 25 NF(y ) =P+ D jN + )+ 2> w385 = 2w,y |
Nyt ies

Now, as Z; =wj (1—=w;N )P = 9;))=w;'N"'N¢ (7= 7(,)). we obtain

15



- 1 A N A
Zj =7 2yiNF(yj) =7+ DN + 8 +23 wiyi6ji = 2wy |
J ies

which implies (12). This completes the proof.
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