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SUMMARY

A study is made of the bond stress in a honeycomb sandwich

panel excited by random noise pressures.
" The bond stresses (narmal to the plate stress and bending
stresd, as the most {mportant response quantities, are assumed to
" consist of a sum of stresses in the principal modes. These two
stresses are found to be similar in magnitude. A Fourler snalysis
is used to evaluate the mean square strosses. Large stresses are
soen to occur when the panel \-is excited at the double resonance
known as ‘acoustical coincidence'.

Principal modes and natural £reguenciea are evaluated for
flat and cylindrically curved sandwich panels by o consideration of
the dynamic equilibrium of the three components of the sandwich.

An expected anomalous frequency varistion with circumferential
wavelength is found for the curved panels for certain wavelength
regionse

Experimaents which have confirmad the theory for bond stress
by verifying a similar theory for surface strain using strain gauges
on a simply supported sandwich panel excited in a random siren tunnel
are described.

Experiments which have been carried sut to determine the fatigue

characteristics of Redux bonding are also described.
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Introduction

In recent years the engines of jet aircraft have become so
powerful that the problem of acoustic fatigue faillurs of the aircraft
structure has bscome a8 pressing one. With the engines mounted in the
wing, the wing trailing edges and the whole of the rear fuselage
including the tail surfaces have bscome subject to high nolse
pressures. The recent advent of rear-mounted engines has reduced the
vulnerable area to the tail surfaces only. With noise levels which
may reach 160 to 170 dB (re. 0.,0002 dynse/hmz), ho.iever, precautions
have had to be taken to improve the resistance of the structure to
nolise in these zones. This improvement can be obtained by making a
stiffer structure with higher damping (desirably without an increase
in woight), by eliminating stress-raising discontinuities, and by
designing panels to minimise the affects of the physical properties of
the noise fleld. In some cases an improvement has been obtained by
using sandwich panels. The sandwich panel is much stiffer than its
conventional ‘skin-stringer® counterpart of the same weight and there
are not so many stresse-ralsing rivets in the structure.

A sandwich panel consists essentially of two thin faceeplates
separated by a light core to which tho faces are bonded. The high
flexural stiffness of such a counbination compared with an ordinary
panel of similar weight is dependent on the correct functioning of all
the three components of the sandwich. The core must be rigid ehough
in the plate normal direction to keep the faces separated so that the
bending stiffness due to the wide separation of the faces is unimpaired.
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The core shear stiffness must also be sufficient to prevent any
appreciable reduction in plate bending stiffness due to shear
deflection effects. If a core can be found which satisfies these
requirements then the bending stiffness becomes merely a function of
the properties of the face plates and thelr separastion, provided that
each component fulfils only its own duty. The sort of core currently
being used for sandwich panals by the alrcraft industry is the metal
honeycomb which is light in weight and adequately conforms to the
above specification. It 1s clear therefers that a sandwich panel can
fulfil a flexural role much more efficiently than an ordinary

panel if officiency 1s defined as the flexural stiffneas for a given
weight,

Other factors do arise, homver, in the practical use of
sandwich panels, which limit their use in the modern aircraft. One
of these factors is the exceptional difficulty experienced in
manufacturing honeycomb sandwich panels which are curved either singly
or doubly. This is because curved panels cannot be formed from flat
panels, unless curvature is slight, without fallure of one sort or
another (usually buckling of the inner face). Thus the three
components must be formed before adhesion. This poses considerable
production difficulties in the cass of the core. In America
manufacture of double curvature sandwich panels with corrujated cores
has been achieved by a pressure welding by hot rolling process.

Other factors which give rise to difficulties in manufacture include
the joining of sandwich nanels to other structural elements, shedding

of concentrated loads and non-destructive inspection. All of these
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factors make the production of sandwich panels very costly.

The use of sandwich panels in severe acoustic environments

is however becoming a normal practice, where it is foasibie to do so,

in spite of the disadvantages mentioned above, because experience
has shown that these panels stand up to this sart of dynamic loading
so much better than ordinary panels do. A sandwich panel has a
flexural stiffness very much higher than a conventional stringer~
stiffened panel of the same weight, so that its natural freguencies
are much higher. This is one of the main factors which gives a
sandwich pahel a better resistance to noise. Another factor is the
comparative absence of stress-raising rivets giving a more homogeneous
stress distribution.

Fatigue fallures of sandwich panels being excited by intense

noise pressures have occurred in different ways, as shown below:

DEBONDING FAILURE
AT CENTEE

p DOUBLER

FAILURE ATOR \
NEAR_ SUPPORT ~SANTI-PEEL RIVET

LOAD DISTRIBUTOR.
TYPICAL VIEW ON A-A
FAILURE AREAS & TYPICAL EDGE HXING
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Often the panels fail in some way neer the supports and
sometimes the support itself fails. However, the edge firing of
sandwich panels is receiving much attention to eliminate these
failures. A failure can also occur at the centre of the panel which
is known as ‘debonding®s One of the faces of the sandwich becomes
separated from the core due to a fatigue failure of the bond. If is
this sort of fallure with which chapters two and three of this work
are concerned. Failures of sandwich panels are very sensitive to
the characteristics oi" the exciting niise fleld and tg the acoustic
environment. As with corv.ntional skinestringer panels the designer
must be aware of not only the relation between the panel natural
frequencies and the noise field freguency spectrum but also the
relation between modal wavelength and the narrow band scatial pressure
correlations As is shown in chapter two, it is quite likely that the
acoustical coincidence effect can occur and if it does so then a
large response occurs, limited of course by the condition that the
surface velocity cannot exceed the incident particle velocity.
Designers should algso be aware of the effects which acoustic cavities
can hsve on panel responses. It is almost certain that some form of
resonant vibration causes fatigue fallures of the ‘debonding® type.
For this reason attention should be pald to damping the sandwich in
order to reduce the risk of failure.

Sandwich panels have been used in aircraft in a static load
carrying capacity for some twenty years. Originally,birch faces were
used with a balsa core on the D.H. Masquito. Since then much
development has taken place. Recently, the VC=10, with metal

-4 e



honeycomb sandwich panels on most of its control surfaces, made
its malden flight. Sandwich panels incorporated in the elevators and
rudder of the VC~10 are situated in a region of intense noise from
the rear-mounted engines and it is obvious that their function is to
carry the dynamic loading provided by the engine noise fleld.
Consideration has alsc been given in America to the use of sandwich
structures for the mein structural elements of rockets because of
their low welght with high inherent stability, reducing the need for
pressurisation. The problem of the acoustic excitation of sandwich
plates has therefore become important and in this thesis an attempt
to analyse the problem has veen made.

An analysis of the natural vibrations of cylindrically curved
sandwich panels is made in chapter onc as a preliminary to an
analysis of the stresses in sandwich panel bonds. A discussion of
assunptions commonly made in work on sandwich panels and a review of
past work on the topic precedes the vibration analysis. The modes of
vibration are divisible into two groups for flat panels, namely
*symmotric’ and ‘anti-symmetric'. These groups are not coupled to
each other at all. The well-known flexural mode is an anti-symmetric
mode. The lesser-known bubbling mode (analagous to the wrinkling mode
of honeycomb plate instability) isits symmetric counterpart. Solutions
to the equations of motion are found comparatively easily for flat
plates, but for curved plates a solution is more difficult to obtain.

The possibllity of the excitation of sandwich panels by the
powerful ‘acoustical coincidence® effect is discussed at the beginning
of chapter two. The most important area of attention in the sandwich
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is the bonding between core and faces because it i3 here that
failures have occurred in practice. Expressions are therefore
derived for the stresses in the bond when the panel s excited by
acoustic noise pressures. A preliminary investigation (included in
the Introduction to chapter two) of the normal stress and the
bending stress in the bond of a sandwich beam shows that these stresses
are of the same order of magnitude. A theory is developed for the
normal stress in the bond of s panel excited by a gencral noise
pressure fleld, assuming the response to be an infinite sum of
principal modes. The generalised impedance of each mode §{s assumed to
contain a damping term which derives from structural and acoustic
effects. An appendix to chapter two discusses acoustic forces on
the plate due to the motion ofvthe plate itself. The general analysis
for the plate normal stress is restricted successively to plane waves
of any incidence and then to waves of normal incidence. A bending
strass analysis 1s carrled out for random normal plane waves.

Chapter three contains a description of sone tests which have
been carrled out on a simply supported honeycomd sandwich panel in a
siren tunnel. The purpose of these tests was to confirm the theories
of chapter two by yerifying a2 similar theory for panel surface strain.
This method was resorted to bccause of the difficulty of measuring
bond straln. A method of simply supporting a psnel has been doveloped
and shown to work well for sandwich panels. Some simple tests have
been made to determine the fatigue characteristics (S-N curve) of
Redux bonding by exciting a loaded specimen in a zero-order bubbling
moded



CHAPTER ONE
A_Katural idode Analysis for the Vibrations of Cylindrically Curved
Ela S p
Sympary

Consideration of the equilibriun of the anisotropic core of a
cylindrically curved sandwich plate leads to the three simultaneous
differential equations for the three orthogonal daf&mtims. Boundary
conditions on two sides are found by considering the equilibrium at
the core-face plate interface. A separable solution leads to the two
sets (symetric and anti-symmetric) of three homogeneous equations
for the flat sandwich plate with a honeycomb core. These two sets
lead to non-dimensicnal determinantal frequency equations for the
flexural and bubbling modes. The calculation of mode shapes is
indicated and the non-dimensional frequency is plotted against other
variables for all likely afrcraft pahel configurations.

A solution is also found for curved sandwich plates by assuming
that a flat plate core solution bounded by curved plate edge conditions
holds true. An indication, though not a proof, of the validity of this
assumption &s given. A determinantal frequency equation is thus found
for curved plates and an expected ancmalous frequency variation with
circunferential wavelenith becomes evident.

The variation of frequency with wavelength for bubbling modes is

only very slight for both flat and curved plates.




1.l  Introduction

Much work has been carried out over the last ten or fifteen
years on the analysis of elastic sandwich structures. Bending theories
were followed by buckling theories and these eventually led to
vibration theories, which have only been developed in recent years.
Ho:zt of the work published to date on the vibrations of elastic
sardwich plates has becn produced by Professor Yi-Yuan Yu of the
Polytechnic Institute of Brooklyn. The aim of this chapter s to
analyse the vibrations of single curvature elastic sandwich plates
using the exact three-dimensional theory of elasticity with special
reference to aircraft structures. Because the usual aircraft sandwich
panel cores are neither homogeneous nor isotropic (honeycomd cores) the
core has been regarded as anisotropic. Howover, the core has had to
be regarded as homogeneous, and this places limitations on the size of
navelength which can be considered (see § 1¢3.7)s

The value of this natural mode analysis lies in its extension
to the analysis of the response of sandwich plates to external forcing.
This latter analysis is carried out for excitation by a nolse pressure
fleld in chapter two.

Initially, the least nunber of simplifying assumptions
compatible with obtaining an analytical solution is made, so that
further simplifications can be made at a later stage and their effect
on the solutions can then ba judged. 1t has been found possible to
compute almost exact solutions for some of the modes of simply-supported
flat plates. Solutlions have also been found for simply-supported curved
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plates. Only the simply-supported case has been considered here.
Although this boundary condition is rather unrealistic, an acoustic
fatigue analysis for simply-supported sandwich plates can lead to
certain conclusions which will be equally applicable to plates with
other boundary conditions.

In § 1.2 the nature of the possible modes of a simply-supported
sandwich plate are described in order to define terminology. Also,
in order to clarify the position concerning the simplifying assumptions
used in this and other thecries, § 1.3 is devoted to a description of
the varfous assumptions often made and to their significence. In
§ 1.4, a concise review of past work on sandwich structures is
presented. § 1.4 slso indicates the assumptions of the work carrfed
out so far by Yu (and to a lesser extent by Mindlin) in the U.S.A.

The principal differences between this analysis and the work
of Yu are as follows: The approach to the problem here is an extension

of a buckling theory(s)

and gtarts with basic equilibrium equations,
whereas Yu makes use of a varlational approach. The application of
this work differs also in that it deals rather specifically with
honeycomb cores whereas Yu considered isotropic cores. A more basic
difference is that, hers, no assumption of planar or linear deformation
or plane strain of the core is made. However, it 1s assumed that

there is no shear deformation in the face plates (for reasons, sce
next paragraph) whercas Yu does not make this assumption. A

difference between Yu's work on the vibration of cylindors(l‘) and

this work is that this analysis is carried out for the vibrations of
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segments of cylinders simply-supported at their edges whist Yu's

analysis was concerned with the axially symnetric and torsional
types of modes of complete infinite cylinders. The reason for the
solution of this type of vibration problem is that this work is
concerned with applications to alrcraft whist Yu's paper is probably
concerned with applications to reckets.

The basic approach to the problem here is to obtain the equilibrium
equations of the core and faces, and then to apply the boundary
conditions given by the equilibrium at tho coreeface plate interface.
A separable solution is assumed for the deformation with harmonic
time variation., For the flat plate two uncoupled sets of three
homogeneous equations are thus derived in the six arbitrary constants
which constitute the mode shapes of the symmetric and anti-symmetric
modes (see § 1.2). From these equations the frequency equation is
derived and substituting the appropriate frequency back into the
homogeneous equatiosns, the appropriate mode shape can be found. For
curved plates a flat plate core solution is bounded by curved plate
face conditions and this leads to six coupled homogeneous equations in
the same way as above. The validity of this operation is discussed
in some detall. This work neglects shear effects in the faces of
the sandwich because only longer wavelengths can be considered due to
the honeycomb core (see § 1.3.7). For longer wavelength modes Fig. 1
of reference 11, indicates that this assumption will be valid even
though materials of different mass density and elastic modull are
being considered. The full equations of motion are derived under
these assumptions. The anti~-symmetric °*flexural’ mode and the symnetric
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‘bubbling’ modes are of the most interest. By assuming that the
inertia forces in the plane of the plate are zero, solutions are
restricted to those which correspond to flexural and bubbling modes.
These modes are analysed in detail for the flat plate. For the
curved plate the solutions are also found for flexural and bubbling
type modes only. In the problem of acoustic excitation of sandwich
structures (see chapter 2) the only modes likely to be excited are
these flexural and bubbling modes. Non-dimensional forms of solution
for frequency are obtained and these are shown in Fig.3 at the end
of the thesis.

In the 1940's Arnold and Warburton noticed an unexpected
variation of natural frequency with variation of flexural wavelength
around the circumference of thin cylinders. It appears that the
natural frequency, for a certaln configuration, was dropping as the
circumferential wavelength decreased. Subsequently, they propounded
a theory(w) which showed that this effect could occur, and which
agreed remarkably well with their experimental results. A physical
explanation of the mechanism of this surprising effect is to be found
in the types of strain energy involved in a deflection from the
equilibrium state. The type of strain energy associated with the
small deflections of thin flat plates (viz. flexural or bending
strain energy) is present. Also, however, it is now possible for
in-plane direct straln of the mid-surface of the plate to occur

involving an energy which is comparable in magnitude to the flexural
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strain energy. For a given central deflection and radius of curvature
this in-plane stretchin; energy intrinsically decreases as the
wavelength decreases, because the sector angle of the plate is
becoming smaller (i.e. nearer the flateplate condition). Thus, it

is this variation of the in-plane mid-surface stretching energy which
causes the unusual variation of curved plate natural freguency. This
~ffect has been noticed for some configurations of the curved sandwich
plates, and Fig. 9 shows such a variation.

An exact solution of the differential equations of motion with
curvature included cannot be obtained analytically. In the early
work on this problem a perturbation technique was attempted in ordoi
to obtain a solution. In this, the solution for curved plate core
deflection was assumed to be a perturbed flat plate deflection. The
problem thus formulsted was not readily solvadble in this form.
However, it is arqued. that the use of a flateplate core deflection
solution together with curved-plate boundary conditions gives
sufficiently accurate valuves for frequencies. Hence, by using the
same technique as employed for flat plates, six homogenecus equations
are obtained in six variables (arbitrary constants) and the determinant
of coefficients is equated to zero to find the natural froquencies.
The frequency solutions have been obtained using a numerical technique
and a digital computer,
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1.2 Lat of sible First-Order es of Vibration of

a Flat Finite Rectanqular Elastic Sandwich Plate, Simply-
Sypported at jts Edgeg

For a flat sandwich plate with symmetry about its middle plane
there are two distinct sets of modes of vibration. The first, and
perhaps the more -important, is the anti-gymmetric set. For this set,
the displacements in the plane of one of the face plates are equal,
but opposite in direction, to those in the othcr face. Therefore
the middle plane of the plate is a plane of 'anti-gymmetry'. Clearly,
the classical flexural modes of the plate are anti-symnetric. There
is also a set of symmetric modes in which the displacements in the
plane of one of the face plates are equsl to, and in the same
direction as, those in the other face. It §{s found that there are
three anti-symmetric first-order modes and three symmetric firste-
order modes. However, two of the anti-symmetric modes are of the
same type as also are two of the symmetric modes. Thus there are
only four types of mode, These modes are now described in some detall
and are shown in Fig. l.

de2.1  Anti-symmetpic Modeg
d22.12]1 Ihe Flexura] Mode

In this gode, the displacement normal to the middle plane of
the plate (z-direction) varies with x and y (the orthogonal

co-ordinates in the plane of the plate), but for most purpcses it can




be assumed not to vary with z (Figure la). Energles associated
with this mode are lower than those associated with other modes when
the plate depth is small compared with its length and width, and
therefore the first-order flexural mode will have a comparatively

low frequency.

3:2:1-2 Thickness-Shear Modes

For the plate described above there are two thickness-shear
modes, one assoclated with the x~direction and the other assoclated
with the y-direction (Figure 1b)e The displacements in the zero-order
thickness~shear modes are independent of the x and Yy co-ordimates
and are parallel to the plane of the plate. Displacements perpendicular
to the plate are zero. The displacements of the first-order
thickness~shear modes are also parallel to the plane of the plate
but they now vary with x and y . For most purposes the firste
order thickness-shear modes can be regarded as a linear variation of
u and v with respect to the normal co-ordinate z . There will now
be some displacement perpendicular to the plate surface and super-
ficlally the mode sppears to be of a flexursl type. These modss
have a higher frequency than the flexural modes for the sandwiches
considered here.

1:2.2 Symgetric iodes

For the flat plate described first-order syonetric modes are
not coupled in any way with first order anti-symmetric modes.
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1:2:2:1 Ihe Bubbling Mods

The motion in this mode produces direct tension and
compression of the core in the z-direction, the faces moving in
opposite directions (Fige lc). Most of the strain energy is in the
core, There is a variation of the z-wise displscement, w , with
x end y however, and consequently there is some flexure of the
faces. This mode usually has a higher natural frequency that its
anti-symmetric counterpart, the flexural mode; and the frequencles
of the bubbling modes are possibly of the same order as those of
the thickness-shear modes. It is probable that this mode is lightly
damped, and owing to its high natural frequency it might become

important where fatigue is being considered.

le8a2:2 Lonaitudinal Modes

These modes are the symmetric counterpart of the thickness-
shear modes. Again, two such firste-order modes exist for the plate
under consideration, one with motion predominantly in the x=direction
and the other with motion predominantly in the y-direction. Only
displacements of secorid order of magnitude take place normal to the
plate, and so all displacements canbe assumed parallel to the
middle plate of the plate, In this mode the top and bottom faces
move by the same amount in the same direction (whereas in the
thickness~shear mode they moved by the same amount in opposite
directions). In the first-order mode u and v vary with x and

Yy « The frequency of these modes is comparatively high, and
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therefore they are not of much interest acoustically as they would
be difficult to excite.

1:2.3 A Ngte Concerning the Modes of Cylindrically Curved
Sandwich Plates

For curved plates, the asymmetry about the neutral axis
produces a coupling between what we have called the symetrical and
anti-symmetrical modes and they can no longer use these names.
However, there is still a2 flexural and bubbling mode for curved
plates, the difference being that for curved plates these two
modes are coupled together, usually only very lightly because of the
wide frequency separation.

1.3 A Summary of Agsusptions Commonly made in Elastic Sandwich
Theorle
23.1 Plade Strain

A sim>lification of the exact three-dimensional theory of thin
plates is possible when one of the characteristic dimensions is
large. It can be assumed that strain in this long dimension direction
1s zero!®), Thus for a plate wrich has a long side, the bending
and vibration characteristics will depend almost entirely on the
short dimension; and on the bsundary conditions on the long edge.
Only strains in the plana defined by the normal to the plate and
1ines parallel to the shorter dimension need be considered, i.e.
plane strain analysis is sufficlent. It is often found convenient

to make this assumption when the effect of other approximations is
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to be judged. Most sandwich plate analyses have assumed plane strain

and have been called "one-dimensional® even though displacements, strains

and stresses occur in two dimensions.

1:3.2 Plagar and Linear Deformation

Three-dimensional bending and vibration theories of thin
plates often consider the in-plane deflections, u and v , to vary
linearly with the co-ordinate =z , i.¢. straight lines normal to the
plane of the plate in the unstrained state remain strajght after
loading. This is the linear deformation assumption.

In twoe-dimensional (sometimes known as ‘one-dimensional®)
theories a similar assumption can be made, but in this case, plane
sections remain plane afiir loading. This 1s a particular case
of linear deformation where no deformation takes place with respect
to one of the in-plane co-ordinates, and &s known as planar
deformation.

As far as long wavelength, low frequency, vibration thesries
of sandwich plates are concerned these assugptions are accurate
enoughs Exact elasticity theory shows the relationship between in-
plate deformation and normal co-ordinate to bes W=Usngz

For long wavelength, low frequency vibrations the maximum
value of the argu.ment @2 is small, end thus the sine can be replaced
approximately by the argument and the assumption of planar deformation
is seen to hold true. However, for higher frequency modes of vibration




the argument @Z is no longer small, and the planar deformation
assumption is likely to give inaccurate results. For thickness-shear
modes Yu(m) has had to apply carrsections to his planar deformation

theory.

1233 Zerg Jransverge Shear Strain in the Face Plates

Bending theories of thin plates have shown that the effect of
transverse shear strains is negligible unless the characteristic
length (e.g. the wavelength of vibration) is of the order of the
plate depth (see reference 7, for example). Likewise, if the faces
of & sandwich plate are thin compared with the characteristic

length, then the inclusion of transverse shear effects is unnecessary.

1s3:4 Zero Rotatory Inertis

The kinetic snergy of a plate vibrating in flexure is commonly
assuhed to consist of the transverse translational energy only.
Another ccnpman€ of kinetic energy exists due to rotational velocity
of plate elements about an axis in tho middle plane of the plate.

As with transverse shear, this effect becomes important when the

characteristic plate dimension becomes of the order of the total

plate depth.
1.3.> Zexo Flexyral Rigidity of the Face-Plates about their own
4iddle Flane

In a deformed stiff-cored sandwich most of the strain energy
in the faces 1s extensional energy, i1.e. the strain in the face i¢
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almost constant throughout the thickness of the face., This however

is not strictly true and the effect of the true variation of strain
can be included by superimposing a flexural strain (with the middle
plane of the face~plate as origin) upon the extensionsl strain.
Flexural rigidity of the faces about their own middle plane is included
in this way. The flexural effect is much smaller than the extensional
effect when the face thickness is small compared with the care denth
and when the wavelength is large compared with the plate depth.

#hen the face 1s very thin, its flexural rigidity can be neglected.

lo§‘6 Diffe:

It can be shown that there is no coupling at any time between
the symmetric and anti-symmetric modes of vibration of a symetrically
' arranged flat sandwich plate. However, coupling exists between the
different symmetric and the different anti-symmetric modes. Ekstdn(a)
has pointed out that weakly coupled vibrations of two zero~order modes
are likely to become strongly coupled when the natural frequencles
of the two modes aporoach each other. A similar effect can be expected
for first and higher order modes. Usually the natural. frequency
of the first-order flexural mode is far removed from the natural
frequcmihs of the first-order thickness-ghear modes and slso the natural
frequency of the first-order bubbling mode is far removed from the
natural frequencies of first-order longitudinal modes. 1In this case,
therefore, the four types of mode can be treated separately with a

reasonable degree of accuracy. Howover, as the plate thickness~
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wavaelength ratio becomes lar ,er and as the thickness of the face

becomes larger the coupling will become stronger and it may be

necessary to take it into account.

1.3-7 Homogeneous Coze

The cores of sandwich plates used by the aircraft industry
are often of the honeycomb type. This type of core is certainly not
homogenecus as it consists of many small hexagonal cells bounded by
metal foll. Howaever, if the cell size is small compared with the
characteristic dimension under consideration, the assumption of
homogeneity 1s s reasonable one. Care must be taken, however, when

vibrational wavelengths become small.

d:3.8 Ihe Assumption of an Jsotxopic Core

The cores of composite sandwich plates are often assumed to be
isotropic. UVhere practical applications are concerned this is not
usually true and therefore here the differential equations are derived
for an anisotreplc core. For honsyconb cores, threoe of the six
elastic modull can be assumed to be zero. These are the direct
modull in the plane of the plate, and the shear modulus G__ .

xy
For British honeycombs the two non-zero shear moduli are usually

in the ratio of 2 to 3.




Papers concerned #ith the bending and buckling of elastic

sandwich structurcs started to appear soon after the war. Hemp's
theary(!) of sandaich construction was published in 1948, and other
_papers by Reissner(a). Hoff (3), Etingen“) and Hmte:-l‘od(s) appeared
soon afterwards.

Reissner's paper was the first to derive the equilibrium
equations for the bending deformation of a normal type of sandwich
construction shell. He las first derived the equilibrium equations
of the core and faces. Then, after findin: the appropriate expression
for the strain energy of the composite plate, Castigliano's principle
has been applied to minimise the -complementary energy. The minimum
of complementary energy gives the equilibrium stress system. The
.assxm‘ptiom made in this work are that the faces are thin and thus
behave 1ike membranes (i.e. constant direct stress scross tho thickness
and no shear stresses normal to the face), that the core behaves as a
homogenaeous elastic materisl in which only transverse stresses occur
{two shear stresses, one direct stress), and that deflections are
smalle The equations have been obtained from the three~dimensional
theory of elasticity, subject to the restrictions above, and for the
ordinary type of sandwich plate (in which the skins are thin compared
with the total depth of the sandwich) these assumptions held good.




1,4.2 Vibrat Ihe

1f Reissner's paper i{s to form the basls of work on the vibrations
of sardwich plates then the restrictions of his theory, as stated in
1.4.1 above, must be borne in mind. For longer wavelength, low
frequency flexural vibrations of sandwich plates, sssumptions similar
to Reissner's can be made. HMindlin has derived the equations of
flexural motion of elastic sandwich plates with thin faces by neglecting
the transverse shear deformation and rotatory inertia of the faces.
These assumptions are equivalent to those made by Reissner in his
bending theory, and they have given accurate results for low order
flexural modes of vibration of ordinsry sandwich plates.

The analysis of short wavelength flexural vibrations of
sandwich plates, with, perhaps, thick skins, becomes very complicated
when a solution derived from the exact theory of elasticity is
contemplated. The additional factors which must now be included arei~
{1) The effect of transverse shear deformation in the face plates
(1) The effect of rotatory irertia of the faces

(111) The coupling which might exist betwesn the three
anti-symmetric modes

(iv) For honeycombs, the fact that the cell dimensions are
likely to be of the order of size of the wavelength.

For a discussion of these factors and when they become
significant see § 1.3.
In a series of six recent papers(g’w’u’m’m'“) Yu has

developed a new theory of bending and vibration of elastic sandwich
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plates including transverse shear offects in the faces and based on

the three-dimensional theory of elasticity.

In his first paper (%) he has considered the bending of an
infinite elastic sandwich plate in the so-called one-dimensional case,
under the assumption of planar deformation, as described in 1.3.2, in
each of the three components of the sandwich, although planar
deformation of the cress-section 2as a whole has not been assumed.
Thus he has been able to include the effects of transverse shear
deformation in the faces. One advantage of this theory over previous
bending theories of sandwich plates is that no restriction has been
imposed on the thickness of the faces and the solution therefore is
more general. As a result of including transverse shear effects in
the faces, subsequent application of the theory of this paper to
vibration problems applies up to higher frequency modes than other
papers have done. The frequency and wavelength at which departure from
planar deformation becomes important is dependent on the skin
thickness and density and the core mean density, and the departure
becomes larger as the wavelength decreases and the freuency
increases. And so at very high frequencies accuracy is gained by
including transverse shear effects in the skin but at the same time it
is lost by assuming planar deformation., The theory of this paper is
only concerned with small deflections, as usual.

(10) is a short note on the simple

The second paper by Yu
one~dimensional thickness-shear modes of an infinite plate. The

acdes discussed are the zero-order modes of the type described in

§ 1.2.1.2. Only free vibrations hsve been considered. For the case




of infinite homogeneous 1sotropic plates, such modes have been

discussed by Mind1in(1>)

firstly on the basis of a plate theory which
takes account of transverse shear deformation and rotatory inertia
but assumes plane strain and planar deformation, and secondly on the
basis of exact clasticity theory (planc strain being assumed again but
not planar deformation). The discrepancy between the lowest frequency
values obtained by the two methods is removed by introducing to the
former a factor K whose value is found to be 1\:2/12 for an
homogeneous isotropic plate. Yu's paper has investigated the one-
dimensional zero-order thickness shear modes of sandwich plates in
exactly the same manner as Mindlin has done for homogeneous isotropic
plates using the theory of reference 9 and matching the approximate
frequencies to the frequencies derived from the exact elasticity
theory with the factor K . However, for sandwich plates, it is found
that K varles between Wo/12 and 1.K » T2/12 corresponds to the
case of a sandwich plate with relatively thick faces whoreas K =1
corresponds to the case of a sandwich with relatively thin faces. As
K+ 1 implies perfect matching of frequencies between the exact and
approximate theories, it 1s geen that the assumption of planar
deformation is valid for thin faces. (Note: This is true only in a
broad sense because other factors do enter the argument. However, the
relative thickness of the faces is the predominant factorh The
frequency equation for thcse modes derived from the theory of reference
9, has been given in this note, as has the equation obtained from
exact elasticity theory.

In Yu's third paper(n) the equations of motion of flexural
.24«



vibrations of sandwich plates have been devsloped using the theory of
reference 9 (one-dimensicnal case). All of the usual effects have
been included in this analysis, the important assumptions being those
of plane strain and planar deformation in each of the plate components.
The theory therefore spplies to sandwich plates with thick faces
because transverse shear effects in the faces have been included, as
pointed out previously. In the introduction the need to include
transverse shear and rotatory inertia in the theory has been emphasissd
again so that higher frequency modes may be computed more accurately.
The flexural vibrations of sandwich plates have also been analysed
using exact elasticity theory which has been restricted to the
so-called one-dimensional case at the outset so that results thus
obtained can be compared with the results obtained from the approximate
analysis. On the basis of these theories the flexural vibrations have
been investigated with the emphasis on ordinary sandwich plates. It
is shown, by a numerical example, that the two methods described above
give almost identical results; which indeed they should, since the
assumption of olanar deformation holds good for the flexural vibrations
of ordinary sandwich plates at the lower frequencies. It is found
that the neglect of shear deformation in the core gives rise to
inaccurate results and therefore this effect should be included at all
times. It is also found that the joint flexural-extensional rigidity
of the faces must be included in the analysis if accurate results are
to be expected, unless the faces are exceptionally thin, in which case,
the flexursl rigidity of the faces can be neglected. For plates with
very thin faces and vibration modes of a low frequency, the possibility
-2®w




of some considerable simplification is forecast.

This simplification has besn carried ot in the next paper to
be published by Yu''2), The flexural vibration equations derived in
reference 11 are complicated, and they hold good for s wide frequency
range. For the low frequency ranges and ordinary sandwich plates with
thin faces a considerable simplification of the problem can be effected.
In this paper these simpler equations have been introduced and their
accuracy is determined by a comparison with the more complete eguations
of reference l1l.

In the theory developed in references 9 and 11, it has been
assumed that the transverse displacement is constant across the depth
of the plate, and that the in-plate displacements are proportional to
to the plate normal co-ordinate, the derivatives of ire-plate
displacements in the core and faces, with respect to the normal
co~ordinate, being different from each other. In this way all of
the deformation energies have been taken into account. For sandwich
plates with thin heavy faces the important factors have been found to
be shear in the core, rotational and translational inertia of the core,
translational inertia of the faces, and the joint effect of flexural
and extensional rigidity of the faces. These effects have been
included in this simpler amlysisuz) o Two sets of equations have
been derived.

The derivation of the first set of simplified equations consists

of a two=dimensional analysis with transverse shear deformation in the



faces not being taken into account. The equations have been derived
from three-dimensional elasticity theory using a variational procedure
as in reference 9. This set of equations has been found to yleld the
same frequency equation as a certain degeneration of equations derived
in reference 1l1.

The form of deformation used for these two simplified sets
is as described above except that the in-plate deformation of the
faces has been regarded as constant over the face depth. For the
first set these displacements have been derived, in the faces, by
considering the core as extending to the interface whereas for the
second set the core has been considered as extending to the middle
plane of the faces. The second set of equations thus obtained has
also been found to be a degenerate version of the equations of
reference 11, but the restriction necessary for the simplified
frequency equation to hold is not as great as the restriction for the
first sety and therefore the second set yéelds more accurate
solutions. In this way a simolified analysis for the flexural
vibrations of thin skin sandwich plates in the lower frequency range
has been found which ylelds solutions of good accuracye.

In a paper concerned with the forced flexural vibrations of
sandwich plates in plane stnin(ls) Yu has started again with the
displacement equations of motion derived in reference 9. Treating the
case of a simply-supported plate he has expanded the response-as a
series of principal modes which had been found previously(“} and
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the orthogonality condition of the principal modes has besn
derived. A method dus to ¥indlin and Goodman‘1®) has been used to
analyss the response to time dependent boundary conditions and an
example has been worked out for this type of forced motion. The
assusptions of reference 9 have been made for this work.

Recently, Yu has also written s paper on the vibrations of
sandwich ¢ylindrical shells(u) « This analysis is almost {dentical
to the analysis for flat plates in reference 9 except, of course, that
the cylindrical quantities are introduced. The equations of motion
so obtained have been simplified by making the assunption that the
faces of the sandwich are very thin. The assumption of planar
deformation has been made, and therefore as described previously in
this section, shear coefficlents K had to be calculated to match
the thickness shear frequencles in order to correct errors brought
about by this assumption. The simplified equations have been used
to analyse the axlally symmetric and torsional vibrations of an
infinite c¢ylinder.

Yu's papers are a useful set of workson the vibrations of
sandwich structures, especially for one~dimensional analysis of
flat plates and two-dimensional analysis for low frequency thin
skinned flat plates.



1.5 i he Vibrations of Cyl cally Curwv
Sandwich Plateg
1:5.] Sandwich Plate Core Equations
ds5sla] Stress-Strain Equations for an Anisotropic Homogeneous Medium

The convention for co-ordinates and face stress resultants is

given in Figs 2. These co-ordinates are much the same as those used

by Hmtcr-‘l'od(s) and are of the cylindrical polar type. The usual

8 co-ordinate is replaced by y where y =R and R {is the
cylindrical curvature radius. R 1s assumed to be large compared with
the thickness of the panel. The co-ordinate z 4s used with the
middle plane of the plate as its origin and with the R direction as
its direction. Measurement of x 1s parallel to the gencrator of

the cylinder and in the middle plane of the plate. As mentioned in
the introduction, the core has had to be assumed homogeneous in order
to obtain a solution. This limits the frequency and wavelength down
to which it is possible to obtain an accurate solution to the vibration
problem for honeycomb cores (see § 1.3.7). The stress-strain

equation isi-
r

<2

eve (1.1)




and the matrix of coefriclents of O must be symetric for a linear
structure due to Clerk-Maxwell's reciprocity theorem. The inversion
of (1) will give:=

! |

ces (102)

A
o E
E

-

where the matrix of ccefficients must again be symmetric. For the
particular type of caore considered in this Thesis (a honeycomb core)
it can be assumed that Ex = EV = Oy and therefore examination of
squations 1.1 and 1.2 glvesi= A, B,E, F, H= 0, C = Ez and the only

component of 1.2 which remains is

NZ£= CeZi ...(!-3)

As far as shear stresses and strains are concerned it can be
assumed that (3, = O for the honeycomb material and we are
therefore left withi-

Gi" = GZx. €ax

O.E‘Y = Gz‘)( e.zy




Howsver, we will solve for the moro general case of an anisotropic

core {(assuming there to be no coupling between shear strains and direct
stresses) where the stress-strain relationships canbe writtens-

(1) as equation 1.2 for direct stresses, and

(11) [ 7
Oy L 0 0] (ty)
o;i = O M O -651 P
eee(1e5)
Ozx L,O o) N-1 esz

and the special case of honeycomb cores w/ul be brought into the
solution later.

1:5:1.2 Equilibriym Relationshipy

The well~known equilibrium equations in cylindrical polar
co-ordinates (see, for example, reference 16, p.306), when body

forces are included, and conversion to cur form of axes has been

effected, ares~

Wax 1 00y o 0z _ 1 (570 =

YVxx + UXE o T+ Cxy - 0, - O eselle
Rl R{ By xz.}“’ P, (1.6)
Wyx , 3G 0. 30,
Oyx 1 Oy Uy — L1720y _ 20 = Q eee(1.7)
S o~ + 3z R{ By yz}+ Py

R R

where Pi is the body force per unit volume in the positive 1 direction.




1:3.123 Stral 3 tionshi

The equations connecting strain and displacement in cylindrical
co-ordinates are also well known (see reference 16, p.205). These

also have been suitably conirerted to the system of this work
(neglecting terms in 1/82), thuss=

b= W
ox
= ov_) Vv _ W
Cyy = Oy R%y }
L3z = W
0z
L = Q_K+QV_§ élk -o.(!.9)
xy ady x Ry
eyz= O W | (50w \r}
yE az+ay g{ 3j+
Qzx = Qg U
ox 0%
!-:2:.!.‘.5 Eauations

Substituting equations 1.2, 1.9 and 1.9 in equation 1.6 we
obtainze

AT 4+ L3 ¢ Ndw + (E+L)dv + (F+N)ow 4
0x* ay* ¥ . 2 ( )axa ( )a 0z =

| d ) M ees(1.10)
Tz{%@[" %; gv)JrE av] E+N) - Na%}




and substituting equations 1.2, 1.9 and 1.9 in equation 1.7 we obtains~

(LH‘:) AT La v o+ 3%}‘/’; -t-MaV (6+M)aybz +Ppy =

%K,{%%[(H.E)B‘& +253V+(&+M)aw] ~pdw _ M[a\q. ]} eee(lell)

snd substituting equations 1.2, 1.5 and 1.9 in equation 1.8 we obtalini~
Naw + M3W+ C3W+(&+M)3V +(F+N)f“* + P =
oy*

R{% [(ar M)3V+2M3w:(+(e F)a“ +(M+f>)bv } ess(1.12)

The assumption of plane stress is made for the faces, i.e.

{ha Ozz = Oyz = Oxz = O

'é T5, A {(see reference 16, p.3G). This
f i1s ancther assumption w»hich will

limit th= frequency and wavelength
b=t +h,
to which this work will apoly, but
it is reasonable to make this
assuaption having once limited the wavelength by assuming a

homogeneous core.
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For plansc stresses in the faces we have

Oux = ‘Em (fx,‘ 4+ VQ»,)

Oy = " ™ (Veux + L3y)
cZg = Caexg Em (

2(14+)

ese(1s13)

If quantities at the middle surfaces of the face plates (i.e. at
Z=. L (4\‘4— 4_‘_){-) ) are denoted by s dash and if quantities at the
interface (Z = ih,) ara denoted by a subscript o then

deflections in the face plates are given approximately by:
e (8 (8),
V= V "lz )(3.‘1"
o ¥ (Bees 5

W= IV} .00(114)

noting that e,qa (3“> +.(0ur) O » etc., and where Y 4s a plate
o

oz Ix
normal co-ordinate measured from the middle surface of the face plate
(toes 2= 243 vhere 2z'= A+ ’%z )e

At the middle surface of the face plate 3 =0 and we havei~

“’ “@ q: An’(ax;

hy {dw
v'= v, F ",ay)
w'z wy,

000(1'15)




The in=nlane dircct and shear stress rosullants are glven byte
N, = ‘:':‘j,_z{ (a“ X (:t "") w’)}
- f \
No Z*;J)ﬂ > %) )

Ny‘-' Emh" V

(1-v*) Dj g@: 53'-“’) }

eee(l.16)

using equations 1.13 and 1.9 and taking the middle plane value of the

strains. The equilibrium of stross resultants in the x  and

Iy
directions gives tho cgustionsie
DN 3Nx "u oNx = = Qt_u' 3_9
M + 3jy Th Bjy-y—j h= 0, =+ N{(3 x),+ 3%)0}
bNx_y 3Ny ‘BNy A =4 + - @ M) L fow)
w "3y TRay TN Rt s R ME(E)
:FMV’ M‘“ Bw) eae(117)

where ji is the body forcoe por unit volume in the § direction

in the faco plates. Substituting equations 1.1 and 1.17 to elininate

the stress resultants, and converting the dasheod teras to subseriot

‘o' terms using equations 1.1 we obtain the two following relationshipsse
Ab 2= xhy

Tu Y% 4 4y Pr

P2 VW 4+ Ve —
Wwxr 2 3] 3;3.)(; sz + = j;‘ ( :
[ 2 3 ] 1‘18
w du\ g fp W@V L ya A\ P
KGR LM BTV PR DD

ay*



v \~VD"V’_|. \-Wb&:p“lz.avlw'-*-“’ j_y

Wz 3 wy 2y Em
A 4 v ) h W & x o
+K (”J«R)_\_{i"(&‘.gtv) AR 3
+ 20 v + K*Q }
T m 7 eee(1.19)
where K =N -v* and K‘k=- N—\—-Q:—Vl—)
£ b2 Emhe

and as far ss equation 1.19 is concerned

Y-
Q,- Dé&v’w

1:3:2.2 gﬂ;ub;ha Normel to the Face Surface

For the face moment stress resultants we have, according to

the code shown in Fig. 23~

My=%x {7 o;“:gd\s

/-

“u.
My = :t Z U'ijdj

bz
% j oy 345
Noglecting t:m in hzl'ﬂ and I/R s the resulting equations ares=
My -D(5), +"( ARS NCARICHN Y
- ...D[v( 3’“" :]: {'&, z’:/’_) ;F,(av) }}

o S |

.36 - esdll21)

ees{1,20)



where D=Em“i ll‘Z(FV") o Equilibrium of tha transverse loads

on a skin element givess~

ey (F4) 3+ fuhu= N £ 0, -
L XX 3 l‘a

and by considering also the equilibrium of shears and couples on the

element, we have;-

~ oM fu\aM h
&x = -é—x‘ + ((:F 'é) @X’ + ‘2-2 o.zxo 0‘0(1023)
Qj - ?B_M;XS + (‘? %) aa__!_;y + %’- 0-3’0 0-0(1-24)

By substituting equations 1.23 and 1.24 into 1.22 to eliminate Qx

and Qy we obtaini=

3%3_« +(1¥ 2892 ';“5 +2 (17 &) 33:‘3 + el (289 4175 Xa“*))]

ﬁihl: %’ t O-ﬁo

vee(1425)

By using equations 1.5 and 1.9 to obtain (§  $n terms of
displacement, and by substituting equations 1.2} into 1.25 to
eliminate H et fiy, and u‘; - wa obtain at the interfacese

DYAur- hz{N{B‘w-(—B w §+ M{a"tr+3 ar%]i C%w + [Fau +&a\,—]

ozdy . oy
~fh, =D taave_w-vgv] Mh: (o4 3w L4, 2V 4 v
2 { | By* 3y F ZR{ ‘H +4‘| %Qyi
G hv Em‘\‘z. YO 4V 4w o (1.
*% ( q:w] R(--vt) [ oy TR R (1.26)
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It will be sesn that the last term is of order . /R .
This term has not been neglected becauss it 1is not -wltiplying a derivative
and tecause E. is assumed to be much greater than any of the core
modull.
Equations 1.10, 1.11, 1.12, 1.18, 1.19 and 1.26 constitute ..
the total equilibrium equations of the composite plate when under the
influence of the body force system p and f . (N.B. No external
loading is included in these equations). For free motion the body
forces can be expressed:~

pi= - £ Tws
3 ot*
.-~[€7'a|k1+1;au¢

(1 =x v, 2)
& = weight density of the core

(A = displacement

where the adhesive mass is assumed to be spread uniforaly over the face.

e:. = wolght density of the faces

T = weight of bonding per unit area of fécc

If harmonic motion of frequency (w is & dynamic solution of interest
b_zl*i = -
otr

80

= Q, t:;}w
i AR

...(1.27)
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Equatiws 1.10, 1.11, 1012’ 1'18. 1019. 1,26 and 1.27 now

constitute the equations of harmonic motion of an elastic sandwich
plate with a general anisotropic core, under the assumptions;-

(1) %wél K\

{81) Core homogeneity
(111) No shear deformation in the faces

X29+3 TIhe Dif tial E iong of Harmonic
' (- C Elastic Sa Pla

For honeycomb cores we have seen that we can assume that
there are only three non-zero elastic moduli. Im our notation these
three modulf are C, M, and N. Some of the equations of motion can
thus be simplified, and for honeycomb cores the six equations 1.10,
1.11, 122, 1.18, 1.19 and 1.26 can be rewritteni~

N 2 oz ax az dx eae(1.28)
a v o dw s a\r dur
MElRT ]+ Py = %[% ayoz a?_*' )1 eee(1429)

3 (3w du a
NS [a‘;lfaa M3 a‘;"%% Cg;g [ M[3V+@“]}+Mw—(g:}.-(l-3°)

for core equilibrium in the three directions, x, y, and z. The three



boundary condition equations at thz interface aret=

O 4 YPu VY £ h 3 1-v
ez dyr 2 axb_y:F 2 axv v j"

dw LNy 4 [, 14V dw -y} 3%
iK( +2 ) [‘““éf"s;”“(‘ v)%&':]

a':v YRV L WY IR = hed o2 yte
oy 23x1+zwy¢-"3-VW+\_!5y—

n ‘é@wﬂv> g‘%.aw-i V)rL [ﬁ' W: vt\/;%; e V; 5 DBV J (1.32)

g (w%‘;w S B -feha =

sne ‘1‘31)

Dl 3070w ] Mh 2
R[ \ Ok ﬁy]:F RZ[QhBa;;-g- By;,ii%;] vss{1.33)
- EM""L y o 3\! w’]
R(-v* )[ y*R

and it will be observed that equations 1.31 and 1.32 are identical to
equations 1.18 and 1.19 as no simplification of these 1s possible.

1.6 Solutjons of the Equationg Listed in § 1.5.3
1s6.1 A ble F So for Curved Panels

Let us assume a separable solution of the formi=

w=W(z)sw X sw mby ess(1.34)




which can anly hold for simplyesupported edges. The in-plate deflections
u and v -Tist then take the form:e

= X sy MY

\L U(i) cos T sw "E’ 0.0(1035)

ve= V(&) sinamx cos lty ave(1.36)

If squations 1.34, 1.33 and 1.36 are now substituted into the core
equllibriua equations 1.28, 1.2% and 1.33 we obtainie

1) __Eguation ,28)

(NN + o TTUNE([s+ £ W = O entiam)
where O is an operator denoting differentiastion with ressect to 23
{41) _Eguation (1.29)

(M8 + M‘é*‘ 0LV + Mt [G- %)8+-'§]W= O e (136}
{343)  Ezuation (1,30)

- NT§U-MoT [(i%)s- ﬁ]v + [C5‘+ C’% -{N(’!}f)z-v M)

-oMEery T O

eee(1.39)

Equations 1.37, 1.38 and 1.39 are three sinultanesus differentiasl



equations in U, V, and W . The solution of these equations is
complicated because the coafficients are, in 'some casaes, variable
(with z), It was thought that it might be simple to find a series type
of solution to this set of equations, but this proved to be iomensely
cumbersome and was not completed. It was found that the six modes
for the curved plate corresponding to the three symmetric and the
thres anti-symmetric modes for the flat plate (N.B. these modes for
the curved plate are in fact neither cymmetric or anti-symmetric)
were coupled together, whereas for the flat plate the symmetric

and anti-symmetric modes were uncoupled. The degenerate case of the
flat platc can be solved by putting 1/R = O. A solution for curved

plates is given in § 1.6.3.

1s6.2 A Solution for Flat Panels

It is now assumed that the coupling betwsen symnetric modes
with the same nodal pettern is negligible and similarly that the
coupling between anti-symmetric modes with the same nodal pattern
negligible. This coupling exists by viftua of x-wise and yewise
inertia forces in the core, but is only significant when the core
is very heavy or the face plates are very thick. Hence we ignore
the in-plate inertia terms of the core for flexural and bubbling
modes. Equations 1.37 and 1.38 and 1.39 now become s«

5*U + "FTLV SW= 0 vee (1,40}



E |

STV + mﬁ! SW =0 ee(1.41)
{41)  Equetion (1,39)
- N3TSU-MmEsY 48— (N(EF+M(E )= 04 )W=Q.. (.a2)

Integration of equations 1.40 and 1.4l glvess-

AU -.EWw 4+ 1]
az a 000(10‘3)
and
AV - oW 4 TR
Az b ees(1.44)
and substituting 1.43 and 1.44 in 1.42 gives:=~
AW W = mIx VT
CO—E,_-\-?‘BW- MWL + N g ee(1.45)
The solution of the differential equation 1.45 iss~
W = Asingz + chos@a+§w1{Mmgm +Nt’g1i'j vee(1.46)

Substituting equation 1.456 into 1.43 and 1.44 we find the




corresponding modal shapes of U and V , thus:=-

.-ox[-A Usingz + 22 fvme o
U= “[ &wse’z"'-@sm(sﬂ' ﬁw{{M"gm“'NTqS]‘*'%“'g..u.n)

V= -w_bzt[% (osp2 4%13(«\(52 + §¢{M"“fm +N ggq}]%ﬂo -es(1.48)

The solutions for U, V, and & (equations 1.46, 1.47 and
1.48)have one part corresponding to the symmetric modes, the other
corresponding to the anti-symnetric modes. It can easily be shown,
by substituting those equations into the boundary condition eguations
1.31, 1.32 and 1.33, that the symmetric and anti-syanetric parts are

not coupled in any way. They can therefore be treated sepsrately.

Rotator exrt

Extracting the anti-sympetric parts of equations 1.40, 1.47 and
1.48 we haves~

Mwsgz + [vaux + Nnm{]

= -0l [I’[ St pz + 29 {M MIT UL 4 N e ‘Iﬂ +Yz

V- -‘!‘,;"[% SngE + %{M "L +—N'§”~£}] TWMEZ | (1.49)

If these equations are substituted into the boundary condition
equatiors 1.31, 1,32 and 1.33 with 1/R = O, we then obtain a set of
three homogeneous equations in .H » T’I s and m « Thus a




determinantal frequency equation is obtained. For leng wavelength
f1 xural modes the in-plate inertia forces of the faces can be
regarded as small and the fx and fY terms in equations 1.31 and
1.32 are thus neglected. This assumption is effectively that of
ignoring rotatory inertia for ordinary sandwich plates and has been
shown to hold true both by the author and by Yulll),

The resulting frequency equation in matrix form is then:

[~ g2 . 2 1
Wl fsnd | b mnre G8° (44 b 29¢ (1,4 N 1
= [? +.z’-wsq’] M[ab ?w( 2) N[(hﬂ) ?w‘(h+ z) H
M'\“ 4’“ \+V] _‘hi - K
ab M 2 N N
MKP'{S\V\Q).‘, fnms¢ hﬂt ’“382’ ( o hz) N '“'“%32’ (‘\ﬁ’ be 118 > =0
Q!““" z ob f'”t 2
__\g*_h_\_i _wnify ‘ﬂ] eeo{1.50)
M ab N 2
4 4% )
( ek, f"‘g) s M[@)Qﬁ hz?f‘*’)s r NXDZ" g 50 )(,Ew ™Y
- Cpsmd t+he '_"1‘} + 2 ox
] 7% 7%l ||

where p*= %"(" . ¢ = {5‘" y A= (r%f)?—+ ‘%‘)L ’

(L), e b0

The frequency equation is obtained by putting the determinant
of the matrix equal to zero. This equation is then easily non-

dimensionalised by substituting the following non~dimensional
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- = '&.‘." = A = b-
quantitiess » 7 A, ey A, o
= E = 2 ¢ - LE o o
) C -g' i - 4\\ i. i* - Y i
¥ = B l; = ‘lgll.‘b
C
¥ M
2 C
and by suitable rearrangement to obiain zeros the determinantal
frequency equation becomes:~
2 2% (1-v* ok -3AYE AR
5 [A@+ Z () [FR0w)2ARE -ALE
PRl B (adeaR)]
?7“)\
prlond+ AR (AR @eay ()
K cos 1 "
308 ..5'-}5_(\-\;‘-)] 3R Y ces(1.51)
7 2]
AR W &"_‘."::— F)  3x¥
s 5""(n_(s-vt) #) 2 [’%'_’:} O
~dswm AN 'k
2 (v

It will be' cbserved that o5 / P has been replaced by A 1in
some places and that in this way the weight of the bonding has been
omitteds This has been done so that non-dimensional graphs of frequency
can be plotted against the variables A , A, and M { ¥ and )\ are
regarded as constants for one type of honeycomb). The results of
caomputations using equation 1.351 are shown in Fig. 3.

All of the graphs at the end of this chapter were computed using
quantities associated with British CIBA (ARL) *Aerowed' honeycomb type
142, This aluminium foll honeycomb, with a cell size of Q.25 inches,

-“-



is coomonly used by the British Alrcraft Industry. Other design
graphs, lika those given in this report, however, can easily be
constructed for other materials by solving the equations given

herein. Values of constants for ‘Aerowed® 142 are as followss-

31,900 15/in2
21,300 1b/in?

C = 238,640 1b/in®
4 /£t

Y
]

and the constants usoed weres-

112
]

107 1b/in® (Aluminium)
¢ = 1123 ft/sec (air)

g = 32.2 ft/sec?

0, = 167.5 1v/5t>

T = 0.09228 1b/ft°

vV = 0.34 (Aluminium)

The range of values of paramoeters for which these computations were
carried out is as follows:~

(1) Non-dimensional wavelength

From An -16toAn’ = 0§

'S 1

(13) Core~face-plate thickness ratior

From )& = O.mte//ttc.z}



For s particular honeycomb panel the apparent natural frequency,
W, » is computed from the value of  thus:~

U),: % (:?5 000(1052)

and this must then be corrected for the mass of the interface sdhesive
using the equation

R e
W
V¥ At ‘34:
where h, is measuwred in inches and T is in lb/fFt>,

sea(1.53)

This equation has been derived assuming that w does not vary
with 2z in the core (flexural modes only).

This method of correction does not give exact answers, but the
maxinun error for the range of values of the varlables used in the
computations is smsll (not greater than 4 per cent). Equations 1.52
and 1.53 are plotted in Figs. 4 and 5 for use in calculating natural
frequencles of actual sandwich panels in conjunction with graphs
similar to Fig. 3 (N.B. Fig. 3 spplies only to sandwiches with cores
of CIBA honeycomb type 142 and aluminium faces).

126:2:2 A Solytion for Bubbling Modes of Flat Panels

Again, the ineplane inertia of the core is neglected as it will
be smell, The symmetric made of principal interest is the bubbling
mode because its frequency is lower than the frequencies of the corresponding
longitudinal modes (to which it is only very lightly coupled = § 1.6.2).




Extracting the symmetric parts of equations 1.46, 1.47 and

1.48 wo find for symmetric modes that:
W= & s pz
= N ﬂ

V=2tBwspz + W
b p
ese(1.54)

If this set of equations is now substituted into the interface
boundary condition equations 1.31, 1.32 and 1.33 with 1/R = O (as
before in § 1.6.2.1) a set of homogenaous equations in [ , 4,
and 0 15 found, thusse

&1%_[”5—/;‘“ - ‘-‘i‘ 5‘“%’] € WY mnr® )

[Dl’,"" ‘\zef-g ] W\%“\ 0 0
4 Cp cos phn, eee(1.55)

-

The only permissible solution to this equation is:-
Cg

[Det- hups ¢

{m@k; —

see (l.%)



or, by using the non-dimensionsl form of § 1.6,2,11=

¢
M¢ = 2 3 T2 .--(lp?ﬂ)
pAGT - AP Y
12(1-v*)
It has been found that the second term in the denominator of

the right hand side of equation 1,57 is much smaller (10™% x at least)
than the first term, for ordinary sandwich plates, and it can therofore
be neglected. Equation 1.57 then becomes:i~

MAptng — | = O eee(1.58)

Thus the bubbling mode frequency 1s virtually independent
of wavelength. This would be expected because the contribution of the
flexural strain energy of the face plates to the total strain energy
is clearly very small.

Bubbling mode frequency parameter is shown plotted against /u.
tn Fig. 6.

Here again for non-dimensional plotting A has been used in
place of g /9‘ « However, for the bubbling mode, w varies
éonsidrerably with z and the mass rstio of equation 1.53 will not
apply. The generalised mass in this mode will depend: on an integration
of mass times displacement squared thoughout the depth of the plate.
If wo assume the face and bonding to move as point masses, and if we
assume a linear deformation of the core (this latter should be

sufficiently accurate, as the core is uswily much lighter than the




faces) then the frequency correction equation corresponding to

egquation 1.53 becomest=

(‘2 2 v 3 (ep)
) - P 3o m (M) +36T R, vas(1.59)

W

for bubbling modes. This §s plotted in Fig. 7.

1.6.2.3 Flat Panel Thickness Shear and Longitudinal Modes

These vibration modes are of less interest than the flexural
and bubbling modes because they are usually of a higher natural
frequency and because they would not be directly excited by normal
pressures. However, in certain cases, it may be desirable to
calculate their natural frequencies and this can be done by including
the in-plate inertias in the equilibrium and boundary condition
equations. The frequency nc;uatians ¢an be found as before but the
solution (1.e. finding the roots of the determinantal equation) is

rather more tedious.

1:6.3 A Solytion for Cylindzically Curved Panels

In § 1.6.1 a separable form of solution was assumed for a
cylindrically curved panel and equations 1.37, 1.38 and 1.39 were
derived for the z~wise variation of the three orthogonal deflections
in the core. Inertia terms in the plane of the plate are now ignored
for flexural and bubbling vibrations and these core equilibrium
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equations becomes

(
O

P+¥5|U + T8+ ¥
[ ‘l\ ]U «{ f\llw occ(1067)

P ere——

ry T mrlfy 2§
Ls +?\‘s}V+ b{(\ N

—
p——_ N

—_—

~—"
on
+
SN2
=
i
O

san (1168)

C&W= N ‘%’f §U+M vx\g[(‘_, %I¢>g_ %‘SV
v S {N(ET M) i _ ZM?("‘E")Z]W“ (1.69)

Now an exact solution of these core equilibrium equations is
not feasible and an alternative approach must be sought. If the terms
in the core equations with r as a factor are neglected the gencral
solution ¢an be found for the core, exactly similar to the flat plate
core deflection solution given in equations 1.47, 1.48 and 1.49.
Applying the curved boundary conditions of equatfons 1.31, 1.32 and
1.33 to this core solution (i.e. retaining the 1/R terms here) we can
obtain a set of froguencies and modes shapes for this hypothetical
condition which will be denoted by a zero subscript. An attempt was
made to perturb this solution for deflection of the core in order to
obtain a more accurate solution for the complete curved problem. In
fact we will argue that the frequency cbtained using the flat plate
core deflection is sufficlently accurate for this particular core

configuration. The hypothetical core deflection solution is perturbed




in order to fit it to the full core equilibrium equations 1.67, 1.68
and 1.69 sbove, thuss

Uh’: Uy\o + v Un?
V\n: VV\o + ? V"‘?

*
WY\: W\ﬂo—)' ?Who

...(1.70)
and a perturbation of frequency must also be allowed:
— nLo¥
w“‘ = N“o + Yw“o tn.(le?l)

In this way, only a first-order perturbation is allowed, but
this will be sufficient for sufficlently small r . If equations 1,70
are now substituted into equations 1,67, 1.68 and 1.69, the terms with
different powers of r can be separately equated to 2ero because the

squations are valid fer all r . The equations of order one are:
b3 -
§U,, + T EW, = O

§* Vi, + ME £V, = O

= NI T, — Mt 8%, +{Csb- {n(an)+ MY £ %’\,SSIWN‘—‘ QO

see{1e72)

These squations correspond exactly to equations 1.40, 1.41 and
1.42. The solution of equations 1.72 is exactly similar to the flat
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plate solution obtained earlier, equations 1.46, 1.47 and 1.48, but
the constants will be slightly different (they will be denotediWCAH A'[D')
because curvature terms will be retained in the boundary conditions
(equations 1.31, 1.32 and 1.33).

Now the equations of order T derived from the substitution

of the perturbed deflection are as followss
8 Ung + I 8Wa! = — [8Ung+ TW,,

EVhg + o 8Wog = - [ £V, + "f(\-is)w-w]

N2 Mg + {08y ey 03] ol -

-M "T':‘(H-ES)V,,D - [CS + ’ZMi("{‘)"ano

.--(1.73)

This set of equations gives the differential relationships for
the perturbation deflections tl:; s etc., and because these functions
must also satisfy the identical boundary conditions to the solution
of equations 1.72 we can expand them as an infinite series of the natural
modes of equations 1.72 but omitting the mode with which we are

concerned i.e,

)
- %
Uro = Zo""'U’lo
n=
nET

* [--}
Vi = 7, onVa,
=t
"

* o0
Wy, = Z %n W, eeo(1.74)

n=!
n#v
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Note that an is the same for all geries as the combination

Uy, V, W makes up the natural mode. Substitution of equation 1.74

into equations 1.73 givess

(a)  For the first two equations, some trivial equation because
inertia terms have been dropped.

(h) For the third equations

g‘an(wr. W, = - M 28V~ |G+ Rdnod 4 2B Wy
w#f

If equation 1.75 is differentiated with respect to z ,

& b,
.fl Z{Qn(wf:' -L\)"’O')J>
3 nel Zh ~
nFr \

(cs+2M (=) 2Mz (95 ) Wor, 8W, Az

multiplied by §Wv, , and integrated over the z-domain, we get:
h
sWhugvi 62 = - Mt j (28+257)Vr, 5V, AE

26,

3

b,
- _€' Zwyo(»r’f J W, Swro dz
209 (l 076)

-6,

Now the first two terms on the right hand side of equation 1.76

can be neglected. If the combination "ro , v

purely symetrical or a purely anti-symmetrical mode these two terms

wr was either a

Ty 0 o

would be identically zero bescause the integrands would be odd

functions of 2z (the z-domain being from z = “h; to z = hl).

Kow this would be true for flat plate core deflection solutions when
bounded by flat face~plates (the problem in § 1.6.2). However, for curved

face-plates bounding a flat plate core deflection, small cross=-coupling
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terms exist between the symmetrical and anti-symmetrical core modes.

The modes previously called 'symmetrical’ now have a very small snti-
symaetric component and vice-versa. Thus, these two integrals have
non-zero, buli small values derived from the cross-coupling between
the now wrongly called symmetric and anti-symmetric modes. These
terms, being small, will be neglected. The equation 1.76 then

reduces to: h
) ] AW, SV, 2
“_"_’f = Z 9’_“(692; - \) i
l&)fo 2 \wep “1, oo (1077)
:‘\;‘r J Swro SWrOd;l:

4,

If the flat plate core deflection solution is to be a sufficlently
accurate solution for this problem then it must be shown that we¥ [wy,
is a small quantity { & 1). If this can be proved then we can say
that Wy is sufficlently represented by W, , the error term
being of second order of smsll magnitude, and only a flat plate core
deflection solution is needed to find this frequency. In order to
show that Wry [wr, is small we must:
(a) Find some value for a_ , using an orthogonality condition.
{b) Show that the oroduct of the large term (‘:’J"ﬁ— l)

A and the ratio of integrals is small. )
(c) Show that the series convaerges, and that it converges on to

a small value.

These tasks are complicated and have not, as yet, been completed,
However, this hypothetical solution can be shown intultively to be a
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good approximation. The application of the face plate boundary
conditions to a core solution of deflection for honeycomb sandwiches
is, in essence, a matching of the surface impedances of the face
plates to the core. liow following from the explanistion in the
introduction, the surface impedances of a2 curved plate to flexural
type deflection are considerably different from those of a flat

plate because in-plane direct strain occurs. On the other hand, the
surface impedance of a cylindrical honeycomb core of normal proportions
is likely to be little different from tha: of a flat core since direct
in=plane strain effects are negligible (A and B are very small) and
curvature shear effects {terms undorlinsd in eguations 1.67 and 1.68)
are also likely to be negligible, Therefore, the use of a flat core
deflection solution (and hence of a flat core surface impedance) should
not give rise to lerge errors in the natural frequencles of curved
sandwich plates. The affect of curvature on the assembled plate is
restricted to fhe face plat s, therefore, which will ba stiffer when
curved. ‘l‘ﬁus, the matching of impedances which occurs whan the

full face=plate boundary conditions are applied to the flat plate core
deflection solution will ensure that the major effects of curvature
are included in this analysis. Wa, will therefore give a good
approximation to the true natural frequency.

The solution for (., 18 easily found by substituting a flat
plate type core solution for deflection (see equations 1.46, 1.47 and
1.48) into the curved plate boundary comdition equations, viz.
equations 1.31, 1.32 and 1.33,

- 57 =



Six homogeneous equations result thus;

A ¥ =0

000(1078)

where {q‘} 1s the colum vector {q:m,‘,q‘,n‘,g‘, }0‘}

The characteristic deterninant of equation 1.78 is equated to
zero to give natural frequencles. A simplified and none~dimensionalised
form of this determinant is shown in Table 1. The characteristic
equation has been solved numerically for flexural and bubbling
frequencies using a digital computer. The numerical method used to
obtain the solution of the characteristic equation was a successive
application of the rule of false position. Results are shown in Tables
2 and 3 and specimen graphs show typlcal variatbn of frequency with
the various parameters involved. The frequencies were evaluated for
the set of constants and the range of wavelength given in § 1.6.2.1.
The range of values of ¥ for which frequencies were calculated is
from % = zero to ¢ = 0.02J. This range is 1likely to cover the
curvatures of fuselage, wing and control surface panels. A correction
to be applied to frequencles to take account of the bonding mass is,
to the same degree of aoproximation used in the solution, the same as
that given in § 1.6.2.1 and 1,6.2.2 for flexural and bubbling modes
of flat panels. »




1.7  Conclusjons

This analysis has assumed that a state of plane stress exists
in the face plates of the sandwich and an exact deformation solution has
been found for the core under this assumption. On the other hand, Yu,
in his recent work, has made the assumption of planar deformation in
the core but has included shear effects in the face plates. Yu's
snalysis therefore applies to vibrations of sandwich plates with all
thicknesses of face plates but is frequency linited because of the
breakdown of the planar deformation assumption at high frequency. Thus,
his work applies perfectly adequately to the low-order flexural
vibrations of most sandwich plates. This paper is necessarily limited
in application to sandwiches with thinner face plates, but will treat
high frequency modes (bubbling modes for example) with accuracy. As
this work is being carried out with aircraft sandwich structures
specifically in mind, the assumption that face plates are thin is
reasonable. The analysis of this paper applies down to wavelengths of
approximately four inches (for a core depth of 0.5 inches and a cell
size of 0.25 inches). The cell size s the critical parameter for the

lower limit of wavelength because the assumption of a homogeneous core

becomes doubtful when the plate half-wavelength is less than about 16

times the cell size. This length, however, should be adequate enough

for the analysis of firste-order modes of typical aircraft sandwich panels.
The vibration solution for sandwich plates has been found by

solving the core differential equations under the boundary conditions

imposed on them by the face plates. The determinantal frequency

- %0 -



equations for the flexural and bubbling modes (predominantly z-wise
motions) have been obtained by neglecting the in-plane-of-plate inertia
of the core and faces. This assumption, which is, in effect, the
neglect of rotatory inertia, has been found to be suffilciently accurate
for all of the configurations of sandwich plate under consideration
(Yu also draws the same conclusion in reference 11). These equations
are in non-dimensional form for ease of display, and, because the
bonding weight has been included in the analysis, a correction has been
applied to the frequencies obtained, as this parameter could not be
included in non-dimensional work. This correction 1s not exact, but it
does not give rise to errors in excess of 4% over the ranges of
variables considered. The error is due, of course, to the assumed forms
of displacement used in the calculation of the generalised mass. For
flat plates, flexural mode frequencies, in their non~dimensional form,
are shown in Fig. 1 for various values of ]+ » the ratlo of skin to
core thickness. Bubbling mode frequencies are shown in Fig. 6. Neither
the cross~sectional mode shapes for the flexural modes nor those for the
bubbling modes have been computed. For flat plates, these ratios can
easily be found however by substituting the appropriate frequency back
into either equation 1.50 or equation 1.55. Figs. 3 and 6 for
frequencies of flexural and bubbling modes of flat plates were computed
for CIBA(A.R.L.) ‘Aeroweb' Honeycomb type number -142, which is a
honeycomb commonly used by the British Aircraft Industry.

Figs. 3 shows that the variation of frequency with wavelength takes
the usual form. It was found that the bubbling mode frequencies were
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virtually independent of wavelength (see Fig. 6), for the range of
wavelengths considered. This is due to the relatively small amount

of strain energy Qtorod by flexure of the face plates. Computations
carried out by the author, but not described here, have shown that
Rotatory Inertia of the crossesections can be safely regarded as
negligible for the range of values described in § 1.6.2.1 but that
shear deformation effects in the core must be included for an accurate
analysis of the flexural and bubbling vibrations of sandwich plates.
This confirms the identical conclusion reached by Yu in reference 1l.

The frequencies of flexural and bubbling modes have also been
found for cylindrically curved sandwich plates. They are shown in their
non=dimensional formin Tables 2 and 3. The anomalous varlation of
frequency with circumferential wavelength shown in Fig. 9 was not
unexpected. This effe€t, viz. a decrease in frequency with decrease
in circumferential wavelength for some plate configurations, is associated
with the relative proportions of strain energy stored by flexure and
in-plane stretching, and was first found and explained by Arnold and
(29)

Warburton It should be noted, however, that this effect is only
sufficlently significant to show this decrease in frequency with a
decrease in wavalength at higher curvatures. An inspection of Table 2
will confirm this statement. (i.e. Fig. 9 is not a typical variation
of frequency with circumferential wavelength). Figs. 10, 11 and 12
show the typical vatiations of flexural frequency with axial wavelength,
skin-core thickness ratio, and curvature respectively.

Fig. 13 shows the variation of bubbling mode frequency with

skin-core thickness ratio for the curved plates. For the ranges of



parameters chosen it was found that the variation of bubbling mode
froquency with both wavelengths and curvature was only very slight.
The maximum variation of this frequency with wavelength was less than
Ql%, and with curvature less than 0.2%. This is due, in exactly the
samo way as it was for flat plates, to the high proportion of strain
energy stored in direct stretching of the core, compared with the
strain energy stored in flexure and stretching of the faces.

A correction must be applied to the computed natural frequencies
of curved plates to take account of tho bonding mass. Now the curved
plate core mode shape has besn assumed, on reasonable grounds, to be
of the same form as the flat plate core mode shape, to the first order
of magnitude. Therefore the correction equations 1.53 and 1,59 for
flat panels (and also Figs. % and 7) will apply to the flexural and
bubbling mode frequencies of the curved panel.

The ranges of parameters chosen for the computations of natural
frequencies of curved plates were the seme as those chosen for the
flat panel. These ranges were considered to be representative of
aircraft structural elements. The values of curvature used in the
computations covered the range which included low curvature wing panels
and the higher curvature fuselage panels.

The modal shapes have not been computed for the curved plate
core because of the complexity of the terms involved. However, these
mode shapes can be found by substituting the frequency back into the
equation 1.78 in the usual way,

The problem has not yet been solved of showing analytically that
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the flateplate core deflections applied to the curved boundary conditions
do give sastisfactory values for curved plate frequencies. The
difficulties involved in showing that the perturbation of frequency

will only be of second order of small magnitude compared with the first
order perturbation of deflection have been described in the text.
However, it has been possible to explain why this simplification can be
made, on physical grounds. It appears to give reasonsble results which

conform to established patterns.




CHAPTER TWO
The Acoustic Excitation of Flat Rectan ar Sandwich Plate

Sumgagy

The possibility of the excitation of sandwich panols by the
acoustic coincidence effect is first discussed. A Fourler-type
analysis “is then carried out to find the bond normal stress in a
honeycomb sandwich panel excited by general random noise pressures.
This general solution is restricted successively to solutions for
random plane weves at a fixed incidence and then for random normal
plane waves. A Fourler analysis is also carried out, {or normal
plane wave excitation only, for the bond bending stress. This stress
is found to be of the same order of magnitude as the bond normal stress.

It is found that large bond stresses occur when sandwich panels
are excited by the acoustical colncidence effect. These stresses can
be of sufficient magnitude to precipitate fatigue falilures in the
hond of a honeycomb sandwich panel,

2sd  lotzoduction

The problem of the excitation of sandwich panels by random
noise pressures has been analysed in this chapter in order to explain
the fatigue failures which have been occurring in practice in the
bonding of aircraft sandwich panels. These failures, as explained in the
Introduction to the Thesis, have consisted of a debonding of the faces
of the sandwich from the core, usually at the panel centre. This
failure position indicates that direct stresses in the band (i.e. the
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stress normal to the panel and the panel bending stress) are responsible
for fallure and that the effect of core shear stresses is not significant
in this respect. Therefore, the analysis of this chapter is confined

to an analysis of the direct strecses in the bond of the sandwich

panel. A preliminary simple analysis of the direct stre ses in the

bond of a2 freely vibrating honeycomb beam {(given in Appendix A.2.1) shows
that these two stressos are of the same order of magnitude., A full
analysis has been carrled out in § 2.2,2 for the normal direct stress

in the bond of a sandwich panel excited by random noise pressures.
Application of the results of this section is a very complicated
procedure. For this reason restrictions have been placed on the
generality of the nolse fleld and on the plate in §'s 2.2,3 and 2.2,4

so that the sallent features of the analysis bscome more readily
apparent, even though these restrictiocns move the analysis away from

the practical case. In § 2.2.3 the panel has been assumed to be simply
supported and the nolse pressure field has heen restricted to random
plane waves at a fixed incidence. 8§ 2+2.4 1s a further restriction of
§2+2.3 whereby the normal plane waves are assumed to be ef normal
incidence to the plate. A full analysis has not been carried out

for the bending stress in the bond. However, a simplified-snalysis has
been carried out for this stress for a plate being excited by a random
plane wave noise field at normal incidence. The results of this

analysis (§ 242.5) are comparod with the normal stresses in the bond

found for a similar sandwich plate under similar conditions in § 2.2,4.

The two stresses are again found to be of the same order of
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magnitude for a simply-supported sandwich plate under these excitation
conditions and indicate an order of magnitude similarity under all
conditions likely to be met with in practice.

Because of the low damping of the flexural modes of vibration
of sandwich panels {t is certain that the most dangerotis state, as far
as fallures are concerned, is when some form of resonant excitation
i{s taking place. For this reason, the possibility of the excitation
of sandwich panels by the acoustical coincidence effect is discussed |
in § 2.2.1. This effect is a "double” resonance. It occurs most
severely when harmonic plane pressure waves of a frequency the same
as the plate mode natural frequency are incident upon the plate at such
an angle that the intercepted sound wavelength on the plate is the
sane as the modal wavelength. A less severe toincldence effect arises
for the more practical case of a rea2]l randon sound fleld. This
condition occurs when the wavelenjth of a particular vibration mode
of the plate is equal to the "wavelength" of the spatial correlation
of pressure when the pressure has been filtered by a narrow-band filter
centred at the mode natural frequency. The correlation function is
described in § 2.2.2.1 where the meaning of the term “wavelength" of
the correlation function is made apparent, Special reference is made
in this section (§ 2.2.1) to the results of chapter one for flat
sandwich panels.

Section 2.2,2 predicts the r.m.s, bond normal stress O; in
a honeycomd sandwich plate for a general acoustic fleld using the
powerful Fourier method of 2nalysis of random variables. Subsequent
sections evaluate this expression for simpler-noise fields. The
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analysis is an extension of the single mode analysis by Head(zo) to
include the effect of response in an infinite set of modes. The
method used to determine the bond normal stress is essentially the
same as 3 method used by ﬁillians(2l) in connection with loads ih a
structure subjected to transient loading. The stress is regarded

as a s of (1) the stress due to the local instantaneous pressure,
if this pressure has been applied slowly, plus (i1) the stress due

to the inertia loading from the face acting on the core through the
bonde (1) may be called the ‘static’ loading and, (11) the ‘dynamic’
or ‘inertia‘ loading. Williams proved for his problem that this method
converged on to an accurate result using fewer modes than would be
required using a method inv-lving a sum of strain effects in each
mode. No proof is given here th:t this method will converge more
quickly for this problem but a proof should be obtainable which is
essentially the same as Willlams' proof. In § 2.2.5 where an analysis
is made for bending stress in the sandwich bond for comparison with

the results of § 2.2.4 this rapidly convergent method is not used.

Here the stress at a point is derived from e sum of strain effects

in each mode. Although this is less accurate than the iillliams approach
for a given number of modes it has the advantage of simplicity, and, as
only an order of magnitude comparison is required it has been regsrded
as sufficiently accurate for this purpose. It is pointed out in

§ 2.2.2.1 that use can be made of the results of chapter one to
calculate the generalised coefficlents of each mode of motion of a

sandwich plate, i{f the plate is simply-supported.




Acoustic forces on the plate, both reactive and resistive,
generated by the motion of the plate itself, have not been taken
explicitly into account in the estimate of bond stress (although an
indication of how this can be done is given). These forces, have,
however, been implicitly included in the generalised mass and the
generalised dam>ing coefficient which feature in the generalised
receptance. This receptance appears in the expression for the stress
(N.B. Receptance is the reciprocal of impedance). It has been assumed,
in doing this, that the acoustic damping is viscous so that it can be
added directly to the structursl damping (which, incidentally, has
also been assumed to be viscous). This auuaptior} will not affect the
results if damping is small. A note on these self-generated forces is
included as an appendix (A.2.3).

Extensive spsctral analysis (g§-octave bandwidth) has been

carried out &n the noise from a Rolls Royce Avon(zz) « From the noise

spectra gi\m;? that work; which are specified in d8, linear spectra
have been computed. From these values, values of the noise spectrum
parameter ¢ , defined in § 2.2.4, have been calculated for a severe
case {(close to the Jt) and are shown in Fig. 14, The spectral
qualities of the nolse, however, do not completely describe it,
because it is necessary to know something of the spatial variation
of pressure at any instant. It has proved impossible to treat the
effects of any real spatial pressure distributions in this chapter.
Only the simpler distributions of plane waves have been treated

nuserically. This treatment however points out the most significant

terms in the stress analysis.
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atical Analyses of t

Sossibilit Excitat of Flat Finite Sandwich Pane

by the Acoustical Coincidenge Effect
DIRECTION OF MOTION WAVE FRONT
OF THEe
INCIDENT SOUND
FIELD
~y— £ -
q— e

If harmonic plane waves of frequency w impinge on a one-
dimensional flat plate at a fixed angle © to the plate (see the
diagram) then there is a unique type of excitation nossible, known
as the coincidence effect. The coincidence effect occurs when the
intercepted wavelength of the sound on the plat . (called the trace
wavelength and shown in the diagram by Ay ) is the same as the
plate modal vavelength ( )\..,,.) and when the frejquency of the sound
pressure waves is the same as the natural froquency of the plate mode
{ Wr). If we have a simply-supported plate vibrating in the
mode W= Wy sin !%x » then )\,.,, = ?% . When the
effect occurs with higher order modes the generalised force exciting
the mode is very much larger than that occurring nhen waves of normal
incidence impinge on the plate, ‘If there §{s no structural damping
the panel then becomes virtually ‘transparent®' to the acoustic pressure

field (i.e. the panel surface is vibrating at the particle velocity




of the incident acoustic fileld a.nd the pressure fleld passes through
the plate as though it were not there). If the plate is excited by a
general random noise field, large amplitudes of vibration can be
excited due to the coincidence effect under the conditions described
in the Introduction to this chapter.

Considering now coincidence excitation of a one-~dimensional
plate by harmonic plane waves, as in the diagram, the two conditions

for coincidence can be writtens

(1) Ame = Ay eee(2.1)

and (ii) W= Wy 0.0(2-2)
From the geometry of the diagram it can be seen that
AS = xt Sme .oo(2a3)

It is evident that the coincidence effect cannot possibly
occur in the :th mode if /\s < )\m, « Now the wavelength of the

sound field A 1s given by the ejuations

A = 2 eea(2.4)
W

where C §s the speed of sound in air. A combination of equations
2.1y 2.2, 2.3, and 2.4 shows that the required incidence of the
harmonic plane wave field for the coincidence effect is specified by

the equation:

SO = 2r¢
Wy >\m' ...(2.5)
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If we now apply this result to the coincidence excitation of
the ‘two-dimensional® plate of chapter one and use the non-dimensional
notation of that chapter for natural frequency and modal wavelength

equation 2,5 becomess

St " /
W\- ) Am,v\(p .E_S LX F ) (206)

Calculations have been carried out taking a particular honeycomb

sandwich configuration (as in § 1.6.2.1). In consequence a specific

(constant) value of /—% has been used, together with a value
for C of 1123 ft. per sec. Equation 2.6 then reduces to:
Sl:V\,em),\ = _9:_2_‘_%5_ ...(2.7)
Amn P

Curves representing this equation can be superimposed on the frequency
vs. wavelength graphs derived in chapter one (Fig. 3) by plotting
lines of constant sound field incidence angle € . This suparposition
is shown in Fig. 8. Ouing to the way in which Fig. 3 has been
plotted, thers are two sets of constant O 1ines, one set for
coincidence in the x-direction and the other for coincidence in the
y-direction. As mentioned above, & necessary condition for the
coincidence effect to occur i{s that A; < A,  or alternatively
that the right hand side of equation 2.7 must be less than unity.
There are smsll regions of Fig. 8 (edged by shaded lines) for which
this condition is not fulfilled and in these regions no coincidence
effect can occur. Interpretation of Fig. 8 is as following: At the
point at which one of the O, (or O, ) lines crosses a natural
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frequency line, the coihcidence effect is possible for the plate mode
defined by this point. The harmonic plane waves must be incident upon
the plate at the prescribed angle ( Gmor ©. ) and must be of the
same frequency as the plate natural frequency given by the value of

at the point.

No coincidence effect is considered in detailed for bubbling
modes as the frequencies of these modes are comparatively high. To
illustrate this we will consider two exampless
(1) For a plate 24" x 24", skin ¢t hickness 0.036", core depth

0.5°, ¢ = 0.443 (bubbling mode, frequency = 56,900 ¢/s)

A = 96 and thus from equation (2.7), 6n = 0.283°

(31) For a plate 24" x o0 , skin thickness 0.024", core depth
6". (corresponding approximately to a control surface
constructed from a honeycomb wedge) ¢ = 1.89 (frequency
= 12,600 ¢/s) A_ = 8 and from equation (2.7), 6,, = 1.278°

From these examples it can be seen that (a) the frequency
of bubbling modes of normal sandwich plates is well outside the

expected excitation range (O - 20 K¢/s), and (b) that the bubbling
modes of all sandwich plates are only excited by the acousticsl
coincidence effect when the sound field wave fronts are nearly
paraliel to the plate surface.

In fact, normal ajircraft sandwich panels have thinner face

plates than those quoted above, and therefore their frequencies

will be even higher.




2:2:2 5n Analysls of the Bond Norme] Stress ( O: ) for a Sandwich
Pangl Cxcited by 3 Cenersl Acoustic Pressure Fleld

The motion of s sandwich penel belng excited by random noise
pressures can be analysed by regarding this motion as an infinite
sua of the natural modes of the platz. This methad is always valid,
because the natural modes form a ‘complete set®, but it is scmetizes
not convenient. If there is damping crupling between the thaoretical
undamped natural modes in the practical case then subssquent analysis
becones open to doubt because the uncoupled equations of motion are
thon not strictly trus. If damping is fairly high in each node
or if natural fregquencies are close then a very large number of modes
takes significant part in the motion becauss of the overlap of
adjacent resonent peasks sznd this makes a sua of natural modes
analysis unduly lengthy. Other methods of approach in these cases
have been investigated. In this chapter, however, we are dealing with
the flexural motion of sandwich plates which is known empirically to
be quite lightly damped. Therefore for the likely acoustic flelds
to be met with significant aotion only occurs in a few modes and for
this reason a sum of natural modes analysis has been used here.

There are two possible ways of exsressing the value of the
uond stress. The first, and simpler method is t» evaluate this
stress in terms of tho direct strain of the mode., For the bond
normal stre:s this is impossible to evaluate without assuaing some
variation of the nornal deflection through the core. The second method
is to evaluite the stress as a sum of two superimposable parts:



(1) The *static® loading

and (11) The inertia or *dynamic® loading

as described in the introduction. This second method is preferable
to the first because of its more rapid converjence, but for the bord
normal stress we must use it anyway, because of the lack of definition
of core normal strain in each flexural mode. Using this method the
bond stress is expressed as the sum of the external pressure acting

on the panel and the inertia loading on the bond due to motion of the
adjacent face.

#e now proceed to use a Fourler analysis to obtain a mean
square value of stress. This is the usual method employed to analyse
random variables, and to obtain the mean square value it involves the
use of three steps.

The first step §s to take the Fourler Transform of the

stress, thusse
[ 4]

-

t
3 ) = z"nj"' ole)dt

The second step is to evaluate the 'Power Spectrum' of the

sy (2.8’

stress. This quantity, so called because of its original relevance to
random electrical power, indicates how much of the mean square value
of the random signal exists in a narrow frequency band centred on the
particular frequency. This Power Spectrum of Stress is given by

the equaticns

Wy )= i & o) 367C)

TS seoe (20 9)

This quantity is always positive because of the squared
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term involved in its derivation

The third and last step is to evaluate the mean square stress
using the Power Spectrum. Bearing in mind the explanation of Power
Spectrun given above, it can be shown thats

©
T2(t) = J W, (w) dw

-0

ees(2:10)

1t can be seen from this equation that the Power Spectrum
Wp (w) is an index of the contribution to the mean square stress
of the narrow-band filtered stross, the narrow band being centred
at the frequency w « The Fourier Transform is effectively
this filter. Two codes of Fourier Transform notation are in common

use and these are shown and compared in Appendix A.2.1,

232:2.1 Derivation of the Power Spectrum of Bond Normal Stress

If we now consider a rectangular sandwich panel vibrating
under acoustic excitatlon, the normsl displacement is given by an

infinite sum of the displacements in the undamped natural modes:

o0
w(t,s") = Z 9, (&) i (s1) cee(2.11)
Y=\

where §,(S') 1s the normalised modal shape, a function of S°*
where S' denotes the position on the plate (x, y). Qs 1is the
generalised displacement. If the pressure acting on one side of the

panel 1s  p(t,S') then the generalised force F,(t) corresponding
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to the rth

mode 1is given by the equation
FV (k) = j P(t)s‘)jv (S\) ds‘ ese (2.‘2)
s
The Fourler Transform of F,(t) 4s denocted by If (w)

th

and the Fourier Transform of the r  generalised displacement is found

fron the modsl equation of motion to be:

3“11 (w) = s (NB

Z.¢ (@) ees{2.13)

This equation assumes that the natural modes are not coupled.

th

Zy (W) is the complex generalised impedance of the r° mode and

is given by:s

Z-( (_b.)) = "Mv (L\)z— (A)Y"> ¥ inf ...(2.14)

th

My 1s the generalised mass of the sandwich plate in the v  mode,

By is the generalised viscous damping coefficient in the rth

th

mode,
and Wy 1s the r natural frequency. For flexural modes of ordinary
sandwich panels the generallised mass is given quite accurately by

the equation

My = @Jma‘v‘@‘)o\s‘ teven(2015)
S

where g,: 2m 4+ m,
™m

m is the mass per unit area of one face plate and m, is the mass

per unit area of the core. The accuracy of this egquation is only
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impaired significantly when the core centre moves a significant
amount more than the faces in the normal direction. This could
occur in the unlikely case of the core being thick, heavy, and
flexible. A small contribution to the generalised mass also exists
from the reactive component of the acoustic forces genecrated by the
motion of the plate itself. This component is discussed in Appendix
A.2,3. The damping of the flexural vibrations of sandwich panels is
assumed to be viscous. This assumption holds true for the low
damping involved. The sources of damping are structural and
acoustic. Structural damping derives mostly from the joints at the
edges of the panel. Very little hysteretic damping cccurs in the
sandwich components and in the bond. It is fortunate that acoustic
damping 1s quite small for a sandwich panel of ths usual dimensions,

because this damping would significantly couple the various modes of
vibration, thus invalldating this analysis., If the damping ratio can

be estimated either theoretically or empirically for a sandwich
plate flexural mode (the latter is more likely) then B, can be

found from the equations

By= 2Mr8cwor ees(2.16)
The transform ('Fourier' understood) of the r°h generalised
acceleration is — Ww* g, (W) and hence the transform of the

inertia force per unit area acting on the face=-nlate is given by the

expression

— MW va (5‘) 3_‘:"(9-)
; Zv () eee{2.17)

-Tl =



Wie will make thin plate assumptions for the faces of the
sandwich so that the normal shear stresses in the faces are zero,
Then, the total force per unit area transmitted to the core through
the bond is the sum of the external pressure and the inertia force
acting on the face plate. If the core is homogeneous (which will be
assumed for the time being) we can write:

Fgl) = Fplas) + wiit ' 1ts) %F:_E“") vee(2.18)

This equation does not include a term due to the damping pressure
which may be actings This term has been assumed to be small. It could

be included, so that equation 2.18 would read:

Fylas) = o)+ T (w5 - ) ?g_% ee(2.19)

Y=\

The subsequent analysis would become very complicated if
this term were significant enough to be included. Consequently,
equation 2,18 is used in the following analysis.

The first of the three stages involved in defining the mean
square stress is therefore complete. The next stage, in which the
Power Spectrum of the stress is derived starts with the relationship
for the Power Spectrum:

. *
Wi (o) = dim T 3 R )




We can now substitute equation 2.18 into equation 2.20 to
give for the 2ower Spectrum of Stress:

o T

©
W‘Ti (REE WP (0ys')+ Jim, Tmw? Z Fe ) [3,(:0,5‘)3; (w) + 3“? (w,s") 3_5_(_‘”)}
\el

ZX(w) Ze(w)
0 o
1 fim Tt 5) D% W) 3% (W) ¢ (o
we T LIRS RS e

The first term in this equation is the Puawer Spectrum of the local
pressure; the last term is the Power Spectrum of the sum of inertia fovces
in the modes. This last term can be regarded as consisting of two
parts. The first part is a sum of all those terms for which = A
This part is a sum of the power spectra of the inertia forées in each ‘
mode. There is, however, some correlation between any two different
modes because they are both being excited by the same pressure

fleld. For this reason there is also a cross term given by the second
part. Although this cross term is usually small we will retain it for
the time being. The second term in equation 2.21 represents the
correlation betwecn the local pressure and the local i{nertia force.
The factor in the square brackets is a sum of tws terms which are
complex conjugates so that twice the real part of one of the terms

is equal to the sum of the two terms. If we choose the second of

the two terms it can be shown thats

A b T3 8) 3 )= FR) (R -i%s,)

2wy e T 2, (@) e (2.22)
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where X -1 Xs,=Jj,(5)2lnfe “* g (5,8'1)dTdsS eeel(2.23)
s ~
This assumes that the random pressure fleld is homogenecus

(3.e. that the mean square pressure is the same everywhere).

x

P (s,80t) is the normalised cross-correlation function. The
correlation function is defined by the integral

T
lp'?_: ‘L"“' ~ J Pipy dt

T>o 87
=T

ves(2424)

and can be normalised by dividing by the mean square pressure at
either of the positions 1 and 2. >rovided that the presswe field
is homogensous the normalised correlation coefficient cannot exceed
unity. If p, end P, are measured at the same position and a time
delay is introduced between them then the auto-correlation function is
obtained. This is an even function of time delay. A useful
relationship concerning the auto-correlation function is that;
®
Wylo) = 3 [ €T ) ax e (2.2)

)

i.e,y the Power Spectrum of a random quantity is the Fourler Transform
of its auto-correlation function.

1f the two points at which pressure is measured are sepasrated
spatially and correlation measurements are made with various time

delays then the function obtained is the crosse-correlation function.

1f ws have some fort of convected flow, as for example in a boundary




layer, then the cross-correlation function can lock rather like a
shifted auto~-correlation function,the shift time being given by the
spatial separation divided by the convection velocity. The normalised

crossecorrelation function might then be as shown in the sketch below

|~ ™IS PEAK VALUE DECREASES
WITH INCREASING SEPARATION

€

I1f the rate of decay of this is rapid with respect to T , certaln
approximations and deductions can be made.
This cross-correlation function can be replaced approximately

by a double step function, as shown below, of tho appropriate width

ATo at T, { T, represents the time taken for convection from
point S to point S* to occur). The innerr integral of equation 2.23
then has real and imeginary parts Xc and Xs . X,_ is
represented by the integral of the product of the two functions shown

below: L.o




X. therefore has the form of wsw?  and X, the form
Ve
of ShwE where [ 1is the separation of the points S and S' and
Ve
Ve 1s the convection velocity from S to S* . X and Y,

are functions of the spatial separation ¢ and the particular frequency

W under consideration. It can be seen that X and )X _ will
have a wavelength given by 2%‘ for the frequency w « For real
convected flows these waves are decaying cosine and sine waves because
of imperfections in the convection of turbulence and because of
turbulence decay. If AT, 4s larger than 42 cosihe: or sine half
period (which becomes true at high frequency) then the integral will
diminish considerably. The evaluation of X, and X_ now
depends critically on the relative magnitudes of the plate modal
wavelength and the wavelength of )(,c and XS for the particular
frequency under consideration.

If the nolse field consisted of random plans waves at fixed

incidence travelling along the plane, then the functions )( . and X s
would tend to oscillate indefinitely. For a one-dimensional plate, the




X‘ FoR (ONVECTED
TURBULENCE

XC FOR RANDOM
PLANE WAVES

wavelength of the 7Cc for convected flow i1s defined as four times
the distance from the origin to the first zero crossing.

The wavelength of )(c and )(5 is of the utmost importance
in deciding the value of this coupling betu&en local pressure and
local inertia force. If the wavelength i1s equal to the modal
wavelength of .ﬁ&sj then it can be seen that a maximuex value of QCW

occurs. This condition corresponds to the acoustical coincidence

effect, Usually cross-correlation functions are not so regular as
in the simple cases mentioned.

Using equations 2.22 and 2123 and splitting the last term of
equation 2.21 into its two parts, the Power Spectrum of bond normal

stress can now te described by the egqustion:
©

Wo-z (2,5 = Wi (wp') - Zma? RS Zfr(s\)‘g_(g‘;)‘l Xc,(“”"‘*’r") ¥ 28, Wy XSY}
Y=

® x
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In a very similar way to the derivation of equation 2,22, part

of the last term in equation 2,26 can be written as follows:

dim T_T‘. O W) IeF W) = P (Veea+ iYSYA>

_— eee(2:27)
where in this case:s
w —
_ Wt X
Y“m* IYSYA :jj‘f‘ (S')\fﬂ(s")é‘n € ll/ (S‘ S,_‘C) d.TdS.d.Sz YY) (2‘28)
S, S o0

The similaritioes between ejuations 2,23 and 2.28 are readily
apparent and t he comnents which have been made concerning conveected
flow, when the crossecorrelation .coefficient is similar to a shifted
asuto~correlation function, apply here toos. The spatial integral is
rather more cocuplicated in the case of equation 2,28 although the same
genoral remarks apply as before. Y. and Y, are functions only of
the frequency w , whereas X . and X . are functions of the
frequency and of one plate position. ch also has a maxiaum value
when the wivelength of Xc and Xs is the same as the modal
wavelength. When the last term of equation 2,26 is paired with a
similar term in which ¥y and 4 have been interchanged we again have
a sum of complex conjugates so that only the rcal part of this term
need be considered. ‘lore will be said of the functions Y, at a
later stage. The power spectrum of t he bond normal stres. can therefore

finally be written thuss

o 84 »
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AL
see{2.29)
2:2.2.2 Derjvation of the 'dean S.uuare Value of Bond Normal Stress

We now come to the final stage in the analysis of the bond
normal stress, which is to find the mean square value of this stress

using the equation:
00

O*) = [ Wa, (@) dew

-0

esa(2.30)

Thus the terms of eguation 2,29 will be integrated over
frequency to find this mean square stress. If we deal with the

integration of the four terms of 2,29 one at a3 time we have:

©

(1) _
jm(’*’)s‘)"\“ = pv)

for the homogeneous
field assumed previously
~ oD

'oo(2o3l)
This 1s the direct mean square pressure from the external field

which acts through the face on to the bond.
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(11) It is well known that the mean square value of the sum of two

random variables is the sum of the mean square values, provided that
the two variables are not statistically correlated, In our case the

two variables are the external pressure and the inertia force imposed
by the face plate. These two variables are correlated because the
total effect of the pressure is to cause the inertia term. Integration
of the first term has produced the mesn square .ressure - integration
of the third and fourth terms will produce the mean square inertis
stress: The second term rerx esents the correction due to correlation
between the local pressure and the inertis stress. If the area over
which the local pressure is correlated significantly, in a narrow
frequency band centred on the mode natural frequency, is small compared
with the modal wavelength then this term will be sufficlently small

to neglect.

If we can assume that Xcv is reasonably constant throughout
range
the frequency/and that mXSY does not vary greatly in the region of

the rt® resonance {and the truth of these assumptions will have to
be decided in a practical case after measurement of the cross-~
correlation functions has been made) then the second term of equation
2.29 integrates thus:

@ ©
- J 2mw® P er (5‘) Mi ‘{X& Lm"—w,") 4+ 238, Wy XSY dw
oy 1Ze (W) >

00 ©
= 2pH) ZE A ) Korlaw + 2 B, o) movde 1 fie(s1)
v=1 -

- X 0]
09-(2032)
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The X, part of this integration is carried out in the following

manner. The frequency dependent part of the integral is
o
ch de
12y (w)*

and this can be svaluated as the integral of the product of the two

functions X“ and
w? (W~ W)
12y (w))*

‘as; seen in the diagram, considering only positive freguencies because

both functions are even functions of w .

/ \x

<

) S T —) m g o= —_— -
—'z _/—"/_/_ L e T T
M / \ Wt (wr-w)
12l
e Wy

W

The first part of the integral is the integral of the préduct of
the constant '—L , to which
" W (w2 - W)
12 (w))?

is asymptotic,and X, , and produces the first term in the square
brackets of equation 2.32. The second part of the integral is the
integral of the product of the shaded portion and X, and produces the
second term in the square brackets of equation 2.,32. For the
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Wt (Wt - W)
\Zv (W) \2'

there is not, unfortunately a peak at W, as there is for the

function |

1 Zv()|*

If there was a peak at w, we would only require that X, remsined
constant in the region of w, . In order to evaluate this integral,
it is necessary to assume that X  is sensibly constant over the

fraequency range O<w<{ W, . The shape of the function X, as

it varies with frequency depends upon the plate position for which it

is being evalusted, and on the function X“* . Xw » in turn,
depends on the characteristics of the noise field. Consideration of some
typical variations of X has indicated that X_ may take a

variety of forms. The assumption that X,_Y is constant over the
frequency range O<w {Wy i3 therefore, not likely to be valid.
Fortunately, it is unlikely that even this whole term {(L.H.S. of
equation 2.32), which derives from the correlation between local

pressure and local inertia force, will make a significant contribution
to the mean square stress. For the purpose of evaluating this Xc

term, the integrals

o
AWl = T (Aepr®)
‘%« (’*’\ \1 2M} 8v(o'3 see (2033)
-0




(which has been obtained by contour integration) has been used. The
X, part of the integration has becn evaluated by assuming wX;

to be sensibly constant in the region of the rth

resonance and then by
using a similar method to the second part of the X _ integration
involving use of equation 2.33.

(111) The mean square inertia stress has been divided into direct
tcms,‘ given by the third term of cﬁuation 2.29, and the cross terms
given by the fourth tem. Here we are dealing with the third term
which is likely to be the most important term in the whole expression
for stress. Under rescnant conditions the inertia loading is inversely
proportional to the damping ratio and is much larger than the static
stresses. From equation 2.27 we can deduce that the Power Spectrum

of the generalised force is given generally by the equation:
We, @)= P Yo cee(2.34)

Substituting this equation in the third term of equation 2.29
we find that the c-ntribution to mean square stress of this direct

inertia term is given bys

m"w‘* valls ) Wr, ) aw= |m w+z:frl(5' P”Lf) Y m
\Ze(w)) - |2, ()12

000(2035)

As argued before for Xw ’ ch has a maximum value when the

wavelength of Xc\r is equal to the modal mavelength. The function

Y,w which describes the wavelength filtering capsbilities of the
- 89 =



plate (and not the frequency filtering capabilities) is directly

(25)

proportional to the function which Powell calls the ‘'joint

acceptance’ ( j. ) and is related to this function by the equation:

)

-00(20%)

where S is the area of the plate.

If the maximum value of the jolnt acceptancs occurs at the
natural freq:ency of the mode c-ncerned, then the colncidence effect
occurs causing large amplitudes of motion.

(iv) The integration of the last term in the eguation 2.29 can be
carried cut if it is assumed that Y, and Y, are smooth

functions in the region of the rth and sth

natural frequencies and
that these natural frequencies are well separated. In order to

perform this integration the integral

[
(At +Bwy G* +D) o = n (Awy® + BwoA4 (o +D)
1Ze [V 12, (w))? MM (wi-wi) S w2
~ L (Awbreup v a4 D)
gpwpz --0(2037)

has been evaluated by contour integration and used. Equation 2.37 has
been derived by assuming the damping ratlios to be small. The

integral of this last term then becomess




L D
,fv(S') j’A(s‘) - .

R |mnt ZZ PO Y, + 1 Y, | [duo
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Py 21 Az)

Y¥A

- e (8') fals) ?
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=\ Ase pfY
Y$A

eee(2.38)

The assumptions made in the derivation of this equation, as
outlined above, are open to some doubt, but because the term as a
whole is small these assumptions will not affect the mean square stress
unduly. ‘(cm corresponds to Powell's cross joint acceptance
and i{s connected to it by the equation

YGVA = ‘—V-\IE-____(.-‘:“):)‘ sng; see (2.39)
)

.as in eguation 2,36.
We c¢an now collect together the various terms which
constitute the mean square stress in the plate normal direction in the
sandwich bonda~-
(1) the mean square pressure (equation 2.31)
(11) The ‘correction® term due to correlation between local
pressure and local inertia force (equation 2.32)
(111) the ‘direct’ inertia force terms (equation 2.35)
and
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(iv) the cross-coupled inertia force terms due to inter-modal
inertis correlation (equation 2.38)

The total expression becomess

Tits) = Pl + 2Py Z[ R J X g, (wydw + 2K, (w)nus &, m "5

¥=1

® ®
— Fels') Ye
_XS'(W)M% JV(S‘)]"’ ?1_6_)J Mﬁ-w4-z‘ _____)__C'_L d-U.)

\Elw)\>
-0 =t
$PB ] ]S [ ]
rat A3t Y A >
A

ees (2040)

The term which is likely to be the largest when the plate is
being excited at a resonance is the direct inertia term as explained
previously. It is quite possible that the major part of this response
could be in a mode other than the fundamental if suitable conditions
prevall. This stress has been obtained for a homogeneous core. If
the forces on the bond are being reacted by a honeycomb core, then it
can be expected that the local stress, where the core meets the bond,
will be higher by a factor equal to the arou-rat!o‘ of the honeycomb,

In fact some alleviation of this maximum stress takes place because of

*rhe area-ratio A 1is the ratio of the total exposed cross-sectional
area to the cross-sectional area of the honeycomb when the core is
cut in a plane parallel to one of the faces.
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the fillet of bonding which forms at the joint.

22,3 AR on_of the General Acoustic Fie o _Random Plane

Haves of a Fixed Incidence

This restriction of the general acoustic field is not a very
practical restriction as far as aircraft are concerned because the plane
wave condition only exists in{the far field of jet noise. However,
treatment of real acoustic flelds is somewhat complicated and relies on
empirical data, so that in this section it is convenient to demonstrate
the significant features of the expression for stress by choosing a
sound field which can be described mathematically.

Let the random plane waves travel in the direction shown below.

The wavefronts are inclined at an angle 0 to the plate.

As
6 ~
S W 3

The cross=-correlation function between the pressures at two

points on the plate S and S' 4s a "shifted" auto-correlation, and

we can writes

5(5,5',1) = Q- Es%ﬁ)

where § s the x-wise separation of the points S and S' and
¢ is the speed of sound in the medium. Substituting this into




equation 2,23 we have:

Kot X, = V%%%’)J.ﬁ(f ,,,,3 2 as ves(2,41)

Similarly for ch and ng we have from equation 2.28

—-_.

cho'\'Y;v WP(w Jfo'(s)jn 1‘0§5W\e as vee{2:42)
i) {2
For a given mode r, Xq and st are functions not only of the
frequency W but also of the position S' on the plate. For a

and are functions

vA

pair of given modes, r and s , Y.:

Sva

of the frequency only. Yc and -Ysm can be described as

VA
functions only of the trace wavelength of each frequency component of
the sound fleld because the trace wavelength is inversely proportional
to the frequency. In the previous section it has been stated that Ya,,,
is directly proportional to the jJoint acceptance squared. Yc," can
be plotted as a function of the ratio of modal wavelength A, to the
trace wavelength Ap o It has a maximum value when Am/[ A =\

For sinusoidal deflection modes of a one dimensional plate, ch

has the form shown belows




-

2 "M/xt

It can casily be shown, by using equation 2,41 and then reversing

the order of integration, that:
©

X ) = | §,(s)P (8228) dis or (2043)

-0 S

In a similar manner, using equation 2,42:
0

Y(fd(.w)dw = J.Y(S‘)jA(S)lL (gs.%\'_e)d'sdrs‘ QQO(ZCM)
® $'s
1f we incorporate the results of equations 2.4l, 2,42, 2.43 and
2.44, which have been derived for the random plane wave pressure field,
into the general equation for mean square stress (equation 2,40) we

derive an expression for the mean square stress (in the bond and

normal to the plate) for this pressure field:
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vee{2.45)

Under the severest excitation conditions, vhen some form of resonant
excitation is taking place, the term contalning the sum -f inertia
stresses in each mode will be the largest c¢ ntributor to tho mean
square stress.

The term in equation 2.45 which is due to the correlation
between the local pressure and the local inertia force (inside curly
brackets) contains three integrals. This term is a small component
of the mean square stress when the panel is being excited at a
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regsonance. I1he maximun values of the {irst and second integrals occur

at plate anti-nodes but they are small at plate nodes., The maximum
valuc of the third integral occurs at plate nodes whereas it is small
at plate anti-nodes. However, the erm containing the third integral is
oultiplied by  fi(s') so that it will be a small term for all plate
positions. The largost values of these terms occur when the plate is
being excited by tho colncidence effect.

The integrals involved in the crosse—correlation term between

inertia effects in different modes (the double sum in equatibn 2.45)
aro similar to those mentioned in the paragraph above. We now
introduce the following symbolss

J £y 08 s = T+ & Lo

1wy Tl

S
Wy TSNE .
and JJJ—,[S.)fA(S)Q, < dSd: IGYAY R ISYAf
S,S

and J $15) 5 (5) 1}7(3-‘—‘_2—9> asis; Ly, eee(2.46)

The tern in equation 2.45 contalning the sum of incitlia stresses
in each mode, which is the nost important term in the expression for
mean square stress, contains the following integrals
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Fels)Fr(s) w We(«) Cos(ws S__ui_e) dw 45 dS, =
\Zv (@)}* '
5,5 o

P (& sind e (1-452) Sa-tr

S|S

ese(2.47)

This equation has been derived in Appendix A2.4 by assuming the

simplye~supported mode of deflections

Jels)= o SM'&? ere(2,48)
It only holds true when m is an odd integer; if m is‘an
even number the whole term is zero. We call |, the "Joint Magnification
Factor's L, Hhas bzen formed in such a way that it is equal to
unity or zero (depending on the mode) when the plane waves are at normal
incidence. It is clear that for a mode with low damping {and for
sandwich plates the mode damping ratios are small) the term containing
L, is the larger component of this inertia stress. A typical
variation of |, (‘_5) is shown in Figure 15. It is seen that it
reaches a maximum value when the modal wavelength is equal to the plate
trace wavelength. This maximum value of l—f is larger for smaller
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damping, In the sube=section 2,2,3.1, which follows shortly, an
explanation is given of why this is so.

Substituting equations 2.47 and 2.46 into equation 2,45 we
have an equation for mean square bond stress in the normsl direction

for a simplyesupported sandwich plate being excited by random plane

wavess
o

GZes) = P |1- 2], T O Ty, - 2meo 8 Wole) T s W I, }
£} P"Lt) FTf)

= Zf‘(S')[ BT, + Wplor) mue (1-457) 88" Lf]

MW & me-nd

=1 0% MY MA qu) P
M vee(2.49)
We now introduce the non-dimensional parameter 4) s thuss
e = TorWe () v s (2.50)

2P &)
4), is a function solely of the pressure field and the modal natural
frequency. If we have 2 Power Spectrum of pressure as shown below
then wap(wv) is represented by the shaded area while F"—-E} is

represented bythe total area under the spectrum. When the spectrum is
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of this form ¢, is of the order of unity, Large values of ér can
clearly occur when the spectrum has one peak which occurs at Wy .

A typical variation of ¢(w) is shown in Figure 14. Equation 2,49

now beconesi

o0
0 68) = Pl [\ -2 Z ﬁfvtﬂ[l%— 43, b, I, + 24 Is,,]

Mg‘ m?. ni 1‘4

) 2.,
4y ) (Lo, + 18 (1-487) 6 28 L,]
y=) ¥

® ®
4—2 Z m"%}f_‘) [L&m“‘ 2{¢r Ism + &, Isw;gﬂ

=) Az A
T
eee(2:.31)

From this equation we can see that the important direct inertia
term is inversely proportional to the damping ratio and is multiplied by
a8 function Ly~ which can become large if the acoustical coincidence

eifect occurs. To reduce thls stress, thereforc, damping of the

- 100 =




flexural vibrations of the panel would be the most effective step.
Care should also be taken, in designing the panel, to avoid, as far
as is possible, the likelihood of excitation by the acoustical

coincidence effect,
2.2.30! A Comme O ] 'J ¥ fica 0. '

fe have seen in § 2,2.3 that there i{s a term in the expression
for mean square bond stress which derives from a sum of mean square
inertia stresses in each mode of vibration. This term is large under
severe response conditions. It has been evaluated in Appendix A.2.%

and is given by the following equation:

wtWe @), - = T It g
/lzv(w)\z jj By FO050) P (350 as a5,

~00

4 Welwy) nwr (-43¢2) 826> |+
M} 8" M’thn4- 'YX X} (2052)

This equation has been derived for a simply-supported plate.
Calling to mind equations 2,34 and 2,36, viz.

WF,, (w) = We (w) Sz\:l:

we can see that the left hand side of equation 2.52 is the integral

of the product of the three functions Jves w“/ [Ze (@)%, and Wp(w),
Here, we are supposing that the spatial integral has been carried out

first., In the appendix it is convenient to perform first the
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integration with respect to frequency. Now the function w"‘/ |2y (w)1?

has the form shown belows

!
s

e
<
8\!

It can be split into two parts, viz. a constant | /Mv?' .
and another function which has a peak at W= Wy s The left hand
side of equation 2,52 may therefore be split into two parts. The
first part, involving the integration of the product of the constant
/mE Je  and Wp(w) ylelds the first term in equation
2,32 above; the second part ylelds the second term in equation 2,52,
The function Ly in ﬁhis term is called the ‘Joint Magnification
Factor'e For a mode with m and n odd $t represents the factor by
which the response in that mode to plane waves of normal incldence must
be multiplied to give the response to plane waves of general incidence.
It thereforo has unit value for normally incident waves and for modes
with m and n oddse If either m or n 1is oven, Ly s zero for
normally incident flelds. L+ depends on both the plate dynamic
characteristics and the external pressure field and can be expressed

as a function of the modal damping retio and of >\.,\ / Aty .
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Here, >\t,. 1s the trace wavelength on the plate of the component
of the sound field of frequency wy; . In Pigure 15 it can be seen
that the maximum value of L; occurs when Am /Ay, =| o This
maximum value increases as the damping decreases. The main purpose
of this section 1s to explain why this variation occurs.

If we assume that Wy () is reasonably constant in the
region of the rth natural frequency then the second part of the
integral 2,52, with L, as a factor, is derived from the integration

of the product of the two functions shown belows

Sy,
rd

(
@ A"‘a W= Wy

2l

Am | w

EALLESY
-1, At
My

A sketch of typlcal values of Jw  has been seen before.

If the peak value of J# occurs at the natural frequency of the
mode , wy, then the moximum value of this second term occurs. and
corresponds to acoustical coincidence effect excitation. For high
order modes the peak of J:,' becomes very narrow and can be
replaced by a narrow double step function of the same height. The

maximun valuo of this second term then derives from the integral of
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the product of the two functions shown belows

This maximum value is therefore proportiona2l to ('/46,’ - | ) N

For normally incident plane waves j,?,‘ is a flat function, so that

the value of this second term here is proportional to the area under
the curve shown shaded in the sketch above. This area is proportional
to (\-—46,‘) /87 +» L+ has baen obtained by dividing the general
value of this term by the value obtained for normally incident plane
waves. Therefore, the maximum value of L+ (at Am [t =1 )
is proportional to (1/452—1) = (\—-48,’)[ Sv . Thus the maximum
value of Ly 1s proportional to l{ 8+ o provided that the form
of J:; is such that its peak i1s contained within the resonant peak,
1t will be noted (from Figure 13) that the variation of the
maximun value of Lg with damping is not as strong as ! [S¢ for
the values of &+ considered. This is becauge the width of the peak
of J,'; is in fact rather greater than the rcsonant peak width. In
this case the maximum value of L corresponds to some intermediate
condition between the very shapp jw (for which Ly, & ![& ),
and the flat j2 for which L+ =1
- 104 »



2,2.4 A Restriction of the Gensra] Acoustic Field to Norma}l Incidence

R Plane W

For normal plane woves the incidence angle O $s zero o
that 8 5&‘6@ =0 « Therefare sin (w: §$LC_9) =0 and
cos (wr 35%.9)=l + The pressure is now perfectly correlated over the
plate so that t/7(§él39) = |  everywhere. Under these conditions

we see that the following simplifications are possibles

ICw Jj,(S)d.S = I (say)

v00(2.53)

and ejuation 2,51 for mean square stress can be rewrittens

[

* LG wd(w“‘-—é—?%)

=1

=\ b=
T+,

see (205‘)




bsaring in mind that for the assumed mode of equation 2.48s

z_ 6atl” _ab: . 7 2
I‘ B mtat 4 LY —m"n"n“' (‘ wsn‘n) (‘— COSMTL) !00(2055)

1f, therefore, either m or n 1s an even integer the irt egral
If 1s zero and tho generalised force is zero. i.0 motion in this
mode then takes place. We will assume therefore that for mode T
m and n are now restricted to odd integers. If we now replace the
non-dimensional function %%YJ%(Sﬁ 1, by Co¢ we can rewrite

equation 2,94 thuss

(R 12, R, e2fl_ s B
cr%(t,s)-ﬂ*’ﬁ‘ ZC"S *"Z;.‘*” Flaar -af)} cee(2.36)

It has been shown in the appendix A.2.1 that the two direct
stresses in the bond of a honeycomb beam vibrating freely in 2 single
mode are of the same order of magnitude, A siailar comparison vwill
now be made for the dircet stresses at the centre of a sandwich plate
vibrating {n a set of modes excited by normal incidence plans waves.
The value of mean square normal stress is calculated here, the mean
square bending stress being calculated in theo next saction,

Sample Ca + A calculation using equation 2,956 above is made
for the mean square normal bond stress at the centre of a honeycomb
sandwich plate, The plate chosen is identical to the plate used in the

experiments described in chapter three. Empirical values of natural
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frequenclies and damping ratios ars taken from chapter three. HNotion

of the plate will be restricted to the t wo natural modes:

= SuaTlx Sun
fils) = sinT

and j‘,_ (S) = Sin 3-1}:’( S

The panel characterigtics aro as follows:

A=
b=
he =
by =
A =

p =

425 ins
24 ins

0.,0124 ins
0.425 ins

T2.27
2,95

The two modes chosen only allow a single half wave in the

y-direction,

A table of quantities relative to the roblem is given below.

Values of 4» are taken from Figure 14 for the Rolls-Royce Avon.

These values of ¢h are not at all representative of a normal

incidence plane wave sound field but they will servé for this comparison

of the tw> stresses

MODE Wy ) S dr (wy) |Gy ('G/gn‘n.‘)
1 204 0,015 0.04 +0,580
2 579 04003 0427 -0,183

To find the direct normal

stress in the honeycomb core we aoply a
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factor A to the normal stress to take account of the local straess

magnification at the cell wall~bond joint. Equation 2.56 can thus be

written for the plate we have chosens

o) = x’-ﬂﬁ{{‘- Yif'}%( Z‘CPfo 3,4 %)] ves(2.57)

0t = N Pl [{ |- 0363+ 2.614 - 0.085 4 0.005]

022 %) = >(‘§'(€)f_o.40\ + 2.534]
G = ABPD L2

G (0) = 124 pE)

It can be seen from this calculation that the mean square stress is

given by:

®
0z2(t) £ X* prly) Z & & eve(2.38)
Y=\ Y

within an order of magnitude, As is to be expected, the inertia term
is predominant for a plate with flexural modes having low damping.

Subjection of 2 panel such as that above to & nolsge level
of 170 dB would therefore only produce an re.m.s. stress level of the
order of 100 1b/in?, This would be unlikely to produce fatigue
failures. However, for a plate undergoing coincidence effect excitation
or excitation of a similar sort this stress could rise appreciably
because JT:; s which is approximately the scaling factor to be used,
can, for example, be as high as 2,36 for the third mode. Coincidence
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wnbeniniesny offect excitation affects panel fatigue characteristics
adversely in two ways as the mode number rises, provided that vibrations
occur at 3 hipher frequency, as they usually do: The first is that

the value of the term containing L, rises approximately in propertion

to the natural frequency (see Appendix A.2.4). The second is that the
nunber of cycles occurring in a given time is increased, thereby

reducing the time to fallure.

the Mean S Bending Stre n the Bond of

In Appendix A.2.1 it is shown that the bending and normal
direct stresses in the bond of a freely vibrating honeycomb beam are
of the same order of magnitude. The analysis of this saction shows
that this conclusion is also true for the stresses in the bond of a
simply=supported honeycomb nlate which is being excited by normal
incidence random plane waves. As only an order of magnitude comparison
is to be made, the more accurate method due to Williams, mentioned in
the introduction to this chapter, 1s not used. Instead the stress is
derived from the strain in each mode and not as a sum of the static
and dynsmic loadings. The advantage of using this strain mesthod lies
in its simplicity. The analysis is carried out for the bending stress
in the x=direction and assumes a series of modes in the xe-direction .
only, as has been assum>d in the sample calculation of § 2.2.4. This
is a reasonable assumption for the sandwich panel already considered.

Consider a simply-supported rectangular sandwich panel of
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dimensions a by b undergoing excitation by random acoustic plane

waves at normal incidence. The transverse response of the panel in
flexural modes is given by equation 2.11. Suppose that wa can restrict
j;(sﬂ to a single set of modes, thus:

U e
fr Goy) = St X sin 1—"5 oee(2.59)

$0 that only one halfewave is allowed in the y-dfrection. The bond

strain in the xedirection is given by:

x
N )
“ex-—' &4 Z q_.‘ (k)af -a JCY(5> 0-.(2-60)
x>
Y=l
ac is @ factor less than unity and takes account of the alleviation
of e, due to core shear distortion. It can be shown thit 1f we
assume a linear core distortion (see § 1,3.2) then a+ is given by
the equatiom _
pAPy

ar = 1 - (1-v)¥Y ees(2.61)

Note that here, % is the non=dimensional wavelength parameter
given in chapter one and is not a correlation coeofficient,

Now provided that the bond obeys the usual type of stress-strain
relationshlps used for homogeneous materials, the bond bending stress

in the xedirection is given by the equation:

Ox = "‘_E_:‘;'i (.ex + Vey) 000(2062)




where E\D is the Youngs Modulus of the bonding material. Substitution
of equation 2,60 and a similar one for €y into equation 2,62 givess

ase (2063)

B S a‘jv(5)+v Fhis)
Tt Z%«@)“Y oy* }

The Fourler Transform of this stress is given by the equation:

3 (w,s‘ = -E‘""Z [““ +V 1 > ?Lt((:; eee(2.64)

bearing in mind equation 2,13,
Using equation 2.64, the Power Spectrum of the x-wise bending

stress is given by the equation:

W os)= {2 Z za«%ﬂs')j&‘ (e ] el o 2300030000y
Yo Ay Ze(w) 22X (w) ees(2.63)

For the purpose of this analysis we vill assume that we can neglect

the cross terms in this equation. Equation 2,65 then reduces to:

A W,
W)= 5] Z“” FEeE ey “\{Fﬁl\z e (266)

For normal incidence random plane waves the Power Spectrum of the

Generalised Force 1s given by:

Wee () = W (W) 13
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and substitution of this into equation 2.66 givess
0

ws) = (B v T\ EWe (W) T
WO'l( 1Y) {‘\j:\;-‘;g Zq j (s (h“) +V( )} \.;Y(:;)\‘Z 0es(2,67)

s

The moan square stress is given by the integral of the Power Spectrum

of stress as in equation 2.10 giving:

R R T
vy — @

Making the usual assumptions regarding -VV}@O) and using equation 2,33

this becomes
)

ZRR AR AT B b (@)

For the purpose of comparing the magnitude of this stress with the
normal stress of equation 2,58 it i{s convenient to introduce the
non-dimensiohal notation used before in this chapter, viz:

Gy =T wy Wp ()

2 P
and Ce= ﬁv Je () Iy

the expression for mean square stress then becomes:

T a,c\, rc za.CvdH
0. ) Plt) Z[ -"y we S, (.04' see{2.70)




The differential equation of motion of a sandwich plate in which

there is no shear deformation s

byr — m OW _
DV w m ‘6’\'_“7_ - q, .n(?.‘n)

where the symbols have their ususl meanings. 1f the plate s

rectangular, simply~supported, has a rigid core, and vibrates freely

in the mode sin % . sin LY the natural frequency { W)
b
is found to be gqven by
2
»1_ 7B b b [nmye G
?}M()Jy = m \-'VL [(R) <+ (’B) a-..(2.72)

(b has been defined after eguation 2.13. Core shear e¢ffects have
been neglected in the derivation of this equation yet i{ncluded in the
derlvation of equation 2,60, This is becsuse the effect of core shear
on the natural frequency s expected to be less than the effect
on the bond stress.

It will be noted that the symbol V has besn used for the
Polssons ratio of both bond and face materials., We have therefore
sssuned that theose two ratios are sgual. Using equation 2.72,

equation 2,70 becomess

o0 2 2
0;'2.&) = Wt) %fﬂ(}z ('l}\c) +v (,1{)1 - q-vz G ¢"' (2.73)
Y n\a 2 seN .
4 & (=) +HEY]T] Afe, %
|
where «= Ep[E,,
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or slternativelys

2,2 4 i n(b 2
&6) - o P Z U S Targra

24 -'0(2074)
4/& ¥z D+ VI"(-%)'L]?- ov
If we now put:
L+ S(& ]
2 = ¥r see(2.75)
[+ (5)]
squation 2.74 becomoss
- :. 1A X Oy C ¢r
T T VAR ) ward i
% 4/W & 5. {2.76)

Y=l

If  ¥.,'or s approximately unity we can see, by comparing
equation 2,76 and equation 2,98, that

—

Ox o BXY Am

———

8—; 2 Iu,)\‘n."

vss{2:77)

For the lower order modes this assumption holds reasonably true
but for higher modes Yy Q2  drops below unity quite rapidly. For

sn ordinery honeycomb sandwich panel the factor given in equation 2,77

is shown, below, to be of the order of unity, Therefore, the conclusion

reached in the Appendix A.2.1 concerning stresscs in the bond of
honeycoad beams holds trus for honeycomb plates which are being

excited by normal incidence random plane waves, The factor glven in
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equation 2.77 is similar to that obtained in the Appendix A.2.1 for
sandwich beams.

Samole Caleulations A sample caleulation is now earried out for Ox
using equation 2,76 abova,'to find the magnitude of this stress. The
caleculation is carried out for & panel identical to that chosen for
the sample calculation of § 2.2.4 snd under tho same excitatien
condition. Agein, motion is restricted to the tw> modes cited in

§ 2.2.4. For this panel we have the following information which is
additional to that given in § 2.2.4s

o W 0,)
V = 0.3
Am' %

/.A."anz

For mode 1 we finds

a;z o 007%
\6\2 u 1,409
and 0¥l =« 1,121
For mode 2 we find
0r = 0.523
Y7 = 0,800
and az¥le 0,262

«11% -




The factor of equation 2.77 is given by:s

?OQVA:\- - 64—8
‘fo,)m"
Using equation 2,761 ‘2‘
G2 = prlt) W2 6.48° Z oF By (zg’
Yz Y

= P X 643° 1378

The values for Cv o O and &, given in § 2.2.4 have been used

here. The F.m«3. bending stress is therefore given by:

O ) = 7.60 A pb)
= 550 p&®)

This stress can also be magnified considerably when coincidence
effoct excitation takes place and siresses may then be of sufficient

magnitude to csuse fatigue failures (see the results of Chapter 4).
2:3  General Remsgky -

It 1s evident that the normal stress and the bending stress in
the dond of a honeycomb sandwich panel ars of the same order of
magnitude when the panel is being excited in flexural modes. For the
worked exanple given in this chapter the bending stress was the larger
stress of the two by a fac;tor of 4.4, This plate was siaply-supported
at its edges 2nd was excited by random plane waves st normal incidence.

Motlon was restricted to two modes. The maximum bdnding stress in the
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bond was 530 times the incident r.m.s. pressure. Had the motion been
restricted to bubbling modes slone then the bending stress would hive
been very much less than the normal stress in the bond. The 1likelihood
of the acoustic excitation of bubbling modes is quite remote, however,
because of their high natursl frequencies,ss explained in Chepter one.
The facter @—2‘%}%5 derived in § 2.2.5, as an approximate
expression for the ratio of the bending stress O to the normal
stress (; can quickly be calculated for any panel. For the worked
examples this factor was 6,58 compsred with the actusl stress ratio of
4.4, If this ratio is very large or very emall then Ox or G will
be the predominant stress, respectively. If the bending stress is
larger than the normal stress in the bond, fatigue failures of the
dadbonding type are not necessarily precluded in favour of fatigue
failures dus to the bending stress. The reason for this §s that when
cracks start to form, normal to the bending stress, some of the bending
load which the bond had been taking is shed into the fasces. Alsgo, these
cracks will not penetrate es far as the face because of the close
adhesion of the bond to the face. Cracks forming normal to the
bond normal stress can propagete quickly, however, as there is no
other medium to which the load can be shede The initiation of cracks
normal to the bending stress can cause stress concentrations which
will accelerate the debonding type of éailun. especially if cracks
aye formed where the honeycomb joins the bond,

1f we consider .an sircraft sandwich panel being excited by
jet noise then the likelihood that the bending stress is of the same
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order of magnitude as the normal stress ir the bond, depends on the
charscteristics of the noise field, If the overall correlation length
of the pressure field i{s extremely short then negligible motion will
take place because generalised forces are very small, For this
pressure field the normal stress will be the larger stress in the bond
and will be due t> the inclident pressure only. The bending stress will
be zero. On the other hand, if the wavelength of the filtered space
correlation of the pressure field, at the natural frequency of one

of the modes, is the same 23 the mxial wavelength then large motion
occurs in this mode due to the coincidence effect. Here, the bending
and normal stresses will be of the same order of magnitude and the most
significant parts of both stresses will be due to inertia effects.

The real noise fleld for (say) s ruider pancl is closer to the

| letter case, @.g. & typical rudder panel might be four £eét long and
might have a fundamentsl natural frequency of about 100 ¢/s. The
halfewavelength of the filtered lateral space~correlatinn of nolse
pressure st 100c/s is larger than four feet for a typical jJet engine.
It is therefore likely that thes® two stresses will be of the same
order of magnitude fr slrcraft sandwich panels.

In the analysis of this chapter no restriction has been
specifically applied ¢t~ limit the plate velocity to the acoustic
particle velocity. This restriction would have been aoplied 1if the
scoustic reactive and resistive forces had been included &n the
analysis. However, if the damping retios used in any application
of this chapter are  reater than the actual acoustic danping ratioe
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for the pancl concerned, then it is impossible for the normal velocity

of the panel surface to exceed the particle velocity. The acoustic

damping of a panel is usually much smaller than the structural damping

so that a reasonable estimate of the total damping will not permit the

normal velocity of the panel surface to exceed the acoustic particle velocity.
The factor I.r - can become large for higher order modes because

its peak value la proportional to rz. However, the factor by which "‘r

is multiplied to give that part of the inertia stress, is peooportional

to wr * r2 + Thus, as the mode number rises, the peak value of this

term 1s proportional to the natural frequency of the mods. With regard

to fatigue therefore, coincldence effect excitation becomes more dangerous

as the mode number rises (assuming that the natural frequency rises)

because of the rise in bond stress and also because the number of cycles

occurzing in a given time is incroased. The magnitude of stresses calculated

for plane wave excitation of sandwich panels 1s quite small, viz. about

800 1b/in? for the severs condition of 170 dB (re 0,0002 dynes/cn2).

It has been pointed out, however, that when the panel is under the

§nfluence of a noise fleld with suitable spatial pressure correlation

(e.g. inclined plane waves at the coincidence angle) magnification of these

stresses can take place. Some simple calculations have been carried out

by the author to investigate this magnification. The sandwich panel -

normally incident noise field configuration of the sample calculations has

been changed by rotating the panel so that the nolse fisld is incident

upon the plate at the correct angles for the coincidence effect excitation

of the second and third modes of the panels {(viz. those modes with two

and three half-waves in the x-dircction). Under this excitation the

predominant term in the expression for stress (equation 2.31) is the
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direct inertia term of tho mode concerned. This term has been evaluated

for the coincidence excitation of these two modes. For the coincidence
excitation of the second mode the maximun bond normal stress is 75 1b/in>
and for a similar excitation of the third mode the maximum bond normal
stress is 173 1b/in®, These figures compare with the 125 1b/in® maximum
bond normal stress whon the panel is being excited by normally incidemt
plane waves. The stresses of 73 !.t;/ﬁn“2 and 173 lb/in2 will 4n fact be a
1ittle larger dus to contributions from other modes. If the incident
angle for coincidence is simllar for several modes (as in the case examined)
then this further magnification can be large. These figures, are, for
obvious reasons, highly deperndent on the damping of the mode concerned
and the power spectrum of pressure at the modal frsquency. These effects
can be reduced by careful design combined with a knowledge of iikely
noise fields and especially by the use of damping.

One of the factors which makes any application of the work of
this chapter approximate only is the difference batween the ideal
single simply-supported panel of this chapter and the rcal panel, which
is joined to a structure of s similar stiffness to itself st its edges,
and has assoclated acoustic cavities which modify its impedance.
Another factor 1s the difference between the idcal noise fileld considered
here and real noise fields. The predicted values of bond stresses for
aircraft sandwich panels can therefore only be within an order of

magnitude of the actual values.




Appendix A.2 Direct Stre

a8 he Bend

Vibrating Free

This short and simplified analysis is carried out to show that
these two stresses are of the same order of magnitude in the bond of a

honeycomb sandwich beam. Consider the simplyesupported beam shown

belows

The characteristics of the sandwich are given by the

following symbolss

M= the mass per unit length

My® the mass of one face per unit length
26 = the core depth

h. = the face thickness

A = the area-ratio of the honeycomb

If the mode of natural vibration of the beam, without
damping, is given bys

- Y X
W= Wo sWATLX o80T eee(2.78)




thenthe maximum bending strain in the bond is
2
2, = uroﬁ.(%) vee(2.79)

at the beam centre. This is apbroxiuato only because the alleviation
of this strain due to shear distortion of the core has been neglected.

So the maximum bending strxess is given by

Q.= Eve. = Ee ﬁ;(’—%)zuro

The maximum stress in the z-direction in the bond (normal
stress) is due to inertia loading from the vibrating face and for a
homogeneoug core this maximum stress, which will again occur at the

beam centre,iis given by the equation:
q = }"Zwo w1 #se (2.30)

However the direct stress in a honeycomb core will be
magnified by a factor approximately equal to the area ratio, so

that the maximum stress is given by

(&:: >\,Az N..ow?. = >\bf° }.}‘_:* )A“;L ...(2.81)

Now the equation of motion of the mode of vibration of the

beam gives rise to the frequency equation, thuss
Tt\4 2
Em 1 (‘é) - p =0 eer (2482)

where I 1s the second moment of area of the beam cross-section

and Eul is the Young's Modulus of the faces. This equation does




not take into account core shear distortion effects unless a modified

value of I {is useds If we now substitute for s’ in equation 2.81

using equation 2 gathe bond normal stress becomess

(j'2 = AW, %: Eml Q%>4 0-0(2'83)

and if 1= 2R h, » the results of equations 5 gaand 2,79
can be compared by writing

O . ¢ B &
O_i /‘L'L EM 7\1‘7' cl\c'l?_

ees(2.84)

This non-dimensional expression is of the order of one for ordinary
sandwich configurations and therefore shows that the two stresses
are of the same order of magnitude in the bond of a honeyconb sandwich

beam vibrating in a single flexural mode.

Appendix A.2.2 Iwo Codes of Foyrjer Iransform Notation usad in the
A g Rand Py e

The two codes listed below are those primarily used by
mathematicians (a) in which the transform and inverse transform are of
a similar form, and those used more often by engineers (b). Either

code can be used but a mixture of the two is inadmissible. Code (b)

has been used throughout this chapter and chapter 3,




Title Code (a) Code (b)
® ©
F 1 _ _L =it _ o‘\.h’t
T [P0 5| O 3‘@-%4 R
-3 -
Inverse | w,-m; g Wt
Fourier Flr)= L J &% (w) dw Flo)= | € Jlw)dw
Transform V2x
- 00 ‘ -
Power Spect < Jim 30 3*@ = din T )30
R L to® t, Wels)= tro to )37
fo L[ oL s
hut lats o L FR)F(t4T) at 1) = dim L | Fle)Fleat)ak
¢ lgzz::o: " Yk ™o ?.TJ (IF (e47) Ve ) o QTJ e )
-T 'y
w I
WF (W)= i] e-—’unt lp(_t) dt We (w)=i.nJ€1wt¢<t) aT
-D ~R
P ®
ffha?c’fg:aro F2lt) = 2| We () dw F2(¢) = j We (w) dew




A ndix A,2 A Note Aco Radiation a eaction Force

{Razping snd Virtyal Mass)

In the text of chapter two no account has been taken explicitly
of acoustic radiation and reaction forces other than an implied
inclusion of the acoustic damping (assumed to be viscous) in the modal
damping ratio &8; . These forces are in fact small for a plate
without an enclosed cavity behind so that neglect of them is justifiable.
However, gsome account is given of them here for completeness,

The acoustic pressure dp on an element of area ds, , due
to harmonic motion of another element, a distance % from it, of
area dS, 1is given, by

. (R (A-ct
dp = = ((Pm as,) gl cere(2.89)

(see Morse; Theory of Sound or other standard textbooks. )

where f is the frequency of harmonic vibration of the plate in c/s,
W, 1s the velocity amplitude of AS, and R is the wave-number

(= 2nf[c ). The velocity at As, is u.efim » therefore
the amplitudes of the two pressure components at dS, are
e%?““"“‘- 0S, 1in phase with velocity and PI%2 coskh . AS,
" 1agging behind velocity by 90°. h
The first component is the damping force and has been deslt

(22) (23)

with by Mead and by Mangiarotty « The second force is the

pressure exerted in phase with acceleration and can therefore be
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regarded as a virtual mass.
The total virtual mass pressure acting at the point due to all

elemental pistons is:

. .. P
-1 f_{'ﬁl cskhdS, = 1.q‘.€_, "2”_‘5!‘3:(51)457_ eve(2.86)
$ L Y
(3 s
now - iwiL = 'C.L
and thus the generalised force on the plate in the same mode is of

amplitude

qi

2

£(s) “_f*a’_‘." F(s:)dS, A4S, ves(2.83)

S S

This §{s a generalised (virtual)inertia force, and the coefficient
of 9 may be called the generalised virtual mass of the air

surrounding the plate, corresponding to the mode f(s)

e, My= £ ] 560 wekh £is)as ds eoe(2.88)
2K S me |
sl

The ‘uniform pressure' approach which Mead applied to acoustic

damping forces (this theory assumes KA small so that sin Rh= Rh

and cos Rh= | ) cannot be applied accurately to the virtual mass of

air surrounding sandwich plates although it provides an upper bound

to the virtual mass for the fundamental mode of vibration of the plate.

This upper bound has been computed for the inner integral of 2.88

by a matrix method and results indicate that virtual masses are of the

order of one tenth of the plate masses for the plate of chapter three.
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Appendix A.2.4 Evalyation of the Integral of Equation 2.35 for
Random Plang Waves at a Fixed Incidence

This integral is the contribution to the mean square normal
stress in the bond of the sum of inertia effects in the modes. It

can be rearranged thus:

12 l)}* 12y (W12

mm‘fzwm Z wt e [s)J W Wr () gy .+ +(2,89)

-0 Y-\

It was originally thought that this integral could be evaluated
by assuming Wi, (w) to be constant in the region of the rth
resonance. However, although the pressure spectrum, \N}(w) ’
might be constant near W; , the generalised force spectrum,'Vﬁw(w)
can be highly variable near .uur + A more sccurate analysis

follows, taking account of this varlation for inclined plane waves. We

can expect this integral to be large when the coincidence effect

QCCUrs.

Extracting the integral of the right hand side of equstion 2,8¢
we haves

» D

0 1y [ ) 50y [ ST s o 0) i,
|2y (W)|2% 12, (W2 c

-® S -0 ees (20”)

where g::bq-x,) for random plane waves travelling parallel to the

x~axis and incident upon the plate at an angle © . The inner
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integral i{s given by:

J WP(w) s (wgme){' N 2(1-280)uwtwéd - w:‘g doo =

w4~ 2(1-25Jwno% + wd

~00

_— - ® 2 2 4 .
lL {p‘-(t) 1) (§SILC\_9) + W (w ') {2 (1- 28wty — wy s (w 5 5_'_‘19> d uo}
v wt-2(1-282)wied + oyt c

- od

eee(2+91)

The integral in the second term on the right hand side of equation

2.91 is found by contour integration to be:
- l §5"\e/c \wv 51

Ty £ R e\‘u |Esin8/c| g2 ( J’(_‘a—}@-%}) +18y (3—46«"))
264 1\-8¢

see (2092)

The right hand side of equation 2.90 becomes:

) J Jj«(s.wsz)ﬁ(f&—‘;—") 45,45, + We () Ty g{(\- 453) 152 +18, (3-45})}
M} 2 k3
33, 2My 6l -8

s/l (-8 3
}S.:fvb)jvlsz)ﬁ we|Esin8/c| (-8v i {i-a¢ )dS,c\S,_
.-.(2’93)

Now the double integral in tha sacond term of equation 2.93 (for

convenience called 1) can be evaluated further for a simply-

supported plate mode. Put

= wy (-8 +1{iT8) 30
C

d st) = SN 5 WMy
an j;( ) = n My
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thens

I:' :b"‘( (\— ?7_ [2(\— ”’ OosV\TC) — oot
M D T Do (e ] os (2.94)

Now awr sn® _ . [/ A, so that we can write
"t
* ~
a—‘g' = l'.“ (" 61 +1J\'8}> 0.0(20%)
nt Abv

Consequently, provided that m is odd, we can write

_ 8k &[_\ oSN . -"M(&‘iﬁﬂj {‘ ,

o (1-28%)
T- 2 (1262) «o#]* (-2

4 o (- 38+ 88,’4) + 418 «* (|52 (\_ o2 (\,7_5(7.)*
_vme (-8 438 + o« 8 - 1EH)]

2 [\ - 22 (l-—ZS}) + d4 ]
...(2.96)
in which «= Am (A, + If m is even, I =0.
Equation 2¢96 can be writtens
1= By
Yr{"n"ﬂ‘ son (2.97)

A s the term inside curly brackets in equation 2.96 . The

second part of expression 2+93 1s given by:

Welwe)  Bokb* [(. 482 1-67 + 18, (3- 451)]A
2M2 & Ji-ap et eee(2.98)
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This can be normalised by dividing its gensral value by that
which would be obtained for plane waves at normal incidence ( X = Q)
when n 4s odd. This quotient is, of course, L+ .« For hormsl
plane waves, A = (1 = cos nTt ) and when n 4s odd expression
becomess

We (wy) Twe (l- 483 o
M} b« mtntnt see (2.99)

(If n is even, the expression 2,0g1s zero). The total

integral (expression 2,938 ) can now be written:

o —_— —_
j P We ) gy = PP Fls0f s ¢ (& S_*'::e) ds, ds,
|2 W))2 M7 <

LY

+WP(,WV) Twr (1-487) Balb* L

2 2. 2éd
M> & Rt eee (2.160)

and we find that L,, is given by the equations

. OSNTL. oS NN f1-82

‘ ‘ -nRARS,
Le= [(\- ¢ )
2(-483) 18 (1-22(288) ¢ ud] ( [v2e(-282) 4]
T ((1- 280 - 224 w8) 4 8 €™ s sinmmec (137, ((3-489) -2 «4)]

4 hrtu 8{ I\_—??; . ‘—2 (l-za}) - «1]} see (20101)

l_‘_ (called the Yoint Magnification Factor') provides the maximum
magnification of the response quantities when o 1is near one (in

addition to the dynamic magnification arising from the (\-— 48,‘) / oy
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"resonance” term). This is a direct result of the acoustical
coincidence effect. In designing a panel it is therefore necessary
to avoid the coincidence effect as far as is po-sible.

The maximum values of L; can be roughly gauged by
putting « =1 in equation 2.101 ahove (the lower the damping
ratio, the nearer will this approximation be). Assuming that the

damping is small, equation 2,101becomes

Ly = 0wt _ S5 (“7’7‘1‘-_\.)3

o=1 < E _\_é 2 000(20102)

The maximum value of |, evidently becomes larger as Sr becomes

snaller, and we also see that .or very small damping:

S
Lm:. ET; - eee(2.103)

1f we have coincidence effect excitation in the rth mode and the

damping is small the second term on the right hand side of equation 2.100
becomes (using equation 2,103):

We (_’AN) Twe o -

2M$ 61‘ "\2 hi'ﬂ'.q' L 2 3 3 (20104)

Ae see that this contribution to the mean square stress is inversely
proportional to the damping ratio, proportional to the modal natural
frequency, and proportional to the panel length squared. To keep this
quantity to a2 minimum, therefore, panels should be short between
stiffeners, and maximum damping should be introduced. A typical

variation of |y with « and §,; 1s shown in Figure 15.




Appendix A.2,5 The Integrals [. , g, Icm s and Ism

These integrals aro evaluated in this section for a double
sine mode of deflection and for planc wave excitation (at general fixed
incidence to the plate), For normally incident plane waves they
reduce to very simply forms (soe_ equation 2,93). The results of (f.his
section are not used in the body of this Thesis, and are included

here only for completeness, Equation 2,46 gives

Ty § LN ]

YC‘VY +1 ISYY = :f'(s) ¢ < as

S

Now 1£  ,(s) = S&hng.lt Sin WMITLY this equation becomess
b
| ' 1 = | Sin MY 4 S NLX. 0 - x')s\ne
Cow T Svyy ~ N J- e
S S
SO ! WSO, &
_ b £ € (1= s nr. e °] e (2:108)
mnT? aly swbn
(- 5=

for m odd only., This expression i{s a function of the mode (m, n, wy )

and of the sound field inclination.

Similarly:

1. 4il. = 4ol [i- (1 - cosnem. €702
CYAY + K =

e My en et [I_ (&Nv Sin 9)7-] ‘:l— (OL&)VS\;‘\Q)Z—L
nyTe namC oo (20106)

for m, and wm, odd only.




The intejrals Lp, and [wm cannot be integrated analytically
for this type of acoustic excitation,.

- 133 =



Summry

Experimental verification of the theories of chapters one and
two has been provided by harmonic and random plane wave excitation, at
grazing incidence, of a simply-supported sandwich panel measuring
42.5 in. by 24 in. The excitation facility was the University of
Southampton Siren Tunnel.

Measuremsnts have been made of panel surface strains at three
stations. These values are compared with values predicted by s theory
similar in content to that of chapter two. Discrepancies between the
theory and experiment are almost certainly attributable to the effect
of the cavity between the panel and the siren na_n. the experimental

values of stress being higher than expected.

321  introduction

The experiments with a sandwich panel described in this chapter
have two ‘m,jur objectives. These ares
(1) To verify the theory given in Appendix A.3.1 for the strain in
the face of a simply-supported sandwich panel when it is excited by
random plane waves at grazing incidence, and
(1) To verify the theory of chapter one, which predicts the natural
frequencies of the principal modes of vibration of the panel.
Unfortunately it is a very difficult, if not impossible, task for

- 134 -



obvious reasons to measure the direct strain in the bond of a vibrating
sandwich panel. Therefare a theory has been derived in an Appendix
for the strain in the face plate of a sandwich panel which is similar
in derivation to that of chapter two. Direct verification of this theory
is a relstively simple matter because panel surface strain can be
measured easily., A verification of this theory will indicate that the
Fourfer Analysis treats this sort of problem with reasonable accuracy.
The experimental progremme can be split into two parts: The first
series of experiments consists of harmonic excitation of the panel in
order to find the natural freguencies of the panel and to derive the
damping ratio in each mode. The second objective given above can thus
be fulfilled, The second serles of experiments consists of random
excitation of the panel. Two measurements are made in these random
expariments. The first s the value of r.m.s. strain at three plate
stations. The gsecond is the power spectrum of the pressure acting
at the plate centre. From this second quantity, and the dynamic
parameters of the plate modes found from the harmonic tests, theoretical
values of the r.m.s., stralns are computed using the theory of Appendix
A.3.1« These values are then compared with the measured strains to
fulfil the first objective given above,

3.2  Ihe Expexigental Eqyippent
322:) Iho Sandwich Pape]

The design of the sandwich panel was based on three requirements.
First, the panel size was limited by the test facility which was tobe
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used to excite it, and therefore panel dimensions of 42,9 inches by
24 inches wore chosene Second, to fulfil part of the nurpose of the
experiment, the panel had to be simply-supported or as nearly simply-
supported as possible. The development of suitable supports is described
in the noxt section. Third and last, it was desirable that the panel
should be represcntative of sandwiches in current use for alrcraft. To
this end sandwich dimensions were chosen which are identical to those
used in VC-10 rudder and elevator panels. The spacification of the
sandwich iss
(1) Core:s Aeroweb Type 141, core depth, 0,85 in.
(1) Facess Alclad 0.0124 in. thick (30 S.¥.G.)
(111) Bond: Redux tye 775R

The first four theoretical natural modes of vibration of this
panel lay in the frequency range O to 1 Ke/s (the frequency limits of
the excitation range of the random tests). These four modes had only
one halfe-wave in the y~direction, so simplifyinj the calculations based
on the theory of the Appendix A.3.1. To the surface of the panel three
strain gauges waere attached. The first was attached at x/a = 0.3 , the
second at x/a = 0.29, and the third at x/a = 0.125 (see Flgure 17).
These are known as Strain Gauge 1 , Strain Gauge 2 and Strain Gruge 3,

respectively.

(1) Development of the Simple Supponts
In some experiments carrled out previously at Southampton

University, using a sandwich panel in an acoustic resonance tube(x’):
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a method of simple support using a steel shim was evolved. To the edge
of the sandwich panel a strip was attached gealing off the core. To
this strip a singde shim of steel was attached. The other side of the
shin was attached to the surrounding structure (see the sketch below).

EDGE STRIP

MOOUNTING
STRUCTURE

This method of support offered negligible resistance to rotation,
but unfortunately fatigue fallures of the support shim occurred rapidly.
These failures were attributed to buckling of the shim on the compression
half of each cycles Accordingly, for the experiment described in this
chapter, a method of simple support was designed, as a development
of that shown above, whereby the panel was supported on both sides by
shim steel (see Figure 17).

Preliminary experiments to evaluate this double sided support
were cerried out with a vibrating sandwich beam, of length 36 inches,
The properties investigated here were:

(1) The rotational stiffness of the support and its acceptability as
a8 simple support. This was investigated by comparing the natural

frequancies of the beam with different thicknesses of supoorting shim




and,

(11) The 1ife of the shim under intense loading. This was investigated
by endurance tests at high vibration amplitudes.

The results of the first test are shown in the table below:

Shim Thiekness (in.) 0.00% 0,002 0.000(Theary)

Natural Frequency ¢/s | 42.98 42.28 42,26

The endursnce test was carried out with the beam supported on
0.002 in. steol shims and excited to a peak-to-peak amplitude of'
0.6 inches at its fundamental resanant frequency (42.28 c/s). The
shims had not broken after ten hours when the test was terminated,

(11)  Ihe Test Panel Support Shims

The results of the experiments with beams seemed to be quite
satisfactory. This new support system was therefore used for the panel.
The 0.002 in, thick steel shims used for the test were attached to the
panel in the manner indicated in Figure 17. A thin coating of Aquaplas,
a commercial danping compound, was applied to the shims as an extra
precaution against fatigue fallures of the supports. The supporting
structure to which the shims were attached was itself adjustable against
a frame (see Figure 17) so that fitting of the panel to the frame was
a2 simple though laborious task. Figure 16 shows the panel mounted in

this freme.

3:2,3 The Siren Tunnel

The facility which provided the acoustic excitation of the panel




in these tests was the University of Southampton siren tunnel. This
facility was designed to propagate accmt;iz:ns down 3 tunnel
of rectangular cross-section. The siren element is an electromagnetically
criven air modulator, the air speed in the tunnel being about 2 feet/sec.
The tunnel produces quitz good planz waves except when the frequency
of the sound i3 near one of the cavity resonant frequencies of the tunnel.
As far as theoretical calculations are concerned however the tunnel was
assumed to propagate plane waves.

For this experiment use was made of a heavy steel trolley
running on ralls which nmoved up against the tunnel wall., The specimen
in its frame was mounted on this trolley and wheeled up against the
tunnel working section. The panel thus became part of the tunnel wall.

Consequently, it was being excited by plane waves at grazing incidence.

3:2,4 Ihe Siren Priving Equipment

A conventional electrical system was used to drive the siren
element under both harmonic and random operating conditions. For
harmonic tests a O to 1 Ke¢/5 oscillator was connected to the siren
elemant via a 100-watt amplifier. For random tests the signal from a
white noise generator was filtered to simulate jet noise (pressure
spectrus from O to 1 K¢/s) and then passed to the siren element again via
the 100-watt amplifier. A compressed air supply wes required for the
siren at a pressure of 25 1b/in2.

3.2.5 Instrumentstion

The two quantities to be masasured during the tests were the
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pressure at the panel centre (behind strain gauge 1) and the strains
at the thres positions mentioned previously.

To measure the pressure a Bruel and Kjaer condenser microphone
was mounted inside the tunnel and adjacent to the pansl surface at the
panel centre., It was assumcd that the mean .square pressure was the same
at all positions on the plate and that the panel was being excited by
grazing plane waves so that measurement was required at only one
micropnone position. This microphone was connacted to a Bruel and Kjaer
third-octave spectrup analyser which was switched to measure overall
sound intensity. The monitoring socket of this instrument was
cormected to a tape recorder,

The three strain gauges were connected to a standard a.c.
%heatstone bridge, which was energised by a 24 volt battery, via a
switching box. The outsut from the strain gauge switching box (which
was the out-of-balance a.c. voltage) was taken to an a.c. voltmetsr. A
resolved comoonent indicator was also used for a'vector plot® analysis
of the panel motion. The reference signal used for this instrument
was the nicrophone output voltage. Against this reference the phases of

the strain cauge signals were measured.

3e3  Hazmonjc Excifation of the Papel
343;1 Ihe E Serjeg of Te

The panel was excited harmonically, at a fixed pressure intensity
of 133.5 dB, at various frequencics. The pressure intensity at the
microphone was maintal ned at a constant value by varying the input to
the amplifier. Readings were taken of the output of each strain gauge
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using the a.c. valve voltmeter. The response curve of each strain
gauge was plotted as millivolts output against frequency, in order to
find the modal natural frequencies and modal damping ratios. A typical
example of one of these curves is shown in Figure 18, It is clearly
impossible to dorive damping ratios for the *in vacuo’ modes of the
panel from these curves because other resonances of the panel were
occurring dues to acoustic cavity and support structure effects. The
modes of vibration of the panel which are predicted in chapter one

are ‘in vacuo' modes. A more perceptive method of analysis therefore

becomes necessary. The method due to Kemnedy and ?ancu(zﬂ

and known
as ‘vector plot' analysis was used to derive the damping ratios and

natural frequencies of the 'in vacuo' panel modes.

3.3.2 The Second Series of Tests: Vector Analysis

The Resolved Component Indicator was connected to the microphone
and to the strain gauges. For each modal resonance the strain gauge which
measured most strain in that mode was switched on. Readings of in-phase
and quadrature components of the strain were taken with reference to the
microphone pressure. Vactor response dliagrams were plotted for each
mode. A typical vector response dlagram is shown in Figure 19 for the
fourth mode. At each peak of the response a pencil was run along the panel
to detect the nodes of the panel mode shape. Each of the four panel
modes was positively identified ih this way. However, the same nodal
pattern was detectable at all of the frequencies given on Figure 19.

The vector response dlagram is only shown for the fourth mode.
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3,4  Réndom Excitation of the Panel

The siren driving equipment was set up as described in § 3.2.4
for random excitation of the panels by plane waves at grazing incidence.
The panel was excited at a noise intensity of 143.5 @B measured at
the microphone. A tape recording was made of the nolse pressures at
the microphone. This tape recording was subsequently used to obtain
the Power Spectrum of the pressure using a Hewlett-Packard wave
analyser. At this time readings were also taken of the mean square
voltage cutput from the strain gauge bridge for each strain gauge.

3:3  Experjmental Results
3:3:] Direct Results

From the second series of harmonic tests data were obtained which
enabled vector response diagrams to be plotted for each mode. The
natural frequencies and damping ratios of each mode were derived from
these diagrams (see the next section). A typical example of the diagram
obtained is shown in Figures 19 and 20 for mode 4.

From the random tests on the panel we have (1) a pressure power
spectrum, without a scale, as an output of the wave analyser, and (i1)

values of mean square strain at each straln gauge, as followss

Strain TalleSe
Gauge Strain

1 6.29 x 1072

2 10.68 x 10°°

3 10.29 x 10°°




323¢2 Derived Results

From the vector response diagrams the following dynamic
parameters of the plate in each mode were deriveds The last column

shows computed values of the modal natural frequency using the theary
of chapter one.

Kode Damping Natural Computed Natural
Ratio Frequency c¢/s Frequency c/s
1 0.01% 208 219
2 0,028 370 367
3 0.005 579 596
4 0.020 %37 888

From the dynamic parameters given above and from a scaled pressure
power spectrum theoretical values of the r.m.s. strains were evaluated
(for the detalls, see ths next section) using the theory of Appendix

A.3.1. These results are shown in the table below:

Strain LelleSe
Gauge Strain
1 6.11 x 10™°
2 4.53 x 107>
3 5.73 x 10>

2.6 of Result nin§ 3.8

3¢6:]1 Derivatjon of Plate Modal Chargctggigggcg from the Vector
Response Diagram “

The vector response diagram was plotted from experimental
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readings. In the case of the fourth mode (Figure 19) there were three
almost circular curves running into each other. It was assumed
(rightly or wrongly) that any acoustic resonance would be more highly
damped than a panel resonance. Therefore the circular curve was chosen
which gave rise to the largest damping. The nearest circle was drawn
to this curve (dashed curve in Figure 20). The resonant frequency is
the point at which dS[d(w') is a maximm (where S ia the distance
along the curve). It was judged to be at 937 ¢/s for this diagram,
The damping -ratio is found, az followss

(1) Draw the radius vecto:'(;tho point on the curve corresponding to
the natural frequency

{11) Draw the diameter normal to this radius vector.

The points at the end of this dlameter correspond to two
frequencles whose difference is equal to 2§, w+ « Thus, for the
fourth mode, 54 = 0,020, Results of these analyses and also of the
computations for natural frequencywsing the theory of chapter one are
given in the first table in § 3.5.2.

It was necessary to dstermine values of wv and §, from this
harmonic experiment for *in vacuo' panel modes so that these values
could be used in the theoretical calculation of bond strains in the
panel when it was excited by random waves (see . the next section).
Indeed, the modal damping ratios could be deter.ined in no other way
although an estimate for the *in vacuo' natursl frequencies can and
has been made.
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3:06:,2 Dexivition of the Theoreticy] Values of r.m,s. Strain

The theoretical bond strain has been calculated under the

assumption that only four modes of vibration contribute to the motion
of the panel. These four modes are the four theoretical pansl modes
whose natural frequeandies are less than 1 Kc/s. These modes are four
of those which sould occur Lf the panel were vibrating in vacuo. Other
modes of vibration of practicsl panels due to acoustic and structural
effects are not included in the theoretical analysis as they will
compiicate the prediction of strain. ‘'In vacuo® theoretical modes of
a higher order, whose natural frequencies sre greater than 1 Kc¢/s, are
not inclidded in this analysis because their contribution to the strain
was found to be insighificantly small: The computer was used to
eyaluaﬁc the theoretical strain incerporating eight 'in vacuo' modes
of the panel, four of which had ane hslf-wave in the y-direction, the
other four having three half-waves in the y-direction (these were the
eight lowest order modes of the panel). It was found that the
contribution to the mean square strain from the modes with three half=-
waves in the ye-direction was less than one~hundredth of the total
mean square strain.

The pressure power spectrum, as found in the random experiments
was unscaled. It was found that a correction to this spectrum to take
account of the tape recorder characteristic was unnecessary. It was
known that the nolse intensity was 143.5 dB corresponding to 0.043 Xb/in2
FeMeSe prossure. Thus, scaling of the spectrua was carried out by
integrating the given spectrum using the method of counting squnzes.
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Values of the scaled pressure spectrum at 20 ¢/s intervals, are given
in the second column of Table 5. Values of the function C(w,S) were
then computed, also at 20 ¢/s intervals, for each strain gauge position
using the derived values for the damping ratio and natural frequency
of each 'in vacuo® mode. C(w,5') is the factar by which the pressure
spaectrun aust be multiplied to give the straln spectrum at the point

S* . C(W,S') is an infinite seriass involving the gencralised
impcdances of the various modes and the jolnt acceptancesbetween the
modesand the sound fleld. If the infinite series is truncated to
include effects from the first four 'in vacuo® modes only, C(w,s)

can be computed for the three strain gauge positlions using the values
of wr and &, derived from the harmonic tests. This was carried
out and the values obtain for C(w,s') are shown in Table 4. The
power spectrum of strain was then calculated by multiplying the pressure
spectrun by the function C(w,S) at each frequency. The mean square
strain was then calculated by integrating t he power spectrum of strain.
This integration was carried out by adding tho values of the spectrum
of strain at 20 ¢/s intervals and multiplying by 20 x 2% rads/sec.
Table 5 shows the projression of this calculation for strain gauge 1.
Values of the r.m.8. strain at each strain gauge thus obtiined, using

the theory of appendix A.3.1, are shown as the second table in § 3.5.2.

37  Discussion of Results

The shim supports, which were evolved for the panel described
in this chapter, provided an excellent model of simple supports.
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No failures of the shims occurred during the tests made., The

camparison of predicted and actual natural frequencies of the sandwich
panel is shown in § 3.5.2. From thess results we can conclude that
the natural frequency theory of chapter one, for flat plates, has
predicted accurate values for the first four modal frequencies of the
panel used in these experiments.

dore than four resonant frequencies of the panel were found to
occur in the frequency range from O to 1 K¢/s for the reasons already
stated. Close to the resonant frequency of the fourth theoretical
mode three resonant peaks (i.e. three partial circles in the vector
plot) were observed and the mode of vibration corresponding to each was
of the same form with four half waves along the panel. A different
value of dampin; ratio was measured from each circle. The actual
vzlue used in the theoretical estimation of the mean square stress was
the largest of the set of three. This choice gave rise to the
theoretical frasquency response curves which were most similar in
magnitude to the actual response curves and therefore gave the most
accurate results.

The differences between predicted and actual values of the
YreMes. surface strain of the panel, shown in the tables in §'s 3.5.2 and
3e5.1 respectively, could have been caised by 'some or all of the
following factorss:
(£) Cunulative errors in the arithmetical manipulation and methods
of integration.
(11) The assumption of travelling plane waves as a spatial pressure
distribution.
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(111) The truncation of the thearetical infinite series C (w,s')

and the neglect of cross terms.

and,

(iv) The effect of the acoustic cavity behind the panel and the
supporting structure on the panel impedance characteristics.

The major errors involved in arithmetical manipulation are a
result of the crude integration methods used. The frequency step
length in these integrations was 20 ¢/s and was larger than the band-
width of some of the peaks. However, the order of error here is
considered to be similar to that incurred in the measurement of the
pressure power spectrum so that improvement of the integration methods
is unnecessary. These srrors, in any case, are considered to be a
sasll part of the total error, and they do not explain why the results
for strain gauge 1 agree with the theory while the other two results
do not.

The assumption that the siren tunnel generates random plane
waves at a constant pressure intensity can explain, in part, why the
readings of strain gauges 2 and 3 are high, compared with the
theoretical values. Calibration of the siren tml(za) indicated that,
for higher frequency components of the siren noise, the nolse intensity
at the panel centre was up to 3 dB low:r than the intensities at the
edges. This effect becomes more acute as the frequency rises up to
1 K¢/s. Thus, gauges measuring strain in the fourth mode would
detect the extra power at the higher frequency which is not being
detected by the microphone. Strain gauge 1 is at a node of the
fourth mode and will therefore not detect motion in this mode,.
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The truncation of the series for C((w,s') by using only four

of the infinite set of theoretical mo.es is thought to have little
effect even on the results from the third strain gauge which would
tend to be most sensitive to signals from higher modes (as a percentage
of its total reading). The neglect of cross terms in the series is
almost certainly a satisfactory assumption because of the wide separation
of natural frequencles for these lower modes and their low damping.
The major part of the error is thought to lie in the computed
fuc tion C(w,s') , the error arising as a result of the acoustic
cavity behind the panel and as a result of the flexibility of the
support structure. These effects introduce further resonances of the
system whese pcaks are not taken account of by the theoretical series
for C(w,9) « The effects of these resonances could be included
in the series for C((w,s') by introducing further terms but the
simplicity of the normal mode analysis would be lost. If therefore
remains to judge whether or not the simple normal mode analysis gives
sufficiently accurate results. These extra resonances aze centred
around the theorstical natural frequencies of the third and fourth
modes and would tend to give a generally larger valus of C(w,s')
in the region of these resonances. This is borne ocut by the large
values of experimental strain at gauges 2 and 3 compared with the
predicted values Gauge 1 only measures strain in the first and third
modes and therefore one would expect the error to be less. In fact, the
actusl C(w,9) will be similar in shape to the square of the

fre-yency response curves of the strain gauges.
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These results suggest that:

(1) The effect of the acoustic cavity is to creste r.m.s. stresses

which are greater than those predicted by an *in vacuo' gate theory,
becsuse more plate rescnances occur.

and,

(11) that the accuracy of the Fourler typs theory for stress is
good for this panel becauss of the accuracy of the result for strain
gauge 1.

This latter conclusion satisfles the first objective of the
experiment viz. to verify the theory for straln in the faces of a
sandwich. The fact that this theory has been verified indicates that
the Fourier Analysis treats this type of problem in an adequate
marmer. It therefore, indicates that the analysis of chapter twe
for normal bond stress has used » method which should give results
of the correct order of magnitude.

The conclusion (1) above indicates that further researches could
well be carried out on & simplified model, both in theory and practice,
to gauge the effect of acoustic cavities on the structural response
of sandwich plates with control surface panels, and their assoclated
cavities, in mind. 1f r.m.s. stress levels are to be predicted for
a fatigue analysis then they will be required to be accurate to a
factor better than the factor of two obtained in this experiment. It
appears that the normal mode analysis will not make a sufficiently
accurate estimate of the stress for fatigue work if the panel has

assocliated cavities. The fatigue properties of sandwich bonds under




randoa loading are not yet known and perhaps this topic would be
worthy of primary investigation.
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Appendix A,3.1 An Analysis of the Surface Straln of a3 Sandwich Pane]
Exclted by Grazing Incidence Random Plane Waves

The bending strain in the x-direction (see Figure 17) in one of
the face plates of a sandwich panel at some point S* on the panel in
the rth mode is given by

& = a-fkl Qv a:‘f:i")
0

S
3(/" oco(3-l)

where 9+ 1s the gencralised co-ordinate of the rth mode and a; is the
care shear alleviation factor used before in § 2.2.5.

*The total strain at time t due to all modes of vibration is
given by the sum:

0
z \J
£ = &14 ZQ,— %f a‘f___'_i_.s) .00(3-2)
el 0x

This is the same as equation 2.60.

Using the Fourier Transform notation we can write:

o0
Ao Ay If () Ir (W)
% (w,5") hZaf e ;(&A oo (3.3)
=1

making use of equation 2,13.
Now We (,8) = iy & Falwss) 3¥w,s)

T30 T

0 ©
- ﬁ(zo{;aw r Eiq, a, 3 Fo (") Tofuls) Ir(w) 3‘;:((.0)

T + s
T T L 0 ox Z/(w) Z2X(w)

voe(3.4)
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If we now assumz that the cross-terms in this double series are
small and if we can restrict modes to a singly-infinite set by writing,
for a simply~-supported plate, that:

1} = swn TR g OV
folg) = sin T sin

then equation 3.4 can be written:

\'fv(w)\?'

[ o)
We (0,59 = A5 ) i (B)ffs) Wenle) eee(3:5)
Y=

These assumptions will hdd good for the experimentsl panel.
Cross-terms will be small because of the wide frequency separstion and
the low damping of the significant modes. Restriction to a single set
of modes is sufficlently accurate because of the excitation spectrum
cut-off at 1000 ¢/s.

For plane waves, the power spectrum of the generalised force is

given by the equations

W, ()= Wi lw) J j £ (8) v (52) cos (‘25%__'\9) ds ds,

3y Sy

and for plane waves travelling in the x direction at grazing incidence:

C C

The integral can then be evaluated, using the assumed mode shape,
yieldings
Qo b [l— osTI. QS(%)]

nt [‘—' -:—_'1% 2']2' 000(306)

WE, () = W (w)

o
©®
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Now Powell's ‘Joint acceptance' is given bys

_ 2 [2 (\- cosnTt. cos(ﬂ_l.d»] o

2z
" nrtc) ]

so that equation 3.6 becomes:

We, (0) =W (w) &> J ey
thus equation 3.5 becomes

We o5 = Wh () & ‘*""Z e )
v

If we write

Clws)= B ‘t”“"z e rhor §ls')

\2,,(;.,)\1

then equation 3.9 can be rewrittens

Wi (U,S‘) = C (w,sl)Wp {(d)

oes (3.7)

«ee(3.8)

vse{(3.9)

eee{3.10)

sse(3.11)

This provides a convenlent form of the relationship between

strain spectrum and pressure spsctrum. A camputer programme has been

written to evaluate C(w,S') for a limited nuaber of modes,
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) (3 H San Plate

Expefiments have been carried out on small specimens of sandwich
plate to determine the fatigue characteristics of the bond. The
specimens have been excited at albubbling mode resonance by an electro-
magnetic vibrator to induce large values of uniaxiael stress., A
gramophone pick-up has been used to measure strain after being
calibrated with a speclal strainegauged specimen. Measurements of
bond stress and specimen lEfe have been made and an S-n curve drawn.
The fatigue 1imit has been estimated to be 1500 1b/in?. Rapid failures
have occurred at strosses of the order of 3000 lb/inz.

4.1  Introduction

The fatigue failures which have occurred in the bonding of
sandwich panels used on alrcraft have been described in the Introduction
to this Thesis. It was stated there that most fatigue fallures of
the debonding type occur at panel centres, thus suggesting that only
direct stresses are significantly rosponsible for fatigue fallures of
this type. Analyses have therefore been carried out in chapter two to
investigate the mean square values of the direct stresses in a sandwich
panel bond when the ~anel §s being excited by random noise pressures.
These values of stress do not have much meaning, however, as far as
failure is concerned, until something is known of the fatigu: properties
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of the bond. In the bond of a vibrating sandwich plate a triaxial
stress system exists. Experinental fatigue analysis under this stress
system 18 8 good deal more complicated than fatigue analysis under a
uniaxial stress system. For this reason the experizents which are
described in this chapter have been carried out with a sandwich bond
under uniaxial stress.

The objects of the experiment are to find the fatigue 1imit and
to obtain the S-n curve for a sandwich bond under uniaxial stress.
For our purpose the ‘Fatigue Limit' has been arbitrarily regarded
as being that stress below which failurs will not take place before

109 stress cycles have elspsed. We cannot make an estimation on any

other basis because tests have not been carried ocut with more than

109 stress cycles. It is quite possible that the Sen curve for Redux
bonding continucs downward in the same way as the Sen curve for aluminium
without reaching a definite Fatigue Limit. Thus, when Fatigue Limit

is mentioned in this chapter it mcans the stross at which fallure

occurs after 10° cycles.

To fulfill these objects small pleces of sandwich plate were
oxclted electromagnetically in a zero-order bubbling mode to induce
stresses normal to the face plate. The specimens were loaded to reduce
the natural frequency of this mode. The system was excited at resonance:
A calibrated gramophone pick-up was usced to measure the core stress
(which is almost the same as the maximum bond stress). The time to
fallure was plotted ag-yinst the stress to produce an 5-n curve, from
which the fatigue limit was estimated. This method of fatigue testing
the bond of a sandwich was suggested by 'dead in referance 20,
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A.2 Ihe Experinental Eguipment
4.2.1 Ihe lcgt Specimeng

Each sandwich specimen consisted of 2 plece cut from a sandwich
beam and measuring ona inch square. The honeycomb core of this sandwich
was “Aeroweb” type 142, and was 3" deep. Aluninium faces wers attached
to this core with fledux bonding type 775R. To one face of the sandwich
specimen a steel cube, of side one inch, was attached by means of
Araldite resin adhesive. This cube was attached to the sandwich in
order to reduce the natural frequency of the zero-order bubbling mode.
To the other face a steel plate, 3 thick, and measuring two inches
square, was attached, also by means of Araldits. This plate had
four 3" diameter holes cut at §ts corners. The composition of the specimen
can be seen in Figure 22, The nattn;). frequency of the system had to
be reduced because the performance of the excitation équipmnt was not
adequate at high frequencies.

A speclal specimen was made in the early stages of t he sxperiment
with strain gaugss attached to the externally visible facos of the
core material. This specimen (No. 4) ::as used to calibrate the
gramophone pick-up. A photograph of the speclal specimen is seen in
Figure 22, In order to fit the strain auges into the small space
available the paper backing had to be reduced in area until it was only
a l1ittle larjer than the area taken up by the straln gauge el ment.

The sonsitivity of the strain gauges may have thus been reduced. The
strain gauges used were Tinsley type 6J which have a nominal resistance
of 100 ohms and 2 nominal sensitivity factor of 2.2.
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Each sandwich specimen was attached to a heavy cast-iron bleck

by four }* B.S.F. bolts which passed through the four holes mcntioned

above. This side of the sandwich is know:. as the *earth® side, for
ease of reference. To the one-inch steel cube a {" B.S.F. stud was
attachads The other end of the stud was attached to the armature of a
Goodmnan's electromagnetic vibrator type 390A. The body of this vibrator
was also firmly attached to a rigid foundation. A sketch of the

specimen, as 1t appears in the rig, is seen in Figure 21.

4:2:3 Vibrator Driving Equipment

This equipment consisted of a decade oscillator, en attenuator
box, and a2 50-watt amplifier. The signal from the oscillator was
passed to the amplifier, after attenuation, and the output from the
amplifier cnergised the Goodman vibrator.

4:2,4 Instrypentation

The stress in the bond was, in effect, measured by means of a
calibrated gramophone pick-up. The voltage output from the pickeup
cartridge was proportional to the stylus deflection so that a linear
relationship existed between core strain and pick-up woltage. The
pickeup stylus rested in a scratch which was cut in the inch cube of
steel near the sandwich face (see Figure 21). The output from the
pick=up, which was of the order of one volt, wes measured by an a.c.
voltmeter.




4.3  TIhe Experiments] Procedure
4.3;1 Detection of the Bubbling Mode Regonance and other P_ro__ngnarx
et

Iests

The first three specimens to be mounted in the rig were excited
variously in order;

(a) to find the frequencies at which peaks occurred in the modal
response curves and how these frequencies varied from specimen to
specimen,

(b}  to find the pick-up output levels at which rapid failure took
place in order to be able to programme the stress levels for the fatigue
tests described later (§ 4.3.3),

and

(¢)  to ensure that failures were cccurring in the bond.

Using the output from the gramophone pick-up as 2 measure of
respohse 1t was found for the first specimen, that resonances occurred
at 2087 ¢/s, 2564 c/s, and 5040 c/s. The largest response was obtained
at 2564 ¢/s. By transferring the stylus from its groove in the inch
cube to the edge of the fixing plate (to which the sandwich was attached
on the earth side) it was possible to detect whether each resonance was
& bubbling resonance or not. At 2087 ¢/s and at 2564-c/s there was
1ittle response on the earth side of the sandwich with large response
on the exciter side. This indicated that at both of these frequencies
resonant bubbling motion was taking place and therefore that the pure
bubbling mode was coupled to a mode of the fixing bloek. Response

curves in the region of these two lower resonant frequencies indicated




that these modes had damping ratios of 0.0113 (at 2087 ¢/s) and 0.0068

(at 2964 ¢/s). These figures are probably inaccurate due to motion in
other modes. No vector response disgrams were plotted. The choice of
which peak was to be used far fatigue testing rested upon which peak
produced the larger bond stress. The first three specimens were
vibrated until complete decohesion of the bond occurred.

4.,3,2 C of the one Pick

To ascertain which of the resonant peaks found in the last
section produced the larger bond stress per unit inout current to the
vibrator, and also to calibrate the pick-up in terms of bond or
core stress (the maximus values are the sm*) the special sp-cimen
wmentioned previocusly was mounted in the rig. '

Considerable difficulty had been experienced in attaching the
strain gauges to the sandwich core of this special specimen and it was
thought wise to make a ztatic calibration of the strain gauges to find
their exact sensitivity factors. To this end static loads of up to
200 1bs wers applied at the vibrator side of the sandwich, A spring
balance was attached at one of its ends to the exciter side of the
sandiwiche The othar end of the balance was attached to a long threaded
stud which was used to apply the loads. Each of the pair of strain

*Fl'hc maximum normal stress in the bond is slightly lower than the
core stress due to the fillet of adhesive which always forms where
the core meets the bond.
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gauges was ca‘libratcd separately using a Tinsley strain recorder. The
values found for the sensitivity factors of the gauges were 1.70 and

0.92 instead of the nominal 2.2 each. The rezson for this disparity

is elther than the gauges were not attached to the honeycomb satisfactorily
or that the removal of most of the paper backing reduced the gauge
sensitivity factor. The former reason is the more likely of the two.

The sensitivity factors were now known so that dynamic calibration
of the gramophone pick-up could be performed, assuming that the statlc
and dynamic characterlsties‘ of the strain gauges were the same (this is
a recasonable assumption.) The two strain gauges were measuring strain
in phase with each other so that a bridge circuit of the following
form was used:

For this circuit it can quite simply be shown that the voltage

difference across AB is given by V, wheres

= (a+p) £
A (e+e)4v

P is the gsuge sensitivity factor, € is the strsin and V 1s the

battery voltage. This §s true provided that the same astual strain is

- 161 -




occurring at both strain gauges.

The calibration of the pick-up was thus carried out by taking
readings of bridge voltage difference and pick-up voltage for a series
of frequencies over the likely range to be used. The bridge voltages
were converted to actusl strains in the core and thence to stress in
the core. The r.m.s. stress per pick-up volt was then calculated from
the gramophone pick-:p voltage readings, and the calibration curve
(Figure 23) was plotted. The bridge circuit was energised by a 6-wolt
battery. From the picke-up calibration curve it was deduced that the
largest r.me.s. bond stress per unit inosut current to the vibrator
occurred at the resonance in the region of 2,500 ¢/s so that the majer

part of subsequent fatigue testing was carrfed out at this resocnance.

502.2 F ast

The procedure for each fatigus test was:
(1) to mount the specimen squarely and securely in the rig
(11) to tune the specimen to the natural frequency near 2500 ¢/s

and
(111) after consultation of the calibration curve, to run the specimen
at the required stress level until fallure., Failure was decmed to have
occurred when the natural frequency had dropped by 100 ¢/s. Several tegts
were carried out at the resonance in the region of 2000 c/s.

Some of the tests had to be abandoned for various recasons. To
quote an example, it was required that a certain test be run at a picke
up output of 1.5 volts. This output was maintained for three hours
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but the resonant response dropped away so much that it was not possible
to maintaln this response with the equipment available. The tests
were programmed to glve .allure times for a2 series of bond stresses

up to 3,000 lb/inz.

During these tosts the crystal in the picke-up head fractured
and there was not sufficient time available to recalibrate the new head,
because the strain gauged specimen had been destroyed. The results
after specimen 15 were therefore calculated from the calibration
curve for the old head. These calculations should not be much in error

befause a pick-up head of the same type was used.

4,4 Experisental Resylts

Tests with the first three specimens showed that the frequencies
at which peak response occurred were remarkably constant from specimen
to specimen. Largest response occurred at the resonance around
2,500 ¢/s. Other peaks occurred at around 2,000 ¢/s and at around
5,000 ¢/s for all three specimens. Fallures occurred in the bond on
all occasions, sometimes on the 'earth' side of the sandwich and
" sometimes oo the 'sxciter side of the sandwich (see Figure 22).

The fourth specimen which was used to calibrate the gramophone
pick-up, produced the calibration curve showmn in Figure 23. It will
be noticed that this curve is quite peaky, due to the mechanical
impedance charscteristics of the pick-up arm.

The results of fatigue tests on the other specimens are shown in
the table on the next page. From the rosults of these tasts the Sen

curve (Figure 24) has been drawn.
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Specimen | Frequency of Bond Stress | Cycles to
Number | Excitation c/s 1b/in Failuge Coments
x 10
) 2,510 3,780 0.527
6 2,085 2,355 0,679
7 2,059 1,850 3,92 |
8 2,067 830 9 x 10° cycles in 125 hours
No Failurs
9 Test abandoned
10 Test asbandoned
11 Test abandoned
12 2,637 3,400 0.949
13 2,670 2,520 9.26
14 2,520 24330 3.33
15 Pick-up crystal fractured
during test
16 Test abandoned
17 2,540 2,890 1.13
18 2,060 1,680 16.3
19 2,060 1,500 7.4 x 10° cycles in 100 hours
No Failure
20 2,566 1,590 9.2 x 10® cycles in 100 hours
. No Fallure
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4.5  Congluding Reparks

The scatter of the results plotted on the Sen curve (Flgure 24)
is quite broad. This §s a usual festure of S-n curves. At the same
stress level outwardly identical specimens often fail after quite
differsnt times, unless the manufacture of these specimsens is very
strictly controlled. The manufacture of the specimens for the tests
described here could not be strictly controlled because they were cut
from sandwich beams which had been used (for s previocus experiment.
Other factors alsc influenced the scatter. One factor was that some
of the tests were carried out at different frequencies from others.
It would seem that the calibration of the pick-up at one of these two
frequancies was not accurate because the results of the tests carried
out at tho resonance in the region of 2000 c/s were gencrally lowex
than the results of the tests at areund 2,500 ¢/s. The results of
this experiment are only valid within a factor of two or so in any case,
because of the small number of tests carried out.
The principal purpose of these tests has been to find the ‘Fatigue
Limit*. From Figure 24 the Fatigue Limit is conservatively estimated
to be at a stress of 1500 1b/in®. At stresses of the order of 3,000 lb/1n2
quite rapid fallure has occurred. For example specimen 17 was excited
at a bond stress of 2,890 lb/inz, and failed in 73 minutes (st 2,540 c/s).
In Appendix A.4.1 the natural frequency of the zero-order
bubbling mode of the experimental sandwich was calculated to be 3,150 ¢/s.
In § 4.3.1 this natural frequency is seen to be 2,564 ¢/s (for the first
specimen). This discrepancy is almost certainly due to the flexibitity
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of the block (the ‘earth’) to which the sandwich was attached.

The fatigue results of these tests could certainly be improved
upon if & good calibration of the pick-up was obtained independently
from two different sources. One of these two calibrations could be
made by the method described In this chapter, after ensuring that the
strain gauges were attached properly. A second confirmatory calibration
could be obtained by measuring the vibration amplitude of face °*A' of
the steel cube (Figure 21) using, say, a Xayne-Kerr vibration meter.

Once reasonable results have been obtained for the fatigue
dharacteristics of the sandwich bond under uniaxial stress then design
of a rig to measure triaxial stress fatigue properties should be

undertaken.
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Appendix A%} Calculation of the Natural Frequency of the

r B £ Sa C Te

The natural frequency of the zero-order bubbling mode of a small
plece of sandwich, when loaded on one face and fixed at the other face
is extremely simple to calculate. The system is virtuslly a simple
mass~spring system. The mass (M) here comprises the mass of the
vibrator armature, the mass of the inch cube of steel, and the mass of
the face plate. The core of the sandwich constitutes the spring (of
rate K).

The natural frequency of such a system s, of course given bys

-1 [k
£ als

The effestive spring stiffness of the core is given by EA [2f,
where A 1s the total crosse=sectional ares of the core material.

Measured {or given) values of these different quantities were:

M = 0.477 lbs
E = 107 1b/in® (Aluminius)
A = 1/A in? = 0,02386-4n°
hl = 0.2 1in.

From which it was found that:

f = 3,130 ¢/s
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The equations of motion of rectang:lar samhiich panels have been
derived in chapter one. From these eguations, the frequ:ncy equations
for vibrations of simnly-supported flat and cylindrically curved sandwich
panels have been derived. A computer programie was written based on this
theory to calculate natural frequencios of sandwich panels. A variation
of the natural {requency of curved plates with circumferential
wavelength was found which at First sight appeared to be anomalous.

The natural ‘reguency was rising as the wavelength increased. This effect,
which has been found beforo for ordinary curved plates, is due to the
sredominance of the inephase stretchinj strain energy of the curved plate
vhen distorted in a vibration mode. The frequencies of vibration of the
first four modes of the simply supported flat sandwich panel used in the
oxpariments describod in chapter three have becn calculated using the
theory of chapter one, A table cmparirig these values with the volues
found experimentally is shown in § 3.5.2 of chapter three. These
experimontal results confirm that the theory adequately predicts natural
frequencies. The small differences between the predicted and expsrimental
natural frequencies are probably derived from a shift of the natural
frequencies due to the coupling of panel vibrations with acoustic
vibrations in the siren tunnel. [.0 experimcental confirmation has been
obtained for the natural freguency theory for curved sandwich plates.
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In chapter two a full analysis has been presented of the bond
stress in a sandwich panel in the plate normal direction when the
panel £s being excited by a general acoustic field. This chsnter shows
that the bending stross in the bond of the sandwich is of the same
order of magnitude as the normal stress. In § 2.3 the excitation of
alrcraft sandwich panels by jet noise is discu sed and it is concluded
that the bond normal and bending stresses will be of the same order of
magnitude for the typical ease of a rudder pancl. In this szection
it 1s also argued that, as far as bond fatigue falures are concerned,
the normal stress in the bond is the more important of the two stresses
because cracks due to this stress can propagate. Cracks due to the
bending stress are not so likely to promgate because load carried by
the bond is shed to the faces.

Largest values of stress occur, of course, when the panel &s
being excited in some resonant condition. Reference to equation
2.104 shows that the mean square stress due to inertia effects (this
is the largest component of mesn square stress under resonant conditions)
is inversely proportional to the damping ratis, proportional to the
modal natural freguency, and proportional to the panel kngth squared,
when the panel is being excited by the coincidence effect. It can
thus be secen that the length of panels botween frames or ribe should
be as short as possible and the maxdmum possible damping should be
introd.ced in order to rcduce resonant strosses. «ith a knowledge of
noise fieold narrow band correlation wavelengths the coincidence effect

should be avoidable by design.
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5.2  Experimenta] Work (Chapters Three and Foyr)

The experimental work with a simply-supported sandwich panel
which is described in chapter three was aimed specifically at
verifying the theory of chapter two by conflrming a similar Fourier
Analysis for panel surface strain. The strain moasured at the centre
of the plate was almost exactly as predicted. The strains measured at
the other two stations on the plate at which gauges were situated were
twice as high as predicted. This discrepancy in the readings from
strain gau es 2 and 3 was thought to be due to an acoustic standing
wave system which was set up in the cavity behind the panel. It may
also have been due to the effect of the flexibility of the plate
supporting structure. Acoustic resonances of the tunnel cavity were
known to occur at frequencies near the third and fourth modal resonant
frequenclies of the plate. The acoustic and structural effects
modified the impedance characteristics of the panel considerably. The
straln measured by gauge 1 was nearer to the predicted value than that
measured by gauges 2 and 3 bacause gauge 1 measures strain in the
first and third modes only. The other two strain gauges measure strain
in more modes. These results indicate therefore, first, from the
result obtained from strain gauge 1, that the type of theory used in
chapter two gives results of the correct order of magnitude; and second,
that the effect of a cavity beshind sandwich panels i{s to modify the
stresses Lmh response of, these panels to a considerable extent.

It would seem that the introduction of acoustic cavities behind panels
raises the r.m.s. stress level. It is suggested that further research,
both experimental and ttnorctigabosgould be carried ocut into the



response of sandwich panels with assocliated acoustic cavities,

especially bearing in mind contrsl surface panel-cavity-panel systeuns.

In chapter four fatigue tests are described which were carried
out on the bonding of honeycomb sandwich panels by subjecting the
cores of small specimens to high oscillatory strasses in a direction
normal to the face-plates. From these experiments it has been concluded
that the ‘fatigus 1imit®' stress (defined here as the stress at :hich
fallure occurs after 10° cycles) s 1500 1b/in?. .apid fallures have
occurred ai stresses of twice this fatigus linit. These conclusions
were somewhat tentative because of:

(1) the small number of tests carried out (15 fatigue tests)
(1)  the error involved in the calibration of the strain

measuring equipment
and
(113} the uniaxial nature of the applied stress .

It has been concluded in chapter four (and in chapter three)
that more fatigue testing should be carried out in order tobe able
to predict the fatigue failures in aircraft sandwich panel bonds more
accurately. Once reasonably consistent results have been obtained for
uniaxial fatigue testing under harmonic loading, the tests should be
extended to include triaxial bond stresses under both harmonic and
random loading. However, results from uniaxial fatigue testing sre
quite useful provided that the limitations of these results are
recogniged,

In chapter two some calculations were carried out to find the

alnﬂ




bond stresses in a typical sandwich panel (a panel with the same

dimensions as that used for the experiments of chapter three) when it
was being excited by random plane waves at normal incidence. At a

noise level of 170 dB the bond r.m.s. bending stress was about 500
1b/in? and the r.n.s. normal stress was 125 1b/in2. It can be seen that
under these conditions the siresses do not reach the fatigue limit

of 1300 1b/in? and failure is therefore quite unlikel . In order for
failures to occur the bending stres. must incresse by a factor of three
or the plate normal —stress by a factor of twelve; It §s unlikely

that the acoustic coincidence effect will normally cause magnifications
of this order (i.e. under rardom excitation conditions). Although

the plate stresses due to high~order modes being excited by the
coincidence sffect may be very much ;reater than those due to the same
modes being ercited by plane waves of normal incidence gi.e. there
exists a high &egree of coincidence effect magnification) the stresses
under the latter condition are very low, anyway, for the types of

noise field usually met with in practice. A simple calculation has been
carried out us%ng equation 2.51 in conjunction with Figure 14. In

this calculation it has been assumed that the configuration of the panel
and noise field of the sample calculation in § 2.2.4 has been changed
go that the plane wave noise fleld has been inclined at the correct
angle for the coincidence effect to excite the second mode of the

panel (i.e. two half-waves in the x-dizection). Only the direct inertia
term of equation 2,51 has been used (it is assumed that all other
terms are small compared with it). The bond normal stress under this
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condition (170 dB) is found to be 75 1b/in°> (maximum) compsred with the
125 1b/1n? for the normal incidence case (sample calculation in § 2.2.4).
The stress magnification here is 0.6, A similar calculation has been
carried out for the case of the noise field inclined at the correct
angle for coincldence excitation of the third mode., In this case the
maximum bond normal stress is 173 lb/inzg a magnification of 1.38.

In both of these cases the magnification will be larger than the figures
quoted because the effects of modes other than those being excited by
the coincidence effect have been omitted. Especlally will this be so

if the incidence angle of the noise fleld for coincidence is similar

for several modes. Thls is the case for the first four natural modes
of the panol examined in this thesis because their natural freguencies
are almost proportional $o the nunber of halfewaves of the modes in

the x-direction (see the results of chapter three), It can thus be

seen that magnifications of the overall stress due to coincidence effect
excitation will not be great, although further magnification may take
place if the modal damping ratios arc smaller and §$f peaks occur in

the Power Spectrum of the nolse pressures at nmodal frequencies.

Fallures have nevertheless occurred in practice at noise levels
of the order of 170 d8 (and probably lower). One reason may be that the
estimate of the fatigue limit made in chapter four is too high. This
figure of 1500 ).b/i.n2 does not apply anyway to the bonds of the
sandwich plates which have been known to fall because théu fallures
have occurred in bonding other than Redux 775R (on American alrcraft).
Other reasonsg, are that the structures which have failed have been
somewhat different from the panel examined in this thesis and that the
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practical panel environment was different also: The nanel examined

in this work has very light thin face plates. It is possible that the
panels which have failed in practice have had faces with different
thicknesses from those considered in our example causing the stresses
in the bond due to inertia of the face-plates to be larger.

The predominant term in the expression for stress (equation 2.51)
under coincidence excitation is the direct inertle term. This temm
has a factor of Wr[@> . This factor is the only part of the term
which 1z a function of the face=-plate thickness. As the face
thickness increases (or remains approximately constant whereas g
decreases, and thsrefare the value of mean square stress will increase.
Under conditions when the direct inertia term 1s not the most significant
term then stresses will be small anyway. Thus to reduce coincidence
effect stresses it 1s desirable that the mass per unit area of the
face-plate should be as small as possible:r We have seen the effect
which acoustic cavities have had in magnifying stresses in a
practical sandwich panel surface. Bond s‘resses will be similarly
magnified by cavities.

From the arguments outlined in this chapter smi recomendations
can be made which will help to reduce bond stresses in sandwich plates
excitad by random noise pressures. These are:
| (1) kesp the face-plate thickness to the minimun compatible with a

satisfactory plate stiffness and handling requirements
(1) keep the lengths of panels between ribs or supports to a minimém
and

(111) add the meximum damping to the panel.
-174 -




case, somewhat defeats one of the objects of the stiff sandwich panels,
vize to reduce the need for stiffeners. Item (111) abovs is the most
promising method of reducingy bond strezses. It is recommended that

some sirple method of adding damping to a sandwich plate be sought
which iss

{1) effective
(11) simple to manufacture
and which (1i1) does not affect the structural integrity of the sandwich.

Res:arch is necassary into the optimun dispositions and amounts of

this damping.

"Item (81) above has considerable weight penalties and, in any
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JABLE 4 Values of the Parsmeter C(w, S°') :nb\namv at the
Varfou. Strain Gauge Positions

EAO\GV <m = Oo@amhtnv ﬂ\ﬂ o Ooaakoﬁoww n\m - O-MM@Amomowv

4] 1.4103 12 7.0520 =13 2.8980 -~13
20 1.4221 -12 72690 «13 2,9761 ~-13
40 1.4397 =12 7,9348 =13 3,2156 -13
60 1.,9336 ~12 9.1052 =13 3.6401 =13
mo M.O@bﬂ .MN Hoga QMM #oNg lwﬂ
100 1,8937 «12 1.3534 »12 542637 =13
120 243196 ~12 1,7313 =12 6.,7140 -13
140 3.1786 =12 2.4094 -12 9,0441 «13
160 59,3144 <12 37350 =12 143049 «12
180 1.3861 =11 B.3707 =12 2,783% -12
200 2.4840 -10 1.2607 «10 3.7361 -11
220 1.7959 11 1.1391 ~11 3.9179 ~12
24 2.8785 =12 4,5837 ~12 241245 -12
260 1,0930 »12 4,7383 =12 2.4364 -12
280 7.2962 =13 641920 -12 3.3156 =12
300 742920 13 9.0947 -12 4,8902 =12
320 8.7844 =13 1,5431 -11 8,2006 ~12
340 1.1195 »12 3,49538 ~11 1.7926 «11
360 1.4380 12 1.,4230 ~10 7.2018 =11
380 1.8379 =12 1.1958 =10 5.8920 ~11
400 2.3363 »12 2:0434 ~11 1.1675 =11
420 2.9670 =12 7.3831 ~12 5.3627 ~12
440 3.7918 =12 4.255]1 =12 4,5369 =12
460 4,928] ~12 2.3320 «12 4,9098 ~12
480 046170 =12 3,8208 ~12 6.1299 =12
800 9.,4199 =12 4,9603 =12 B8,4546 «12
520 1.4924 11 T7.3829 12 1.3156 =11
940 2,9354 »11 1,4733 -11 2:5513 =11
960 1.0200 =10 941026 ~11 8,7382 «11
580 3.2639 - 9 1,6329 - O 2,782 - 9
600 9.3879 11 2,6942 ~11 4,6636 =11
620 1.0926 =11 59,4635 =12 1.0038 =11
640 3.6222 =12 1.8112 ~12 3.8610 ~12
660 1,4338 -12 7.1740 =13 2,0423 ~12
680 0.0598 «13 3,0405 ~13 1,3748 =12
700 2,5056 «13 1.2977 «13 1.1044 -12
720 1,0288 =13 29,3136 ~14 09,8936 ~13
740 3.,0168 =13 1.9787 -14 043081 =13
760 9. 4649 =15 642863 =15 9.0723 ~13
780 9. 7873 ~16 1.,8014 =15 8.8307 ~13
800 2,2258 ~16 1.1436 -15 8.3694 «13
820 2,1378 ~15 1.8299 =15 8.26%9 -123
840 4,3856 «15 2.7068 «19 79269 «13
860 6.0150 =15 3.,3257 -15 7.5781 «13
880 6.7730 =15 3.5008 =13 7.2581 ~13
900 6.7374 =15 3,4480 ~15 6,9701 ~13
920 0.1182 «15 3.0844 -19 6.,07T72 13
040 9.1513 =15 2,5784 »13 1,2161 =-13
86 &-O&N iww M‘O”h@ lww N.ﬂ&@b -14
80 Noguu lwmv wo&@@.ﬂ !Mw moﬂ.ﬂom lﬂb
1000 2.,0091 =15 1,0319 «15 1,035]1 «13

These numbers are given in decimal floating point mona»
thus + 1.4105 =12 s 1.4105 x 10712, The units are ft¥/1b°,




TABLE 8 Showing the Development of W, (w) and £€7%(t) for the
Face at Strain Gauge 1 (x/a = 0,5) Overall Noise ‘ressure
Intensity = 143,5 dB

»un 8¢

su?;

p\mna rad.

c{w)
ft4/102

We(w)
sec/rad,

0088 -2
ch -2
Ocswu ‘N
Oo 8”@ -2
Oo SNU lN
0088 UN
0083 ....N
0.,0025 »2
0,0023 «2
0,0023 =2
0,002 -2
0,002% =2
00025 =2
Qosh 'M
0.1090 =2
O« 408 -2
1 . wOQ -2
Q- 8” ..-M
O. wOw -2
0,425 =2
0.543 =2
1,130 =2
Qo 3@ lN
Oo Gg lN
Oo hﬂ” -
1,330 «2
w om..wM 2
2,63 =2
1.112 2
Qe .ﬂg ‘N
1.702 =2
1 ow.w ..-N
Qt@g -2
Os ww@ -2
2,41 -2
1.112 <2
1 L \\8 ‘M
w OSQ -2
Os ”NO -2
0,399 =2
0. QN@ -”
Qs 98 =2
M L] 8‘ -2
0,629 =2
0.544 =2
0e241 <2
O, NWN -2
0,1292 =2
OQQQQ -2
Oqu -2
0.040 =2

1.4108 -12
1,4221 =12
1.4397 =12
1.9336 ~12
w.g&ﬂ CMN
1,8937 =12
2,3196 =12
3.1786 ~12
anwt iww
1,3861 ~11
2.4840 10
w-ﬂao 0~H
2:8785 =12

u-OO@O IMN :

7.2962 ~13
702920 =13
8,7844 13
1,1195 -12
1.,4380 =12
1.8379 «12
2,3363 ~12
2,9670 ~12
Q-QOMQ IH”
4,9281 -12
646170 «12
9.4199 =12
ﬁ-&ONb 'WM
2,93%4 ~11
w.SS lﬂO
3,2659 - 9
35,3879 ~l11
1,0926 =11
MOOMNN wa
~o§ .12
Gtsa !pw
Nogg tu.u
1.0288 ~13
3.6168 ~14
00&&@ CFQ
Oodm.ﬂw lw@
2,2258 ~16
2.1378 =13
4.3856 ~15
6.0150 =15
0:3@0 =15
6,7374 =15
6.1182 -15
8.1513 ~15
&00&” -Ha
2.9633 ~15
2.0091 ~15

0.0035 ~14
0.-00& OM“
008&0 OH&
0.0038 ~14
Ong CM&
0.0047 <14
0.0038 =14
0.0079 =14
0.,0133 ~14
o'ow&ﬂ Owb
0,621 «14
0,045 =14
0.83 -14
OQSNO ln.&
0_038 l—&
0.298 ~14
WQMS lH&
0.906 -14
0:373 =14
Oo.\@O IMA_
1,270 ~14
w-w& !M&
_.woqo 'N“
uoco -ld
woww -14
1,253 ~13
2.79 ~13
.NQ.QM CNW
1.135 12
wcoa wa
GGHO lww
1.713 ~}13
3.19 -14
Oobmw ~14
wc& iwﬁ
0,285 ~14
0.178 =14
0,039 Cw&
0,007 wa
O-SN !NA.
0,001 ~14
0,002 ~14
0.006 .ﬁ“
0.004 ~14
Oo§ «14
OQSN _lwh.
0,001 ~14
OQSM lw&
0,000 ~14
0,000 -14
0. 000 lwh
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FIGURE | : FIRST ORDER MODE SHAPES OF A
SIMPLY - SUPPORTED SANDWICH PLATE ,

~ (8)__ANTI-SYMMETRIC MODES
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FIGURE Z: SKETCH SHOWING PLATE AND SKiN
CONVENTIONS .




FIGURE 3a : FLAT PLATE FLEXURAL MODE FREQUENCIES
- (NON-DIMENSIONAL) : = 0-05 .
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FIGURE 3B: FLAT PLATE FLEXURAL MODE FREQUENCIES
(NON-DIMENSIONAL) {  m = 0410 .
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, - AGURE 3c: FLAT PLATE FLEXURAL MODE FREGUENCIES
1 (NGN'NMWStoNAL): s 015 .
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AGURE 3D: FLAT PLATE FLEXURAL MODE FREQUENCIES
(NON- DIMENSIONAL) @ - j& = 0:20. |




FIGURE 4 : NON-DIMENSIONAL FREQUENCY  vs.
FREQUENCY IN KC/S




FIGURE 5 : FLAT PLATE REXURAL MODE
MASS RATIO FREQUENCY GORRECTION .




FIGURE 6 : FLAT PLATE BUBBLING MODE FREQUENCIES
(NON-DIMENSIONAL)
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4
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FIGURE 7: FLAT PLATE BUBBLING MODE

MASS RATIO FREQUENCY CORRECTION




FIGURE BA: FLAT PLATE ALEXURAL MODE FREQUENCES
| WITH INCIDENCE ANGLES FOR THE 7

. . OCOINCIDEMCE EFFECT . M= 0.05

1 wey| Ex® ARG 8 l

NQ X-WISE EFFECT. NO Y-WISE EFFECT
- POSSIBKE. ' POSSIBLE \

8,55.6°
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AG 88 : FLAT PLATE FLEXURAL MODE fREQUENCIES
WITH INCIDENCE ANGLES FORTHE COINCIDENCE
EFFecT M= 0.10.
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FIGURE 8C . FLAT PLATE FLEXJURA. VOTE
FREQUENCTES WiTh INCIDENCE £5G
FOR THE MOINCIDENTE ZF=C7 0 =T

ey
-

. -

- = er, LINES

—— — B LINES




FIGURE 8D: FLAT PLATE FLEXURAL MODE FREQUENCES
WITH INCIDENCE ANGLE FOR THE WINCIDENCE
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FIGURE 9 : CURVED PLATE FLEXURAL MODE FREQUENCIES vs.
CIRCUMFERENTIAL WAVELENGTH: u=-0.05 | #=0.020,




FIGURE [0: CURVED PLATE FLEXURAL MODE FREQUENCIES v
AXIAL WAVELENGTH : u=0.05, #=0.020.




FIGURE 1] : CURVED PLATE FLEXURAL MODE
HEQUENCIES s J £ =0.020




FIGURE 12: CURVED PLATE FLEXURAL MODE
FREQUENCIES vs. CURVATURE (#) ; = 0.05.
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FIGURE I3: CURVED PLATE BUBBLING MODE FREQUENCIES
vs. . (ALMOST INDEPENDENT OF WAYELENGTH & %)
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HGURE |4 : PARAMETER $@) vs FREQUENCY ; FOR
ROLLS-ROYCE AVON R.A.26 WITH 20.8" DIA . CONICAL
NOZZLE (AFTER REF. 21).
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FIGUREI5: JOINT ~ MAGNIFICATION
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FIGURE 16 : PHOTOGR APH OF THE SANDWICH PANEL OF
CHAPTER THREE SHOWING THE STRAIN GAUGES.




FIGURE |7 :
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SKETCH OF THE SANDWICH PANEL IN THE SIREN TUNNEL
SHOWING AXIS SYSTEM AND STRAIN GAUGE POSITIONS




FIGURE 18: HARMONIC RESPONSE CURVE FOR STRAIN
GAUGE 3 AT AN INPUT PRESSURE. INTENSITY
OF 133.5dB.
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‘ FIGURE 19: PHASE DIAGRAM OF THE RESPONSE OF STRAIN
GAUGE 3 IN THE REGION OF THE FOURTH
NATURAL FREQUENCY (937 ¢js).




FIGURE 20: A MORE DETAILED PHASE DIAGRAM , AS Fl&. 19 |
SHOWING THE DERIVATION OF W4 AND &, ,
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FIGURE 21 : A SKETCH OF THE EXPERIMENTAL
SANDWICH VIEWED FROM ABOVE
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Elgure 22 Photographs of typical bond failures and of the
strainegauged specimen

1.

2.

3¢ Strainegauged specimen l



FIGURE Z3: THE CALIRRATION OF THE GRAMOPHONE
PICK-UP.(ORE STRESS PERVOLT vs. FREQUENCY
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FMGURE 24: AN S-n CURVE FOR THE UNIAXIAL FATIGUE OF




