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PREFACE

The work described in this thesis was done in the course of the

programme on rotor noise research conducted at Southampton University with

the joint resources of N.A.S.A., U.K. Ministry of Technology, and U.S.

. Army grants.

(a) The computational study of rotational noise was carried out jointly

by Dr. S.E. Wright and the author, and the findings were published

in a series of three reports as follows,

(1) Computer program : ISVR Technical Report No. 13 by Tanna,

(2) Computed results : ISVR Technical Report No. 15 by Wright and Tanna,

(3) Interpretation of results : ISVR Technical Report No. 14 by Wright.

The computed results were presented in Wright's thesis, and in order

to avoid duplication, they are not included in the present thesis.

(b) The theory for sound radiation from a point force in circular motion

(Chapters 5 and 6) was developed by Dr. C.L. Morfey and the author

as a joint effort; it will appear shortly as a joint paper in _the

~ Journal of Sound and Vibration.




ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

SOUND RADIATION FROM SOURCES IN CIRCULAR MOTION WITH APPLICATION

TO HELICOPTER ROTOR NOISE
by Himatlal Keshavji Tanna

A characteristic feature of most of the thrust producing devices used in
the present day vertical and short takeoff-and-landing aircraft technology
is that noise is radiated from steady and fluctuating sources executing
circular motion. Helicopter rotors, compressor fans and‘tip jet rotors
are examples where sound is generated by rotating sources of cyclic
and/or arbitrar& time dependent source strength. The radiation properties
of these sources are studied here, and in particular, noise from the rotating
blades of open rotors is investigated in detail.
AiThe effects of chordwise and spanwise differential-pressure profiles, and
their variations with azimuth, on higher harmonic rotational noise from

«
helicopter rotors are established. Previous theories are modified to
include these profiles and ig is shown computationally that fluctuating
loading profiles must be included in the radiation analysis for accurate
prediction of rotational noise. Cemputer programs for noise prediction

from various loading models are availablie for future use. A detailed study

of available measured aerodynamic loading data reveals several interesting



points; in particular, it appears that the asymmetry of blade loading
under any particular flight condition can be explained qualitatively.

In order to establish the effects of acceleration of sound sources due
to steady rotatioﬁ in a circle, expressions are derived for the far—fiéldf
sound radiation from random singularities in circular motion, using the
ﬁoving-source'approach. The overall results are obtained in exact closed
form, and a series approximation has been developed tc show how the
radiation spectrum is influenced by rotation. The point force theory
provides good correlation with experimental results. It is suggested

that the use of rotating point acoustic stress analysis provides a model

for reﬁresenting distributed blade forces.
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(1)

LIST OF SYMBOLS

For easier reference, it is convenient to define the symbols used

under two separate headings:

Analysis of harmonic rotating sources (Chapters 2 to 4)

a blade chord, inches

a distance of pth chord section from leading edge, inches

Ap(r,w)' differential-pressure on pth chord section at point (r,y) on
on the rotor disc, pounds/:’m2

. . . s th .
steady, cosine and sine coefficients of g = harmonic

A , A , A

pe” p8&8" P8

' of differential-pressure on pth chord section, pounds/in2
B rotor blade number

<, speed of sound

Cm’ D 3 C&, D! differential-pressure (pounds/inz), loading (pounds/in)

‘g 4 coefficients
D observer-source separation Ri - X
‘£ force per unit volume
g blade differential-pressure or loading harmonic number
Azﬁ(x) Bessel function of order n and argument x
k acoustic wave-number = mB Q/co
LT total loading on rotor = Lé aB , pounds

L'(re,w) blade loading at point (re,w) on the rotor disc, pounds/in
(equivalent rectangular chordwise loading)
Lé, Lé, fé steady, cosine and sine.coefficients of gth harmonic of blade
loading, pounds/in (Equivalent rectangular chordwise loading)

Lé(re,w) blade loading on pth thord section at point (re,w) on the rotor

disc, pounds/in (actual chordwise loading)



.-L'.

Ll
pg’

po’

(ii)

Lt
P8
. th . .
blade loading on p  chord section, pounds/in
(actual chordwise loading)
rotational noise harmonic number
effective, tip Mach number
number of blade chord sections
rotor frequency, Hz.
acoustic pressure;
subscript, denotes chord section,
Fourier series representationof differential-pressure,
distance from rotor centre of element on rotor disc
area of element on rotor disc
rotor effective radius, tip radius
observer position
: - th .
sound pressure - m  harmonic of B-bladed rotor
sound pressure from single blade loading harmonic g
time
period for blade passage frequency = 21/BQ
. th . .
width of p chord section, inches

source position

= Lég(re) / Léo(re)

resultant force angle, degrees

steady pitch angle, degrees

cosine, sine coefficient of cyclic pitch, degrees
blade twist rate, degrees/inch

directivity function = m]}Ju (mBM_ cosg)

. . . . th .
steady, cosine and sine coefficients of g harmonic of

loading



(iii)

Ay integration interval for azimuthal integration
6 observer azimuth angle, O at tail, positive in the direction

of rotation

. = (B 1 g)

‘q- observer elevation angle, 0° in rotor plane, positive above
rotor pla;e

X spectrum function for distributive chordwise loading

¥ blade azimuth angle

Q rotor angular frequency

) peak value

i co-ordinéte directions (1 = 1,2,3).

Analysis of random rotating sources (Chapters 5 to 9)

a radius of circular path
A(M), B(M), C(M) coefficients in the sound power expression

<, speed of sound

d(e), a(t),.é(t) time-varying volume displacement, volume velocity,
volume acceleration

D drag (6; longitudinal) force

f. harmonically varying force

e, f, g, h periodic functions of [e]

F fluctuating point force

~Fr . component of F in thets direction

Gx(w), Gx(v) auto-spectral density of a random function x(t)

ny(w), ny(v) cross-spectral density of two randomvfunctions X, ¥

G (w) time-averaged spectral density of sound pressure

I acoustic intensity

Jn(z) Bessel function of order n and argument z



q(t)
Q(t)

r
~
- R
R

X

(iv)

convection or rotation Mach number

components of M in the,ﬁ’.g directions

acoustic pressure

mean-square sound pressure

point acoustic source strength

time-varying point volume velocity source strength (mass
per unit time)

vector position of observation point

source-observer vector

(1), Rx(q) auto-correlation function of x(t)

ny(T), ny(«) cross-correlation function of x and y

s(t)
t

T

Tis

<

time-varying point volume displacement source strength (mass)
time

thrust (or transverse force)

fluctuating point acéustic stress tensor, i, j = x (axial),

8 (circumferential), o (radial)

components of Tij in the's,'g directiéns

sound power output, spectral density

vector position of source point

=Tcosy , =T coszw

XX
= D siny , = Txe siny cosy
- )

Tee sin*y
=M siny )

drag-thrust force ratio {(constant)
azimuth angle about the line of uniform straight-line motion;

source azimuth angle for uniform circular motion

source radian frequency

undisturbed fluid density



S

(v)

= 1/ [1 - MJ

observer time delay

=[9]s

observer azimuth angle for uniform straight-line motion and for

pure rotation of acoustic stresses

observer angle, 0° on axis ofrrotation

observed radian frequency

rotation radian frequency

evaluation at retarded time [t] =t - [ﬁ]/co
differentiation with respect to time

modulus

differentiation of a function with respect to thg variable
time-averaged value

ensemble-averaged value

Fourier transform;

peak amplitude

complex conjuéate

subscript denotes three co-ordinate directions (i = 1,2,3)

subscripts indicate values at .observer times t = t, +

27 h

T.
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1.

CHAPTER 1

INTRODUCTION

Throughout the history of man-kind, every human invention has brought along
with it some sort of disadvantage or discomfort to our everyday lives. 1In
the case of technological progress, the biggest penalty we are paying can
be summed up by the single phrase "pollution of our enviromment". In
recent yearé, the technologically advanced nations are beginning to realize
the increasing magnitude of this problem and are setting up separate
ministries and organizations in order to control the pollution of the
environment we live in,

The major unwanted by-product from the present day air transport veh-
icles which causes most concerﬁ is the high levels of noise produced by
these vehicles. 1In particular, noise from helicopters, V/STOL aircraft and
ground effect machines is causing a variety of problems ranging from hear-
ing damage on the one hand, to community acceptability on the other.

‘In civilian operations, high levels of noise from these vehicles are
defeating the very purpose of city centre transportation for which these

vehicles are designed. In the military use (for those who are interested),

the far-field noise levels are such that they give early warning of approach

to the enemy. Internal noise levels are also high; long-term exposure
causes a very serious health hazard to flight crews. 1In addition, the manu-
facturers are faced with the‘problem of designing better components, to
resist tﬁe fatigue failure of structures and malfunction of electronic and
sensitive mechanical cquipment due te vibrations induced by high intensity

noise within the vehicle. Clearly, there is urgent need for developing new



methods of controlling the noise levels.

'Noise from helicopters, V/STOL aircraft and ground effect machines is
generated by a multiplicity of sources of sound, each of which is a compli-
cated process in‘itself. It is impossible to eliminate all these sources
completely, and therefore the object must be to understand thevradiating
" properties of all the mechanisms invclved in order to develop accurate
prediction methods; once these become available, the noise producing dev-
ices used on these vehicles can be designed from the start to satisfy any

noise limitation.

Aim of the investigation

A characteristic feature of most of the thrust producing devices used
in the present day V/STOL aircraft technology is that noise is radiated from
steady and fluctuating sources executing circular motion. Helicopter rotors,
compressors fans and tip jet rotors are examples where sound is generated by
rétating sources of cyclic and/or arbitrary time dependent source strength.
The object of the work reported in this thesis is to study the radiation
_properties of these sources. In particular, effort -is concentrated in -

investigating the noise from rotating blades of open rotors.

1.1 Helicopter rotor noise

In the present generation of turbine powered helicopters, the subject-
ively dominant noise sources are aerodynamic in nature; these include the
radiation from rotating blades of main and tail rotors of a helicopter. It
is also well established that the most important factor in the generation

of noise from helicopter rotors is the presence of fluctuating blade forces

due to non-uniform inflow [}—15].



These fluctuating forces on the rotor blades arise from a number of

causes, which are discussed fully in chapter 4. The force-time history on
a rotating blade can be conveniently separated into two parts for'the purpose
of evaluating the resulting sound field; forces which are repetitive for eacﬁ
blade revolution and forces which vafy randomly with time (see Fig. 1.1).
The periodic force-time history can be Fourier analyzed into harmonic
"components (at multiples of rotational frequency) which give rise to the
discrete tones, at multiplés of the rotor blade passage frequency; this is
known as the "rotational noise. Random blade forces contribute a continuous
spectrum of radiated sound pressure, normally referred to as the 'broadband!
noise in literature.

The two mgthods used for analyzing the sound field from moving sources

are described below.

1.2 Analysis of sound radiation from moving sources
An important part of aerodynamic noise theory [1] is concerned with

sound radiation from moving sources. In evaluating the sound radiated from
rotating singularities, it is convenient to describe the excitation initially
in a moving frame of reference; .rotating blades is anrexample in which the
excitatipn (forces) is rotating with the blades. The sound field can then
be derived by using two alternative approaches.

(1) The source description may be transformed immediately into fixed

co-ordinates before proceeding to calculate the sound field. This proced-

ure was adopted by Gutin [?] for the excitation associated with steady

blade forces, and by Gutin [?] and Embleton and Thiessen [4] for steady

mass sources as a model for rotor thickness noise. For the excitation

associated with harmonic blade forces, Wright [5] used the samevapproach,



and is described in the book by Morse and Ingard [b, section 11.3] .
It has since been generalized by Ffowcs Williams and Hawkings[:7] for
sources of arbitrary time dependence in circular motion.
(2) Alternatively, the simplicity of the moving-frame source descrip-
tion may be retained in the acoustic analysis, but at the expense of
having to allow for the source motion. Lilley [8] used this approach to
estimate the overall mean square pressure radiated from a fluctuating point
force in circular motion, but acceleration effects (due to the finite
radius of curvature of the path) we;e neglected. The general theory of
sound radiation from moving singularities was developed from this view-
point by Lowson [9], who has used it l}0,11,12,13] to give alternative
derivations of the steady and harmonic rotating-force results mentioned
above. |
Both approaches are ﬁsed in the present thesis. The rotational noise
analysis (chapter 2) is developed by using the first approach, and the
sound radiated by rotating sources of arbitrary time dependence is evaluated
by using the moving-source approach (chapters 5 to 9). |
The moving-source approach offers two advantages. First, simple results
for the overall radiation can be obtained directly, without involving the
radiation spectrum. Second,rthe spectrum result takes the form of a series
expansion about the linear-motion case; this enables us to establish the
effects of source acceleration due to circular motion on the linear-motion
results.conveniently.
The following sections describe the areas of research on radiation from

rotating sources that are tackled in the thesis.




1.3 Radiation from periodic rotating forces (rotational noise)

"Although the importance of fluctuating ordered blade loads in the
generation of rotational noise was established as a result of two computa-
tional studies by Schlegel, King and Mull [14] and Loewy ;nd Sutton Eé],
the necessary analytical treatment of the subject was given separately
~ by Lowson énd Ollerhead [}O] and Wright [5] at Southampton. An extensive
computational study of rofational noise following these theories [?,10] was
carried out as a joint effort between Wright and the author at Southampton.
'v The computer program for this study was developed by the author [}6] and
is described in detail in Appendix I. The results of the computational
study are reported in reference [}7], and were included in Wright's thesis
ES]. In order to avoid duplication, a summary only of the computational
investigation is given in the present thesis - see Appendix II.

?he four basic assumptions involved in the rotational noise theories

_[?,10,14] quoted above are:

(a) The rotor or propellor system is assumed to be stationary. As a

| result, the solution's accuracy decreases as the rotor gystem
translational speed increases. -

(b) Steady conditions are assumed. That is, what happens in one revolution
ﬁappens in every other revolution, and in fact, what happens to one
Ablade at a particular azimuth is repeated on every other blade when it
is at that azimuth.

{c) Thé loading profile across the blade span is neglected and the total
loading on the blade is supposéﬁ tc be acting over a small span
length Ar (point loading) at an effective radius s usually taken

to be around 0.8 of the tip radius Tope



T For a flat plate aerofoil the local differential pressure equals the

loading tut for any other shape of aerofoil section the local pressures

on the top and bottom surtfaces must str ctly be resolved in a directicon

normal to the chord before subtraction. 'The term 'differential pressure’

is used locsely throughout the thesis to indicate +he loading.




(d)

t

The chordwise differential-pressure profile is assumed to be

rectangular. That is, the actual differential-pressure profile
across the chord is approximated by equivalent rectangular distribu-

tion for easier harmonic analysis.

Now although assumption (b) appears to be justified (this is supported

by the fact that the contribution from discrete tomes at multiples of the

rotor shaft frequency is negligible in the case of helicopter rotor noise

spectrum), the other three do not. In fact Schlegel [}4] has eliminated

assumption (&) in his analysis, and Lowson and Ollerhead BO] have modified

their analysis to include the effect of forward velocity of the rotor

system. The last assumption (d) has not been properly examined in any of

the previous theories, and together with spanwise distributed loading

effects it forms a part of the present investigation. The investigation

seems to be justified for the following reasons.

(1)

The relative importance of broadband nqise and discrete-frequency
noise-from a helicopter rotor has been in question for a long time,
but the situation is fairly clear now. At low tip Mach numbers,
broadband noiseris subjectively as important ;;”rotational noise,
;f not more important E}d. (It is treated separately in chapters

5 and 6). On the other hand, at high tip Mach numbers (say greater.

than 0.5), rotational noise becomes more important subjectively.

Experimental data show that discrete-frequency peaks at multiples of
the rotor blade passage frequency could be detected well into the
region of the spectrum where broadband noise exists i}0,37] s
especially at higher tip Mach numbers. Thus it is essential to ex-
plore all the possible mechanisms for the generation of rotational

noise.



(2) When a helicopter rotor is being translated at high forward speed,

the large differences in effective angle of attack between the
advancing and the retreating half cycles of the blade revolution \
produce large variations in the blade loading, as well as in the

: loading profiles across the chord and span. This is only one example
out of a number of situations and causes which lead to large fluctua-
tions in the préfiles. Under such flight conditions, it is obvious
that the available theories may give misleading results, and it is
considered essential to modify the present theories in order to

’ loadimg
investigate the consequences of such changes ig\profiles on the
radiation of noise.

(3) Aerqdynamic measurements of the blade loads indicate that in various
situations, especially when blade stall occurs, the differential-
pressure across the blade chord has a very peculiar profile, having
negative lift over a part of the chord (usually near the tgailing
edge). This will affect rotational noise harmonics predicted by
previous theories at frequencies whose wavelengths are comparable
to or shorter than the blade chord. 7 |
To summarize, modifications of the previous theories to include

chordwise and spanwise differential-pressure profiles and their variations

with azimuth are required at
(1) high tip Mach numb;ers, say MT> C.6,
(2) high forward speeds, .
and (3) higher frequencies of the acoustic spectra.

A detailed account of the work which results from the above arguments

is given in chapters 2 and 3.



1.4 Helicopter rotor aerodynamics

In order to calculate the noise radiated from a helicopter rotor, the
most vital information which must be known is the magnitudesof fluctuating
forces acting on the blades. Unfortunately, this information is not
easily available, eithef experimentally or theoretically, at the present
time. On the experimental side, measurement of blade airloads is a very
complicated and expensive instrumentation problem, where the magnitudes
of the high frequency harmonic airloads are so small (but vital for
noise calculations) that thebavailable accuracy of the measuring instru-
ments renders them unreliable. So far, it is impossible to include all
the factors which produce the loading asymmetries in the computer solu-
tions for airloads prediction - see White Pﬁﬂ.

As a result, the best one can do at the present fime is to study all
the available measured loading data in detail and look for any trends
;hat exist. This is done here in chapter 4. 1In addition to gaining some
information on the variation of blade loading harmonic fall-offs along
the blade chord and span, the study reveals several other interesting
features. In particular, it appears that the loading asymmetry at a
particular flight condition can be explained with reasonable success, by
combining all the factors which produce the non-uniform flow through the

rotor under this flight condition,

1.5 Radiation from random rotating forces (broadband noise)

Helicopter rotor blades experience random forces, which give rise to
the broadband part of the acoustic spectrum, basically for three possible
reasons; (a) random vortex shedding at the trailing edge (hence breoadband

fiolse is referred to as "vortex noise" by some investigators), (b) boundary



layer turbulence on the surface of the blades, and (c¢) interaction of a
blade with turbulence in the wake shed by the previous blades. The
relative magnitudes of these will vary from one rotor geometry to another,
as well as with the operating conditions.

The analysis for sound radiation from sources of arbitrary time
dependencé in circular motion was given by Ffowcs Williams and Hawkings
Eﬂ,‘but it is limited to spectral results only. Moreover, since their
result for the radiation spectrum takes the form of an infinite series of
Bessel functions, it makes it necessary to use a computer program in order
to use it in practice.

It was decided to tackle the problem from first principles {chapters
5 and 6), using the moving-source approach described before. Lowson's
general result Eﬂ for the sound field of 2 point force in arbitrary motion
is applied to the special case of uniform circular motion,and the resulting
radiation properties are established in detail. In order to study the
effects of diétributing the forces over the rotating blades, a parallel
analysis is developed in éhapter 9, where the sound field from point
acoustic stressesfin uniform circular motion at subsonic speeds is derived.

The rotating acoustic stresses analysis has two further applications
in practice. The first one refers to the noise from tip jet rotors, where
the quadrupole effects of the acoustic stresses in the turbulence are re-

sponsible for jet noise at high subsonic Mach numbers. The second applica-

tion refers to the noise measurement i - for simulating steady

fly-over of a jet by rotating it at the end of a rod in a controlled
environment; within the limits of Lighthill's compact-quadrupole model
for jet noise, the theory gives all the information required about how the

linear-motion results are affected by finite rotation.

T for  distributed blade fotces , the moments of the forces can be
Yef;(e,seﬂhw[ Lj point  dcoustic stresses (of quadvupoles), This s
discussed -fw“ in Cth ted 9.




1.6 Radiation from point sources in circular motion

}Finally, the moving-source approach is used again to calculate the
sound radiated from rotating point volume-velocity sources (mass flow
introduction) and point volume-displacement sources (mass displacement),
in chapters 7 and 8 respectively.

The volume-velocity source analysis has direct application to the
noise from tip jet fotors. Here, at low jet exhaust speeds (approx.
M < 0.4), the noise is dominated by the monopole effects of the jet mass
flow fluctuations induced by (a) irregular combustion and (b) jet pipe

- boundary layer turbulence, as shown by Ffowcs Williams and Gordon [20].
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Fig. 1.1 Forces on rotating blades.
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CHAPTER 2 , i

ROTATIONAL NOISE THEORY

Expressions for the sound radiation from harmonically fluctuatiﬁg
forces distributed over rotating blades are derived here. Since the
purpose of the investigation is to evaluate the effects of the shapes
of chordwise and spanwise differential-pressure profiles, and their
variations with azimuth, on the generation of rotational noise, it is
convenient to make the following tﬁo assumptions: |

(a) The rotor or propeller system is assumed to be stationary.

As a result, the solution's accuracy decreases as the rotor
system translational speed increases.

(b) Steady éonditions are assumed. That is, what happens to one
blade at a particular azimuth is repeated on every other blade
when it is at that azimuth.

These assumptions reducg the mathematical complexity of the problem con-

siderably.

Zfl General theory

. -The structure of the anaiysié is similar to those by previous inves-
tigators [?, 5, 14]. Since the sound field from rotating forces over the
blades is equivalent to the sound field due to stationary dipoles over
the rotor disc which arise from force fluctuations at each element

(rdy , dr) of the disc, the ahalysis can basically be divided into three

stages;
M

(1) To determine the sound pressure at a point R due to a fluctuating

force acting at point X on the rotor disc.



(2) To define the time history of the force per unit disc area acting at
each element (rdy, dr) of the rotor disc in terms of the force per
unit blade area.

(3) To evaluate the total radiation from the entire disc by azimuthal and
radial integrations.

The acoustic pressure p due to a point force F (t) acting at }s

is given by Lighthill [i] as

F.(t-D/c )
p(R, t) = - 31 {j 1 — o (2.1)

dR.

where D is the observer~-source separation,

D= [R - x| (2.2)

and 1 signifies the three co-ordinate directions i = 1, 2, 3. Equation

(2.1) thus gives

v lHrD2 ot

o (Rymxy) 1 3 '
p(R,t) = { 5 — Fi(t~D/co) + % Fi(t—D/co)} . (2.3)

The fluctuating force £ per unit disc area acting at any point (r,y) on

the rotor disc varies periodically at integral multiples of the rotor blade
passage angular frequency BQ and so it can be rcpresented by the Fourier

series

q o~ 8

{(I‘,k’f; t) = C (r,y) exp j(mBot) (2.h)

m
m=1

where the period T of the force variation is the time interval between the

Elades

passage of successive sbaddes- over point (r,y) and is given by




1t should be noted that the steady coefficient (m=0) is omitted because it
does not rake any contribution to the acoustic pressure field. If the force
is distributed over an element of disc area dS = rdrdy, so that

£ rdrdy = {, ] (2.6)

. th . \ .
then the resulting m~ harmonic of sound pressure is obtained from (2.3)

as
» (B.-x.) .
&P . (R,t) = — =2~ ¢ . (r,p) (22, L
. mB v )-iTFDQ mi c D
exp j(mBRt — -"%—@) rdrdy. | (2.7)
0
It is convenient to take the origin at the centre of the rotor. Since
, oTce .
the-déééeréi&&&%—p%ee&a&e is acting in the plane normal to the radius vector,
x-iCmi = 0. With reference to the geometries defined in figures (2.1) and (2.2),
x, = (r cos ¥, r sin ¢, 0) , (2.8)
'Ri = (R cosocos 6, R coso sin 6, R sin ¢) , (2.9)
Cmi = ( - C, sin B sin ¥, Cm sin Bcos ¢, - Cm cos B) , (2.10)
giving
. - - : ) 2 R . y e
D= 'Ri - xi, =a{R. + r~ - 2rR cos gcos(6 - ¢).} (2.11)
and Ricmi = - RCm{sm Bcos o sin(y - 6) + sinocos B } (2.12)
The sound pressure equation (2.7) can now be written as
‘ imBQ !
ds?__(R,t) = - R ¢ (r,y) J siuB cos osin(y - 8) + sinog cos B)(JmB i l} x
mB 2 m - Ve D
4D ~ o}
exp j(mBat - ‘“BSD ) r dr dy . (2.13)
o

If the blade is twisted and the rotor is operating with cyclic pitch




Heve it s assumed  that  +he chovd wid Pm\/’ecfeol on
the  votor dise i5 {den {'{c,'a( to Hie actual blade chovd
width | Th:s is valed fov swmall value s of /3 On  the

ot hev Nand , faf (mrjo, values of ﬁ ) the fwoj ec ted
chevd wiol th (s cos /3; fimes the actual blade
chord widHh,
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variation, then the resultant pitch angle at any point (r,y) on the rotor

disc is given by

I3

B(r,p) = Bo + Bl cos ¢ + El sin ¢ - Y(r-ro) I (2.14)

where B = steady pitch angle,
. 81 = cosine coeffic.ient of cyclic pitch,
81 = sine coefficient of cyclic pitch,

Y = blade twist rate ,

and r, = radius at which blade twist begins.

éf the fo1ct peY um bt disc avea qcf(nj
Thus once the -diffenential-pressure coefficient C_ on the element
in teyms of the ‘fofce per unit blade avea TA
(rd¥ ,dr) of the disc can be defined, the radiation may be obtained from
A

equation (2.]:3). The actual spanwise and chordwise differential-pressure
profiles acting on the blades can be introduced as follows.

The blade chord is divided into a number of sections, the number de-
pending upon the number of transducer positions across the chord at which
measured differential-pressure data are available. The loading on each of
these elements is considered as a rotating fluctuatiﬁg force. Retaining
the appropriate time delays between one chord section and every other chord

- of the fotce por uwit disc avea
section enables us to define the pressure-time historyAat each azimuthal

element of the rotor disc at a fixed span station. This process is then

repeated at several radial stations and in this manner, it is also possible to

introduce a span loading profile as well as its variation with azimuth.
of the -faw!ce pry untt dise  qvea
The pressure—time historyAas the blades pass over element (rdy,dr) is
tt

shown in Fig. 2.3. If ap represents the distance from the leading edge of the

h
chord station representing the pt chord section, then the p®essure- spectrum
_ disc + 5 due to
of the assumed rectangularAloading oF the p strip can be written in the

t Tf the num bet of b(ade chovd sectiomns (s [a i e,
the (o cw((nj on each stri 3 can be appro ximated A;7
Po[ﬂt . lo q.d“nj .



Fourier series form as

mB(a_-a.)
P(x,u5t) = 21 D (x, %) cos{mBQt - mBY - ———1%——1—} (2.15)
where
) tp/Zf
Dn(E¥) = & | A (r,¥) cos L ar (2.16)
-tp/z

Ap(r, lp)tp sin(mntp/T)

=2 T (mrt 7T) . (2.17)
P
+ P'YOJP-cfe.o! th
If wp represents th?Aw1dth of the p section, given approximately by
w o= Ea o -a ) ' (2.18)
p 2Yp+1 p-17 ’
then
22 tp w B
t:p T@r * T T Znr (2.19)

and so (2.17) can be written as

, _ 2A (r,p) mw B
me(r,¢) = —%————- sin (—g—r) . (2.20)

.,, (ocLO(tnj
The differential-pressure spectrum (2.15) then becomes

®  2A (r,V¥) mw_B (a ~a1)
P(rust) = ] —FE—— sin (52 cos mB{ - - 2=l (2.21)

mT
m=1

Note that Ap(r,w) is the differential-pressure on the pth chord section at

point (r,y) and is given by

-

A (r Y)Y = A (r) f gzl Apg(r) cos gy +’Zpg(r) sin gy }5 (2.22)

where Apo(r>’ Apg(r), Apg(r) are the steady, cosine and sine coefficients

T See  secomd foo{’-nof'e on page 5. Fov (a:'j@ ﬁ,
projected Wy = ;" (d”P«H - “p—l) cos 5,
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respectively of the Fourier analyzed staticnary differential-pressure on

(oad;‘n
the blade station. The resultant pressure spectrum due to n chord sections

can be written into complex form, from (2.21) as

n o 2A (r,y) mw_B (a -al)
P(r,yst) = § § —FE—— sin ( 2‘; ) exp ij{ Qt - y - —Lr— . (2.23)

p':'..l m:l my

Comparing this with equation (2.5), the -differentinl—pressuse coefficient

~ q .

;’f the- Joree per  unit  disc avea cdn bo wyitten m tevms
o Cm(r’w)/\ of the fo‘fce, pev anit blade dvea . as

n 2A (r,y) mw B (a -al)
c (r,9) = ] P sin (—E-) exp - jmBq ¥ +—P = 7, (2.24)

p=1 mm r

Substif:uting this into (2.13), the radiation from the entire disc is

given by '
T 2m
- . R : . : jmBR |, 1
SPmB(B,t) J J - exp J(mBQt) znszZ {511'16 coso sin(y-6)+sino cose}( c, 4 D) x
o o :
n mw_B (a_-a.)
Q
z ‘A (xr,p) . sin( P Yexp - ij{—-—Q-i—tD +—P-———1—} r d¢ dr .
S 2r c r
p=l o
(2.25)
(a_-a,)
Writing mB{%2 +¢+—&;A‘-— =:UP(’r’,1p) s ’ (2.26)
o

and taking the real and imaginary parts of the resulting equation, the root-

th

mean-sqaure value of the m~ harmonic of sound pressure is given by

-~

- %
sp =1 g - _R_z {(Re)z + (Im)z} (2.27)
tmm V2 m 2 /21°m .

where
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T

21 :
Re = J J lz {sin B coso sin(yY-8) + sin o cos S}X
D

(o]

| meB cos Up nBS —‘
. {A (r,¥) . sin( 5y ) B ¢ 5 + < sin Up)}-‘| rdydr

Il o~

p P o
(2.27a)
and rT o | |
Im = f j —li{sinB cos o sin(y-6) + sinccoss}x
o o P
n mwa mBQ sin U
.p;.-;.-;l {Ap(r,w) . snx‘ >y ) . ( e cos Up - —P-D ) 7| rdy dr
and where
(a_-a,) :
Up(r,tp) = mB{g—]2 + y + ———B?——l-— } , (2.27¢)
. - 70 :
Ap(r,w) = Apo(r) + ggl{Apg(r) cos gy + —Apg(r) sin gy } , (2.274)
B(r,p) = Bo + 81 cos § + El siny - Y(r—ro) 5 N (2.27e)
» 16 .
D= {Rz + r2 - 2xR coso cos (e—q))} s (2.27£)
w = Ya -a ) (2.27g)
p 2 ““pt+l p-17 ° ‘

Laad - . 1 - 1 th .
The above result gives the r.m.s. value of the m  harmonic
of sound pressure at any observer position from the rotor centre, in terms

of the fluctuating spanwise and chordwise differential-pressure distributions

on the rotor blades. The quantities required to evaluate this final result

are
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(1) rotor geometry and operating conditions,

(2) field point distance, azimuth angle, elevation angle, and

(3)'rotor blade differential-pressures, in the form of steady and
harmonic sine and cosine coefficients at several chordwise and

spanwise stations.

2.2 Point span loading models

In order to establish the effects of chordwise differential-pressure
profiles on the generation of noise, the spanwise loading profile is now
reduced to point loading. Expressions for sound radiation in the far
field from two such point span loading models are derived from the general

result (2.25) as follows.

2.2.1 Actual chordwise loading profile model

Consider the general sound pressure equation (2.25). 1In the far

field,
. Q - .
J%E— >> % , D=R - r cos0cos(6-y) in the exponential term,
o
and D - R elsewhere. 7 (2.28)

Equation (2.25) then reduces, writing Q = 2wN , to

fr. 2
N (1o oue) + o
SPmBQE,t) ﬂRco exp jmBQ(t R/co) ‘[ J {-51n8 coso sin(y-0) + sinc cos8 }»x
o o

n mw B ar (a -a;)
L A (r,) . sin(—E-) . exp jmB{ — coso cos(6-y) -y - ——E———~} r dydr.
p=1 p 2r cO r 4

(2.29)

-

If the loading on the blade is now assumed to be concentrated over span

Ar at effective radius L then writing
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Ap(re,\li) . Or = LE'> (r V) (2.30)

as the loading per unit chord width at o the sound pressure equation

becomes
- JBNr 21
- . _ . CCh-8) 4 ai
SPmB(B,t) TRe, exp jmB (t R/co) J{SIHB coso sin(y-06) + sino c9sB } x
o

mw_B (a -al)
2 L'(r >0) . sin(—é-g-) . exp ij{Me coso cos(0-9) -¢ - ——-E;--—- dv .
p=1 e

e

(2.31)
Taking the real and imaginary parts of the above equation, the r.m.s.
value of mth harmonic of sound pressure is given by

. BNt
mB 5 b~ vé%Rc

{(Re) +(m)2} _ | (2.32)

where

Re =,J {sinS cos0 sin(yY-6) + sino cosB } X

mw B ‘
B Z L' (r ,¥) . sin( 2_,_) .. sin V (l!)) ay oo (2<32a)
p=1

and

Im = j {sinB cos0 sin(y-0) + sino cosB }x

mw B
Py . cosV (¢)| duv (2.32b)
e 4

y L' (r ,w) . 51n(
p=1

and where

' (a "al)
Vp(\f}) = mB{Me coso cos(6-9) - ¢ - —B—=r s (2.32c)

r
e
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L;)(re,lb) = L};o(re) + gEI{L{)g(re)cos gb + f}')g(re)sin gll)}. (2.324)

The above result predicts the radiation from the point span loading
model when the chordwise loading profile is continuously changing with
azimuth. The spectrum so obtained is to be compared with the spectrum
obtained by replacing the actual chordwise loading profile by an equivalent
rectangular profile at every azimuth. (The word "equivalent™ means that the
areas under the actual profilé and the rectangular profile are equal, at all
azimuthal points.) Expressions for the radiation from such a model are

now derived below.

2.2.2 Equivalent rectangular chordwise loading profile model

Here the loading-time history as the blades pass over points (re,w)
is as shown in Fig. 2.4 and the corresponding spectrum in the Fourier

series form can be written as

Pt(r ,¥;t) = z D!(r ,¥) cos(mBSt - mBY) A ' (2.33)
e’’’ e
where . to/2
D&(re,w)= % ;{ L?(re,w) cos ZQ;t dt
-to/2
2 Lt (xr ,¥)
= _.____....,_._.._e’ 1 gﬂ
— sin (Zre) . (2.34)

Writing (2.33) into complex form, the loading coefficient Cé(re,w) is

then obtained as

2 L' (x,y)

- . (maB .
Crlr ) = ————— sin ere) exp -j(mBy) (2.35)

~-

and the rezulting sound pressure in the far field can be derived to be
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- jBNr

TRc

R maB
= i RO - =2y . sin (Raz
SP' : (R,t) = exp jmBR (t 2 ) sin (Zre) X

(o] (o]

2T
j{sins coso sin(y-6) + sing cosp }L'(re,w) x
o

exp jmB {Me coso cos(B-y) - lp} dy . (2.36)

As before, taking the real and imaginary parts of the above equation, the

th . . .
r.m.s. value of m  harmonic of sound pressure is given by

sp =L o = o sin(22B) {(Re)z + (m)z}% (2.37)
mB /E' mB /§%R°° Zre ] .
»where o |
Re = {sinB coso sin(y-6) + sinc cosB }L‘ (re,\u) . sin V(y) dy (2.37a)
o
and Con

Im = J{ sinB coso sin(y-6) + sing coss}L' (re,lp) . cos V(y) dy (2.37b)
o .

and where

T oV(y) = mB{Me coso cos(B-y) - ¢ }, . o : (2.37c) -
L'(re,lb) = L(')(re) + 3-21 Lé(re) cos gy + fé(re) sin gy }
or , B
Lt (r,¥) =% pél le)(re,qg) A . (2.374d)

The above equation predicts the-radiation from the point span loading
model when the chordwise loading profile at each azimuthal station is

replaced by the equivalent rectangular profile.



2.3 Radiation from single blade loading harmonic with arbitrary chordwise

"loading profile

Consider equation (2.31) for radiation in the far field from the
point span loading model. The radiation from a single harmonic (g) blade

loading of the form

oJ8Y | -isY

Lé(re,¢) = Lég(re) cos gy = Lég(re) ( 2 ) (2.38)
is then given by
- JBNr R 27
SPmBg(B’t) = ~;§E;~ exp jmBQ (t - z;)“g«{51n8 coso siny + sino cos B }- X
n o (re) . - mw B
—PE8_C 1 (r ). (ngw + e 38 ) . sin (——B") X
= 2 po e 2¢
p=1
(a -al) .
_ exp ﬁﬂ&{Me coso cos Y - Y- ——E;——— dy , (2.39)
e
where L! (re)
apg(pe) = P8 € , ) (2.40)

Lt

po(re)

and the observer azimuth angle 6 is put equal to zero since the radiation
is symmetrical about the rotor axis. Now Wright LS] has shown that a single

loading harmonic of this form produces two sets of rotating modes u,

defined as

-

M, =mB + g s W =mB - g. (2.41)

The radiation from the slower rotating modes M, can be neglected in

comparison to the radiation from the fascer rotating modes p . The

radiation equation (2.39) can thus be written approximately as
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-jBNre R (r ) mw B - (a -a
exp ijQ(t-c—-) z-—E&—L' (r ).51n( )exp-ijLr—— x
o =1 Te e

SPmBgQg,t) =

27
j{sins cosg siny + sing coss}.exp j{mBMecoso cosy - (mB-gly }dlp .

(2.42)
Using the Bessel function relationships
2w
Jexp j(mBMecosc cosy - p_Y)dy = 23" Ju (mBMecosc) (2.43)
o - .
2w
: u_ .
. and siny . exp J(mBMecoscr cosy - u_u;)dq; = - m 27j Ju-(mBMecos(y )
5 :
(2.44)

this becomes

u +1 Nr ' . U
(R t) = —X  exp jmBR(t- (—:&).{cosg sing - sing - } x

mRc M mB
o o e

n mw B (a -a )
mB Ju-(mBMeCOSO') . 21 pg(re) . Lt (r ). 51n( ) exp -JmB———EE-—— .
p= Te e
(2.45)

Taking the real and imaginary parts of the above equation, the peak value

of the sound pressure is given by

A . o H
- .. N . sinf "~
SP Bg - ZRCO{ cosg sino M_ mB} mB J11 (mBMecoso) X

~

Zr m7 B mB(ap-al)? 2
— El o (r ) . ;)o(re)' sin(-ﬁ;). COS{*“T_ )

1
2

n my B mB(a -al) 2
+ ( Iy pg(r ). L' (r ). 31n(-—2’P—'). sin{————i—e—~}) .

(2.46)
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?he above equation can be used to investigate the radiation properties
of a single blade loading harmonic g with arbitrary shape of chordwise
profile. (It should be noted that the profile remains unaltered with
azimuth.)

When the loading profile is rectangular,

n=1, a =a , W_=a and LEO =1L . o (2.47)

P

The general radiation equation (2.46) then reduces to

2 agN sing " 2re maB
= s - — i 1 — gin(——
SPmBg 2Rco cosB sino M_ mB}mB JU-(mBMecoso). LlaB —= s1n(2re .
(2.48)

Now Lé aB = LT , the total steady lift on the rotor and so equation (2.48)

can be written as

- sin (22B)
A gg NLT sinB gt 2re
SPmBg =3 Re {cosB sino - v ﬁ} mB Ju (mBMecos0). —3 .
(o] e - (__._
2r
e
(2.49)

This result is in agreement with Wright'!s result [5].

2.4 Computer programs

Having obtained the sound radiation equations for various loading
models, the results &ere programmed so that numerical answers can be obtained
if the blade loading information is available. The four programs writren in
the HARTRAN version of 1900 FORTRAN for use at the Atlas Computer Laboratory,

Chilton, Berkshire, are as follows:
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Program A : Equation (2.46)
-To investigate the properties of single blade loading harmonic
radiation, for point span loading but distributed chordwise loading of

any profile desired (i.e. arbitrary shape but unaltered with azimuth).

Program B : Equation (2.32).

To investigate the effect of shape of chordwise differential-pressure
profile, and its variation with azimuth on rotational noise harmonics. In
order to study the effect of this mechanism, all other parameters must be
held cgnstant and so the span loading profile is replaced by point loading

at effective radius r,.

Program C : Equation (2.27)
To calculate harmonics of rotational noise as predicted by the final
result of the general theory. That is, when both the chordwise and the

spanwise loading profiles are continuously changing with azimuth.

Program D : Equation (2.37)

To evaluate the difference in radiatioﬁ due to aétual chordwise pro;
files and equivalent recténgular distributions. Thus this program is
written to predict the radiation from the point span loading model when
the chordwise differential-pressure profiles are replaced by equivalent

. rectangular profiles. |

These programs were checked against the previous rotational noise
program [16] (described in Appendix I) and against one another, in several
ways, and identical input quantities‘gave identical computed results in all

cases. The programs are described in Appendices III to VI, where the

details are kept to a minimum since they are already described for the
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previous program given in Appendix I. Nevertheless, sufficient detail has
been included so that other investigators can use the programs without much
difficulty. A few general comments concerning all four programs are given

below.

2.4.1 Computation procedure

The method used repeatedly evaluates the basic sound pressure equations

- which include either a single integration or a double integration. One

integration is around the rotor azimuth (¥) with the sample points (azimuth

angles) chosen at constant intervals. The other integration is along the

- blade span where sample stations are unevenly spaced. In the case of point

span loading models, the effective radius fe is chosen to be 0.8 of the tip

radius Tp s the effective radius point can be shifted to any other desired
fraction of the tip radius simply by altering the value of Ty appropriately.
In the programs, the quantities included in the integrands are

evaluated first and then the values of integrands are calculated at each

source point (r,¥). Azimuthal integration at each radial station is performed

next and this is followed by radial integration to obtain real and imaginary

parts of the sound pressure.

2.4.2 Integration method

The integrand is evaluated at several points and the area under the
integrand curve is determined by the "trapezoidal rule'" approximation. The
details of this method are given in Appendix I. The most important point to
bear in mind here is that the angular increment (Ay) of integration must be

small enough to obtain a valid computation.
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2.4.3 Computation time

‘For any particular computation case (a case here means a set of rotor
geometry and operating conditions), it is clear that the computing time is
approximately proportional to the number of observation points and the
number of harmonics of rotational noise desired. |

The execution time increases as the number of radial stations increases
and the execution time decreases as the azimuthal integration interval

increases. The relationship is approximately linear in both the cases.

" 2.4.4 Blade loading data

The blade loading data for the noise calculations is fed into the
programs in’the form of steady and harmonic coefficients of Fourier
analysed fluctuating loading at various spanwise and/or chordwise stations
on the blade.

For-measured loading data which is not Fourier analyzed, but is
available at equally spaced azimuthal points around the rotor disc, the

programs were modified to accept the data in this alternative form.

21§ Conclusions

(1) This chapter has developed the theory needed to establish the effects
of chordwise and spanwise differential-pressure profiles, and their
fluctuations with azimuth, on higher harmonic rotational noise of a
helicopter rotor. Previous point loading theories are modified te
include distributed blade loads, and expressions for radiatign from
various loading models are derived.

(2) Radiation equations have been programmed in the HARTRAN version of 1900
FORTRAN language. Rotational noise harmonics at any point in the near-

field or far-field can be computed in terms of rotor geometry, operating
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conditions and fluctuating chordwise and spanwise load distributions.
The findings of the computational study are discussed in detail in

|
} the next chapter.
|
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CHAPTER 3

ROTATIONAL NOISE RESULTS AND DISCUSSION

The computer programs deveioped to compute the radiation from various
loading models were used to investigate the differences in radiation pro-
perties between the models and the results are described in this chapter.
Radiation from a single blade loading harmonic g with distributed chordwise

loading is considered first.

3.1 Single blade loading harmonic radiation with arbitrary chordwise

loading profile

The radiation equation (2.46) for this model can be written as

’SPmBg =K. Yu_ e X, . (3.1)
where K = =2 cosB sino - sinf E: (3.2)
2Rc M mB ’ °=
o e
Yu = mB Ju (mBMecosc) (directivity function), (3.3)
2y n . my B mB(a -al) 2
and _ e {(C Y (r). sin (—25—-). cos{————g——— )
X m p=1 P8 , e e
%
n mw B mB(ap-al) 2
+ ( z - Lég(re)' sin (—zg—). 51n-{-—~—;—————— ) (3.4)
p=l e e

(spectrum function for distributed chordwise
loading).
For distributed chordwise loading, the spectrum function X appears
as a basic multiplier; since it is independent of the observer angle o ,
it affects the radiation spectrum at all observer angles identically. For
point loading, the spectrum function is flat whereas if the loading is
distributed, sound waves arriving at a fixed point from various parts of

the blade chord interfere with each other, thus producing a non-flat spectrum




function. For well-defined ioading profiles (e.g. rectangular, triangular, -

etc.) the spectrum functions can be derived by pulse-train analysis and are

shown by Wright [2{]. Equation (3.4) now enables us to compute the spectrum

function for any loading profile desired.
Figures 3.1, 3.2 and 3.3 show the sound pressure spectra for steady
(g = 0) and fluctuating (§ = 12, g = 48) blade loading harmonics respectively,
for various chordwise loading profiles. The gross loading on the rotor
(that is, the area under the loading profile) is 12,000 pounds in each case,

and the spectra are computed for the standard case defined as follows:

Standard case:

Observation point distance R = 300 ft.,
elevation angle ¢ = - 300,

rotor tip radius r,, = 30 ft.,

T

effective Mach number M, = 0.5,

rotor blade number B = 4,
blade force angle (constant) B = 60,
blade chord width a = 16 in.,

and number of chord sections n = 10.

Clearly, the mB spectra for various loading profiles differ from one
another by the spectrum functions ¥ for these profiles. Computed spectrum
functions for the seven chordwise loading profiles chosen are shown in Fig.
3.4, ‘

Consider the radiation spectra from the three zero net lift type
distributions (square-wave type, N-typc and sinusoidal). The spectra for
steady (g = 0) and harmonically (g = 12, 48) fluctuating zero-lift type

pressure distributions are shown in Figs. 3.1, 3.2 and 3.3 respectively.
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The spectra show that a finite blade with equal positive and negative regions
of differential-pressure can still radiate because the different path lengths
prevent complete cancellation. It should be noted that the point loading
model would predict zero radiation in this situation.

The computed spectra illustrate the impertance of including chordwise
~loading profiles in the radiation analysis, especially when there is negative
lift acting over a part of the blade chord. At higher frequencies of the
acoustic spectrum, sound pressure levels from zero-lift type distributions
.can in fact be higher than these from positive-lift type distributions, as

is shown in Fig. 3.3.

3.2 Composite blade loading harmonics radiation

(Point span loading models)

So far in this chapter we have considered radiation from a single
blade loading.harmonic with fixed chordwise profile. In practice rotor
blades generate a complete spectrum of blade loading harmonics. Moreover
the chordwise differential-pressure profile fluctuates with azimuth. Here
the composite spectrum functions will mask each other and the effect of
including fluctuating chordwise loading profile on the radiation spectrum
can be established computationally.
| Figures 3.5, 3.6 and 3.7 show the effect of the shape of chordwise
differential-pressure profile and its variation with azimuth on rotational
noise for three different flight conditions. The loading data used in the
computation are ohtained from reference [?2] (30 blade loading harmonics).
The rotational noise spectra are computed by using the point span loading
model, and the>figures show the differences in radiation between the actual

chordwise profiles and equivalent rectangular profiles.
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The spectra computed by using the actual chordwise loading profiles
are higher in level than those computed by using equivalent rectangular
profiles, especiglly at the higher harmonics where the wavelength of the
sound radiated is comparable to the blade chord. For the rotor system
considered, the blade chord a = 18.2 in. and rotational frequency N = 3.4 Hz.
Tﬁus for accuréte noise pfediction, chordwise profile becomes important when

ka > 1 or gﬂﬁé_gﬁi > 1 , o : (3.5)
o

giving mB > 35. The difference in levels is as high as 8-10 dB at some
harmonics, and it would increase if blade loading harmonics greater than

30 were available. The steady fall-off of the spectra sfter about mB = 56 is
purely because of lack of blade loading harmonics greater than 30 - see
Lowson [10], Wright [é].

To summarize, the maiﬁ conclusion here is that the variation of chord-
wise blade loading profiles alone accounts for a significant part of the
high-frequency rotational noise from helicopter rotors, according to available
data. Since the existing theories predict spectra which fall short of the

“imeasuréd spectra at higher harmonics, it is clear that the present modifica-

tion to include loading profiles will help considerably in bridging that gap.

3.3 Radiation from fluctuating chordwise and spanwise loading profiles

In the previous two sections, we have considered radiation from point
span loading models; that is, the differential-pressure profile across the
blade span is replaced by point loading at effective radius point .. In

[LIREE TN
reality, the loading on the blades is distributed across the chord as well as

7)'\5*{ ,‘
across the span. In addition, the spanwise loading profile does not remain

constant with azimuth, especially at high forward speeds. Its effect on the

noise radiation must therefore be established.
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This is done computationally for only one comprehénsive set of
measured loading data [?2] available at the present time. In order to
compute the radiation (spectrum, polar elevation and polar plan) from
various loading models, the data had to be processed appropriately and

the details are given below.

-3.3.1 Blade loading data

(S-61F Compound Helicopter, 190 Knots)

Differential—pfessures in pounds/in2 were recorded at 144 azimuth
positions (every 2.5° of azimuth) at five chordwise and five spanwise
stations (as shown in Fig. 3.8), and the readings were avéragéd over ten

consecutive rotor revolutions. The rotor geometry and operating conditions

are as follows.

Blade chord a 18.2 in.,

I

tip radius r 31 ft.,

T
number of blades B = 5,

rotational frequency N = 3.4 Hz.,

radius at start of twist r, = 74 in.,

blade twist rate Y = 0,0134 degrees/in.,

steady pitch angle Bo = 7.3660,

coéine coefficient of cyclic pitch 81 = 0.7760,

sine coefficient of cyclic pitch Bl = - 9,99°.

For point loading models, the profiles at all azimuth positions were
integrated using the trapezoidal rule,; noting that the differential-pressure
at any point on the edge of the blade is always zero. Keeping rest of the

parameters constant, sound pressure levels from the following five loading
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models were computed.

(1) Distributive chordwise and distributive spanwise loading model.

(2) Point chord, distributive spanwise loading model - by reducing the
chordwise loading at each azimuth station to point loading.

(3) Point span, distributive chordwise loading model - by reducing the
spanwise-loading at each azimuth station to point loading.

(4) Point span, equivalent rectangular chordwise loading model - by
reducing the spanwise loading at each azimuth station to point loading
and replacing the resultant chordwise profile by its equivalent
rectangular distribution.

(5) Point chord and point span loading model - by reducing the chordwise

as well as spanwise loading at each azimuth station to point loading.

3.3.2 Computed output

The computed results are presented in Figs: 3.9 to 3.20. Since the
differential-pressure data is available at 144 azimuth positions, Fourier
analysis of‘the loading data enables us to determine approximately 70 blade
loading harmonics accurately. It should therefore be noted that computed

acoustic spectra are valid for mB numbers upto approximately 60 - 65 only.

3.3.2.1 mB spectra (Figs. 3.9 and 3.10)

Sound pressure level spectra at a point in the far field are shown in
figures 3.9 (for point span loading models) and 3.10 (for distributive span
loading models). Unfoftunateiy, no sound pressure level measurements for
this flight condition are available {n order to establish which of the five
models produces the best correlation with the measured spectrum. Neverthe-
less, we can at least describe the differences between radiation from

different loading models. It should also be realised that since the levels
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of the spectra from the point span loading models could be varied by
varying the effective radius r, (taken to be 0.8 of the tip radius Tp for
computation purposes)i they cannot be compared directly with the spectrum
levels from the distributive span loading models.

Let us consider the spectra from the point span loading models (Fig.
" 3.9) first. The point chord loading has a flat spectrum function X =1

whereas the equivalent rectangular loading has a spectrum function which
sin (maB/Zre)

GnaB/Zre)

varies-as . Since the loading profile (but not the level)

remains constant with azimuth, the mB spectra differ by this spectrum
function only. The resﬁlt is that the mB spectrum from the point loading
model is higher in level than the spectrum from equivalent rectangular load-
ing model. The difference increases_as mB number increases. For the
actual chordwise profile m@del, since the profile is changing with azimuth,
a fixed spectrum function cannot be assigned. But on average, the spectrum
function in this case takes a value somewhere in between the spectrum
function levels for point loading and rectangular loading. The resulting
mB spectrum then follows as shown in Fig. 3.9.

In the case of distributive span loading models (Fig. 3.10), there is
‘no appreciable difference in spectra between point chord loading and
distributive chord loading, éxcept at the higher harmonics where the levels
from point chord loading are higher than those from distributive chord
loading. This is again due to the fact that at higher harmonics, the
envelope of the spectrum functions from point chord loading (distributed
across the span) is higher than the envelope of spectrum functions from

distributive chord loading (also distributed across the span).
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For the sake of comparison, if the spectra from all five loading
models afe superimposed, it is intefesting to note that the general shape
of tﬁe spectrum from the most complicated model (distributed chord, dis-
tributed span) is resembled most by the spectrum from the least complicated
model (point chord, point span); the biggest difference occurs at the
first harmonic, where the point span loading model underestimates the
- radiation by as much as 15 dB. This difference is partly a result of the
position of effective radius point. Since the first rotational noise
harmonic is dominated by steady loading (low solidity rotors), the level is
very sensitive to the Mach number Me of the effective radius point. Simple
calculations show that if r, is taken to be say 0.9 of the tip radius

instead of 0.8 r., as in the present case, the first harmonic will increase

T
in level by 6 dB.
3.3.2.2 Polar plots (Figs. 3.11 to 3.20)

Because of the limit on computation time and the cost involved, the
aim was to obtain a maximum amount of information from a minimum amount of
computation. Polar elevations (¢) and polar plans (g) for the five loading
models were investigated at 1° interva;s over a 1?mitedirange of angles:
¢ from -22° to -38° (8 = 0°), where the far field radiation is usually
maximﬁm; and 8 frém -8° to +8° (o =-30°).

The computed polar plots do not show any'sign of sharp fluctuations
with angle, as observed in measured directivities, even though the computed
directivity plots use actual measured blade loading harmonic amplitudes and
phases. This suggests that the sharp. fluctuations with angle observed in
directivity measurements are time fluctuations and not angular fluctuations.

The existence of these time fluctuations was demonstrated experimentally by

Stainer [32];



Polar elevation plots (Figs. 3.11 to 3.15)

As described before, the radiation from the three point span loading
models differ from one another by their spectrum functions only. These
spectrum functions are independent of the observer elevation angle o and
so for any particulaf harmonic m, the polar elevations shown in Figs. 3.11,
3.12 and 3.13 are similar in shape. The only difference present is in the
.'levels of various harmonics; the first rotational noise harmonic remains
ﬁearly unaffected, and thellevels of higher harmonics start to decrease as
the extent of soufce distribution becomes comparable with the radiated sound
wavelength (or in other words, as the chordwise 1dading becomes more dis-
tributive).

On the other hand, for distributive span loading models, the envelope
of the spectrum functions for fluctuating spanwise loading profile is a
function of « (as shown by Wright [?i] for the special case when the span
loading profile remains constant with azimuth). Thus, dépending on the
spanwise 1oading profile and its variation with azimuth, the polar elevation
plots from the distributive span loading model (Fig. 3.14) could differ
:considerably from those for the point span loading model (Fig. 3.11). This_
is true in the present case,vas shown in Figs. 3.11 and 3.14. The elevation
-plots for the two distributive span loading models are roughly similar in

shape. The main difference is in the levels of higher harmonics, where

distributive chord loading suppresses these higher harmonics.
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Once agaiﬁ, it is rather unfortunate that no measured directivity
Y
results for this flight condition are available, in order to establish
which one of the five loadinz models Tits best with measvrements.
The only conclusion that can be derived at this stage is that different
loading models give different results, and that the spanvise loading

profile together with its variation around the azimuth produces the

biggest effect on the radiated noise.

Polar plan plots (Figs. 3.16 to 3.20.)

The polar plan plots in the far field are basically circular around
the rotor axis for the three point span loading models, where the spectrum
function (fAr.constant profile) or the envelope of spectrum functions
(for varying profile) is not sensitive to the observer azimuth angle 6 .
The levels of various harmonics differ in a manner similar to that described
for polar elevation plots - distributed chordwise loading suppresses Ehe
levels of higher harmonics.

The effect of distributive spanwise loading is similar to that observed

for polar elevations; the variation of sound pressure level with azimuth

for any harmonic is sensitive to spanwise profile and its fluctuations.

- The rest of the comments made for polar elevation plots apply here.




(2)

Conclusions

The limited amount of computation has shown that different loading
models give different radiation results. The spanwise loading
profile and its variation with azimuth produces the bizgest effect
over the point loading assumption.

The above statement 15 based on only one set of loading data

(S~61LF, 190 knots) used in the present investigation. It needs to he

verified for other cases when measured blade loading data becomey
available. In addition, any future bLlade air-lcads measurement
programme nust include simultaneous noise measurements, so that the

relative usefukness of various theoretical loading models for noise

prediction can be established.
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CHAPTER 4

ROTOR AERODYNAMICS STUDY

Once the theory and computer programs for rotational noise are
available, it is tempting to compute a large number of hypothetical cases
by feeding hypothetical loading data and profiles and computing the radi-
ation. This would be interesting as an academic exercise, but because of
the computing time and the cost involved, the amount of computation must
be limited. Any future cases to be computed must therefére be chosen
carefully so that the loadings and profiles assumed are fairly representa-
tive of those that occur in practice on helicbpter rotors.

Bearing this in mind, the obvious.thing to do at this stage is to
study the available measured aerodynamic loading data and to look for any
trends that exist. The main drawback here is that there is very little
measured blade loading data available to date; this is because of the
fact that measurement of rotor blade airloads is a very complicated and
expensive instrumentation problem where the readings depend critically on
the accuracy of the measuring instruments. Nevertheless, an attempt was

made to study in detail the data reported by Scheiman [?3] for an S5-~58

helicopter and by Schlegel and Bausch [?2].for an S-61F compound helicopter.

The findings are discussed in the following sections.

4.1 Effect of flight condition on asymmetry of blade loading

The asymmetry of integréted loading across the chord near the blade

tip (0.9 r.,, where the loading is usually maximum) ic studied 2s a function

T’
of flight condition. From Scheiman's I?i] measured aerodynamic loading
data, ten flight conditions were chosen at random and the loading variations

with azimuth for these flight conditions are shown in Fig. 4.1, where the

loading L'(r,y) is recorded at every 15° of azimuth, averaged over three




consecutive rotor revolutions. An attempt was made to explain to some
extent the asymmetry at a particular flight condition by considering factors
like blade-tip vortex intersection, blade stall, effect of fuselage, vortex
pattern shed by the blades, and so on, that exist at this flight condition.
The study reveals that each flight regime has a characteristic asymmetry

;f blade 1oading around thé azimuth.

An ekperimental program, carried out by Lehman ]?41, to study the tip
vortex patterns from a model helicopter rotor in a water tunnel by injecting
air bubbles at the bléde tips was found to be very intefesting here. The
model used was a scaled version of the Bell UH-1D rotor. Discrete tip
vortex pafterns were observed for forward flight advance ratio (0 =

forward speed/tip speed) regimes in the general ranges of p = 0 to 0.025

(V =0 to 10 Knots), u = 0.025 tc 0.13 (V = 10 Knots to 50 Knots) and H

above 0.13 (V = 50 Knots). His findings can be summarized as follows:

(1) The tip vortex wake can be characterized as possessing three separate
and distinct pattern sequeﬁces as the advance ratio goes from O (hover)
to above 0.13 (V = 50 to 60 Knots range).

_At hover and below u = 0.025. (V = 10 Knots), the vortex pattern is a-
helix trail. The helix can have radial contraction, and changes in
the axial spacing of succeeding helixes could occu¥; The vortex trail
from one blade can intersect with othér following blades, specially
when the rotor is operating in ground effect.

For advance ratios over 0.13 (V = 5C to 60 Knots), the helix pattern
has coarse pitch such that interaction of one trail with a preceding
or succeeding one is not possible.

In the p = 0.025 to 0.13 (V = 10 Knots to 60 Knots) range, the wake

arrangement is most complex. Mass flow through the rotor disc is




deflected downwards. Tip vortices shed over the front half of the
rot&r disc coalesce and form a pair of parallel vortex trails which
move downstream much in the manner of the tip vortex trails shed by
fixed-wing aircraft. The arc segment of the tip vortex trail formed
during the forward portion of the rotor revolution loses its identity
(strength) rapidly, usually disappearing by the time it reaches the
centre of the rotor as it travels downstream. On the other hand, the
arc segment of the tip vortex trail formed during.the rear portion of
a rotor revolution retains its identity and its ends join the parallel
tip vortexvtrails mentioned earlier. The latter segments of the tip
vortex trails retain their identity for perhaps two rotor diameters
downétream. In the ¥ = 0.025 to 0.13 range, the tip vortices shed by
the rotor blade during the forward portion of a rotor revolution cycle
pass above the rotor blade, and thus the following blade intersects with
one or more of the following trails.

These observations and other factors which produce loading asymmetries

will now be combined to explain the loading variations shown in Fig. 4.1,

Fig. 4.1(a). Hover iﬁ light wind, out of ground effect

The first thing to be noticed here is that the loading is nearly symmet-
rical about the 0° - 180° line. This is to be expected because the velocities
of the advancing blade and the retreating blade relative to air are nearly
the same since the rotor system is stationary. A slight asymmetry may be
the result of light wind. The tip vortex pattern is a helix
since the rotor is operating out of ground effect, intersection of the vortex

trail from one blade with the following blade is unlikely. Thus there are no

abrupt changes in lift around the azimuth. The gradual change in loading
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observed (rise in lift just before 90° azimuth and fall in 1ift just after
270° azimuth) may be the result of changes in angle of attack due to thg
presence of fuselage, tail wings and the flow through the tail rotor.

The flow through the main rotor is smoother in this flight condition than
in any other flight condition and so any asymmetry in leading observed here
will be present in all other flight regimes- together with load variations -

‘brought about by other factors, as described later on.

Figs. 4.1(b) to 4.1(e). Forward flight, out of ground effect

The symmetry about 0° - 180° line is bound to be destroyed here because
of the difference in velocities, relative to the air, bétween the advancing
and the retreating halves of the blade revolution cycle. The loading, in
fact, becomeé more asymmetric as the forward velocity increases. 1In all
forward flight regimes, in addition to the asymmetry produced by the presence
of fuselage, tail wings and tail rotor, sharp changes in loading will occur
when a blade encounters a tip-vortex trail.

In the i;= 0.025 to 0.13 range, Lehman (see (4) above) has observed
that tip vortices shed by one blade are likely to intersect with the follow-
ing blades, and this results in blade load fluctuations as shown in Figs.
4.1(b) and 4.1(c). The strength of the tip vortex appears to be higher at
48 knots (Fig. 4.1(c)) than at 23 knots (Fig. 4.1(b)). Cox and Lynn [?él
have also shown that a sudden increase and decrease in differential-pressure
occur during low forward speeds due to blade-tip . vortex intersection, just

(o]

0 . .y : . s
befocre the 90  azimuth positicn and just after the 2707 azimuth position

respectively, as shown in Fig. 4.2. The indicated tip vortices would cause
sudden inflow changes near azimuth positions A and B. Thus the passage of

a blade through the trailing vortices would result in a sudden lift variation
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on the blade elements near the tip. ihese abrupt changes in loading near
the blade tips result in the i:mpulsive type of noise (blade slap) [10,25,38]
commonly observed at these low forward speeds.

As the forward speed of the helicopter is increased above 60 knots,
Lehman (see (3) above) has shown that the tip-vortex pattern is a2 helix
with coarse pitch such that interaction of one trail with a preceding or
succeeding one is not possible. Thus the strength of the tip vortex de-
creases as the advance ratio u increases and so the change in loading due
to blade-tip vortex intersection is hardly noticeable at the high forward
speed (Fig. 4.1(e)) of 108 knots. At such high forward speeds, because
there are no sudden changes in loading, blade slap is rarely encountered in
practice. ) |

The asymmetry in loading about the 0° - 180° line in the case of 108
knots forward flight (Fig. 4.1(e)) is entirely due to changes in inflow
angle of attack resulting from difference in velocities of the blgde
(relative to air) between the advancing half cycle and the retreating half
cycle of the blade revolution. The loading around 90° azimuth (advancing
side) is less because the angle of attack is less here. On the retreating
side, the‘angle of attack increases as the 180° azimuth ié cros;ed, but
around 270° azimuth, the angle of attack becomes so high that blade stall

occurs {39] and this accounts for the dip in loading around 270° - 300°

azimuth.

Fig. 4.1(f). Low forward speed, in ground'effect

Because of the ground effect, the flow through the rotor in this case
will not be as smooth as that when the rotor is out of ground effect [24,40}.
Thus the blade-tip vortex intersection will be more severe in this case.

This explains the sharper load fluctuations in Fig. 4.1(f) compared to those



in Fig. 4.1(b), where the helicopter is flying at similar forward specd

but is out of ground effect.

Fig. 4.1(g). Climb

1f the rate of climb is fast enough for the tip-vortex trail to be
left in the flow so that blade-tip vortex intersection cannot take place,
then there would be no sharp fluctuations of loading on the blade. This is
so in Fig. 4.1(g) and it also explains why blade slap is rarely encountered

at high rates of climb.

Fig. 4.1(j). Partial power descent

Since the forward velocity is zero, the rotor is flying straight into
its flow thereby making the blades intersect the tip vortices several times
in one revolution. This results in sharp changes in blade loading observed
in Fig. 4.1(j), giving rise to blade slap so prominently noticed in such a

flight regime.

4.1.1 Conclusions
Thus it can be concluded that each flight regime has characteristic
low frequency blade loadingifluctuations which can be explained qualitatively
by combining the factors which produce the asymmetry. Suéh low freguency
 force fluctuations will give rise to lower harmonics of rotational noise.
Measured helicopter rotor noise spectra show that rotational noise is
rich in higher harmonic content even when it is hovering; as many as 30
harmonics can be detected by narrow-bgnd analysis in some cases. This sugg-
ests that in all flight conditions, in addition to the low frequency harmonic

force fluctuations described above, there are higher frequency harmonic force

fluctuations present which can be detectcd only if the differential-pressure
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measurements are recorded at smaller azimuth intervals. Acoustic spectra
suggest that these higher frequency force fluctuations are present in all
flight regimes and a study of the mechanisms which give rise to these

fluctuations should prove very useful.

4.2 Blade differential-pressure harmonics
Before investigating the amplitude fall-offs of measured blade
differential-pressure harmonics, it might be useful to summarize the

definitions of these quantities as follows.

4.2.1 Harmonic representation of blade differential-pressures

If the differential-pressure on a blade element is periodic with
period 27/ , i.e. if the loading is reproducible every cycle of blade
rotation (stationary loading), then it can be analyzed into harmonic
components by writing it in the Fourier series form as

A (r,y) = A (r) + {A r)cos gb + A (r) sin 4.1)
A = a0+ [ LA Gocos g + K (0) sin gy b, (

g=1

where the coefficients are

21
. | .
Apo(r) = 57 ] Ap(r,w) dy (4.2)

o

2

_ 1

Apg(r) =5 Ap(r,W) cos gy dy , (4.3)

g-

2T

_ _ 1 .

and Apg(r) = o J\ Ap(r,wb sin gp dy . (4.4)

o

In equation (4.1),
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r = spanwise station distance from rotor centre,
Y = rotor azimuth angle,
p = blade chordwise station number,

and g = differential-pressure harmonic number.

The above series can also be expressed in terms of amplitudes and phases

!

of harmonic components as

_ 2. :
Ap(r,w) = Apo(r) + o Apg(r) cos-{g¢’+ ¢pg(r)} , (4.5)
A 2, - 2 £
where Apg(r) = {Apg(r) + Apg(r) } (4.6)
- A (1)
- -1 Pg ,
and o ¢pg(r) tan Apg(r) . : (4.7)

4.2.2 Amplitude fall-offs of differential-pressure harmonics

Reference [22] gives the steady and the sine and cosine coefficients of
30 harmoniés of differential-pressure, at 5 spanwise and 5 chordwise stations
(as shown in Fig. 3.8) for five différentlflight conditions. These blade
loadiyg harmopics are plotted to investigate how the spectrum fall-offs
vary across the chord (Fig. 4.3) and the span (Figs. 4.4 and 4.5), and with
the flight condition (Fig. 4.6). 1Ideally, in order to derive general trends,
'one should investigate several sets of loading data for different rotor
geometries, but unfortunately these are not available at the present time.
Nevertheless, it is hoped that such investigation of this particular set of
loading data will give some useful information.

In figures 4.3 to 4.6, peak amplitudes of differential-pressure harmonics

are plotted as the ratio(AEg)z in dB against g (log scale). The first
A
po
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point to be noticed from all the plots is that the fall-off lines do not

pass through the origin in most cases and so laws of the form

N
A = A L ] 4.8
Aog po ° 8 R (4.8)

as suggested by Lowson and Ollerhead [}Q], are not appropriate. The loading

harmonic fall-off is better described by laws of the form

A n

A - .
A=A . 4.9
og %18 , (4.9)

and the steady loading Apo should be considered entirely on its own. The
total radiation spectrum is then the sum of the contributions from steady

blade forces and harmonic fluctuating forces.

(a) Variation of loading fall-off along blade chord (Fig. 4.3)

The spanwise station chosen here is near the blade tip (0.95 rT)
because the loading near the tip contributes most towards the radiation of
noise. For the particular flight condition considered, the blade differential-
préssure ﬁarmonic amplitude fall-off is higher at the leading edge and it

decreases progressively towards the trailing edge. The values are

" chord station | 0.042a 0.158a  0.30a 0.60a  0.91a

fall-off (dB/octave) 13 10 7 6 6

This suggests that there are more higher frequency force fluctuations
near the trailing edge than near the leading edge. Also the general level
of the spectrum appears to be higher at the trailing edge than at the leading

edge. -

(b) Variation of loading fall-off along blade span (Figs. 4.4, 4.5)

Here the variation of fall-off along the span is investigated at two
chord stations, one near the leading edge (0.042& , Fig. 4.4) and one near

the trailing edge (0.91& , Fig. 4.5). The values obtained for the same




flight condition are

(

span station 0.40 rp 0.75 Lo 0.85 Ty 0.95 Ty 0.98 r
fall-off (dB/octave)

o 4sa 10 9 13 13 10
fall-off (dB/octave) 9 10.5 10 6 8.5

0.91a »

Clearly there is no obvious trend as in (a) above, but the fall-offs
near the trailing edge are lower than those near the leading edge, at most
span Stations;_this suggests that the higher frequency force fluctuations
are dominant near the trailing edge of the blade at all points along the

span.

(c) Variation of loading fall-off with flight condition (Fig. 4.6)
The loading fall-offs here are investigated at a fixed point on the

blade (0.95 r 0.042a ). TFor the five different flight conditions con-

T
sidered, the fall-offs vary between 7 dB/octave and 13 dB/octave.

It is interesting to note that the level of the loading harmonics
spectrumiis higher in the '"Hover in ground effect" case than in the other
four flight regimes. This suggests that the airflow through the rotor in
 this flight condition is-rougher than in ﬁhe other four flight conditions

and this would in fact produce more noise, provided such a difference in

- the loading spectra was observed at all transducer positions.

4.,2.3 Conclusions

In general, considering all the differential-pressure harmonics
amplitude fall-offs plotted in Figs. 4.3 to 4.6, it can be said that tﬁe
fall-offs lie roughly between 6 dB per octave and 14 dB per octave, the
levels of the spectra varying along the chord and the span and with the
flight condition. This suggests loading harmonics fall-off laws in the

limits

T



75.

. A _A
< A < Apl' g (4.10)

The loading spectra near the blade tip, which cause the dominant sound
radiation, fall off at approximately 6 dB per octave near the trailing

edge in many cases and so

A A "'1
A = A . 4,11
pg pl * 8 ( )

may be taken as the ;tandard power law for loading harmonics amplitude
fall-off over all flight regimes of the S-61F compound helicopter.

The above deductions are strictly valid for this particular set of
loading data only, and it remains to be seen whether they can be applied

to other similar rotor configurations.
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CHAPTER 5

OVERALL SOUND RADIATION FROM A POINT FORCE IN CIRCULAR MOTION

So far we have considered the radiation from periodic forces acting
on rotating blades; Fhey give rise to rotational noise harmonics at
frequencies which are multiples of rotor blade passage frequency. In
reality, the'acoustic spectra from machinery containing rotating blades
(e.g; helicopter rotors, compressor fans, etc.) also contain contributions
from random forces, whick give rise to the broadband (or continuous) part
of thé spectrum. Three possible causes of random forces on helicopter
rotor blades were given in section 1.5. Depending on the rotor geometry
and operating conditions, the contribution from these random forces may
dominate the radiation spectrum subjectively, and so the radiation proper-
ties of such forces must be established.

Exact expressions in closed-form for the overall far field radiation
(directivity and total sound power) from a point force in uniform circular
motion are derived in this chapter. The point force model is valid provided
the wavelength of the sound radiated is iarger than the blade dimensions.
The iﬁvestigatign allows us to study the effects of accelerative motion
(where the acceleration arises from steady rotation in a circle) of the
point force on the sound field it radiates; the significance of such effects
in fan or helicopter rotor noise at subsonic tip speeds is established here.

The two alternative approaches which can be used to analyze the sound
field of moving sources were described in chapter 1. The moving-source
approach is used here and Lowson's general theory [9] of sound radiation
from singularities in arbitrary motion is applied to Lilley's problem [8]

of broadband sound radiation from a point force moving uniformly in a



circular path. For the special case of linear motion, closed-form solutions
for ﬁhe overall radiation are available for various types of source and are .-
reviewed in section 5.1; corresponding spectral results are obtainable from
section 11.2 of Morse and Ingard!'s book [6], as will be indicated in Chapter
6. In view of this,'the main interest is in establishing how the linear-
motion results are modified by acceleration perpendicular to the source path.
One way to demonstrate the effect of circular as opposed to linear
motion would have been to calculate a number of cases numerically, using
the general result given by Ffowcs Williams and Hawkings [7] which takes
the form of an infinite series of Bessel functions. It was decided instead
to start from first principle using Lowson's moving-source approach [g], for
two reasons; First, simple closed-form résults are obtained for the overall
radiation directly, without involving the radiation spectrum.
The other advantage of the moving-source approach relates to thé
- spectrum calculation, where it leads to a series expansion in the ratio
(9/w) of the angular rotation rate to the radian frequency of the radiated

sound. Linear source motion corresponds to (2/w) = 0, so the result is an

expansion about the linear-motion case which is valid for small values of
this ratio. The effects of finite frequency ratio (Q/w), combined with
finite source Mach number M, on the spectral properties of the radiation are

investigated in Chapter 6.

5.1 Power output from point sources in uniform straight-line motion

The effects of source motion are~introduced here in their simplest form,
by considering steady motion in a straight line. The overall sound power
output is studied as a function of convection Mach number, for various

types of source. Most of the results are well known, but the analysis
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serves to introduce some important ideas about retarded time.
Because of the finite speed of sound Cyo am acoustic signal emitted
from point X reaches an observation point r after a finite time interval.
~ .

In the case of a moving source, the time interval is
t - [t] = [r] /co (see Fig. 5.1); (5.1)

i.e. the observétion time t differs from the émission time [t] by an amount
which depends on the source-observer separation R, evaluated at the time of
emission. The bracket notation, [f(t)J = f([t]), is used throughout the
rest of the thesis to denote the retarded-time value of any function f(t).

Differentiating equation (5.1) gives

at = [1 - MR] aft], (5.2)
where
_ 1 4R |
MR = - E—; a—g (5.3)

is the appfoach Mach number of the source towards the observer. Equation
(5.2) is the basis of much of the analysis which follows.

. 1In considering the sound power output of a moving source, the distinction
between dt and d[}] is important. The instantaneous energy acoustic flux in
the far field is p'z/poco , directed radially outwards from the point of

emission; so in time dt, the energy per unit area crossing a large sphere

centred on this point is

~

2 2
p' - (-R_ . . 4
GEe) 4t = GE) [1-m ] afe] (5.4)

To get the source power output, defined as the average rate at which energy
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is emitted by the source, equation (5.4) is divided by d[t] , then time-
averaged and integrated over the spherical surface.

The result is

W= jI[l - MR] ds ; , (5.5)
S

in this equation the acoustic intensity, defined by

1= {p?o > (5.6)
is strictly an ensemble average taken for a single source position, rather
‘than a time average (which would involve changes in source orientation and
position relative to the observer). The ensemble averaging process is
carried out explicitly for circular motion in Chapter 6. For straight-line
motion, as cénsidered in this section, the ensemble average is equivalent
to a time average.

To calculate the power output W for a moving source from equation (5.5)
the far-field intensity must be specified as a function of direction; the
result then follows by straight-forward integration. Some examples are

given below.

(a) Point acoustic source

A point acoustic source of strength q(t) may be représented physically

.o oo

by q = pod , where d{(t) represents a time-varying volume displacement and d

is its second derivative (the volume acceleration). 1In this and the following
cases source motion multiplies the far-field intensity I by a factor

[I - MR] “k , provided MR is constant; k = 2 for thevpoint acousticlsource
[?6]. If the observation point is at a polar angle ¥ from the line of

motion (Fig. 5.2), the approach Mach number M, = M cosy ; thus equation (5.5)

R

gives for the point acoustic source
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ar
W) jsinw Ldy 1AM, (5.7)
o]

(b) Point volume velocity source

Lowson [Q] has shown that for a source of specified volume velocity

&(t), the index k = 4. It follows from (5.5) that

wM) _ sin ¢. 4y _ 2.2
w(o) % Jﬂ(l M cosy)> (1 -m7) . (5.8)

(o}

(c) Point volume displacement source

A straightforward extension of Lowson's analysis (see Chapter 8) shows
 that for a source of specified volume displacement d(t), the index k = 6.
Thus
. 2
W(M) sin Y. dy _ 1 +M

M) _ Jm___~______. =L TM .
w0y 2 | (1 - M cosy)? 1 - w2)? (5.9)

o ¢

(d) Fluctuating longitudinal force

. . . 2, .. . . 1 :
The basic directional factor cos ¢ in this case is multiplied by a source

motion factor as in (b) above, with k = & Bﬂ. Thus

W) _ 3 Jﬁsinw coszw . dy
2

w(0) 4 (1 -M cosxp)3
2
=31 ) oam@ar - 1) 1n(1_+_ﬂ)1. (5.10)
ZMB{ (l-MZ)Z 1.-MJ

(e) Fluctuating transverse force

2 2 . . .
The basic directional factor sin"y cos” 0 (where ¢ is the azimuth angle
about the line of motion) is multiplied by the same factor for source motion

as the longitudinal force. The sound power ratio is therefore
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2

a
. 3
-£—7 = fL j\ cos e de J‘SIH b - dy 3
N < (1 - M cosy)

M

1+ M
Y 7. (5.11)
St gt

1
S {d —— - % In(
M3 2

Njw

»  Values of the sound power ratio in dB are plotted for the various types

of source in Figures 5.3 and 5.4. -

5.2 Point force in uniform circular motion

The far field sound pressure from a point force E(z,t) in arbitrary
motion is given by Lowson [9] as

r, - ¥ {BFi F,oooMp
pr(r,t) = + — (5.12)
o~ , 4ﬂcoR2(1fMR)2 ot 1 Mp ot ,

where T, X (i = 1,2,3) are the Cartesian co-ordinates of observer and

source respectively, and M, is the component of convection Mach number in the

R
directiontg of the observer;

M. R M.(r.-x.
~ J(AJ J)

.M. = = R . (5.13)

==}
w

The square brackets again imély evaluation of retardeaitime [ﬁ] =

[RJ /co, where t is the time of observation and R = |£ - X l is the
observer-source separation.

For a point force rotating in a circle about a fixed point, it is con-
venient to take the centre of the circle asarigin. Then ijj =0 ; élso if
the force is normal to the radius vector, Fixi = 0 (see Fig. 5.1). Equation
(5.12) thus reduces, at distances large compared with the radius of the circle

(r>a), to
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oF oM

=1 | =z -2 —L (1 -M)3

It should be noted that in equation (5.14), M= Miri/rAis the Mach
number component parallel to the line from the origin to the observation
point. The force component Fr is defined similarly. In terms ofvthe
rotating force geometry defined in Fig. 5.5, where the force is resolved

into thrust (T) and drag (D) components (the terminology arises from the

use of this model for propeller and helicopter rotor noise calculations),

M_=-M siny sing (5.15)

and Fr =~ T cosy - D siny sin 6 ; - (5.16)

: —
these are the Mach number and force components parallel to r = OP .

Since ¢ and M are constant,

er X
ac - M siny cose ' (5.17)
dF
and r dT . daD . .
qc T " dc cosy - aD siny cose - G- siny sing . (5.18)

- __Equation (5.14) then gives, writing M singy = q , T cosy =X, and D siny =Y,

4ﬂcorp' =‘ [- (1+~oc.s:i.ne)-2 (i + ; sin®) + (1+ asine)-3 f2cosd (aX - Y}] .
(5.19)
This general result is used below to find the mean square radiated pressure
and sound power for a rotating random force. It should be noted that the
word random here means with no periodic components; the only restriction
essential to this chapter, in fact, is that the rotating force should contain

no periodic components at multiples of the rotational frequency.

t TkVoﬁjhouf Hthe %hzsis) the -anjemrfiuf 'fb{ce Covnponenf i
the plave o)[ votation (s fefeﬂeo( tH  as  the

13
D{‘{q,j Jc_o'(cg, »

»



5.2.1 Mean square far-field sound pressure

Equation (5.19) may be written as
lmcorp' = - f [X] -8 [Y] + Qh[aX - Y] (5.20)

where f= [(1 + asine)'z] s
g = [(1 + asine)-z sinb ], (5.21)

‘and h = [(1 + otsine)-3 cos® J.

If X and Y are stationary random functions of time, they will contribute
a continuous spectrum of radiated sound pressure which can be calculated by
forming the pressure covariance from (5.20). Note that (f, g, h) are all
periodic functions of time, with period 2w/Q , while ()._(,{{) are assumed to
be stationaryvrandém functions of time; the two types of function are
uncorrelated. Moreover, <h> = 0, so h is uncorrelated with (X,Y) even
though <X> , <Y> are not zero'. This means that the auto-correlation of
the right hand side of equation (5.20) may be written in terms of produéts
of the auto-correlations Rf , Rg s Rh of the periodic functions and the auto-
correlations RX s RY , RX s RY derived for the force components.

From equation (5.20), the auto-correlation Rp('r') of the sound pressure

is given by time-averaging the product
(lmcor)z pipy = (£[x] + g[¥] - onfax - ¥]); (£[x]+ g[¥] - on[ ox - Y] ),

where the subscripts (1,2) denote values at observer times tys ty ( = ty + 1),

The overall mean square pressure is simply RP(O)°

-

Expanding the product gives
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(4'”(101')2 pipé = f1f2[5(]1[5(]2 + glgzl}}l[i’]z + flgz[i(]l[irz + glfz[\}]l[;(.]z
- Q{flhz[ﬂl[ aX-YJZ + hlfz[ aX-Y]l[f(]z
4; glhz[‘}]lf ax-v], + hg,[ ax-le[ﬂz }

+ szzhlhz[ aX-Y]l[ ax-i] 5 * (5.22)

* When this is time-averaged with T = O, the Q terms disappear since
th(o) = Rgh(o) = 0 ; thus the mean square far-field pressure is given in

terms of T and D by

2

(4nc°r)2Rp(0) = Rf(O)coszw <Te> + 2ng(0)cos¢ sinp <TD> + Rg(O)sinzw <ﬁz>

+-92Rh(0){ azcoszw <T2> - 20 cosy siny <TD> +-sin2w <D2> }.

-

(5.23)

"The effect of source acceleration is clearly displayed in the 92 term,
which also contains the contribution of steady thrust and drag forces to
the overall . radiation.

The correlation functions Rf s ng R Rg s Rh for T = O may be

evaluated as follows. By definition,

21
_1 [ 2
ko) = [ €. ae
(o}
2m
= é%— &f f2 . (1 + asing) . do (¢ = [e} ),
J .

where the variable of integration has been changed from 6 to ¢ as indicated

in Appendix VII. It follows from (5.21) that provided o <1,
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2
_ 1 , -3 _ 1+ %a
Rf(O) =55 j (1 + asin¢g) ~.d¢ = —2sz
. (1-a7)
(o]
Similarly
2 _3
R, (0) = L (1 + asin¢)‘3sin d¢ = 2>
fg 2m ¢-d¢ 2.5/2
. (1-07)
o]
2 2
- 1
R (0) = zi— 1+ asing)sin’¢.dé = % ,
8 (1-o?)
(e}
and 2 ,
- 1 i
R, (0) = L (1 + asing) 5cosz¢.d¢ = 21 % . (5.24)
h 21T (1-a2>7/2 .
o]

The integrals in (5.24) above were evaluated by contour integration
. _ i¢
in the complex plane 2z = e .

Equations (5.23) and (5.24) are the main results of this chapter.
-Taken together they give an exact expression for the mean square far-field
sound pressure at the observation point (r, V), due toc a point force with

random time variation rotating uniformly in a circle.

Steady force

In the special case where the thrust and drag components are both

constant with time,

] 2 2 2
2 Q D a (1 + %a™)
<pt~> ={ - (T cosy - -)} .
v Zlcor M 8(1 - o2y7/2
(steady ﬁhrust and drag, ©<1). (5.25)

This result can be compared with Gutin's propeller noise calculation [2] by

putting the number of blades equal to 1. Gutin gives the nth-harmonic



amplitude of the radiated pressure as n Jn(na) times the bracketed factor
in (5.25), so adding the mean square contributions ffom all harmonics

(n=1to =) gives

o

2
<pv2> ={ i (T coslp-}%)} ) n? Jrz1 (na). (5.26)

2ncor n=1
Equation (5,25) and (5.26)are identical - see Watson [27, p.573] .

Fluctuating force

The contribution from fluctuations in the thrust and drag forces can
be written more simply using the further assumption that these are related
by

D=eT s - (e = constant). (5.27)

Equation (5,27) implies that the resultant fiuctuating force has a fixed
orientation in the rotating frame of reference. With equations (5.23) and

(5.24) it gives

2 . ‘ - .
(4ncor)2 -fgé—i- =ﬂ{k1+%&6coszw - 3ea siny cosy + ez(%+a2)sin2¢f}/(l-az)s/z,

<T“>
| (o <1), (5.28)
Figures 5.6 to 5.9 show the effects of Mach number M and drag-thrust

ratio © on the overall radiated sound field, for both steady and fluctuating

forces. For this purpose the mean square sound pressures are normalized by

. . - ;.'
2 and <:F2>» respectively, where F = (1 + 62)*T is the resultant force.

The standard values € = 0.1 and M = 0.5 are chosen to be characteristic

~

of helicopter rotors.
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5.2.2 Overall sound power output

The overall radiated power corresponding to (5.23) follows by integra-

ting the intensity over a spherical surface r = constant;

W= J\I(r,¢) as . (5.29)
x .

'

Hére I(r,¥) is a time-average value, as distinct from the ensemble average
for the linearly-moving source defined in (5.6).

When the integral above is evaluated using (5.23) and (5.24) for the
intensity, the TD and D cross-product terms vanish and the power output

from a rotating point force is obtained in the form

3 a2 2 2f .2, 2
tame ) L W= <dh a0+ DB oo+ 92 B a0+ b B},

(5.30)

In equation (5.30), the AO and Bo terms are independent of the rotational
frequency £, they give the sound power radiated from a poiﬁt forcé iﬁ
uniform linear motion, which was calculated directly in section 5.1. Thus-
Ab(M) is given by equation (5.11), and BO(M) by equation (5.10).

The effects of finite rotational frequency are contained in thewA1 and
B1 terms in (5.30); these are the only terms which remain when the thrugt

and drag are steady. The thrust function is

2
A (M) = — {3 1n(}f§) - 2M<3'§M2> | (5.31)
16M (1-M7)"
and the drag function is -
B,(M) = (1 - M2y=3 | (5.32)

This last result was obtained by Dokuchaev [26}, by considering the case

of a steady drag force moving in a circle.
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For low Mach number applications, it may be useful to approximate

A.o s Bo s A1 ’ B1 by the first few terms of a series. Expansion in powers

of M gives

_ . .62 .94

AO(M) 1+ -§M + M+ . s _ (5.33)

B (M) =1+ %&_Mz + 4—75M4 +oeee (5.34)
_ 1.2 |, 3.4

Al(M) = M + 2+ .. s (5.35)
_ 2 4

Figure 5.10 shows the effect of terminating the series expansions at

the M4 term.

5.3 Pure rotation of a point force

If the radius of the circular path is now reduced to zero, then M = O
although @ remains finite. The resulting overall mean square pressure due
© to. pure rotation of the point force is given by the general equations

(5.23) and (5.24) as

;géﬂcor)z <p'2> = <i2> cbs%w + %( <52> + Qg <D2> ) sinzw.. — - (5.37)

Integration over a spherical surface gives the corresponding sound power
output as

12ﬂpoci . W= <i2> + <ﬁ2> + 92 <D2> . (5.38)

5.3.1 Single-frequency rotating force
A particular case is that of a harmonically varying drag force, with

radian frequency Vv; then <D2> = vz <D2> and the ratio of the sound power

output due to pure rotation to the power output without rotation is given
by

2
L= & . (5.39)
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This result, obtained as a special case of (5.38), can alternatively be
derived by direct calculation following Sretenskii's method [29] as shown
below.

1f the force f = fo cos Vvt rotates in its own plane at Q radians/second
as shown in Fig. 5.11, then at any instant of time its components in the y

and z directions are

f =f cos §it cos vt , f =f sinQit cosvt . (5.40)
y o z o

The resultant sound pressure at a point x in the far field is given by

pt = —L ) - (5.41)
4ﬂcor ot

In terms of the geometry defined in Fig. 5.12,

r=1(r cosy , r siny cos® , «r siny sind ) ;
~

SO

f = fo sinycos(ft -~ 6) cos vt , (5.42)

and the mean square pressure in the far field follows from (5.41) as

2> = fisinzw <stinz(ﬂt-6)coszvt + 3Qv sin 2(Qt-6)sin 2vt

(4ﬂcor)2 <p?
+ vzcosz(ﬂt-e)sinzvt > . (5.43)

Provided Q@ and v are not integrally related, this reduces to

(4ﬂccr)2 <p'2> = %(92 + vz) fg sinzw . (5.44)

-

It is clear from the above equation that rotation of the point force,
at angular speed Q in its own plane, increases the sound power output by a

factor
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Q:2

LLICU R L N | (5.45)

w -_—
w(0) v
5.4 Conclusions
Exact expressions have been obtained in closed form for the overall
far-field radiation (directivity and total sound power) from a point force
moving uniformly in a circle. The only restriction on the force spectrum
is that it contain no discrete components at multiples of the rotation rate.
The effects of source acceleration due to circular motion on the

radiation spectrum are established in the next chapter.
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Fig.5-1 Source and observer geometry for moving
point sources. -

Source point

| A M
Observation point . ﬂ\w}\
. | R ‘ ’

Fig.8.2 Pcint scurce in uniform straightrline motion.
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Fig. 5.3. Effect of uniform straight-line convection Mach number
(M) on sound power output from (a)point acoustic source,
(b) point volume velocity source and (c) point volume
displacement source.
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Fig. 55 Point force in uniform circular motion.
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Fig.5.11. Harmonic point force spinning in its
‘ own plane.

Fig.5.12. Observation point geometry.
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CHAPTER 6

SPECTRAL DENSITY OF SOUND RADIATION FROM

BROADBAND ROTATING FORCES

Having obgained exact closed-form results for the overall radiation
field of a rotating point force, we can now go on to derive expressions
for the spectral density of the sound radiation in the far field of this
rotating point force. Spectral results will be derived for a simplified

case defined by the fellowing two assumptions:

(a) The orientation of the rotating force remains constant relative
to the radius vector, so that equation (5.27) applies.

(b) The rotational frequency ©/2n is much less than the frequencies
with which the force itself fluctuates. This means that
correlation functions such as ng(T) may be approximated by
appropriate asymptotic expressions for T = 0. Terms up to and

including o? will be retained in the analysis which follows.

OWing to the large amount of algebra involved in the analysis, only
the outline of the method is presented in the following sections.

The spectral results will then be used to derive the properties of
the radiation spectrum; in particular, the effects of finite rotational
frequency Q on the linear-motion results will be established. Finally,

the theoretical results will be compared with some experimental data.

6.1 Spectral density of sound pressure

The time-averaged spectral dengity of the sound pressure is obtained
from the pressure auto-correlation, given by equation (5.22), in three

stages.

6.1.1 Ensemble-averaged pressure auto-correlation

The ensemble average of the sound pressure product in equation (5.22)



is first evaluated, for times t; at intervals 27/Q. In other words the

"sound pressure p'(tl) is sampled each time the rotating force passes a

particular point in its revolution, and p'(tz) is sampled at time T

later. The average, over all samples, of pi pé is denoted by < pipé> .
In order to evaluate expressions such as <[X]1[Y]2>Q which appear

in the average, Y is expanded about jt|, + o , where
2 1

G =t , (6.1)

[1- Mr]1
Thus [Y]2 is written as

[, = +{[e]y + [} = {@ly + 0+ ([d- 0

which leads to the Taylor series
[v], =ve]y + o+ ([<]- o . F ([]y + o

2
+ %( [f]- d)z . Q_% ([t]l +o) + ... . (6.2)
dt

The series can be terminated after three terms because the variable
([T]- o) is proportional to & (plus higher powers), as will be shown
below.

In order to express ([1] - o) in terms of o, let [t] = x(t). Then
the source time delay [TJ , corresponding to observer time deiay TE by - ty,
is

[Tj = X(tl + T) "x(tl) s

which when expanded in series form becomes

2 3

.XWH)+%T

[d= < xc) + %1 CRMED) F e . (6.3)
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Now the source time and observer time are related by

[1-u_]a[e]=at (6.4)
(section 5.1); hence
x'(t) = — L ,
v,
[ /dt
x'"(t) = z 3 s ? (6.5)
(1 - Mr)
[ d2M /dt2 3(am /dtj2
and Mr(g) = | —F—nuo it _E__._g .
- Mr) (1 - Mr)

From (6.3) and (6.5), writing t© = c[i - M;] it follows that
l 3

| M /dt a®u_/at? a /de \? higher
[ ] -1 r 2 1 r r 3
Tl-0c = % T"THI‘ o -+ g- —T—:ji—— + 3 1 - % 0 + powers.
r r r

(6.6)

From section 5.2 (Chapter 5), in terms of source and observer co-ordinates,

a RY

. Qacosd , and o= 92 oasing .
dt dtz

M == gsing ,
r
Thus the coefficient of 02 in (6.6) is of order 9, and the coefficient
of - is of the order 92. Only terms of order Qz'or less will be retained,
to give a first approximation to the effects of source rotation. Thus in

. . . . Z
equation (6.2), the series for [Y]z will be terminated at the ( [T] - )
term since this is of order 92. Equations (6.2) and (6.6) together give
[¥]2 in terms of Y([t]1 + 0) and its derivatives, all the coefficients

being constant under the ensemble averaging process. The result is an
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expression for <|X{.|Y|,> in terms of R_, (o) , R, (o) , and R (o) ,
‘ 15427 XY XY XY

where these correlation functions can be evaluated as time averages

rather than ensemble averages since X(t), Y(t) are assumed to be stationary

random functions.

+asinb 6 1l+asin®

' 8 2 1,2 ino
< [X]l[Y]2>Q = RXY(G) + RX§(0) - k0 [lo‘ié_.] ¢ + 1o ‘: asin

2 2 . 2 2
4 3a%cos 92 03 + ny(c) %92 o cos 62 04 +
(1+osind) (l4asinb)

(6.7)
Finally, the other factors involved in the ensemble-averaged pressure

" autocorrelation are of the type <f1g2> . Quantities such as 8y = g(tz)
194
can be expanded in a Taylor series about t; to give

2
g, =g *1. (B) +x?. &5 +... (6.8)
2 1 dt 1 dt2 1

where successive terms will automatically involve successive powers of Q .

. 2 . .
It is never necessary to go beyond T ; sometimes even the first term

is enéﬁgh to gi@é 27 accuracy in the pressure autocorrelation. The

2

functions 81> (g%)l s (é—%) are easily evaluated in terms of &, a and
at” 1

[9], starting from the definitions in equation (5.21).

The resulting ensemble average <pipé> is most conveniently

1Y)

expressed in terms of the variable o ;

-

T

v =
[1+ ocsin&)]l

(6.9)

All terms in odd powers of @ are found to contain a cosf6 factor in the

final expression, and so may conveniently be deleted at this stage because
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they will not contribute to the pressure field when the time average is

taken.

6.1.2 Transformation to instantaneous spectral density

Once the pressure auto-correlation as an ensemble average is known,
the spectral density follows by transformation. Since Rp(T) is given
in terms of RXY(G), etc., it is convenient to carry out the transformation
as follows.

iwt _ -ivo
= e , where

Each side is multiplied by e~
v = [1 + asiné]l W (6.10)

is the source frequency which instantaneously corresponds to the

observed frequency -w at time ty - Integration over
dt = [1 + asing], do (6.11)

then gives the sound pressure spectrum Gp(w) on the left, in terms of the
force spectrum GT(v) and its derivatives in series form on the right.
The formulae needed in the transformation are derived in Appendix VIII.

The above process gives an instantaneous sound pressure spectral

density Gp(w) , for each observation time ty corresponding to a given

source position, as an ensemble average over successive revolutions.

(4ncor)ch(w) = (%)OVZGT(\)) - [(l-l—asine)-B]{coszw[l]-i-esimpcosq; EZsinB ]
+ e2sin’y [sinze ]}
+ (%)zszT(v){ coszw[0]+;sin\pcosq;[O]+ezsin2lp[O]}
+ (%)2v3c,'r(v) . [(1+asine)’5]{cos2¢[o]
+ esinycosy [sin6+acosz6-1—2asin26+a2c0526 sin6+aZsin o ]

2 . 2 . 4
+ azsinpw[éinze-cosze-acoszesine+2a51n36+a sin @ j-}
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2 -
+ (%) \,4G,‘1!(v) . [(lrl-asine) Sj{cosz\p[%asineﬁr%az]
+ esinwcosw[%sin9+2asinze-Zacosze-azcoszesine+ %az
T+ c3sin2w[%Sinze—Zacoszesin6+ %asin36+azsin46- %azcoszesinzej}

. 2 -
+ E"env) . [(1tasing) 5]{0052‘1’[%“5“9* g sin"0-5a"
‘ 2

+ esinycosy %asinze-%acosze+%a2sin39- %a coszesine J
+ ezsinzw[%asin36-%acoszesin6+ %azsin46-a2co§2991n29 ]}'

2 ¢ . .
+ (-%) v6G1¥(v) . [(1+asine)-5]{coszlp - 180L2C0'f829J+

+ esinycosy [—%azcoszesine J + ezsinzlb[- %uzcoszesinzej}

. A
+ terms of order (%) and higher, (6.12)

where the prime deno:es differentiation with respect to vV . The variation
of the spectrum Gp(w) with time ty corresponds to the variation in sound

heard as the force moves round, for slow enough rotation.

6.1.3 Time-averaged spectrum

The time-averaged sound pressure spectral demsity Es(w) can be

obtained simply by averaging the result of equation (6.12) over ty, in this

case over one revolution of the source. Although the time-average could
have been performed before the transformation was carried out, it was
found easier to do it at this later stage. The method’for time-averaging
functions of [0] is indicated in Appendix VII; but before this is done,

-

it should be noted that the source frequency V corresponding to a fixed

value of w is not constant but varies with tl' Therefore v, and the

force specirum GT(v), need to be rewritten in terms of w and GT(w) before
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the time-averagé is taken. This is done by expanding GT(V) as a series
in GT(w) 3
6p(») = Gp(w) + (v-)6h(w) + B(v-w)2an(w) + 2(v-wPena(w)
T T T ¢ T 6 T
4 iv

+ -i%(v-w) MO (6.13)

Since the source frequency is related to the observer frequency by

v = w[l + asindjl , the above series can be expressed as
— . 2r2 . 2
’GT(V) = GT(w) + w[a51n6] Gi(w) + S [@ sin 9:}G¥(w)

+ %w3[a3sin3e] G (w) + 21—4w4 [a%sin*e ] GY(wy + .. (6.14)

Four terms are sufficient to give accuracy up to a4 terms. The time-
. 4 s
averaged sound pressure spectral density, accurate up to o terms, is

then obtained as

(gncor>2 CROR (%)°{ w26,(0) (cos?u(1) + eZsinp(h)) + w3c,f(§) (esinvcosy(a))
+ m4G,‘1',(m.)><coszl{)(%az) + 2sin’p(Ze o¥)) + wPena(w) (esinyeosy(ha®))

+ 0%6' Y (w) (osPu( oy + ezsinzlp(?gz (14)>}

+ (%)2 m4G,'1{(m) Cezsinzlp(%)> + wsG",]':(w) (esinwcosq;(-é- a)>

sinzw (‘2—4 onz )>}

+ .... terms of order (%)4 and higher. (6.15)

6 .iv 2,,1 2 X 1 3 2
+ w GT (w) (cos ¢(Z§a ) + es1n¢cosw(T€a ) + €

Several interesting features of the radiation spectrum can now be obtained

from the above result.
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6.1.4 Radiation spectrum in particular cases

..(1)’ Equation (6.15) gives the radiation spectrum on the axis of rotation
as

(4ﬂcor) Gp\w) ® GT(w) s
in agreement with [7] . The on-axis radiation is independent of source
motion (M and Q@ ) and is controlled by the thrust component of the

rotating force, whereas the radiation in the plane of rotation is con-

trolled by the drag component.

(2) For a pure thrust force, the radiation at any angle is given by
4ne )% G () = §)° coszv{wch(w +xioon) + 2 “.w%“’(w)}

+(§;)2coszw{—4% az.w6clv(w)} cee . (B.17)

Thus if the thrust spectrum is linear in w , circular motion has no effect
on the radiation spectrum because the derivative terms G! , etc. in (6.17)
all vanish. This agrees with the results of Ffowcs Williams and Hawkings

[7] and Morse and Ingard [6].

(3) For a pure drag force of spectral density GD(w) , equation (6.15) gives

—_ Q 3
(émcor)z Gp(w) . (6)0 sin2y {%wZGD(w) + -l%az.wz'(;]')'(w) + 2 al*.wécl"(w)}

2
+ (% sinzlll{%wacb'(w) + 55_5“2' wbe W(w)} cee

(6.18)
Thus if GD(w) is linear in w (which includes the flat spectrum and a
spectrum rising at 3 dB/octave as special cases), circular motion again
has no effect on the radiation spectrum. This ddes not mean that the

overall radiation is unaffected - compare section 5.2 (Chapter 5).
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at an earlier stage in the analysis without any approximation, as shown
in Appendix IX. It can also be obtained from equation (4l) of [7] , if
the fixed-axis force spectrum used by Ffowcs Williams and Hawkings is
converted to the rotating frame of reference.

(4) 1In the case of a helicopter rotor, the typical blade force spectrum
is proportional to w-2(6 dB/octave fall-off) over part of the frequency
range. The corresponding radiation spectrum follows from (6.15); 1in

normalized form, it is

(4mc )% T (w)

1 H
2,{coszw(l + %az + %§a4) +e sinycosy(- 2a - 3a3)

W) lte
+ e2sinZu(y + -—ocg z -—a?ig 4 )}
+ & L coszw(éaz) + esinvcosv(- 4a + L243)
w 2 2 2
1+€
+ ezsinzlp(% + Zs—s-ocz)} , (6.19)

where the resultant force spectral density GF(= GT + GD) has been used
— - for normalization.

Figures 6.1 to 6.6 show various calculations based on equation (6.19).
The in-plane radiation from a pure drag force is plotted in Fig. 6.1, |
showing the increase in spectrum level as either M or (f/w) is increased.
The effects of varying (Q/w); e and M are illustrated in the polar
diagrams of Figs. 6.2, 6.3 and 6.4 , with the values (Q/w) = C, ¢ = 0.1 aud
M = 0.5 used to form a standard case:- Finally, the polar diagrams for pure
thrust and drag forces are plotted in Figs. 6.5 and 6.6, for various values

of M in the limit (R/w) = 0.

The special case of this result for M = 0 can in fact be derived
(5) The validity of assuming a power-law approximation to the force
’ |

. .
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Aforce inputs. On the other hand,

‘
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spectrum, as in (4) above, depends on the fact that for small (9/w) values,
the-radiatioﬁ spectrum at frequency w comes almost entirely from a limited
band of the force spectrum between ww(1-M) and «(1+M). Any approximation
to the shape of the force spectrum therefore applies to this band of
frequencies only.

(6) For a narrow-band force spectrum with centre-frequency v , the
radiation spectrum becomes progressively broader as the observation point
moves from the axis to the plane of rotation: (a) for M = 0 (pure
rotation), the in-plane radiation spectrum is the sum of contributions
from force spectra with centre-freguencies (v-Q) and (viQ), as shown in
Appendix IX; and (b) for finite M and &~ O, the instantaneous radiation
spectrum has a centre-frequency which varies between the limits

\Y v cos . . . .
—— and ——— , giving a broader time-averaged radiation spectrum in
1+ W d T T g g b d t ged diat t

the plane of rotation than on the axis.

6.1.5 Comparison with previous work

The exact result obtained by Ffowcs Williams and Hawkings [7, eqn. (39)]

__from their analysis of the same problem is, in the present notation, - =

(41réor)2 G () = o nz B GFr(m - Q) Ji(% o). (6.20)

Here GF
T r
1n the direction of the observer. ’ ;

15 the power spectral density of the force component F (L) ’

17 ;N e -
When o/ oy ~ . . . o .
~ Vhen (}jn, 1s small, results (6.15) and (§.20) must give identical
answevs for idenfical

iy / . i L C e
when {(Q/w) is large, eguation (5.20)

must be used to calculate the combined effects

of the radiated sound., ang
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An attemdt was made toderive eguation (6.1¢

T
}_J
O

Y
2 1

*‘S

om (6.20) by
series expansion for small arguments of the Bessel functions; the
correct result was obtained for the special case of a pure thrust
force (e.= Q), but not otherwise. 1In general, any approximation based

on (6.20) which involves sc

=
'.J
( D
)

xpansion of the Bessel functions about
zero argument 1s suspect. The reason is simply that the argument
( %4) becomes large when o is finit ( i £} i i

S comes ge when o is finite and (Q/w) is small - the situation

assumed 1n the present analysis.

6.2 Spectral density of total sound power

The sound power output per unit frequency bandwidth follows from

equation (6.15) by integrating over a spherical surface r = constant:

2 T
dv _ 2Zmr j@p(m) sin Y. dy . (6.21)

(]

Noting that o« =M sin ¢ in (6.15), we get the general result accurate

to M4 as

Q.0 3 2.2
12“DOC2 ) a% _ (a) w G (w) (1 + ¢ ) + G”(w) (10 + = 10 € m

6 iv L1 2.4

Q2 2 6 iv

+ (D) i fonco). 5 + W26l (). (x5 + e

T oeen ) (6.22)

“e

the thrust and drag contributions are additive.




For a force spectrum GF(w) which falls at 6 dB/octave, the normalized

sound power -spectrum is

127 ¢

3
- a1 A+ 3% + 3% + 2a o+ 2+ By
do 2 5 7 72
wGF(w) 1+ €

2
+ (9) ;2 {MZ + 62(3 + 15M2)} + ... , (6.23)

w 1+¢

accurate up to and including M4 terms. The leading term in (6.23) can in
fact be obtained in exact closed-form, by noting that it represents the
limiting case of uniform straight-line motion (Q.= 0), for which Morse
and Ingard's analysis [6] gives

12mp c > ) | 2

Q C
A QM) + ———=B.(M) , (=0, M <1); (6.24)
szF(w) 2 2 2 m

A, 00) = 3—3—{/ In(35) - M} -
M

- M(2-M7) +M
B, () 3{ 2'1(1m}

M 1 -M

(see Appendix X for details).

Numerical results for the 6 dB/octave fall-off force spectrum are
shown in Figs. 6.7 and 6.8, based on equation-(6.23). Also included is
the exact result (6.24) for (/w) = O, in order to show the effect of

. 6 , X :
neglecting M~ and higher-order terms in the series approximation. The

main conclusions are that the seriés approximation is within % dB of the exact

value for Mach numbers below 0.8; and the effect of finite 9 on the sound

power spectrum becomes more pronounced as € and M are increased.
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6.3 Comparison with experimental results

Measured directivities of discrete tone sound pressure from three
different rotor geometries are compared with predicted directivities and
the results are presented in Fig. 6.9, 6.10 and 6.11.

The theoretical directivities for all cases are predicted Ly assuming
that the equivalent point force spectrum falls off at 6 dB per octave
over thé appropriate frequency range - equation (6.19). This means that
the theory predicts the envelope of the discrete tone spectrum at any
observer angle for randomly phased blade loading harmonics, falling in
amplitude at 6 dB per octave with frequency. Since the radiation
spectrum on the rotor axis is proportionai to the force spectrum, the
on-axis levels of the theoretical directivities are adjusted to éoincide
with those of the measured directivities; the level.at any other.observer

angle (V) is then plotted relative to the level at ¥ = o°. Bearing

these in mind, we can now discuss the comparison for each rotor in detail.

(a) Rolls-Royce (0ld Hall, Derby ) fan [30], 3000 r.p.m.  (Fig. 6.9)

The correlation is within ¥ 2 dB. The theoretical directivity
assumes random blade loading harmonic phase and so it does not contain
the details of the measured directivity. The measured directivity is
that of a discrete tone at mB = 28 and the detailed structure is because
it contains the actual blade loading harmonic phase information.

The above comment will apply to (b) and (c) below as well.

(b) I.S.V.R. fan [31], 3600 r.p.m.  (Fig. 6.10)

The comparisons between theoretical and measured directivities of
discrete tones at the blade-passing frequencies of 5, 8 and 10 bladed

rotors operating in free field are shown here.
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The corfelation for the 5 and 8 bladed rotors is not as good as
thag for the 10 bladed rotors This is because of the fact that for
rotors with small number of blades (up to 5 iﬁ this case), the discrete
tone radiation at the blade-passing frequency is usually doﬁinated by
the steady loading. The comparison therefore is not really valid here
because the ratio (®/w) would be infinite when w = 0, and the theory
is valid only when the frequency (w) with which the force fluctuates is
larger than the rotational frequency (£).

The lower and upper limits of the bands of frequencies (w) of the
force spectrum which contribute towards the observed blade-passing

frequencies (BQ) are:

w (fw)
5-bladed rotor 5(1 - M) < w < 59(1 + M) C.167 < (%) < 0.25
8-bladed rotor 80(1 - M) < w < 8L + M) 0.104 < Cg) < 0.156
10-bladed rotor 109(1 - M) < o <10Q(1 + M) 0.083 < (%) < 0.125 ,

The correlation between theory and experiment should improve as the
—upper limit of the frequency ratio (Q/w) decreases, and therefore as

the rotor blade number increases. This is in fact.true as Fig. 6.10

shows. For the l0-bladed case, the theory predicts the directivity.

+
within - 2 dB of the measured directivity.

(¢) I.S.V.R. model rotor {32], 1800 r.p.m. (Fig. 6.11)

The figures show the comparison between theoretical and measured
directivities of sound pressure level for various frequency ratios

(92/w) between the limits 0.111 and 0.017. The measured directivities

are those of rotational noise harmonics m = 3, 5, 7, 11, 15 and 20 from
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the 3-bladed I.S.V.R. helicopéer rotor rig operating in the anechoic
room [32]. Looking at the measured directivity plots, it appears that
they contain sharp fluctuations in level, superimposed on the general
shape. These fluctuations are time fluctuations and not angular fluct-
uations, as shown experimentally by Stainer [32]. This_was also demon-
strated computationally in Chapter 3, where the time-averaged dircctivity
plots did not show any sharp angular fluctuations. Thus it is reasonable
to plot the theoretical directivities on top of the measured directivities
as shown in Fig. 6.11.

’

The correlation between theoretical and experimental directivities
is excellent at all frequencies considered, and therefore it suggests
that a fall-off of 6 dB per octave for the point force spectrum is a
good assumption for the low solidity rotor considered here.

In comparing the theoretical and measured directivities above, the
theory assumes that the distributed blade force can be represented by
itsresultant acting at a point on the blade. A few comments about the
validity of this point force representation are therefore appropriate.
here.

Point force representation

In Chapter 3, it was shown that (a) the chordwise load distribution
effects become important when predicting the actual levels of various
harmonics, especially when ka > 1, and (b) the envelope of the spectrum
functions for fluctuating chordwise loading distribution affects the

radiation at all observer angles equally. Thus in the present comparison,

since the theoretical directivities are plotted relative to the measured




level at ¢ = 0° (rotor axis), the effects of chordwise distribution are
eliminated éutomatically. This leaves only the spanwise loading dis-
tribution effects to be explained.

The effects of spanwise load distributions oé the directivity
plots are not as straightforward as those for the chordwise load distri-
butions. In Chapter 3, although it was shown that the directivity of
sound pressure is sensitive to the spanwise loading profile and its
variation with azimuth, the limited amount of computation did not provide
enough information on the magnitude of the length scale one should use to
compare with the radiated sound wavelength A. This is because of the fact
that since the levels of the radiation spectra from the point span loading
models (Fig. 3.9) could be varied by varying the position of the effective
loading point T these levels cannot be compared directly with the
spectrum lével from the distributed span lcading model (Fig. 3.10). .The
result is that we cannot determine the exact value of the ratié (span/
wavelength) above which the point loading representation predicts results
that are in error.

On the other hand, we can perhaps extract somé useful-information
by comparing the computed directivity plots for the two models discussed
above -~ see Figs. 3.11 and 3.14. Here, the directivities of the 4th
rotational noise harmonic from the point span and distributed span
loading models are similar, but as the harmonic number m increases, the
directivities from the two models begin to deviate from each other. It
appears that the point span loading model becomes inadequate at about

m = 8. The ratio of the blade span to the radiated sound wavelength

at m = 8 in this case is& (rT[ A) = 3.

t The AI'TGcva?hes "f the stf ~votational moise haymonic

ate mot  Gmilar becawse ‘qu_j are domimated bj the

5feqdy : (oqdﬁng.
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. If we gpply the above deductions to evaluate the validity of point
force representation used in comparing the theoretical directivities
with the measured directivities from the I.S.V.R. model rotor (rT = 20 in.),
the point force model should be adequate for acoustic frequencies whose
wavelengths are larger than approximately (rT/3) = 6.7 in. The rotor
has 3 blades and is operating at 1800 r.p.m; the point force representa-
tion assumed in the theory is therefore valid for harmonic numbers up to
about 22. |

It remains to be seen whebher the length scale of one-tﬁird span can

be used to compare with A in justifying the point force representation

for other rotor configurations.

6.4 Conclusions
The main conclusions are as follows.
(1) Asymptotic expressions have been derived for the far-field spectral
density of sound radiation (directivity and sound power) from a
broadband point force moving uniformly in a circular path. A series
approximation has been developed to show how the spectrum of far-
field radiation is influenced by rotation.
(2) The main effect at Mach numbers up to 0.8 is on the radiation spectrum
from the drag force component; the magnitude of the effect depends
on the rate of change of slope of the force spectrum, but is typically

less than 3 dB for values of (§t/w) less than U.5.

~
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CHAPTER 7

-SOUND RADIATION FROM POINT VOLUME-VELOCITY ”

SOURCES IN CIRCULAR MOTION

In the previous chapters, we have basically considered the radiation
from fluctuating forces, both periodic (at multiples of the rotational
frequency) and random, acting on rotating blades. These fluctuating forces
&cminate the sound radiation from helicopter rotors operating at subsonic
tip speeds. In the remaining chapters, we will go on to derive expressions
for sound radiation from monopoles and quadrﬁpoles in circular motion.

Taken together with the dipole sources, we will then be in a position to
describe the basic radiation properties of most of the rotating machinery
used for developing thrust in the V/STOL aircraft technology, provided a
point source model is appropriate.

The total noise from a rotating jet, as used for example in tip jet
rotors is dominated»by two mechanisms (see Chapter 1). First, any irregular
combustion will result into fluctuating rate of mass introduction into the
surrounding medium (air) as the tip jet rotates. This will give rise to

- rotating volume-velocity sources whose strength could fluctuate. in harmonic
or random manner. Secondly, sound is radiated from the turbulence in the
jet and this results into what is commonly known as '"jet noise'". This jet
noise is a subject on its own and is not tackled in the present investi-

gation; but the effects of circular motion on the radiation from acoustic

stresses will be estabiished in Chapter 9.
In the present chapter, we will consider the volume-velocity sources
mentioned above. Expressions for the overall and spectral radiation

(directivity and sound power) from volume-~velocity sources in uniform

circular motion at subsonic speeds will be derived, by using the moving-
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source approach adopted for the rotating point force study. Once again,
it is.assumed that the extent of the source distribution at any azimuth
is small compared to the radiated sound wavelength; this allows us to
use the point source model.
All the concepts used in this chapter are identical to those used in

. the previous two chapters, and so repetition is kept to a minimum. In
particular, the sound pressure results for the volume velocity source
required here are obtained from the corresponding results for rotating
point force. The rest of the introductory comments made at the beginning

of Chapter 5 apply here also.

7.1 Overall sound radiation

The far field sound pressure from a point volume velocity source

Q(ﬁ,t) in arbitrary motion is given by Lowson [9] as

M ]

ety = |— 1 _Ja o, o M } .

p'(r,t) . + (7.1)
~ _ 41rR(l-MR)2- { ot 1‘-MR ot _J :

where r, X are the vector positions of observer and source respectively,
~
“and MR is the component of convection Mach number in the direction 5 of

the observer;

Mo = =3 J (7.2)

]_t] = .-, (7.3)

where t is the time of observation and R = ’r - 5’ is the observer-
~

source separation.
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A point volume‘velocity source of strength Q(t) (mass per unit time)
may be represented physically by Q(t) = o d(t), where d(t) represents
a time-varying fluid volume velocity as in an arbitrarily moving jet of
air. The point.volume velocity source should not be confused with the
point acoustic source (the volume acceleration source) of specified volume
acceleration‘ﬁ(t), or the point volume displacement source of specified
volume displacement d(t), which is treated separately in Chapter 8.

For the point source rotating in a circle about a fixed point, it is
oconvenient to take the centre of the circle as origin; then M.,x, = O,
Equation (7.1) thus reduces, at distances large compared with the radius

of the circle (r3» a), to

. oM
pr(r,t) = 7 [2—3— (1 -4+ Qpt (-7 ] : (7.4)

M.r,

In the above equation, it should be noted that Mr = is the
Mach number component parallel to the line from the origin to the observation

point. 1In terms of the rotating source geometry defined in Fig. 7.1,

M_=-M sin} sin . (7.5)

' —
is the Mach number component parallel to r = OP.
~

Since Y and M are constant,

M,
s M siny cosf . (7.6)
Equation (7.4) then gives, writing M sinl = o ,
= s e on2 ' L -3
Gur p' = | Q(L + asin®) ° - QQu cos6(l + osin®) . (7.7)

This general result can be used to find the mean square radiated
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pressure for a rotating random source by repeating the procedure used for

a rotéting random source (see section 5.2 of Chapter 5), but this is not
necessary as shown below. It should be noted that a random source here
implies a source with no periodic components at multiples of the rotational

frequency.

7.1.1 Mean square far-field sound pressure

For a pure thrust force, the general result (5.195 of Chapter 5 for a

rotating force becomes

4Mc°r pt = - cosy EKI +~asin6)-2 - TQa coso(l + asine)_3] R (7.8)

which is identical to the general result (7.7) above for a rotating source
except for the cosy factor. Thus the mean square pressure for a rotating

source follows from equations (5.23) and (5.24) of Chapter 5 as

2 2
. 3 L 4 Lo
(4'nr)2 <p|2> = <Q2> .1—_+_22_%_/2_ + 92 <Q2> C{.2 _._2___2_2772_ . (7.9)
(1-a7) : - (1-a7)

This is the main result of this section. It gives an exact expression for
the mean square far-field sound pressure at the observation boint (f,w),idue
to a point volume velocity source with random time variation rotating
uniformly in a circle. The effect of source acceleration is clearly dis-
played in the 92 term, which also contains the contribution of steady
volume vglocity sources to the-overall radiation.

A particular case is that of a harmonically varying source strength,

with radian frequency v ; then <Q2> ==v2 <Q%> and the resulting mean

square pressure is obtained from (7.9) as




2 2 2
2 + o + Q2 o (4+")

2(1-a2)7/? s(12)1?

(7.10)

which is in agreement with Dokuchaev's result [33} derived by direct
calculation.
Figures 7.2 and 7.3 show the effect of Mach number M on the overall

radiated sound field, for both steady and fluctuating source strengths.

For this purpose the mean square pressures are normalized by Q2 and <62>

respectively.

7.1.2 Overall scund power output

The overall radiated power corresponding to (7.9) follows by integra-

ting the intensity over a spherical surface r = constant;

W= Jhl(r,W) ds . (7.11)
S

When the integral above is evaluated using (7.9) for the intensity,
the power output from a rotating point volume velocity source is obtained

in the form

bnp e - W= <Q®> aM) + 9% <Q®> BQM) . - O (7.12)

In equation (7.12), the A term is independent of the rotational

frequency £; it gives the sound power radiated from a point volume velocity
source in uniform linear motion, which was calculated directly in section

5.1 of Chapter 5. Thus A(M) is given by

AM) = (1 - M5)Y™% - (7.13)

The effects of finite rotational frequency are contained in the B
term in (7.12); this is the only term which remains when the source strength

is constant. B(M) is given by




BM) = % M2(1 - M)~ (7.14)

This last result was also obtained by Dokuchaev [}3], by considering
the special case of a harmonic monopole in circular motion.
For low Mach number applications, it may be useful to approximate

A, B by the first few terms of a series. Expansion in powers of M gives

1+ oM ot L., (7.15)

Il

A(M)

B(M) = %Mz + M4 + ... . (7.16)

Figure 7.4 shows the effect of terminating the series expansions at.

the M4 term.

7.2 Spectral density of sound radiation from broadband rotating

volume-velocity sources

7.2.1 Spectral density of sound pressure

The spéctral density of far-field sound radiation from a rotating point
source can be derived in a manner identical to that used for a rotatiﬁg
point force (Chapter 6), but here again, examination of the equations
involved shows that the required result can be extracted directly from the
rotating thrust force result:

Noting that the sound pressure equations (7.7) and (7.8) for the two
cases differ only by the cosy factor, the time-averaged sound pressure
spectral density from a rotating volume velocity source, accurate up to a

terms, follows from the general result (6.15) of Chapter 6 as

@? T @) = O oy +u? L atw) + et L Wbl

{ :
Q21 2 6 iv
o -
+ ‘w) 78 @ CQ (w):} + ... terms of order
4

Q
(5) and higher. (7.17)
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In the above equation, GQ(w) is the spectral density of the source

and the prime denotes differentiation with respect to . The result is

valid when the rotational frequency ©/27 is much less than the frequencies

with which the source strength (volume velocity) itself fluctuates.
The properties of the radiation spectrum are obviously similar to

those displayed by the pressure spectrum from a pure thrust force in

circular motion:

(1) If the source spectrum is linear in w (which includes the flat spectrum and
a spectrum rising at 3 dB/octave as special cases), circular motion has no
effect on the radiation spectrum because the derivative terms Ga,etc. in
(7.17) all vanish. This agrees with the results of Morse and Ingard [6]

and Ffowcs Williams and Hawkings [7}.

(2) Equation (7.17) gives the radiation spectrum on the axis of rotation as

(4mr)? G (w) = w? Go(®) » (7.18)

in agreement with [7]. The on-axis radiation is independent of
source motion (M and Q). |

(3) As an example, let us assume that the source épectrum is proportional
to d-Z (6 dB/octave fall-off) over part of the fféquency range. The

corresponding radiation spectrum, in normalized form, follows from

(7.17) as
5 P = (=) {1 +"2“0t + B } + (=) {’2’0‘ . (7.19)
w GQ(w) © ¢

The effects of varying (®/w) and M are illustrated in the polar
diagrams of Figs. 7.5 and 7.6, with the values (R/w) = 0 and M = 0.5 used
to form a standard case.

(4) The validity of assuming a power-law approximation to the source



spectrum, as in (3) above, depends on the fact that for small (f2/w)
Yalues, the radiation spectrum at frequency w comes almost entirely
from a limited band of the source spectrum between w(1l-M) and w(1l4M).
Any approximation to the shape of the source spectrum therefore applies
to this band of frequencies only. |

(5) The exact result obtained by Ffowcs Williams and Hawkings [7] from
their analysis of the same problem is, in the present notation,

oo

(4w)* T () = §

n= -o

&> . (7.20)

2 w0
GQ( w~-ng) Jn ('ﬁ

The same remarks apply here as in Chapter 6; in particular, the

exact form above must be used when (& w) is large.

7.2.2 Spectral density of total sound power

The sound power output per unit frequency bandwidth follows from
equation (7.17) by ‘integrating over a spherical surface r = constant:

Ul

2 r2 =
==X Gp(w) siny . dy . - (7.21)
o

c
p()O

Q-IO-
gi=

Noting that o =M siny in (7.17), we get the general result

4
accurate toM as

Q.0 t iv
4ﬂpoco gg = (a) { wZGQ(w) + w?Gé(m) . (%Mz) +‘w6G6\(w) . (I%6M4)}’
2 . . '
+ & { @,\6(_;5\,(0,\) ﬁ (7—12 2)} toaee L (7.22)

For a source spectrum GQ(m) which falls at 6 dB/octave;, the normalized

sound power spectrum is
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4mp ¢ o 2
Q .
- °(°) ———3‘5 = @+ + ) + (%) (§M2) s (7.23)
WG (w '
-Q

accurate up to and including M4 terms. The leading term in (7.23) can in
fact be obtained in exact closed-form by noting that it represents the
limiting case of uniform straight-line motion (£ = 0), for which Morse

and Ingard's analysis {Q] gives
n
4 poco aw _ .1

el T
wch(w) N e

gl

0, M <1). (7.24)

(see Appendix XI for details).

Numerical results for the 6 dB/octave fall-off spectrum are shown
in Fig. 7.7, based on equation (7.23). Also included is the exact result
(7.24) for (2/w) = 0, in order to show the effect of neglecting M6 and
higher-order terms in the series approximation. The main conclusions are
that the éeries approximation is within % dB of the exact value for Mach
numbers below 0.7, and the effect of finite @ on the sound power spectrum

-becomes more pronounced as M is increased.

7.3 Conclusions

(1) Exact expressions have been obtained in closed form for the overall
far-field radiation (directivity and total sound power) from a point
volume-velocity source mqving uniformly in a circle. The only restric-
tion on the source spectrum is that it_contain no discrete components
at multiples of the rotation rate.

(2) The contributions from steady and fluctuating source strengths to the
overall radiation are additive.

(3) Asymptotic expressions have been derived for the far-field spectral

density of sound radiation (directivity and sound power) from a broad-




band point volume-velocity source moving uniformly in a circular
path. A series approximation has been developed to show how the
spectrum of far-field radiation is influenced by rotation.

(4) The biggesﬁ effect is on the radiation spectrum in the plane of
rotation; the magnitude of the effect depends on the rate of change
of slope of the source spectrum, but is typically less than 1 dB for
values of (2/w) less than 0.5. |

The effect of finite ? on the sound power specfrum becomes more

pronounced as M increases.

(5) The properties of the radiation spectrum are similar to those displayed

by the pressure spectrum from a pure thrust force in circular motion.
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Ax
P(r,y,0)
Observation : .
point A
\
N\ r
R %
A\
6=0 \ o
\ © a
s Y 3

Fig. 7.1. Point source in wuniform circular motion.
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CHAPTER 8

SOUND RADIATION FROM POINT VOLUME-DISPLACEMENT

SOURCES IN CIRCULAR MOTION

In the case of noise radiation from fans, propellers and rotors,
part of the sound field arises from mass displacements due to finite
effective thickness of the rotating blades, which give rise to rotating
volume displacement sources. Here, unlike the rotating jet, no extra
mass is introduced into the system but the passage of blades through the
fluid results into volume displacement at every point in the path of the
blade. The source‘strength S(t) (mass) in this situation can be repres-
ented physically by S(t) = 0o d(t), where d(t) is a time-varying fluid
volume displacement.

So far we have neglected the contribution from these sources in
analyzing'the sound field of rotating blades. This is valid at low and
moderate tip Mach numbers, but as the tip speed approaches transonic values,
the contribution from the parting of air due to the paésage of blades can
be important [4;]. The object of this chapter is to derive radiation
results for point volume-displacement sources of arbitrarily varying
strength, rotating uniformly in a circle at subsonic speeds.

The analysis is restricted to overall results only; for this, the
moving-source approach used before is most suitable. The spectral results
can be oEtained, if desired, by adepting the procedure described for the
rotating point force (Chapter 6). )

The sound field of a point volume-displaccment source in arbitrary

motion is derived first and this is then applied to the special case of



uniform circular motion in order to establish the effects of source

acceleration on the radiated sound.
Once again, repetition is kept to a minimum since many of the comments

are already given in the previous three chapters.

8.1 Sound field of a point volume displacement source in arbitrary motion

In the general case of a three-dimensional volume-displacement dis-
tribution d(x,t) per unit volume, the wave equation for an otherwise
~

undisturbed ideal fluid is

1 3 a°d
- PP = 25 L (8.1)

A point volume displacement d(t) situated at position'z(t) is represented
by

d('f,t) = d(t) 6(5 -3) R (8.2)
where & is the three-dimensional Dirac 8 function. Writing S(t) = Py da(t)
as the time-varying mass displécement, the solution to (8.1), for an

unbounded fluid, is then
1 1 SS
P' =P - Py, = Zr \J‘ - ( 3 (89) dv . (8.3)
A"

The square brackets imply evaluation at the retarded time [t] =t - [r] /co,
where t is the time of observation and r is the distance from source to
observer.

The integral in equation (8.3) cgn be evaluated by using Lowson's
method [9] 3 that is, by using Greent's identity the appropriate number of
times and retaining the radiative terms. This involves a large amount of

algebra and is in fact not necessary as shown below.




3% (s8)

Examination of equation (8.3) reveals that the source term )
ot

3(Qs)

is a second-order function as opposed to the source term St

for the point volume velocity source [iowson, 9] , which is a first order
function. Once this is noticed, the sound pressure result for the point
volume displacement source can be obtained by differentiating the result

for the point volume velocity source. That is, since

3 1 9

F w] o0

(from equation 5.2, Chapter 5),

the required result follows from equation (7.1) as
: oM
: 13 f 1 3s s R
ot = | 5% ~—————<~—+—_————>H. (8.4)
[(l MR) ot 1_4“R(1-MR)2 st 1 My o

The far-field sound pressure from a point volume displacement source

S(x,t) in arbitrary motion is thus obtained from (8.4) as
lad

2.
1 ‘{ aZS +'38 3(8MR/8t) S 9 MR 35 (SMR 2

+ + )
3 3 VT
4TR(1-Mg) (1-M,)

p'(r3t) = e ~

,
where r, x are the vector positions of observer and source respectively, and
~ o~

MR is the component of convection Mach number in the direction R of the
-~

observer;
M. R M,.(r,.-x,)
~ 3 )

My = = = = . (8.6)

The sguarc brackets again imply evaluation at rctarded time.

-

8.2 Overall sound radiation from uniform circular motion

For the special case of uniform circular motion defined in Fig. 7.1,




result (8.5) reduces to

: . 2 aM a2y
p'gg,t) = Ty

378 -3 35 r -4 r -4
—ti(l—Mr) + 3 3t 3¢ (l-Mr) + S — (1—Mr)

3 ot

M_ 2 -
+ 35(—) (1-Mr>5] ,

Mr = -« M siny sinb

(For details, see Section 7.1).

Since ¥ and M are constant,

er
:ﬂ? = - QM sinycosb

a

r

dt

= QZM siny sinB .

Equation (8.7) then gives, writing M siny = a ,

. : ee - . - __t
4rr pt = [S (1+ osin6) 3 35Qa cosB(1l+ asin®) 4 + SQZ asin®(1l+ asin®) *

q ‘ -
_+~38920~'w cosze(l+'asin6) 3 ] . - (8,11)

This general result is used below to find the mean square radiated pressure
and sound power for a rotating random volume displacement source. Once

again, it should be noted that a random source here implies a source which

contains no periodic components at multiples of the rotational frequency.

8.2.1 Mean square far-field sound pressure

-

Equation (8.11) may be written as

4rr p' = ey g] - 3Q&e2 [é] + dee3 [S] + 302d234 [é]

where
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‘\
— . -3
e, = [(1 + asin®) ] "
e, = [cose(l + asine)-4] N : .
f (8.13)
e, = [sine(l + asine)"q]
3 ? .
and - e, = [cos2 6(1 + otsine)"5 ] . J
If é , S{' are stationary random functions .

of time, they will contribute a continuous spectrum of radiated
.sound pressure W hich can be calculated by forming the pressure
covariance from (8.12). The required procedure is described in Chapter 5,

and the mean square far-field pressure is obtained as

()2 R (0) = re (0)J R (0L + 9%R. (0){ - 20 (0) - 60°R__ (0)
P S ey S e84 &8,
+ 90®R_ (0)! + a%r (o){ o®R (0) + 667R__ (0) + 9aR (o)} .
, e S e e,e e
2 3 374 4
(8.14)
In arriving at equation (8.14), terms in &, o3 disappear since
Re o (0) = Re o (0) =R o (0) = 0; also the correlation functions
2°1 2%3 €2%4
ng(f) for T = 0 can be expressed in terms of Ré(O) by the relation
RSE(O) = Rés(o) = - Ré(o) s (8.15)

which is derived in Appendix XII.

The correlation functions for T = O of the periodic functions e1s €y,
ey, e, may be evaluated by changing the variable of integration from [@]
to ¢ as indicated in Appendix VII. ¥t follows from (8.13) that provided

o <1,
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27
R <o>=-1~j<1+asm¢>-5 g6 =14 152 1054
e 2w . 2 4
1 o
4 2“
R, (0) =»= | sine(l + asing)™® do = - 30 — 21a°
éle3 2'" 1 - a o - e e s
o
27
— _ 1 2 . -7 7 2
Re o (0) = Re (o) = P ~{ cos ¢(l + asing)  dp = ¥ + P +oee.
174 2 .
S .
27T
R (0) = L sin2¢( 1 + asing)”’ dp =% + 2L 2 .. ,
e, 2w 2
)
2n
_ 1 2 . X -8 _
R 0) = 5= cos” ¢sind(l + asind) " dd¢ = - a - ... ,
e,e 27
374 N
and o
271 :
— 1 4 . “9 — 3
R (0) = =— cos ¢(1 + asing) “dp = F + ... . (8.16)
e, 21 ,

(o]

If exact forms are required, the integrals in (8.16) above can be evaiuated
by contour integration in the complex plane z = ei¢ .

Taken together, equations (8.14) and (8.16) give an expression,
accurate up to and including a4 terms, for the mean square far-field sound

pressure at the observation point (r,y), due to a point volume displacement

source with random time variation rotating uniformly in a circle as

2 02 15 2 | 10 2 2 152 105 4

(41r)? <p!

> = <§7> (1+?a +-—4—5<x4)+52 <87 > (—E-o(, +-—2——a)
+ 0% <g®>  (yo? Jr%“) s (o =M sinp).  (8.17)

: 2 4
The effect of source acceleration is clearly displayed in the 2 and Q

. 4 . .
terms, of which the £ term also contains the contribution of steady volume

displacement to the overall radiation.
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In the special case when the source strength is constant with time (steady

thickness noise),

4 2
<p'2> =-Q~—§§~%— . (%az +-%§a4—k... )
(47r)
(steady thickness, o < 1). (8.18)

This result can be compared with Gutin's propeller thickness noise calcu-
lation [3] by putting the number of blades equal to l. Gutin gives the nth

harmonic amplitude of the radiated pressure as

_ s 2 )
p' - 2nr n Jn(na) > (8.19)

so adding the mean square contributions from all harmonics (n = 1 to * )

gives

4 2 ®
<p'2> R 5> 2 ) n4 Ji(na) . (8.20)

(4ﬂr)2 n=1

series expansion of Bessel functions shows that equations (8.18) and (8.20)

are identical.

8.2.2 Overall sound power output

_ .. The overall radiated power corresponding to (8.17) follows by
integrating the intensity over a spherical surface r = constant. Using

(8.17) for the intensity, the power output from a rotating point volume

displacement source, accurate up to and including M4 terms, is obtained as

wmo o W= <§5 1+ a4ty + o 5% (o +2e)
vt s? o+ B M < 1) . (8.21)

The first term in the above equation is independent of the rotational

frequency ©; it gives the sound power radiated from a point volume dic-

-
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placement source in uniform linear motion, which was calculated directly
in section 5.1 of Chapter 5. The coefficient C(M) of < SZ> is thus

given by

. (8.22)

8.3 Conclusions

(1) The sound field of a point volume displacement source in arbitrary
motion has been derived and the result has been applied to the special
case of uniform circular motion in order to establish the effects of
sourcé acceleration on the overall radiated sound field. The only
restriction on the source spectrum is that it contain no periodic
components at multiplés of the rotational frequency.

(2) The effect of finite rotational frequency f on the overall radiation
is maximum in the plane of rotation and its magnitude increases as

M increases.
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CHAPTER 9

SOUND RADIATION FROM POINT ACOUSTIC STRESSES

IN CIRCULAR MOTION

Having established the radiation properties of point sourcesand point
forces which execute circular motion, we now consider the radiation from
the most complex sound source of practical significance, namely the
acoustic stress tensor Tij' Lowson's general result [9] for the sound
field of a point acoustic stress in arbitrary motion is applied in this
chapter to study the effects of (a) subsonic uniform straight-line motion,
(b) subsonic uniform circular motion and (¢c) pure rotation on the overall
sound radiation from random point acoustic stresses.

The effects of acceleration of the stresses due to steady rotation
in a circié are established, using the moving-source approach adopted in
previous chapteré for the far-field sound radiation from rotating point
forces and point sources. For the special case of linear motion, .closed
form solutions for the 6vera11 radiation are derived in section 9.1. The
effects of acceleration perpendicular to the source paih on these linear
motion results are established in section 9.2.

To refresh our memories, it is worthwhile to mention that the moving-
source approach is used because it gives simple results for the overall
radiation directly, without involving the radiation spectrum. Although the
spectral results are not derived here, they can be obtained by using the
procedure adopted for the rotating point force theory (chapter 6). In fact,
since the structure of the present analysis is identical to that used in

the previous two studies, repetition is kept to a minimum, and the reader is



advised to become familiar with those chapters (5,6,7,8) before reading
the present one.

Applications include the turbulent sound generation from tip jet
rotors and noise from rotating blades with distributéd forces, as described

later on.

.9.1 Power output from point acoustic stresses in uniform straight-line motion

The overall sound power output is studied as a function of convection
Mach number M for three different orientations of acoustic stresses, relative
to the direction of motion: (a) longitudinal stress Txx with both axes

normal to the direction of motion, (b) lateral stress Tx with one axis in the

0

direction of motion and (c) longitudinal stress Tee with both axes in the

direction of motion; see Fig. 9.1.
The far-field sound pressure from a point acoustic stress in uniform
straight-line motion is given by Lighthill [i] as
1 BZTRR 3
4ﬁc° R ot

where the square brackets imply evaluation at retarded time
[¢] =¢- [R] /e, (9.2)

and MR is the approach Mach number of the source towards the observer,

MR =M cos ¥ . (9.3)

In terms of the observation point geometry defined in Fig. 9.1, the

values of TRR for the three stress orientations are




_ , 2 2
(a) Txx : TRR = Txx sin ¥ cos ¢ (9.4)
(b) T g * Ter = Ty Siny cosy cos¢ (9.5)
and

_ 2 : '
(c) Tee : TRR = Tee cos ¥ . (9.6)

The mean square sound pressures for the three cases are then obtained from

(9.1) as
A 4
(a) Txx : (411c02R)2 <p'2> = <Txi> .5in §.cos ¢ 3 , (9.7)
(1 - M cosy)
- .o ) 2 2 2
b) T, : (4ﬂc°2R)2 <p'2> _ <Tx§> sin ¥ cos ¥ cog ¢ (9.8)
x : (1 - M cosy)
2 .2 2 s 2 cos4w
(c) Tgg ° (4nc° R) <pf > = ”<Tee> . (9.9)

(1L - M cosw)6

The overall sound power output from the moving singularity is obtained

by integrating the acoustic intensity,

2
I= <p°/ P.C,” , (9.10)

over a large spherical surface; for a uniformly convected source in
rectilinear motion, the result was derived in section 5.1 of chapter 5 and

is given by

w o= j I(1 - M cosy) dS . (9.11)
S

Using equations (9.7), (9.8) and (9.9), the overall sound power output

results for the point acoustic stresses considered are given by
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27 T
2 5 2. f 4 .5

(a) Txx : 167 N M) = fox> ) cos ¢ do j~51n Yo, dy : (9.12)
o o (1 - M cosY)
Zy T

(b) Txe : 16ﬂ2p0c05.w(M) = <Tx%> cosz¢ d¢ J‘sin3w coszw. gw . (9.13)
o o0 (1 - M cosy¥)

(c) Tyq ¢ 16nzpoc05-W(M) = <Tef;> j dé J cos™ sind . d¥ (9.14)

' 0 o (1 -M cos¢)5

The required results then follow by straightforward integrations and
the ratios of sound power output with uniform straight-line convection to

the sound power output without convection, for the three cases, are obtained

as
| 2

@y T . HOD _ 5 [ 4, AdMy  2MB-5M) 4 (9.15)
XX w(0) 16M5 1-M (1-M2)2

(b) T . | w(M) _ 15 M(3-8M2+7M4) - X 1n (:_Lj_M_) (9.16)
X6 W) ~ 5 1y’ T [

) T . WO _ 5 et m(3-1m+1an*-121%) } (9.17)
00 W) P 1-M 3(10%)"

Values ©of the sound power ratio in dB are plotted in Fig. 9.7.

9,2. Overall sound radiation from point acoustic stresses in uniform

circular motion

The far-field sound pressure from a point acoustic stress Tij(x’t) in
re

arbitrary motion is given by Lowson [9] as

2 . 2.
L ~X, =X, T,., " T.. 3(sM_/at T, ., oM
(et = (ry-x)(ro-x) 8Ty . oL Mp/at) P R
'’ 2.3 3 2 3t (1-M_) (1-M,) 2
4nco R (1-MR) It R R ot
3Ti. BMR 2
+ e () (9.18)



where MR is the component of convection Mach number in the direction R of

the observer,

M.R
~ A

MR = R . (9.19)

The square brackets again imply evaluation at retarded time

[e]=c- &I/, . | (9.20)

where t is the time of observation and R = LL - X l is the observer-
source separation.

For a point acoustic stress rotating in a circle about a fixed point,
it is convenient to take the centre of the circle as origin, see Fig. 9.2,
Then at distances large compared with the radius of the circle (3> a),

R = r and so

r,r,
i

———l pond - =
Tij rz Trr 3 MR Mr . (9.21)

Thus equation (9.18) reduces to

Y(r,t) = — aZTrr (1 )3 + 3355 3(E§5)(1 M )4
PRLs 2 2 r ot dt e
4wco r ot
2% » M_ 2 s
T AN T, G AT (0:22)

In terms of the rotating acoustic stress geometry defined in Fig. 9.2,

M= - M sin¥ sin® (9.23)

and

T =T coszw + T

2 2 2 2
N . e . ' e + . .
rr XX gg Sin ¥ sin "6 + T - sin"V cos T gSiny cosyp siné

S

2
- . - » . 902
T ., Siny cosy cosd Tec sin y sin6 cos@ (6.24)
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—_
are the Mach number and acoustic stress compcnents parallel to r = OP. The
”~

pairs of axes for each of the six stress components are chosen to be combin-
ations of axial (x), circumferential (0) and radial (o) directions.

The terminology usgd above is convenient for the use of this model
for helicopter rotor noise calculations. Since the rotating blade has
finite dimeﬁsions, the distributed‘force on it acts over a bounded region
and vanishes with all its space derivatives on the surface of this bounded
region. The concept of multipole anélysis (see chapter 1 of [?4] ) can
thus be applied here to represent the distribution of first-order sources
(dipoles) by second-order point sources (quadrupoles) - see also §325 of
Lord Rayleigh's book [35]. That is, the moments of the axial and circum-
ferential force components_for (a) the point span, distributed chord
loading model, and (b) the point chord, distributed span loading model are

then represented by (a) T o and Ty , and (b) T s and T , respectively.

e 6o

Expressions for the overall sound radiation (directivity and total
power) will now be derived for two separate cases:
(1) zero rotation (2 = 0, M finite) with all six stress components, and

(2) Finite rotation with a restricted number of stress components,

9.2.1 Zero rotation, finite M

Since ¥ does not vary with time, differentiation of equation (9.24)

gives
azTrr e 2 (1] _
( ) = (T, cos"y + T
3 o
7 oo

2 2 . 2 2
. . + .
00 sin ¢ sin 6 TOG sin ¢ cos ©

~

+ T sinycosy sind® - T _ sin¥ cosV¥ cosb
%0 x0

- T sinzw sin® cos® ) . (9.25)

6o
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Equation (9.22) then gives, writing M siny = a ,

(4“(:021‘) p' = e [” ]cos v+ e [”99] sin lll + ey [ ]sinz\lJ
+ e [" ] sin¥ cos¥ - es [ixo] siny cosy --e [;. ] sin w

(9.26)
where
j
e; = [ (1 + asine)-3 ] s
e, = [sinzﬁ (1 + asine)-3:] s
ey = [cosze (1 + asine)-B] ,
; (9.27)
e, = [sin@ (1 +-asin6)-3 ]
4 ; 3
eg = [cose (1L + asine)-3 ] R
and E6'= [sine cost (1 +-asin6)-3:] -J

are all periodic functions of time, with period 2w/Q. Results (9.26) and
(9.27) are used below to find the mean square radiated pressure and sound

power for a random acoustic stress.

9.2.1.1 Mean square far-field sound pressure

o

N If Trr is a stationary random function of time, it will contribute

a continuous spectrum of radiated sound pressure which can be calculated

by forming the pressure covariance from (9.26). The procedure is explained
in section 5.2 of Chapter 5 and after much algebra, the mean square

far-field pressure is given in terms of the six acoustic stress components

as
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2 ‘e 2, 105 4 2
(4ﬂc§r)2 <p!'“> = <T 2 > (1+ %; + ——éa )cos p+< T 6> (3+'ZZ a2+ l%%§a4)51n4¢
4 <T 2, G+ = 1> 2+ lg§a4)51n 4ﬁ-<T 5 >(5+ —= 45 2 175a4)s1n2¢ cos2¢
lofe] 16% 8
2 ., 152 354, 2 2, o 152, 175 &y . 4
L 3 .
+ <T__> (2+-—§u + 3 )sin"y cosTyt <T60> € +-16 A Ysin 'y

+ <fxxT66> (1+ %§a2+-l%§a )51n ¥ cos ¢+-<§ T e (1+£1+5 2+'i5a4)sin2w coszw

v 152 175 4 105 3
+ Tg Ty (%ﬁ——a + == 3¢ )sin ¢+-<T T <0 (-5 - %o )51nw cos™ ¢
V ki bl ceo 'x) 3 3
+ <TgeT o> (- lz%“ . 1E735C3)sin3q, cosy + <TGGTX6>(- %a - 85“ )sin”y cosy
+<T T >(- 2a . éé0L3)sin3¢ cosy (a < 1) . (9.28)

x0 80 4 8

This is the main result of this section. In arriving at equation (9.28),
the correlation functions for T = 0 of the periodic functions ey to e, were
evaluated by change of variable from [e] to ¢ as indicated in Appendix VII.
Equation (9.28) gives an asymptotic expression, accurate up to a4 terms,
for the mean square far-field sound_pressure at observation point (r,¢¥) due
to a point acoustic stress with random time variation when the effects of
rotation are neglected. 1If én exact closed-form result is required, the
integrals for the correlation functions should be evaluated by contour inte-
gration in the complex plane. Two special cases of the above result are now

considered as a modcl for sound radiated from distributed forces om roialing

-
AN

blades.

(a) Point span, distributed chord loading

Only two components of the acoustic stress need to be considered heie,

Txe and T66 . The resulting mean square pressure can be written more simply
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using the further assumption that these are related by

.o

Tee = eTx6 , (¢ = constant) . (9.29)

Equation (9.29) applies, for example, if the local fluctuating forces
on the blade have a fixed orientation in the rotating frame of

reference. With equation (9.28) it gives

I;Sa )51n ycosy

2 .2 2
(bmc”r)" <pr™>
o” 2 (3 + if 2 l;S 4)51n Y cos ¢ - e(
<T 0 > .
X

+ (% + o 2, 22 oHsin?y } (0 < 1) .

(9.30)

(b) Point chbrd, distributed span loading

Here only Txo and Teo components are present anc¢ if they are also
related by

= gT s . (9.31)

the mean square pressure is obtained from (9.28) as

2.2 _ 2 R
(41Tc r) <p' >
3 > =9 (% + 1342 +'§§a4)31n Y cos w - e(— a+ 2éoa3)sin:‘}q) cosy
< 2 8 “8 8
X0
+ 62(;6 + ’i’gﬂz + %Q)Sinlﬂb }, (¢ < 1), (9.32)

Figures 9.3 to 9.6 show the effects of Mach number M and drag-
thrust ratio € on the overall radiated sound field, for both point
span and pointvchord loading models. For this purpose the mean square

sound pressures are normalized by the resultant stresses



(1 + 52) <Tx§> and (1 + ez) <TX§> 1espectively. The standard values

of € =0.1 and M = 0.5 are chosen to be characteristic of helicopter
rotors.

It should be noted that when the forces on the blade are distributed
vboth along the chord and along the span, the resulting overall mean sguare
<pressure can be obtained by addiné the results (9.30) and (9.32) in appro-

priate proportions. This result follows from equation (9.28).

9.2.1.2 Overall sound power output

The overall radiated power corresponding to (9.28) follows by inte-

grating the intensity over a spherical surface r = constant;

W= jI(r,d)) ds . , (9.33)
S
When the integral above is evaluated using (9.28) for the intensity, the

power output from a random point acoustic stress, neglecting the effects of

rotation, is obtained in the form

- oo 2 [ 2 oo A
(601rpoc ) W=2¢ (M){3 <T x> + 3 <T00> + <Txo> + 2 <TxxT00> }

- oe 2 X3 2 o o0 oo .o
* CZ(M){ Teo” T Toe” T2 T Toe> T2 <T66Toc>}

+ C3(M){3 .<'i~eg'> } . (9.34)

Since @ = 0, equation (9.34) in fact gives the sound power radiated
from a point acoustic stress in uniform linear motion. The results for
various components of the acoustic sEress were calculated directly in
section 9.1. Thus Cl(M) is given by equation (9.15), CZ(M> by equation
(9.16), and C3(M) by equation {9.17).

For low Mach number applications, it may be useful to approximate



Cl’ CZ’ 03 by the first few terms of a series.

M gives

CZ(M) =1+ —=M +-7; M + ...

7
L1415 ,2 350 4
C3(M) =1+ 7 M™ + 5 M+ ..

Expansion in powers of

(9.35)
(9.36)

(9.37)

Figure 9.7 shows the effect of terminating the series expansions at

the M4 term.

9.2.2 Effect of rotation

In order to reduce the amount of algebra involved, the effects of

finite rotational frequency § on the overall radiation are established in

this section for the special case where only three acoustic stress com-

L]

ponents Txx’ TXe and T are present.

68

Writing M siny =a , T coszw =X, T

XX

equétions (9.23) and (9.24) become

M =& asinb
r

‘anB Trr =X+ Y sinb + Z sin26 .

Since :a is constant,

a a

T r
— = a Qo e
dc cOos ’ 2
N dt
dTTY . . . 2 :
d{;.— =X+ Y sing + Z sin"g + QY¥cosg + QZ sinZg ,
and
d2T e
rr

dt

- QZY sinf + 2922 cos28

x0

:QZ

0sind

siny cosy = Y, and T

’

> =X +Y sing@ + Z sinze + 2QY cosb + 207 sin2g

(0P =
pg Sin Y = Z,

(9.38)

(9.39)

- (9.40)

(9.41)

(9.42)
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Equation (9.22) then gives

(4ﬁ;or) pr = £ [x] + £,[3] +~f3[EJ + 206, [v] + 2Qf5[é]
o, [v] + 29¢ [2] - 39ag1[5<J - 300g,[Y]
3Qag3[éJ - 39% g4[Y] - Bonags[Z] + Qzag6[X]

+ Qzag7[Y] + oncga[z:] + 392a2h1[X]

2.2 | 2 2
+ 3% hz[Y.] + 3% h3[ZJ (9.43)
where
£, = [(1 + asine)‘3] , £, = [sine(l + asine)'3] s
f3 = [sinze(l -+ 0Lsine)-3] , f4 = [cose(l + asine)-3] , (9.44)
f. = |sin286(1 + msine)"3 , f, = |cos26(1 +—a51n6)“3 3
5 : 6
= L gy-4 _ , NPT
g = [cose(l + atsind) ] R g, = [31n9cose(l + asinb) J s
8, = sinze cos(l + asine)-4 , g, = c0326(1 + asine)-4 s
3 4 (9.45)
g5 = [sinZ6 cosO(l + asine)-4], gg = [:sine(l + asine)-4] s
g, = [sinze(l + asine)'4 ] s g8'='[isin36( 1 +rusin6)-€];
h) = [cosze(l + ocsine)-5 ]', ﬁg’zz [sine cosze(l + dSine)-iL
(9.46)

h3 = [sinze cos%a(l +cxsin9)-?]

are all periodic functions of time, with period 27/Q ,

9.2.2.1 Mean square far-field sound pressure

'
-

If the rotating point acoustic stress is a stationary random function
cf time, it will contribute a continuous spectrum of radiated sound pressure.
The mean square pressure can be calculated by forming the pressure covar-

iance from (9.43); the method is described in chapter 5. After a tremendous
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amount of algebra, the overall mean square far-field pressure is obtained

in terms of the three acoustic stress components as

(4ncir)2 <pt2>:&{<&;i> (1+7; 2y l920¢4)cos Yt <f 2> 5t %§a2+ l%§a4?81n2u coszw
+ <¥6§ st Ig 2, léis 4) sin W+ <T T >(-5a- l-g-s-ozB)sinwcosBlp
+ <T Tee> (1+~%§a2+ 125 4)31n wcos Yt <T'e:1.‘ee (= %?a- l%§a3)81n3ycosw j;
+Q%{ <T 2, (15 2+lg§a4) ¢+ <T > 3+ 225 2+ 245 4)51n wcoszw
xx ‘zZ > 8 2
' +-<Tee> (3+ éﬂ: 2+ ég%éaa)sin4¢+ <ixx% o> (-10a- é%éa )siny cos3w

+ <ixx ee (123 2, 437 4)s:m Ycos w+'<T 6T66> (- ﬁga- £%§§a3)sin3wcosw ;}
+Qé{ < xi >(%a2+%§a4)cosaw+ <Tx§> (%4-%§q2+ Z%§a4)sin2wcoszw

+ <Ty > (2+-3£; 2+'l%%gla4)sin4w+-foxTXe>(-a- %?a3)sinwcos3w

) + <Txbee> (anz +—§%§a4)sin2wcoszw
+»<Txﬁlbe> (- %g o- é%§a3)sin3\pcos P }-, (c < 1). (9.47)

Once again, in arriving at the above result, the correlation functions for
= 0 of the periodic functions £, g, h were evaluated by changing the

variable of integration from [é] to ¢ , as shown in Appendix VII. Also

correlation functions of the form Réy(T) for T = 0 were expressed in terms

of R%& (0) by the relation

R.}Ey(o) = Rx.);(o) = - R).{}.’(O) (9.48)

2




which is derived in Appendix XII.

Equation (9.47) is the main result of this section. It gives an
asymptotic expression, accurate up to a4 terms, for the mean square
far-field sound pressure at observation point (r,y) due to a point acoustic
stress with random time variation rotating uniformly in a circle. As
before, it should be remembered that the source spectrum should contain no
discrete components at multiples of the rotational frequency. Exact
expressions in closed form can be obtained by evaluating the correlation
function integrals by contour integration in the complex plane. The
effect of source acceleration is clearly displayed in the 92 and 94 terms,
of which the o term also contains the contribution of steady acoustic
stress components to the overall radiation.

Close examination of equation (9.47) reveals that the numerical coeff—

- . 2 § , ..
icients of the a terms in the Qo, 7 and 94 terms are approximately similar

in order of magnitude; this observation also applies to the az, a3 and a4
terms. Thus at least at low Mach numbers (M < 0.5), the effects of rotation
would be roughly similar to those for the pure rotation (M = 0, Q@ finite)

Vubase, which are established in section 9.3.

Two special cases of the general result are now considered below.

(a) Radiation in the plane of rotation

The overall mean square pressure in the plane of rotation is obtained

from (9.47) as

202 <12 o 2 (a4 152 4 1225 . 2. 6512 , 5845 4
(41cse)” <pr®> = <E o> (% A Ryl ) + g2 <Tgg> (3 + 33" + 2222%)
4 2 3652 , 14151 4
Q7 < > . . )
+ TGG (2 + 16L + 128 (9.49)

For a single-frequency acoustic stress of radian frequency v,
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eg = \)2 <T z, and <"i’ 2> = \)4 <T 2> . (9.50)

The corresponding radiation can be written in normalized form as

(4"°c2>r)2 1% 75,2 , 1225 4 6512 . 5845 4
= (% + =M M)+()(3+—-—M + o)
& 2 2, 16 64 16
06
4 L
Q 365.2 . 14151 4
CNCEE S s (9.51)

The in-plane radiation is plotted in Fig. 9.8, showing the increase in

level as either M or (Q/v) is increased.

(b) Point span, distributed chord loading

As in section 9.2.1.1, the mean square pressure result can be simpli-
fied by assuming that thé local flucfuating forces on the blade have a
fixed orientation in the .rotating frame of reference. For a single-
frequency (v) acoustic stress, the overall radiation is then obtained

from (9.47) in the form

(lnrczr)2 <pt2>
o) i 43, 45 2 175 4) 0 o ,15 , 175 3)sin3 cos
vher s v Gt e sin’ oo ye (Pt S beosy
x0
Q
+ 22( %t Ig 2+ %%éaa)sinlﬂp } + (;) {(3+ %%24%4)51n wcoszw

- oot 1553y 4 Bpcosyreb(ar 85k, 3845 4y st },

+ (Q) {(24~6~3-a2+ 35 4)sm Vcos P- g(-—w+ ég—sw Ysin’ycosy

2 365 2 14151 4 4 -
+ e“(2+ T + 158 )sin 1,)} (9.52)




The effect of varying (2/v) is illustrated in the polar diagram of Fig. 9.9,

‘where the sound pressure is normalized by the resultant stress (1 +'€2) <Tx§> ,

and the values M = 0.5, € = 0.1 used to form a standard case.

9.2.2.2 Overall sound power output

Using (9.47) for the intensity, the overall radiated power follows
by integration over the spherical surface r = constant. The power output
from a rotating point acoustic stress, accurate up to M4 terms, is then
given by

5 - v 2 45 2
(601rpoco)w —{ <Txx> 3+ 7M

+10M%) + <1 %> (1 + Py
X6 7

e 2 225 2. 3504y . o 90,2, 100 .4
+ 2 o B 20 ¢ a1 a2+ M 2w ):}

3

2 225 2 . 280 4
xgo (& F T M)

+ 92{<'i‘ ,2> (§2M2+ ?.OMQ) 4+ <‘i‘
XX 7

. 2 2, 33404 . s ,306,2 , 488 4
+ <Tee> (24+279M7+ —3—-M )y + <TxxTee,»(7M + M )}

2

+~g“{ <Txi> (%M2+3M4) +'<Tx§> (1rom2+35u)

1095 2 4717 4
7 M+ 7 LA)+<TXXT

+ <Te§> (16 + §$M2+50M4):} .

T

©(9.53)

The first term in the above equation is independent of the rotational

frequency . It gives the sound power radiated from a point acoustic
stress in uniform linear motion, for which closed-form expressions were

discussed in secticn 9.2.1.2.

~

Spinning point acoustic stresses

If the radius of the circular path is now reduced to zero,then M = 0
although Q remains finite. The resulting overall mean square pressurc due to

pure rotation of the point acoustic stress with components Txx’ Txe and
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Ty is siven by the general equation (9.47) as

(4ﬂc§r)2 <p'2> = <%xi> cos4w + <%xx%99> sin2¢ coszw

+ (% <%x§> +»923 <ix§> + 94% <Tx§> )sin2¢ coszw
2 2 o 2 4 2 . 4
+ (3 “Tgo” + Q%3 <Tgo” + 8972 <Tyg” )sin 'V &

(9.54)

Integration over a spherical surface gives the corresponding sound power

output as
. 5 _ L 2 se 'Y :;;' 2 o 2
(60mp_c2).W(R) =3 <T > +2 <F P> + <T > +3 <F o>
2 .2 2 .2
+60° <t 2>+ 2u0% <iy2>
4
+ 9 <Txg> + 160 <1 2> . (9.55)

9.3.1 Single frequency spinning acoustic stresses

Two particular cases are the harmonically varying stress components

Txe and Tee , with radian frequency V; then

* 2 2 2 °e2 4 2
<Tx6> -V <Tx6> ’ <Tx6> = V, <Tx6> 5
(9.56)
o 2 _ .2 2 e 2 _ 4 2
and <T66> =v <Tee> s <T68> = v <T66> .

" The ratio of the sound power output due to pure rotation to the power

output without rotation, for the two cases, is then given by

2 4

: Q Q
( [ 220 (0 &7\
(2) Txo ﬁzg; =1+ 6\v> * (v’ ’ N
¢ 2 ok
(b) T, %E—% =1 4+ 8(%) + -15-6-(;) ) (9.58)

The above results, obtained as special cases of (9.55), can aiternatively

be derived by direct calculation as shown below.
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A

N\
= TX6 cosvt, (b) Tee =T _ _ cosvt

1 T
If the acoustic stresses (a) x 06

6
rotate in the 6 plane at Q radians/second, then in terms of the observation
point geometry defined in Fig. 9.10, the stress components parallel to

-
= OP can be obtained from (9.24) as

r
A

(a) Teo @ Tpp = Tyg Sin wcosy sin{(Qt - ¢) cosvt, (9.59)
A

Wy T i =T siny sinZ(Qt - §) cosvt . (9.60)

The resultant sound pressure at a point r in the far field is given by

82T

41rcbr ot

Differentiating (9.59) and (9.60) twice, the corresponding mean square

pressurés follow from (9.61) as

2

A
(a) (4ﬂc2r)2 <ptT> = Txgsinzwcoszw <Q4sin2(ﬂt-¢)coszvt+ﬂ3vsin2(Qt-¢)sin2vt

+ 492v20052(9t—¢)sin2vt+292vzsin2(Qt-¢)coszvt

+Qv331n2(Qt-¢)sin2vt+v4sin2(Qt-¢)coszvt> s
- , -- - (9.62)

2, _% 2

> =
Too

(b) (4ﬂc§f)2 <p! sin4¢ <49400522(9t—¢)coszvt-293vsin4(9t-¢)sin2vt

+ 492v2sin22(Qt~¢)sin2vt-492vzsin2(9t-¢)c032(Qt—¢)coszvt‘

3
+ 2Qv sinz(Qt-¢)sin2(Qt-¢)sin2Vt+v4sin4(Qt-¢)coszvt> .

-

(9.63)

Provided @ and Vv are not integrally related, these reduce to

A
(a) TXe : (4ﬂcir)2 <p!2> = ﬂ(Q4 + 692v2 +-v4)TX§sin2w coszw 5 (9.64)
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”
(b) Top (4wc§r)2 <p'2> = ég(lg 94 + 892 24 v4)T6§ sin4¢ . (9.65)

It is clear from the above equations that spinning the point acoustic

stresses T T at angular speed 2 in the 6 plane, increases the sound

X6’ 06

power output by the factors

, 2 4
@ T %= 1 +6(%) + (%) , - (9.66)
W(R) 16 0 4
and (b) Tog t ggy = L+ 8(5 32 5@ - (9.67)

9.4 Conclusions

(1) The effects of (a) subsonic uniform straight-line motion,
(b) subsonic uniform circular motion and (c¢) pure rotation on the
overall sound radiation from point acoustic stresses have been
studied in this chapter. It has been suggested that the analysis
can be used for studying the sound radiated from distributed forces
on rotating blades.

(2) At low Mach numbers (M < 0.5), the gffects of circular motion on
the overall radiation are roughly similar to those for the pure

rotation (M = 0, @ finite) case.

- (3) The biggest effect of rotation is on the overall radiation from

longitudinal stresses with both axes in the circumferential (Tee)
or radial (Too) directions. The magnitude of the effect is maximum
in the plane of rotation, but is typically less than 6 dB for values

of (£/v) less than 0.5.
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CHAPTER 10

CONCLUSIONS

The purpose of the investigation was to study the radiation properties
of various noise generating mechanisms inherent in the thrust producing
devices associated with helicopters, V/STOL aircraft and ground effect
machines.

Sound radiation from both steady and fluctuating sound sources
executing circular motion has been considered, and particular attention
has been focussed on noise from helicopter rotors.

The use of two alternative approaches in the analysis of acoustic
radiation from moving sources has been illustrated. It is shown that the
moving—sou?ce approach (where the moving-frame source déscription is
rotained in the acoustic analysis) is more appropriate for deriving the
sound radiation from rotating sources, especially for sources of arbitrary
time dependent source strength, for the following two reasons:

(a) Simple results for the overall radiation can be obtained directly,
. without involving the rédiation spectrum, and
~(b) Since the spectrum result takes the form of a series expgnsibn about
the linear-motion case, it enables us to‘establish the effects of
source acceleration due to circular motion on the linear-motion
results conveniently.

The main conclusions are summarized in the following sections, and

these are followed Ly recommendations for future work in this parcicular

-

field of acoustics.



10.1 Main conclusions

'10.1.1 Rotational noise from helicopter rotors

The main:interest here was to establish the effects of chordwise and
spanvise differential-pressure profiles and their variations with azimuth
on the higher harmonic rotational noise, especially at high tip Mach
numbers and high forward speeds. ‘Previous point loading theories were
modified to include these profiles and according to the available measured

blade airloads, the fcllowing conclusions were reached computationally:

(1) Different blade loadinz models give different radiation results.

(

) The spanwise loading profile and its variation with azinuth

N

“produces the biggest effect over the voint loading assumption.

10.1.2 Rotor aerodynamics

Detailed study of the available measured blade loading data reveals
the following:

(1) Each flight regime has characteristic low-frequency blade loading
fluctuations which can be explained qualitatively by combining the
factors (like blade-tip vortex intersection, blade stall, effect of
fuselage, vortex pattern shed by the blades, and so on) which produce
the asymmetry. Such lo&—frequency force fluctuations will give rise
to the lower harmonics of rotational noise.

(2) Study of blade loading harmonic; amplitude fall-off at various
positions on the rotor blade gives lower fall-offs near the trailing

edge than at the leading edge, at wmost span stations. In addition,

the general level of the loading spectrum appears to be higher at the




trailing edge than at the leading edge. These suggest that the

higher frequency force fluctuations are dominant near the trailing
edge of the blade at all points along the span.

(3) The loading spectra near the blade tip, which cause the dominant
sound radiation, fall off at approximately 6 dB per octave near the
traiiing edge of S-61F rotorAblades. This implies that

A A _1
A=A
pg pl &

may be taken as the standard power law for loading harmonics ampli-
. tude fall-off over all flight regimes of S-61F compound helicopter.
" (4) Statements (2) and (3) above are strictly valid for the S-61F heli-
copter roto? only, and it remains to be seen whether they can be

applied to other similar rotor configurations.

10.1.3 Radiation from random rotating forces (broadband noise)

(a) Overall radiation

(1) Exact expressions have been obtained in clos;d form for the overall
far-field radiation (directivity and total sound power) from a point
force moving uniformly in a circle. The énlyrrestriction on the
force spectrum is that it contain no discrete components at multiples
of the rotational frequency.

(2) The contributions from steady and fluctuating components of the
force to the overall radiation are additive.

(3) The effects of source acceleration due to circular motion (finite
rotational frequency) are displayed in a separate term which also
contaiﬁs the contribution of steady thrust and drag forces to the
overall radiation.

(4) A quadrupole model has been developed to represent distributed forces

on rotating blades.




(b)
(1

(2)

3)

(4)

(5)

(6)

(7)

Radiation spectrum

Asymptotic expressions have been derived for the far-field spectral
density of sound radiation (directivity and sound power) from a
broadband point force moving uniformly in a circular path. A series
approximation has been developed to show how the spectrum of fér-
field radiation is influenced by rotation.

The on-axis radiation is independent of source motion (M and Q@ ) and
is controlled by the thrust component of the rotating force, whereas
the radiation in the plane of rotation is controlled by the drag
component.

If the pure thrust spectrum is linear with frequency, circular motion
has no effeét on the radiation spectrum.

If the pure drag spectrum is linear witbh frequency (which includes
the flat spectrum and a spectrum rising at 3 dB per octave), circular
motion again has no effect on the radiation spectrum. This does not
mean that the overall radiation is unaffected.

For a narrow-band force spectrum, the radiation spectrum becomes
progressively broader as the observation point moves from the axis

to the plane of_rotation;

The main effect of rotation at Mach numbers up to 0.8 is on the
radiation spectrum from the drag force component; the magnitude of
the effect depends on the rate of change of slope of the force spectrum,
but is typically less than 3 dB for rétios (9/w) of rotational to
force fréquencies less than 0,5.

The point force spectrum falling at 6 dB per octave over the approp-
riate frequency range gives correlation within T 2 dB between
predicted and experimental discrete tone directivities from (a)
Rolls-Royce fan [30], (b) I.S.V.R. fan [31] and (c) I.S.V.R. model

rotor [32] .
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In the case of the I.5.V.R. model rotor, the point force
representation assumed in the theory appéars to be adequate at least
up to those frequencies, whose wavelengths are larger than approxim-
ately one-third of the blade span length.

It remains to be seen whether. the length scale of one-third span
can be used generally to coﬁpare with the radiated sound wavelength
A in justifying the point force representation for other rotor

configurations. .

10.1.4 Radiation from random rotating volume-velocity sources

Although the radiation properties here are similar to those displayed

by a pure thrust force, the conclusions are given in full below for

completeness.

(a) Overall radiation

(1) Exact closed-form expressions are obtained for the overall far-field
radiation from a point volume-velocity source in uniform circular
motion. The only restriction on the source spectrum is that it contain
no discrete components at multiples of the rotational frequency.

(2) The contributions from steady and fluctuating source strengths (mass
per unit time) to the overall radiation are additive.

(3) The effect of source acceleration due to circular motion is displayed
in a separate term which also contains the contribution of steady
volume-velocity source; (constant rate of introduction of mass) to
the overall radiation.

(b) Radiation spectrum

(1) Asymptotic expressions are derived for the far-field spectral density

of sound radiation from a broadband point volume velocity source



moving uniformly in a circular path. A series approximation is

developed to show how tﬁe spectrum of far-field radiation is influenced
by rotation.

(2) The on-axis radiation is independent of source motion (M and R ).

(3) 1If the source spectrum varies linearly with frequency (which includes
the flat spectrum and a spectrum rising at 3 dB per octave as special
cases), circular motion has no effect on the radiation spectrum.

(4) fhe biggest effect is on the radiation spectrum in the plane of
rotation; the magnitude of the effect depends on the rate of change
of slope of the source spectrum, but is typically less than 1 dB
for values of (%/w) less than 0.5.

The effect of finite rotational frequency @ on the sound power

spectrum becomes more pronounced as M increases.

10.1.5 Qverall radiation from random rotating volume-displacement sources

(1) Thevsound field of a point volume-displacement source in arbitrary
motion has been derived, and the result has been applied to the special
case of uniform circular motion in order to establish the effects of
source acceleration on the overall radiated sound field. The only
restriction on the source spectrum is that it contain no periodic

components at multiples of the rotational frequency.

(2) The effect of finite rotational frequency  on the overall radiation
is maximum in the plane of rotation and its magnitude increases as M

increases.

10.1.6 Overall radiation from random rotating point acoustic stresses

(1) The effects of (a) subsonic uniform straight-line motion, (b) subsonic

uniform circular motion and (c¢) pure rotation on the overall sound




radiation from point acoustic stresses have been studied. It has been

. suggested that the analysis can be used for studying the sound radiated
from distributed forces on rotating blades.
(2) At low Mach numbers (M < 0.5), the effects of circular motion on the
~ overall radiation are roughly similar to those for the pure rotation
M =0, Q finite) case.
(3) The biggest effect of rotation is on the overall radiation from
longitudinal stresses with both axes in the circumferential (Tee)
or radial (Too) directions. The magnitude of the effect is maximum
in the plane of rotation, but is typically less than 6 dB for ratios

(9/v) of rotational to acoustic stress frequencies less than 0.5.

10.2 Research recommendations

Although the basic acoustic properties of rotating sound sources are
now undefstood, more work is required from the applications point of view.
In order to develop accurate noise prediction techniques and reduce rotating
machinery noise generally, the following areas of future research are
recommended.

(is Full application of the computer programmes developed for rotational
noise is at present being limited by the lack of sufficiently detailed
measurements on aerodynamic blade loadings. Statements (1) and (2) for
rotational noise above (section 10.1.1) are based on only one set of loading
data. They need to be veriéied for other rotor configurations when

measured blade loading data become available. 1In addition, any future

blade airloads measurement programme must include simultaneous noise

measurements, so that the relative usefulness of various theoretical

loading models for noise prediction can be established.




(2) According to available acoustic measurements, it appears that there

is not much difference in rotor noise levels for different flight regimes
inciuding hover, providing blade slap is not present. Rotational noise

is rich in higher harmonic content even when a helicopter is hovering;

as many as 30 harmonics can be detected by narrow-band analysis in some
cases. This suggests that in additién to the low-frequency harmonic force
fluctuations described in Chapter 4, there are higher frequency harmonic
force fluctuations present which can be detected only if differential-
pressure measurements are recorded at smaller azimuthal intervals.
Acoustic spectra suggest that these higher frequency fluctuating forces
are inherent in all free field rotors irrespective of external conditions.
Experimental studies to identify the mechanisms which give rise to these
fluctuations will be useful here. For example, if it can be established
that intersection of a blade with the tip vortices shed by previous blaﬁes
is also fesponsible for higher-harmonic fluctuatipg forces, then the rotor
geometty (in particular blade tip design) can perhaps be modified to
achieve some noise reduction.

(3) 1In the present investigation, the point force theory developed in
simpiified analytical form for broadband noise, has been tested for the
envelope of discrete tones. This is because no systematic measurements

of broadband noise directivities from open rotors are available at the
present time. It would be useful to confirm the validity of this theory
when measurements of broadb;nd noise become available. Since the prediction
of overall radiation directivity requires no description of the force
spectrum, a powerful check can be obtained initially by comparison with
measured overall sound pressure directivity from a fan geometry whose

spectrum is dominated by broadband noise.
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(4) Extension of the point force theory to point quadrupoles in order to
study the effects of distributed random blade forces has been rather pre-
liminary so far. The rotating point acoustic stresses analysis developed‘
in Chapter 9 should be extended to obtain the spectral results; this will
provide a simplified énalytical description of high-frequency rotational
‘'noise and also broadband noise, where the radiated sound wavelength is
relatively small compared with the blade dimensions.
It is expected that a wave number representation of the fluctuating

blade pressures might also prove suitable in this case.

(5) The theoretical models from (3) and (4) above can then be applied to
interpret the transient stall data from the experimental study proposed

at 1.5.V.R. [36]. |

(6) Rolls-Royce Ltd. (Bristol Engines Division) is at the present time
oonducting an experimental programme on jet noise measurements, where a
steady fiy-over of the model jet is simulated by rotating the jet on a
spinning rig. The rotating point volume velocity source and point
acoustic stress theories together with the proposed extensions mentioned
in (4) above can be used here to verify the gonclusipns listed in sections
10.1.4 and 10.1.6, as well as to interpret the measurements. The extra
effects introduced by circular motion can then be filtered out conveniently
to obtain valid linear-motion results.

(7) The results derived for rotating sound sources contain the usua}
transonic singularities, and are therefore valid at subsonic speeds only.
In order to apply them to supersonic cases, further work is required.

(8) The analysis developed for the acoustic radiation from rotating sound
sources should be applied to investigate noise from the circulation-
controlled rotor, which is proposed as a possible thrust producing device

. .l
in the future generation of VIOL aircraft - see references [42:]and [}3J.



Although the preliminary noise measurements Eﬁé] on a circulation-
controlled rotor at the National Gas Turbine Establishment suggest that
the radiation spectrum is dominated by broadband noise, there is not
enough evidence to establish whether it is the fluctuating blade forces,
or the injection of air through the blowing slots (volume-velocity sources),
that is the dominant noise source. The rotating point force theory (Chap-
ters 5 and 6) and the rotating volume-velocity source theory (Chapter 7),
combined with detailed noise measurements on different circglation-
controlled rotor geometries, should be uéed here to develop accurate
noise prediction methods for such rotors.

In addition, if the rotor is driven by jets at the blade tips, the
acoustic stress analysis, developed in Chapter 9, should also be used in

the investigation.

10.3 Final comment

The general conclusion on the subject of noise from rotating thrust
producing devices is that the research carried out so far has provided us
with the basic acoustic properties of the noise sources involved. In the
case of helicopter rotor noise, before the prediction methods developed for
rotational noise and broadband noise can be exploited fully for noise
reduction at early design stages, it is vital to improve our present
knowledge of (a) fluctuating blade forces, and ib) the mechanisms which
induce them. )

In most physical processes, the problems ariss due tc unsteadincss,
For rotating blades, it is the unste;dy flow through the rotor that causes
the problem of noise. 1In order to reduce the noise 1evgls generally, this

unsteadiness in the flow must be reduced. It is felt therefore that the

ma jor effort should now be spent on studying the characteristics of the
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flow through the rotating-blades systems. Once we identify the various
" factors which produce the unsteady flow, we can hopefully go on to look

for means of controlling this unsteadiness.
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APPENDIX 1 : COMPUTER PROGRAM FOR THE PREDICTION OF

ROTATIONAL NOISE

This appendix describes in detail the compgter program written to
compute harmonics of rotational noise as predicted Ey Schlegel, King and
Mull [i4] of Sikorsky Aircraft for fluctuating blade loddings. Sufficient
detail has been included that chér investigators with very little previous

knowledge of computer programming can make use of the program.

General comments:

The program can be used for predicting harmonics of rotational noise,
at any point iﬂ-the near-field or the far-field, due to asymmetric but
stationary loading over the rotor disc.

Altho;gh the blade span loading distribution can be varied with
azimuth, the chordwise differential-pressure distribution ié assumed to
be rectangular in shape at all azimuthal points.

The pfogram is written in the HARTRAN version of 1900 FORTRAN to
be used at the Atlas Computer Laboratory, Chilton.

It should be noted that no details about the theories involved are
givenThere, and only the final formulae useful for computation are quoted.
The appendix is written solely from the computational point of view. The
program was used to carry out an extensive computational study of rotat-

ional noise, details of which are summarized in Appendix II.

1. Quoted formulae and simplification

With reference to the rotor and field point geometry shown in Fig.

2.1, the r.m.s. value of mth harmonic of sound pressure, SPmB’ at

observation point (R, 6, o) due to a B-bladed rotor rotating at
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radians per second is given by

%
SPmB = —j:55—~ {' (Re)2 +-(Im)2.} (1)

where
. r'r 2 . .
- L(r,¢) maB mBQ cos U
Re J J —-——2 s1n(-—2r ) . ——co sin U D
o o

=

{sins cosg sin(y - o) + cosg sing }r dr dy (2) |

and
T 2nm
Im = J JL(r ¥ (mzaB) {@COSU-SiBU} x
. 0 o
{sinB'coso sin(y - 08) + cospg sing }r dr dy (3)
for which .
U=m3{92+2—+q; }, ' (4)
)
2 2 €
D = {R + r® - 2rRcoso cos(y - 6)} (5)
and g = 80 + Blcosw + Elsinw - y(r - ro) . (6)

L(r,y) is the blade loading at point (r,y) on the rotor disc.

L(r,y) = Lo(r) + Lscos sy +MS cos sy . (7)

Other symbouls are explained in the 1list of symbols.

~

2. Computation procedure:

The method used repeatedly evaluates the basic sound pressure
equations (1), (2) and (3). This includes a double integration. One

integration is around the rotor disc with the sample points (azimuth



v
angles) chosen at constant intervals. The other integration is along

the radius where sample radial stations are unevenly spaced.

A subroutine called SIMCOR is written to perform the integrations.
It uses standard trapezoidal rule for integration; details of this
method are described later on.
| In the program, the quantities included in the ‘integrands, namely
L(r,y), D, B and U are evaluated first and‘then the values of integrands
are calculated at each source point (r,y). Azimuthal integration at each
radial station is performed next and this is followed by radial integra-
tion to obtain Re, Im.

If L(r,¢) is in pounds per inch and R, r are in inches, then D is
in inches and ﬁhe two integrands are in pounds/inS. The sound pressure,
SPmB is in pounds/inz. The sound pressure level in decibels is then
obtained by using

SP

mB

SPL = 20 log —
10 -
2.9x 10

where the factor 2.9 x 10'9 arises by converting pounds/in2 into dynes/cm2

e and referencing SPm to 0.0002 dynes/cmz.

B
The flow diagram is shown in Fig. 1 and a copy of the printout is
produced in Fig. 2. The program details are mentioned in the following

sections.

3. Program nomenclature:

(In order of appearance) ~

Name of subroutine : SIMCOR




Name

V4]

V81

TITLE
V25
V251
PSI
PRAD
X1.O

XIM

RAD

NEND

NFP
RBN
OMG
CH

S0s
RO

BOl

Bl

B1ll

Meaning

blade loading L, pounds per inch

distance of radial station from centre of rotor disc, inches
real part of the integrand under the radial integration,
azimuthal integration completed

imaginary‘part of the integrand under the radial integration,
azimuthal integration completed

any desired title

integrand for Re, pounds/in3

integrand for Im, pounds/in3

value of ¢ in integration step, degreeé

value of { in radians

steady component Lo of blade loading, pounds/in

cosine component Ls of sth harmonic of blade loading, pounds/in

sine component Ms of sth harmonic of blade loading, pcunds/in

converts degrees into radians

end code

i

0O if last case

1 if cases to follow

number of field points

rotor blade number, B

rotor rotational Speéd, T.p.m.

blade chord width a, inches

speed of sound cy s feet/sécond

radial distance r  at which blade twist begins, inches
steady pitch angle Bo, degrees

cosine component of cyclic pitch 31, degrees

sine component of cyclic pitch E}, dégrees




"NHAR
NRAD
ANG

NP,NT

IT
CAPR
THETA

ALFA

JJ

CAPS
BETA
SBTA

CBTA

TEMP

PRTAR

PRTAI
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blade twist rate, degrees per inch
number of harmonics of SPL required, m
number of radial stations

integration interval Ay, degrees

_ number of azimuthal integration points

azimuth angle, radial station counter

azimuth station, blade loading harmonic counter
= L(r,y), pounds/in_

blade loading harmonic counter

blade loading harmonic, s

field point counter

field point distance R, feet

field point azimuth angle 6, degrees

field point elevation angle o, degrees

_harmonic counter

radial station counter
azimuthal station counter
observer-source separation D, inches

blade pitch angle B at source point (r,y)

sin B

cos B

= U -

harmonic number

area under the curve in integration
.2

Re, pounds/in

Im, pounds/in



PRTA r.m.s. sound pressure, poundslin2

»

SPL r.m.s. sound pressure level in decibels .

The following standard functions used in the program were available

in the computer:

. SINF | sine of an angle

COSF cosiné of an angle

ALOGF logarithm to the base e of a number
ABSF absolute value (modulus) of a number
SQRTF square root of a number

4. Input parameters:

The paremeters (and their units) which must be known to use the

program are listed below:

B . rotor blade nuﬁber

N _ rotor rotational speed, r.p.m.

a . blade chord, inches

R speed of sound, feet/second

r, rgdius at start of blade twist, inches

Bo steady pitch angle, degrees

81 cosine component of cyclic pitch, degrees

Elr sine component of cyclic pitch, degrees

Y blade twist rate, degrees per inch

R Observation point distance from rotor centre, feet
8 Observation point azimuth angle (Oo at tail, positive in

direction of rotatiorn), degrees

. . . o .,
o] Observation point elevation angle (O in rotor plane), degrees
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The following loading data is required for every radial station:

L " steady blade section loading, pounds/in

LS cosine coefficient of sth harmonic of blade section loading,
pounds/in

Ms sine_coefficient of sth harmonic of blade section loading, pounds/in.

5. Input format for data cards:

The input format, which is to be used for every case is described

below. The input format is shown on the coding form in Fig. 3, where

the numbers written above each card refer to sample examples.

Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.
Col.

Col.

Card 1: Title card

Col. 1: 1

Col. 2-72: any desired title
Card 2:  Basic constants

Col. 2: end code

= 0 if last case
=1 if case(s) to follow

3-4: number of field points (right adjusted)

*
512 : B
*
13-20 : N
*
21-28 : a
*
29-36 : ¢
o
%
37-44 : r_
.
45-52 : B "
o
"8
53-60 1
*
61-68 By



Card 3: Control constants

b Col. 1-2: number of harmonics of rotational noise
desired; 1 <m g 50 (right adjusted)
éol. 4 : number of radial stations; 4 ¢ N ¢ 8
Col. 5—12*: angular increment of integration; Ay > 0.5°

(Note 360/Ay = integer)

Card 4: Output controls

This facility enables one to obtain the intermediate output from

the program, if desired, by introducing an extra card punched as follows

wherever the intermediate output is desired.
IF (KEY1.EQ.99) PRINT (Desired output)
Thus output controls (KEYl, KEY2, KEY3)
= 00 if intermediate output not desired
=.99 if intermediate output desired
For example,
Col. 1-2: may control printout of input and radial
integratioh
Col. 3-4: may control printout of azimuthal integrations

Col. 5-6: may control printout of D, 8 , U.

Card 5: Radial stations

%
Radial blade stations in field of 9 , inches.

Card 6 onwards:

Loading data:

~

For each radial station,
Lo in Col. 1-8 on first card

%
Ll-L50 in fields of 8 on the next 5 cards

%
Ml—MSO in fields of 8 on the next 5 cards

3



Field point data:

For each field point, one card with three parameters as
follows,
' *
Col. 1-12 : R
*
Col. 13-24 : @

Col. 25-36": ¢

*
All fields specified must contain decimal points.

6. Notes regarding the input data format:

A case (card 2, col. 2) is a complete set of input data with a
number of harmonics, field points, etc. A case may contain several
field points but if any of the other input parameters is changed, a
new case is required. A new case would require a new_title, a new
set of-ﬁasic constants, etc.

The number of field points here (card 2, col. 3-4) must agree

with the number of cards describing the individual field points which are
the last set of input cards.

The number of rotational ﬁoise harmonics desired (card 3, col. 1-2)
partially determines the program running time.

The number of radial stations (card 3, col. 4) is arbitrary and

is dependent on the number of stations at which blade loading data is
available. Evenly spaced stations over the span of the blade are
desirable because the program interpolates between points. The last
station is usually at the blade t&p and the loading is zero at this
position.

The number of radial blade stations (card 5) must correspond to

that specified in card 3, col. 4.




The normal printout from the computer includes various rotor
parameters and basic constants field point co-ordinates, sound pressure
and sound pressure level. Any intermediate values in the arithmetic
could be included by using the control card (card 4) as mentioned in
section 5. Such intermediate output adds a gfeat deal of volume to

the output and is not ordinarily required.

7. Control cards and card sequence:

Every computer has a set of control cards which must be used at
particular stages of program and data cards, as specified by the manu-
facturer. Control cards and card sequence necessary to use the program
on the Atlas computer are shown in coded form in Fig. 4.

Therfirst six cards are control cards and they are described in

detail below.

Card 1:
The programmer's job number and name, together with the title of

the program are punched on this card.

Card 2:

A rough estimate of the expected number of lines of printout should
be given on this card. 500 lines of printout are sufficient for the
program printout and this number should be added to the expected number

of lines of numerical printout in order to obtain a complete estimate.

Card 3:
An estimate cf computing time in minutes or seconds should be

given on this card.

Card 4:
The amount of core store necessary for the program should be

specified here. A store of about 30 Blocks (where 1 Block = 512 words)



is quite adequate for this program.

Card 5:
The name of the compiler is specified on this card, a compiler
being the unit which compiles (checks) the program. Since the program

is written in HARTRAN, the name of the compiler is also HARTRAN,

Card 6:

This card suppresses the production of BAS DECK, which are a set
of binary cards used when the program is to be used over and over again.

The six control cards are followed by the "master program' cards.
A card identical to card 6 above is introduced next and it is followed
by '"subroutine' cards.

A card with *BENTER in columns 1-6 appears at the beginning of
"data'l cards.

The last card of the sequence, i.e. the card at the end of '"data"
cards, has a multi-punch 7/8 in column 1 and Z in column 80. This

represents end of data.

8. Computation time on ICT Atlas computer:

The total computation time consists of program compilation (checking)
time and data execution time.

Compilation time is about 6 seconds.

For any particular case, it is clear that the execution time is

proportional to the number of field points and the number of harmonics
of rotational noise desired. -

For any field-point harmonic, the execution time increases as the
number of radial stations increases and the execution time decreases as

the azimuthal integration interval, Ay , increases. The relation is
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approximately linear in both the cases. See section 9.3.

It was found that when Ay = Zo, it takes 6 seconds per harmonic
per field point when there are 8 radial stations.

The execution time for any other combination can then be easily
calculated. For example, if Ay = 0.5° and there are 6 radial stapions,

then the execution time per harmonic per field point is

6 x (%) X (6%3) = 18 seconds.

An increase in the number of blade loading harmonics (s) results
in a slight increase in the execution time. The table below may serve

as a useful guide in estimating the execution time.

s o number of execution time per
radial stations Ay harmonic per field point

0~ 10 - 8 2° 5 sec.

0~ 10° 8 0.5° 20 sec.

0+ 50 6 2° 5 sec.

0 » 50 8 2° 6 sec.
0 50 - 6 0.5° 20 sec.

0~ 100 6 0.5° 24 sec.

0 > 200 6 0.5° 28 sec.

9. Integration details:

9.1 Method of integration:

The integrand is evaluated at several points and the area under
the integrand curve is determined by the 'trapezoidal rule' approximation.
That is, the area is divided into several strips and each of these

strips is approximated by a trapezium, as shown in the figure below.
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) A
Integrand y
’ \/\ % h{
- Jg
A, An
//
/] >
Xo X, Xn Xngy %
- X
Area = j y(x) dx.
o]
‘ ¥ty
Since - An = ‘{ —IL—E—JItl (Xn+1 - Xn) s

n

which is the integral of y(x) with respect to x.

9.2 Importance of integration interval:

It is obvious that the accuracy of the method depends on keeping

the integration interval (xn.

T xn) very small. Thus the angular in-

crement of integration (AY) must be small enough to obtain a valid
solution.
It should be noted that the integrand is a function of mB. Thus

in order to define the integrand curve accurately for all values of m,



the integration interval must be reduced as the harmonic number m cf
sound pressure is increased.
The following figures may serve as a useful guide in choosing a

value for Ay when a spectrum is to be computed.

mB numbers of . - maximum tolerable
SPL required value of AY
80 2%
140 1°
320 0.5°

(refer Fig. 5)

For mB > 320 a smaller value of Ay (e.g. 0.250) should be used.
It is advisable to leave a safety margin whenever possible in order

to ensure a valid computation.

9.3 Relation between integration interval and computing time:

* Considering the amount of arithmetic involved in different sections
of the program, it can be seen that the majority of the arithmetic is

involved in the azimuthal and radial.integrations.

r

T 2T
i.e. jl j ( ) dr dy .
o 0

The computing time thus approximately depends upon the number of times
the integrand is evaluated; which in turn depends directly upon the number
of radial stations and inversely upon the integration interval Ay .,

Thus the computing time approximately increases ac the number of

radial stations increases and it approximately decreases as the integration

interval increases.
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AYLAS FORTRAN 06705768 VERSION &
SOURCE ROUTINE L1STINS 21,21.%7 COUNTERS 1%
. LASEL FIELD

DIMENSION P(£0),5(50),2(721,%),R(8),vB¢5),v91(8),TITLE(12),

1 V2507213,V251(721),PSI({721).PRADCT24),XLO(8), XL M8, %0),XKM(8,50)
READ FLT, COND. PARAMETERS ANUD BLADE SECTION LOADINGs PRINT SAME.
RAD x1,/87,2957795
READ 2,Y1TLE

2 FORMAT(12A6)

READ 3,NEND,NFP, RBNJDHQ.C" §35,R0, 308, 91.311.6

READ S.NuAR.NRAD»ANG

READ 33,KEY1,KEY2,XEY3

FORMAT (312)

FORMAT (212,9F8,2)

NPe{300,/ANG)+1,001

NT=NP=1

PSt{1)=0,

PRAD(2)=0,

DO 4 1=2,NP

PSI(1)aPSI(1-1)+ANG

PRADLJ)apSI(1)«RAD

READ 5,(R{1),I1=1,NRAD)

FORMAT (u£9,2)

DO 6 1=1,NRAD

READ 7,XLOCID» (XLMUL,J)0J21,50) (XUM(), ), 081,800

FORMAT (FBs2/,(10F8,2)) -

DO 77 1t£1,NRAD .

D0 77 Jai.NP .

0lJ,12axt 04 N

DO 77 K=1,50 \

XK

00Jr122QUJ, LI*XLMET,KISCOSF{X@PRADE I )+ XHHE T, K) @ SINFUXaPRAD( J))*

PRINT 2,TITLE

PRINT 8,801,B81,B11,CH,0MG,3BY,RO, (1), 181, NRAD)

FORMAT (4HJBO1,E15,.6,44 B1,515,.6,54 B11,315.6,7H CHORD,E15.6,
1 7% OMEGAsE15,6:8H BLADES,¥7,0,/7/7254 RADIUS AT START or TWiST,
2 E15,0,/7//30X,21HBLADE SECTION LOADING,///7R RADIUS,10X,1M1,14X,
3 1H2,18X,1H3, 14X, 1K, 24X, 1450 14X M6, 24X, 147, 24X 2HB/8H AZIMUTH,
4 2x,8E15,6,//)

PRINT 2,TITLE

OMBES3,14159265e0MG/ 30,

$05c12,250S )

801=5014RAD ) . -

BisBi*RAD |

B11=H11#RAD

GEG*RAD

" BEGIN MAJOR LOOP ON FIELD POINTS

i1
12

%9

990

FIG. 2.

DG 999 11=3,NFP

READ 131,CAPRsTHETA»ALFA

FORMAT (3F12,4?

PRINT 12, CAPR,THETA,ALFA

FORMAT (12HOFPJELD POINT,10%, SHRADIUS EL5,6,5¥» THAZIMUTH, E15,6.5X,
1 SHELEVATION,E15.6,/20%,BHHARNINIC,10X, L4HSOUND PRESSURE,15X,
2 3IMSPL)Y

CAPR=12,«CAPR

ALFAzRADeALFA . .
THETARRAD®THETA

DO 999 Mri,NHAR

‘pC 990 Kx=1,NRAD

DO 99 Jusi,NT
CAPSESORTF(CAPRACAPRSR(KK)IaR(KK}n2,oCAPRaR(KK)2COSF(ALFA)®
1 COSF(PRAD(JJ}=THETA))
RETABB01-G*(RIKKI=RO)+316COSF(PRADIIJ)IDeBLLESINFLPRAD(IY))
SETA®SINF(BETA)

CBYA=COSF(BETA)

veM

VEVe (RBNsOMGOCAPS/S0S*,56CHARBN/RIKKI*RINSPRADLIIN)

TEMPaM
V25(JJ)s(A(JJsKKI@SINF(, 58 TEMPORANSCH/R(KK) ) s (COSF(V)/CAPS+(TENFS
1 RBN®OMG/SOS)®SINF(V))e(SBTABCISFIALFA) 8SINFIPRADCJJISTHETA)SINF
2 (ALFA)SCBYA)YSRIKK))/{TEMP2C4PS#CAPS)

V251€JJI=(Q{JJ,KKISSINF( 5aTEMPORBNGLCH/RIKK))S{CNSF(V)STEMPAREN
1 OMG/S0S~SINFC(V)/CAPS)s(EBTARCOSF(ALPA) eSINFIPRAD(JJISTHETA) S
2 SINFUALFA)@CBTA)#R(KK))/({TEYP*CAPSaCAPS)

CONTINUE . .
V25(NPYav25(1) : R
V251 (NPIEV251(1)

CALL SIMCOR (NP/PRAD:V25,AR}

VE(KK) &AR

CALL SIMCOR (NP,PRAD,V251:4aR)

vB1(KK)=4AR

CONTINUE

CALL SIMBOR (NRAD,RsVBIPRTAR}

CALL SImMCOR (NRAD,R,VB1,PRTAL)
PRYA™(,035822450CAPR/CH)sSORTF(PRTARSe2ePRTAI#42)
SPL220,40,43532AL0GF(ASSF(PRTA/2,9E=9 1)

PRINT 997,M,PRTA,SPL

FORMAT (25X,12,5X,2E20.8}

CONTINUE

CALL OUTBRK(D)

1F (NEND) 9999, 9999,11;

G0 TO EXIT

END .

ATLAS FORTRAN 06708768 VERg:ION 6
SOURCE ROUTINE LISTING 21.22.04 QOUNYERR 576
LABEL FPIELD

SUBROUTIHE SIHCOR (hensieR?

DIMENSION A(721)sX(721)

Red,0 ~

DO 159 MMo2,N

ROR*(XIMMSL)OX(MM) Y@L AIMM) «AIMML) ) /2

RETURN

END

COMPUTER PROGRAM ( HARTRAN)
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UNIVERSITY of SOUTHAMPTON. -ZF-ape-/ Card- (DELETE AS REQURED)
Computation Laboratory -A-lge—lr- Fortran Coding Form .
procrammer: H. K. TANNA. [oerarienr: T S V. R lconrkacs: 9634 /32 | rroeLou.
DATE: PAGE: OF
[Siatenent
nsmber . . Identification
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1N I
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"E1G6. 3. INPUT FORMAT FOR DATA CARDS
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Iape-/ Card.

(DELETE AS REQUIRED)
Alget | Fortran Coding Form .

proorAMMER: . K. TANNA.

CONTRACT: 9634 /32,

&

43

Tdentitication
A0

>

Zz |x

ka

A [~

2 IS N IO TO A
~ = im [T IC
7

= {» |l

O »|r ||

o [» ot

=~

To-

FIG.4. CONTROL CARDS AND CARD SEQUENCE
ICT ATLAS COMPUTER
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APPENDIX II : PRELIMINARY COMPUTATIONAL STUDY OF

ROTATIONAL NOISE - SUMMARY

The computation covers the properties of blade loading harmonic
radiation for a wide range of rotor paraﬁeters, including near field,
distributed loading both chord and span, and for tip speed in excess of
Mach one. The investigation then considers composite blade loading
radiation, both simple and compound. Finally the radiation is computed
for an ensemble of blade loading harmonics corresponding to well-defined
blade loading azimuth functions, similar to those produced by blade-
tip vortex and rotor-stator interactions. The study although designed
for a particﬁlar rotor (helicopter), has sufficient scope to cover
geometries of other rotor configurations.

The investigacion has been designed to establish the properties
of rotational noise over as wide a range of parameters as computing
time would allow. Bearing in mind that the typical computing time on
a fast computer is of the order of six seconds per harmonic per field
point, then each computed case must be an attempt to achieve maximum

information for minimum computing time.

Standard case:

As a consequence of the number of parameters involved, a standard
case has been adopted such that the sound pressure is calculated for
a standard set of parameter (those of a typical helicopter rotor) and
then deviations in radiation compited for a range of parameter changes
taken one at a time; it is of course computationally prohibitive to

cover all combinations of rotor variables. However, some parameter



reduction is possible; for instance, the sound pressure harmonics {(m)
are plotted in terms of the mB parameter, as m and B (blade number)
are indistinguishable mathematically, even for distributive loading -
e.g. if B=4 andm=1o0r B=1and m = 4 the S.P.L. is the same.

The spectrum envelope, both in shape and level is independent of the
number §f blades providing the total arithmetic blade loading is the
same. Only spectrum levels of mB numbers corresponding to multiples
of B have physical significance. Similarly the rotor frequency (N)
and the effective radius loading point (re) can be plotted in the form
of an effectivelMach number parameter (Me). The values of wvarious

parameters for the standard case are given in Fig. 6.

Single blade loading harmonics:

For the study of blade loading harmonic properties, the total

lift LOT on the rotor is kept constant at 12,000 pounds irrespective

of the number of blades, by adjusting the lift per blade accordingly.
The total arithmetic blade loading harmonic amplitude LST is also
maintained at 12,000 pounds, irrespective of the blade loading harmonic
S or blade number B.

Four of the parameters listed in the standérd case are linear
parameters, i.e. the S.P.L. is directly related tc their value. The

first two, total 1ift L. and blade loading harmonic coefficient g,

OoT

are directly proportional to the sound pressure and the remaining two,

rotor radius ro (providing the bladc aspect ratio is constant) and far

-

field observer distance R are inversely proportional to the sound

pressure. Obviously there is no need to compute a range of these values.

For example, to correct for a rotor having half the total thrust

(- 6 dB), a blade loading harmonic coefficient of a tenth (- 20 dB),

. .] -
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a rotor radius of one-half having the same tip speed (+ 6 dB) and'an
observer a third of the distance (+ 10 dB), then a total of 10 dB will
have to be subtracted from the general spectrum level. The remaining
parameters are not simple multipliers, and they affect the spectrum
shape as well as the general level; these are the blade force angle

B , effective tip Mach number Me, span distribution, and chord width
a. Therefore the effects of the above parameters are computed over

a limited range of practical . interest.

Further, the scund pressure spectrum is a function of observer
elevation angle for single blade loading harmonic radiations and
depends on both elevation and azimuth angles for composite blade loading
radiations. It was therefore decided to define all output at one fixed
point for mB spectra; i.e., azimuth angle 6 = 0° (from tail) and
elevation angle 0 = - 30° (below rotor plane). Polar plots corresponding to
the polar elevation and polar plan were then positioned so as to contain
the above co-ordinates. The observer distance R in each case is 300
feet from the centre of the rotor (see Fig. 7).

In the case of near field calculatiéns, where the S.P.L. is not
directly related to the observer distance, the additional effects of mB
number, span distribution, rotor speed and rotor radius are also compu-
ted. The various span distributions used in the investigation are
defined in Fig. 8, and are calculated for a total lift of 3000 pounds

per blade.

-

Continuous blade loading spectra:

The additional parameters for the flat blade loading spectrum
study are defined as a continuous spectrum of loading harmonics from

S =1 200 with zero blade loading harmonic fall-off (as = 1 for all.

S values) and zero blade loading harmonic phase ¢S = 0%, TFor compu-
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tational convenience, the amplitude LS of loading harmonics is kept
constant at 3000 pounds per blade irrespective of the blade number used.
This means that to correct for a standard total arithmetic blade loading

amplitude L. of 12,000 pounds, 20 log (B/4) will have to be subtracted

ST
from the computed level; e.g. if the computational blade number B = 12
then the correction is - 10 dB.

The 6 dB per octave blade loading spectrum is defined as a continuous
bladé loading spectrum with ag = 0.1 for S =1, and then~progressive

values of a_ reducing at the rate of 6 dB per octave in S.

S

Blade loading azimuth functions:

The blade loading azimuth functions used in the study are illustrated
in Fig. 9. The standard blade loading function is a single rectangular
excursion per blade revoiution E = 1, having a load solidity p = 1%, or an
excursion width W of 1% of the effective disc solidity; i.e. p = W/2nre.
The height of the function, or load change ‘AL, is 50 pounds per inch or
1800 pounds per blade, which when expressed as a percentage of the standara
steady load Qf 3000 pounds per blade,,is 60%. A load change AL of 1800
pounds per blade corresponds to a maximum blade loading amplitude LS max
(at low S numbers for rectangular and half cosine functions and at medium
S numbers for full sine function) of 1 pound per inch or 36 pounds per
blade. ‘

For computing purposes, this particular value of LS max = 36 pounds
per blade is kept constant throughout the azimuth blade loading study.
Therefore if the number of function excursions E, or the load solidity
P is fof example doubled, then the load change is effectively halved, and

6 dB would have to be added to the computed spectrum level to correct for




a standard load change of 1800 pounds per blade.

. As in the case for the flat Hade loading spectrum study, the total
blade loading is that of one blade times the blade number used in the
computation. Therefore, if a radiation spectrum is required for a blade
number other than that used in the computation, then a subtraction of
20 log (B/Br) dB will have to be made from the general spectrum level,
where B is the computational blade number and Br is the required blade
number.

Two further parameters which affect the accuracy of computed S.P.L.
are the azimuth and span integration intervals. These parameters are
discussed fully in Appendix I, It is sufficient to say here that the
accuracy of the computation is a function of the integration intervals
used, and for economic reasons, these intervals were adjusted to give a
reasonable accuracy for a realistic computing time.

Detailed descriptions of the computed cases and the computed output

(in graphical form) are given in I.S.V.R. Technical Report No. 15 E7J.
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B.LH. PROPERTIES

total lift Loy = 12000lbs=Blg
B.L.H. coefficient xg= 1=1Ls
. ' | e _
| sth B.L.H. aﬁnplitude Ls = 'Var‘iable.(fn of B)
total arithmetic B.L.H. amplitude Lst = 12000 bs
bl"ade--_forc-e" angle - B = 6 2 |
effective tip  Mach NO- Mg = 0.5
effective tip radius  re = 24 ft
tip radius = 30ft
rotational frequency N = 3:-7Hz
span distribution . Dist =- Rectangutar 10 %/
| chord 'w-fdth a = 16in |

FLAT BLADE LOADING SPECTRUM
' . as B.L.H.properties

B-L.H. spectrum range S = 1—200
B.L.H. coefficient xg =1

~B.L.H. phase ¢s = 07

sthg L. H. amplitude Ls = 3000 lbs/blade

- or 833 1bs/in
Lsr = Variable (fn of B)

B_.L.AZIMUTH FUNCTIONS
_ as B.L.H.properties 4
Type of function fn ‘= Rectangular
load solidity P=1cs |
E

Number of excursions =1

~

L Max = 1tb/in or36lbs/blade
load change .éL_L_ = 60°/0 or AL =50 lbs/in
- | .

Fig. &. The stahdard cases




" "Polar plan locus

-231-

. +90

- " e —
——

Povlvar ‘elevation locus -

=90

gefinition

STD. case
O =-30
e=0°

R = 300

around rotor .




4' $ . Lo = 3000 tbs/in

Impulsive ' : L
0.3% ' | et
e | Lo= 833 Ibs/in
|
_ _ |
STD. case 1 :
10% ~ | k-3
l
l
|
| :
Constant ? L .
=8.33
100% : o .8 33 tbs/in
|
Triangular : Lo = 1667 lbs/in
i
l
|
|
|
Zerc lift } 4 Lo = 8-33 Ibs/in
‘ i ‘l» Lo=8-33 lbs/in
:]5. |

Fig. 8. Span distribution definitions .




——

fn = Rectangular fn = Half cosine

<]

jn =Full sine
Type of function E=1, /-’=1°/.,

P =1l o c"/>=10°/° - /0 =50°

Load solidity fn =rect, E=1

m
LH

E=1  E=4 16

Number of excursioﬁs.fn=rect, /3=1°/o

Fig. 9. B.L. Azimuth functions
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APPENDIX III : COMPUTER PROGRAM A

Radiation from a single blade loading harmonic with arbitrary chordwise

loading profile (point span loading):

Equations to be computed:

The peak value of mth harmonic of sound pressure in the far field is

given by
- _ _N { , sinB u- }
SPmBg = 2Rco cosf8 sinoc - Me B | mB Ju_(mBMecoso) X

2re n mw B mB(a -al) 2

p=1 pg ¢ r
ES
f : mw_B mB(ap-a1) 2| %
+ ( «a (r ) . L (r) . sin(—~E—) sin{ —————, )
p=1 P8 e~ poe’ e Te (1)
where o= (mB - g) (1la)
L (re)
a (r )= p&_¢ (1b)
pe - € L' (r)
po e
= L -
and wp 2(ap+1 ap_l) . (1c)
Method:
The sound pressure equation (1) can be written as
A
SPmBg =K . Yu_ e X (2)
where K = N i §iﬂ§'il A : (3)
y R cosf sing -~ M B .
) e
Yu = mB Ju (mBMecosﬁ) , (directivity term) (4)



' Zre n _ mw_B mB(a -al) 2
and X = — () a (re) . L'o(re) . sin(-EE~) cos ————E———— )
: p=1 P8 P - “Te e
X
n mw B . mB(a -al) 2 |*
+ () -a (r)) . L' (r) . sin(—=E-) sin{:———IL——* )
p=1 pg e po e 2re r,

(spectrum function). (5)

The three terms are evaluated separately in decibels. In order to

compute the Bessel functions, they are represented in the integral form
y o 1 .

J  (x) = po cos(y_6 -~ x sing) do (6)

U

(o]

and the integrals are evalﬁated in the subroutine which usesg trapezoidal
rule for integration; see Appendix I for details.

If R, rp are in feeﬁ and the lodding is in pounds/inch, then K
term is in ft-2 and x term is in pounds. Tﬁe root-mean-square sound

pressure level is then given by
SPL (dB) r.m.s. = 124.6 + K(dB) + Yu (dB) +x (dB) . (7

The flow diagram is shown in Fig. 10.

Input parameters required:

The parameters (and their units) required to use the program are
n  number of blade chord stations

a blade chord width, inches

g blade loading harmonic number

m  number of harmonics of SPL required

B rotor blade number

rotor tip radius, feet

N  rotor frequency, Hz.




blade force (pitch) angle, degrees
distances of blade chord stations from the leading edge, inches
field point distance from rotor centre, feet

field point elevation angle, degrees

Fof each blade chord section p, the following loading data per blade

is required:

Lég peak amplitude of gth blade loading harmonic, pounds/inch

Léo steady blade chord section loading, pounds/inch.

The format for input data is shown in Fig. 11 and the computer program

is presented in Fig. 12.

Computer core store: 18 Blocks (approximately 9,000 words).

Computation time on ICT Atlas Computer:

Compilation time = 4 seconds.

Execution time = 0.5 second per harmonic per field-point when A6 = 0.2°.
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Y

N, rps 8> 8, a, n, B, m, ap)

Calculate y
in subroutine

[Calculate

FIG.

1

<

i
Read LY , L? 4)
P& po

Y

Calculate d
P8

N
el

DO for

Calculate Mg l

Y

all chord sections

\

)y
I
( Read R, o D

fCalculate ﬁ !

3
[Calculate K]
Y

K in dB l

<

| Calculate x |

Calculate Yﬁ

A4

P

Y in dB

Y

Calculate J

\/
x in dB’

Y

SPL (dB) rms |

A

DO for all different cases

DO fér all harmonics
DO for all field points

.Y

(VLast Case 17 )

Y

¥ Yes

O END

No

10. Flow Diagram for Program— A.
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Line ATLAS  FYIT3A 11706749 VERSION 7
NI ET SIRCE DT INE LIeTEYNS 34,43,06 COINTESS L2
LAJEL FIELD
UIPFFRSIOH TITLF(A2) ,AN0883(301),AMA 901, F Ctvsr),
3 DLLODISNY,ALOE (SN, ALSRALSL), 3452}
HEAL MACH
EnTEGRP O, PRN,HARN
HALZL,0/57,0057 9%
READ €, TITF
rORRATLL2AG)
PRIMT 2, TITLF
HEAD 3 )L FLLELCHSEL 15, R, CHS, RADT IS, 22D, 38T
FORLATLAL2,458,2)
PRIFT A, NCRSED, el 1,028, P2 TUS,C4330,32TA
& FCHPATE2AMENG OF 08 RD SECTINS, F7,3,4X 2H3,F7.7,4X,9H3LA0ES,FT7,0,
1 AKX, YRPOTOE CPS, 15,0, //6H3A01U8,E43,6,4(, 340K 13Y,EL9,6,4X%,
7 ARPETALELL,0)
HERD Byt MAR MF 0 UL TA
D EORPAT(212,F6.0)
npPE180, B/DELTA+L LD
NTEhPol
aMDEG(L)xD
atpautLd)zD
o 6 1e2.0p
AHBEG(I)eALDES(L=1)+DE_TA
ARRADCTYZAI DEG (] YerAD
CUNTINUE
WEAD 28, (CH (L), (i), NSRSETe?)
PONKATCAGF 348D
JU LU Jaril, i CHSFD
READ 7, DCLaDUU), GLos )
PURPATE2F12,4)
ALPHAL IS LG CUT./70CLDI0U)
COrTINRUE
MALHE{ (CPSeRADT15) 7222, 8)
PEINT B, ACH
FOMMATI2ZHORFFFCTIVE vACH vU4RIR,E13,0)
BETARHEYAoRAD
QU $Y9 ll=1,nFp
WELD 12,R.STIGMA
FORMAT(2F12,4)
PRILT L3,R,S16"A"
8 FOREATUAZHCFIEL D PEIOY, LOX,0<4D13TRYSZ,215,%,4X, LINELEVATION ANGLE,
1 E1540, /78X, 01 (NE ) BY, SHIARRINIZ, LEXs LGHIAMMA (D3),12X,
2 7rxl (DHY,X1X,110SPL (D3)2KR3)
SIGFASS]GMASRAD
6 9%y 1ai,bLeAR
HANF BN
nGbERLHARMaRBI) <6
EVALUATIGN OF 1 Tei+’
COMBLCPS/(L2a0 o) ) (COSFUIETAIRSTIF(STIGHA ) =C(SINFCRETA) OUUDE)
L /UFACHeALLRER))) - . o : : :
t (w) 77,77,88
77 CONDOR6,000(20,600,43X430aL DGT(AIRE(SHDD)
GO YO b6
Rb COLDURC2L,080.48480ALNSFIARET(20)))
EVALGATION BF Ca-ta TEX
66 LzNAHPASRENEHACHaLOGH{SIGN A)
G 9y auei,HY
FUNCLUL)ECOSE CONLDF @ANAD(JJ) I~ (X ST IFLANRAD(DIII))
COMTELGE
FUNCENPISFUIICIL)
CALL BESSEL(LP AL PASF IR, Y)
GARARHARM ERTHeY Y, 382
BAMAUB22U 0@lis 43430ALNSF (ARST(3ANA)Y
EVALUATION OF XI Tfam
XIRETUCLOD(LI®A| PHALL ) @SINT ((HARM® I3 19 (3H(3)eCui 1))/
1 (SbesleRADINSY)
56 ¥iirso. 6
57 DG 1B S 2, 0nSEE
) XIWESXIRESTCLOTEI)I ®ALPJA(II #3]F ((4A24% 3308 (THEJ+2) 210 J) )Y/
1 (384a0#RADIIS))ISUNSFL(HeR~@ D18 (24 10L)=G4(2)) ) /(Y ,602ADJUSI)
Sy XPIFEXIIMalCLOD () @ALPJAL DI OSTUF( (A ABR IS (CHIJo2) oCHIUI DY/
1 (SBeALePALTUS)) OS] IF((HeRueIB o{S4( 1+1)=CH4(2)))/(9,568RADIUS))
69 10 CONTILLE
63 X[RUL1D 26 ARTUSY/F ARY)#SQ2TT(XIRZne2ex] [N e2)
[-43 KIURIZE (G@0, 4343 AL HGF (ASSELX]))
68 SPLELES ,02CONBReGAYANRLINR
o4 PRINT 20,C0nba,11aG4 1A03, 108,53
65 FORMATIERD,8,6%,12,0X,2:260,8)
LY3 CorTinue
67 IF (NEaD) ©099,94490,111
6o G fO EXIT
.ty F
Ling : - ATLAS FO1TRAN 13/06/70 VERSION ?
VuMBER SUURCE RMUTINZ LISTIMG 14.46,07 COUNTER™ 4t
. LAHEL FLELD

-

L LBNONVION

Pl

SUSRUOUTIHF DPF LUtie Ay Z+AREA)

DIMENSICH A{S820),209%1)

ARFABY .0

DO LU0 ttheg, N ~
AREABAREAS(Z(MR=1)s (M) )e(AM DAl 4=L)) /2
COMTINUE

HETURK

Enu

ANOWVDL GV

FIG.12, COMPUTER PROGRAM A,




APPENDIX IV : COMPUTER PROGRAM B

- Radiation from the point span loading model with fluctuating actual chord-

wise loading profile:

Equations to be computed:

The r.m.s. value of mth harmonic of sound pressure in the far field
is given by

BNr } .
SPB=———9—— {Re2+1m2} (1)
m /2_ Tcho

[N

2m

~

where Re = {sinB cosO0 sin(y - 8) + sino cosB } X

p—

n mw_B
_pL LiCrgs¥) .+ sin 2§e> L osin V () fdb (1a)

2w
~ &
and Im = {sinB coso sin(y - 8) + sino cosB }x
' o
T n mw B
pzl Ly (r¥) - sin(—i—z—;) . cos V () fdy (1b)

and where

r
e

(a -ay 'L
Vp(xp) =mB{Me coso cos{® - ¢) - Y =~ B j R (1c)

Li(rg¥) = Lt (r,) + zl{LI')g(re) cos gh + It (r,) sin gy } (1d)

) . (1le)

fo
(N
~
o3

'
o]

w

1f the loading data (L' , L' , L' ) is in pounds/inch and R is in feet,
po P8 Pg

2

then Re, Im are given in pounds/inch and SPm is obtained in pounds/ft“,

B
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The root-mean-square SPL is then given by
SPL (dB) r.m.s. = 127.6 % 20 10810 (SPmB). (2)
The flow diagram is shown in Fig. 13.

Input parameters required:

The parameters (and their units)required to use the program are

n number of blade chord sections

a blade chord width, inches
m number of harmonics of SPL required
B rotor blade number

Ty rotor tip radius, feet

B blade force (pitch) angle, degrees

ap distances of biade chord stations from the leading edge, inches
R field poirt distance from rotor centre, feet

6  field point azimuth angle, degrees

c field point elevation angle, degrees

For each blade chord section p, the following loading data per blade
is required:
Léo steady blade chord section loading, pounds/inch
Lég cosine component (peak) of gth harmonic of blade chord section
loading, pounds/inch
i;g sine component (peak) of gth harmonic of blade chord section

loading, pounds/inch.,

-

The format for input data is shown in Fig. 14 and the computer program

is presented in Fig. 15.




Computer core store:

Computation time on

[\
4
[
.

50 Blocks (approximately 26,000 words).

ICT Atlas Computer:

Compilation time =

Execution time =

5 seconds.
8 seconds per harmonic per field-point when

n=5 A =0.5, g=0 +50.
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(—7gead N, Ers B, a, ap, B, m “)

Y

Read steady value (L;o) and harmonics (L

section

tosL! )
P8 P8
of blade chord section loading for every chord

e
N

blade chord section at source point (re,w)

Calculate resultant loading Lé(re,w) for every

DO for all

Sey

e
>

Calculate Me

azimuthal stations

(_Read field point data R, 6, 0 )

A

A

€

Calculate V_(¢) for every blade chord
P section

Y

Evaluate integrands for real and
imaginary parts of SPmB

e

DO for_all

>

<:Use subroutine INTGRL

for azimuthal integrations

Calculate SP
mB

v
l Calculate SPL (dB) rms

azimutnal stations

DO for all harmonics

~

Y

N

DO for all field points

(' Last Case 7 )

Y

DO for all different cases

. Yyes
O END

FIG. 13. Flow Diagram for Program B.

No
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ATLAS  #O3F34: 11/08/790 YERSIOY 7

SIUICE RDUTINE LISTINA 14,48,%3 COUNTERS
LAHEL FIELD
DIMENSION TITLECLZ) ,ANIESE221),AMD(722),23L0D(10),0L73D(29,%0),
3 SLOYCLO,%0),RENICL0,721),2M453(10,728),5013E(721 )08 HE4(721),
2 FURCAS(720),FnCInt7213,C4012)
REAL hACH
INTEGER GomRtaHARN 1)
RAURY0/57,2957793
A1) READ 2,TITLE
¢ FORPAT(12A6)
PRILT 2,T1TLE
READ 3,1:END, NCHSEU  HEN,CPS,RADLJS, S4ORD,AETA
S FORKAT(312,4r8,2)
PRILT 4,1.CHSEC,REN, CPS,RADIUS, 243D, 3ETA
a4 FORMATI21HOME €F U IRD SECTIONSIF 7,0, 4%, 6H3LADES,FTo3,4X,
1 GHEOTOR CFPS EL1546,//64RADIUS2Z25,5,4Xe54C4)0D,ELD+8,4X,4HBETA,
2 E35.0)
READ 5,NHARNFP,DELTA
FORMAT(212,F842)
NP3300,0/DELTASL,OD
NTShPe)
ANLEG(1) &0
ANRALtLYa0
Do &5 Ir2,NP
AHDEGLEY=ARDEGII=2)«DE_TA
ANRADC L) =ALDEGUE)®RAD
CONTIMIE
READ 18, (CHINN) Jihmdl NIHSES®2)
18 FORMATI12F0,2)
Do 1t Jsl,nCHSFC
Re AL 7,00L00E0) W tELOD IS, L) o Lal, 300, (5LD3(J. 0,130,300
FORMATIFB,2/,040F8.2))
CALCULATION OF PESULTANY LOADING AT EVERY SOURCE POINY
Do 24 [=1,P
DO 22 Jumi,t CHSEC
RLEDCY, H)SPCLOTCU)
Lo 12 rKel,36
GaK
RLODAU, 1I8RLCECI 13 +CLIDCI,KI#ZISF(50ANRADLI 2eSL0D(I, )
L SIKF(GeANRADCE))
12 CONTINUE
MALHZ ((CPSeRADTUS) /222,00
PRINT 13,MACH
18 FORRAT(Z22HCFFFERCTIVE YACH MUCBZER,EL3.6)
CETASULETASRAD
HEGIN MAJOR LOORP Ok FIZLD P0INTS
DO 999 11si,HFP
KEAD 14,R,THETA,SIGHA
14 FORIAT(IFL2,4)
PRINT 15,R, THETA,SIGMA .
55 FORMAT(LZROFIELD POINT,10X,B4D1STANIE,E154505X,74A2INUTH,ELS 6,
1 5%, YHELEVATION,E15.6,/7/720Xs IH4ARMINIC 43X L4HSOIND PRESSURE 31X,
2 1IKSPL (DUIRFS)
THETASTHEYA®RAD
S1GHAISIGHASRAD
DO 999 Hx1,HHAR
Dy 2U KKai,ny
o 22 JJsi,IICHSEC
HARHEM
08 gy
PHASE(JJ, KK ) 2HARKORENE (HACH®S0SF (ST34A}eCOSF (CANRAD (KX ) JaAMIAD(XK )
3 LECHUJJ*L)eCH(Z2) ) /(9. 5eRAD]ISH))
2% CONTINGE
SUFPE(AK)I®RLOD (1 KK ) RCISF(2HAS2(1,4K))
1 @SINF((HARMERBI®(CHIZ)CH(1)) )/ (33,40%AD1YS))
SUMIMIKKIBRLODEL KK ®GIF (ORASE(1, <4 )
1 SSINF((MARMARLHO(CH(IISZH(L) I /(33,4704D1U8))
00 30 rim2,t CHSED
SUBRE (KK ) RSUMRE (LK) «RLID (M, KC) #COSFIPHASEL Y, KK))
3 eSTINFU(HARN2REO(CH(1e2)aH(N) )Y/ (33, 40eRADIUSY)
SURIMLAK) SUMIN(RK) $RLID (M, XCIOSINT(DUASE( N, KK
1 SSINFC(HARNOREN®(Cr(Ne2)wZHIN) )}/ (33,409RADIUS))
30 COMTINUE
FUNCRE(KKIaSUPPEIRK) @ (20SF (SIGHA)@STYF(IETAISSINTP(ANRADIKK) e THETA)
1 +COSF(BETAIGSTHF(SIG 1A))
FUMCIF (KK I3SUMTI(KE)I#{30SF (STOMAIRSINF(IFTA) @SINF (ANRAD(XK) e THETA)
1 +COSFUHETA)ISSIHF(S]GHA))
20 CONTINUE
FUMCRELLIP YaFUNCRE(L)
FUrCIE (P YaFUNC ML)
CALL TUTARLEMP, ANRA S F JNCRE, 3PRE)
CALL 1MTCRL(MP,ADKRAD FINCTH, 5P 4)
SPY(LCPSORNORADIUSI/(318,002))e3QITF(SORESRZESPINGSR)
SPLAalZ7,06%720,000, 4343041067 (AB3FLISD))
PRINY 40,H,SP,SPL
40 FORKAT(25X,12,5Xs2620.8)_
Y99 CUATINJE
IF (NEYD) 9999,99499,111
“Y9Y 4o TO EXIT
Eyn

v

o

I

~c

ATLAS  FD3P3an ‘ TTarsgeszg T T veRsiOn 7
339

SOURCE WITINT LISTENS 16,69,07 COUNYERS
LABEL TIELD

SUBROUTIYE IRTORL(K,A, 20 ARZA) he
DInENSION ACP22),2(721)
AREARG 0
2O vy PHB2,N
FHEATAREAS(Z(MMeL) e Z{M4) IO CAINY) oA 1)1/
CONTEHUE
RETyHY
EnD

30

FIG.15. COMPUTER PROGRAM B,

13
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APPENDIX V : COMPUTER PROGRAM C

Radiation from the general distributive loading model with fluctuating

chordwise and spanwise loading profiles:

Equations to be computed:

The. r.m.s. value of mth harmonic of sound pressure is given by

' 1
2
m 2V2 1“m
where
rT 2T
J —15 sinBcoso sin(y - 8) + sino cosB } X
S D
n mw B cos U mBS
Z A (r,v) . sin(-——E—) . ( Py sin U ) rdy dr
- P . 2r D [ p
p=1 L o
(1a)
and
Tp 2w .
Im = j J —12~ { sinB coso sin(Y ~ 8) + sino cosB } X
o ) D
n mwa nBO sin U
( { -
2 Ap\r,lb) . sin( 7 ) (c cos Up ——BD ) rd'll) dr
Lp=l (o)
(1b)
and where
(a_-a,) )
U (r,\p)=m]3{g-12 +xp+—-£———1— } , (1lc)
P C0 r
A (xr,p) = (r) + 2 A (r) cos gy + A__(xr) sin gV (14)
B(r,y) = B + B, cosy + B, siny - v(r-r ) (le)
%
{R + r - 2rR cos0 cos{® - w)} 3 (1£)
p+1 - ap—l) * (1g)
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If the differential-pressure data (Apo , Apg , Apg) is in pounds/

R s A . 2 s e .
1nch2 and R,r are in inches, then Ap is in pounds/inch™, D is in inches and
. . . 3
the two integrands are given in pounds/inch™. The root-mean-square sound
. , . . 2 s s
pressure is then obtained in pounds/inch™ and this is expressed in decibels

by
“mB
5 | > (2)

SPL (dB) r.m.s. = 20 log10 —_—
2.9 x 10

where the factor 2.9 x 10”’9 arises from converting pounds/inch2 into

dynes/cmz. and referencing SPm to 0.0002 dynes/cmz.

B

The flow diagram is shown in Fig. 16.

Input parameters required:

The parameters (and their units) requiréd to use the program are

n number of blade chord sections

é blade chord width, inches

m number of harmonics of SPL required

B rotor blade number

N rotor frequency, Hz.
,ap distances of blade chord stations from the leading edge, inches
r, radius at start of blade twist, inches

Bo steady pitch angle, degrees

Bl cosine coefficient of cyclic pitch, degrees

B sine coefficient of cyclic pitch, degrees
1 y > g

Y blade twist rate, degrees per inch

r distances of span stations from rotor centre: inches
R field point distance from rotor centre, feet

6 field point azimuth angle, degrees

o field point elevation angle, degrees
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For each spanwise (r) and chordwise (p) station, the following
differentjal-pressure data per blade is required:
Apo(r) steady blade chord section pressure, pounds/inz.
Apg(r) cosine component (peak) of gth harmonic of blade chord
. . 2
section pressure, pounds/in".
Zpg(r) sine component (peak) of gth harmonic of blade chord section

pressure, pounds/inz.

The format for input data is shown in Fig. 17 and the computer program

is presented in Fig. 18.

Computer core store: 180 Blocks (approximately 92,000 words).

Computation time on ICT Atlas Computer:

Compilation time = 6 seconds.

Execution time 15 seconds per harmonic per field point when

n=2>5 A= 0;50, g = 0 > 50 and four radial statiocns.




@ START -249-

(: Read N, B, a, n, r_, Y, Bo’ 81, 81, m :)

»

(i Read blade chord stations, ap, and radial;)

station distances from rotor centre
1=

A

Read steady value (Apo) and harmonics (A

of blade chord section loading for every chord
section

, A
pg’ P8

)

A

<z
—

Calculate resultant loading Ap(r,w) for every

blade chord section at source point (r,y)

DO ﬁgr alll

azimuthal stations

—
-

DO for all

Convert constants to correct units

radial stations

A

C Read field point data R, 6, ¢ J

)

Calculate Up(r;b) for every blade

chord section, B8, D

\ 4

Evaluate integrands for real and |
imaginary parts of SPmB

/

DO for all _

-

Y

-/ Use subroutine INTGRL
for azimuthal integrations

azimuthal stations

DO for all

>

radial stations

Y

V Use subroutine INTGRL for

N radial integrations

Calculate SPmB

v

Calculate SPL (dB) rms ~

e,

DO for all harmonics

Y

DO for all field poinfs

(_ Last Case ? )

DO for all different cases

¥ Yes
o END

FIG. 16. Flow Diagram for Program C.

V

No
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ATLAS FIITRAN 1278677 YERBION ¥
SOURCZ IOUTINE Lis7iva 21.23.2 COUNTERS
LABEL FIELD
UIMENSTON TITLECS2).ANDEG(721), ANRAD(722),3AD1US(10),DCLODIL0,10),
1 CLOD(10,10,38).51.00¢20,30.33),RL00¢10,721,10),P4ASE(10),
R SUMRE(T21),SUMIR(IZL) (AZMRECT24), AZWIN{T28 3, RADRECSD) JRADIN(30),
3 creld)
INTEGER ©,RON,HARNM, O
»aDeL.0/57.295779>
131 READ 2, TITLE
2 1ORFAT(1246)
Pri*T 2,TITLE
READ 3/,NEMD,NUCHSEC,RBY,CPS,C40RD,R0,0CICTACRETA,SIETA, THISY, 508
3 FOREAT(312,8F8,2)
PRINT 4, 5CHSEC HBN.LPS,C40R0,R0,DCIZTAL SRETA, SBETAL TH1ST
4 FORRATU2LIHONG OF CMORD SECTYIINS,F7.0,4X,8HILADES,F7.0,4X,
1 9MROTOR CP5+E15,6,//54CN0RD . EL3,8,4X, 26URADIUS AT START OF THIST,
2 F15.6,4X,/7/0HDNBETAIEL5.6, 44, 540BETAIT15.6,4X,54S8ETAELS,6,4X,
3 A1UHTMIST RAYE,E1D.8)
HEAD 5, NHAR,NFP,NRALLADILTA
FORMATIS12,78.2)
NPs3O0.0/DELTAS1,00
NTENPe]
ANDFA(1)eD
ARRAD(S VRO
vp 6 1s2,hp
ANDFGCII@ANDEG(1=2)oDE _TA
ANRADC] ) ®ANDEG (Y ORAD
CONT INUR
READ 7, (RADIUSC!).]ue,NRAD)
FOREAT{10FE.2)
READ 18, CCMINK),NMaLsNZHSECS2)
PORFAT(12F6.2)
00 10 Pai,HRAN
00 10 Js1,KCHSEN
READ 8,DCLODSU, 1) e (CLODCIoTo. 2ol w8s 30} o tSLIOCIs oL} ot 1,500
YORFATLFB.4/,(2NFR 4})
V0 312 [=i,NRAD
U0 1¢ Kal,np
Uo 12 J=1,NCHSER
RLODCJ, K, 132DCLUDE Y, Y
Do 22 L=1,50
GaL
RLODCS, Ko TIORLONCD Ko TYOCLND(D, 14 LY SCOSPCOOANRADIKDI VO
1 SLODES, §,L )8 nFCQeANIAD X))
12 CONTINVE
Ongs6,28318530CP8
UCBETASICBETA®RAD
CBETARCRETASRAD
SBETAESRETAORAD
iniSTsTW]ISTORAD
S08+12.0e808
VO 999 lisi,NFP
READ L14,R,THETA,BIGHA
14 FORPAT(3F12,4)
PRINT 15,R, THETAsSJURA
1% FORMATCLZHOFIELD POTNT, 10X, 840ISTANCE,EL15.8,3X, TuAZInUTH, E19,6,5X,
3 OHELEVATION.ESS.8,/7/720X,8KMARMONIC,10X,14430UND PRESSURE, 18X,
2 131HSPL (DRIRKS)
R232.08R
FHETASTHETAORAD
SIGrAsSIGHASRAD
00 999 Mal,NHAR
DO 50 KK3l,HRAD
DO 99 Jus1,NT
OISTRSORTIF (ReSZRADUSIKXI#02~2, BoRsAADIUSIKX)OCOSF(SIGNADS
1 COSF(TMETA=AMRADIJI) )}
BETASDCRETACCBETASCOSF (ANRADC(IJ) 1o SEETACSINF LANRADL JJ) )e
1 THISTS(RADIUS(KK)-RO)-
00 25 Lial,NCHSEC
HARKEN
OslL
PHASELLL ) eHARMORANGCQ'120DIST/E0S0ANRADE JUI S (CHILL 1) =CH 200/
1 RADIUS(XK))
7% COMYINUE
SUNRECIIIERLOD( 120D, KXY (COST(PHABE(LT ) /D] SToHARSAZNCONO S
1 SINF(PHASE(L))/BNSIeSINF LIHARYERANSICHIS) =CuiL1) )/
2 (4.08RADIUSIRXY))
SUNIM{JLIRRLODCL s 1) KK S {HARSORDNSO 430 CISF(PRASECL) /508
3 SINFUPHARE(LYI/DISTIeQINFIAMORINO(CHLIDarHILII I/
2 (4.00RANIUSCEXKI D)
63 V0 30 NsR,NCHSER
(Y3 SUMRECS)IRGURPE(JJ)*RI IDIN, JJ <K} CCOBT(PHASE(NI )/O1STS
1 HARNORBNOOMGES INF {FNASE(N) /838 ESINFU{HARMSRANS(CHIN®2) oCHINIDI )/
2 14.00RABIUS(KKYY)
o3 SUNIML I GHRIMILSI R IDIN, S, <K) D(HARNSEEYEONASLOIFINASEIN}) S
_3.80S°SIHF (PHASE(ND ) /DI8TISRINF ( LHARMARBYa{SHINCRI-CHiNI )3/
2 (4. 00RADIUGI(KK)I )Y
(1] 29 CONTINUE
67 AZMRR(JJIRSUMRE! JI) e
3 (CLEF (SIQMAIOS N (HETA)SSINTCANRADIIS) o THITAIeCOST(BETA)®
2 SINFUSIOMASIPRAADIUSIKC)/ZLDISTal)
AZNENC LI GUMIHIIY e
3 (COBF (S1OKAYSSINF (HETA) OBINT (ANRADCJSI e THETAIOCASFLGETA) ®
2 SINFUSIOHAYIORADIUSIXSIZEDIRToeR)
“® CONTINUE
AZMRE (NP} RAZMRE (1)
AZMIR(NP)SAZHIN(S)
CALL INTOGRL (NP, ANRAD ) AZMRE,AT)
RADRECKK)SAR
CALL INTORLUNP ,ANRADSAZNIN,AQ)
RADINIKK)uAR
CENY SRUE
CALL [NTORU(RRADSRAUIUS, RADRS, SPRE)
CALL INTGRL(NRAILRADTIE, RADI 4, SP1N)
SPEEQRTF(SARES APINea )& (R/{I7.S0:4ARN) )}
SPL9Z0.080,43450AL0N1F (ARSF(S3/2,98=9))
PRINT 40,0, 8P,5PL
FORBATIDNX,12,5X02E20.8)
CORT INUE
IF INERD) 9989,u9u0,818
60 18 EX1T
(=114

cveavevawn

ATLAS FaaTRan 18/98/78 VERSiCH 7
SOURCE RVUTINE~LISTIND 21.23.36 COUNTERS (11]
LABEL FIELD
SUBROUTINE THTGHLUN&, 2, AREA)
UIMENSION A(7223),2¢721)
AREA®D,0
D0 190 HMe2,N
AREANAREA®(Z(NH-8) 2044 )0 (AINY) ~ALN=5))/2
CGNTIMUE
RETHRN
end

. FIG, 18, COMPUTER PROGRAM C.
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APPENDIX VI : COMPUTER PROGRAM D

Radiation from the point span loading model with fluctuating equivalent

rectangular chordwise loading profile:

Equations to be computed:

The r.m.s. value of mth harmonic of sound pressure in the far field

is given by
BNr X
sp_ = ——2- sin(géé) {Re2 + Imzl} (1)
m /E-cho re
where
27
Re = J‘{ sinB coso sin(y - ) + sinoc cosp }Iﬂ(re,w) . sinV(y) dy
° (1a)
and 2
Im = {sinB cosg sin(y - g) + sing cosg}lﬂ(reyo . cosV(y) dy
° (1b)
and where
V() =mB{Me coso cos(® -~ ) - ¢ } s (lc)
L D
L'(re,¢) % 3 z Lé(re,w) . wp s (1d)
p=1
Lé(re,¢) = Léo(re> + gzl {ng(re)cos gy + L;g(re)sin gy }-, (le)
CH W - A
wp = Z(ap+l ap-l) . (1£)

If the loading data (L! LY ~ Tt is in pounds/inch, then
& o » pg » Ipg) P ’

L'(re,W) is in pounds/inch giving Re and Im in pounds/inch. 1If R is now

given in feet, SPm is obtained in pounds/ftz. The root-mean-square SPL

B

is then given by




SPL (dB) r.m.s. = 127.6 + 20 log10 (SPm )

B

The flow diagram is shown in Fig. 19.

Input parameters required:

The parameters (and their units) required to use the program are

identical to those listed for program B, and the format for input data is

also the same as that used for program B (Fig. 14, Appendix IV). The

computer program is presented in Fig. 20.

Computer core store: 40 Blocks (approximately 20,000 words).

Computation time on ICT Atlas Computer:

Compilation time = 5 seconds.

Execution time = 5 seconds per harmonic per field point when n = 5,

M = 0.5°, g =0 ~ 50.




@ , START  _254-

C

) -
CRead N, Ry, 8, a, a, B, m)
Read steady value (LBO) and harmonics
(Lt , L' )of blade chord section loading
| 2324 P8
for every chord section
ol
e
Calculate resultant loading Lé(re,w) for every "
blade chord section at source point (re,w) /\§
k3]
Y -3
-l w
Calculate equivalent rectangular loading : -
R . .
L (re,w) at source point (re,w) using Sl
trapezoidal rule o é
Q-
N
. ©
A
Calculate M
€ [1)]
- ]
- 15}
o
: : 3]
(; Read field point data R,6, o ;) o
< 5
Y
~ )
: §
Calculate V (y) T S e
sl EN}
Y 3| 8 o
Evaluate integrands for real and “A>m ©
imaginary parts of SP:: of — ]
mB wl o« o
=} / /\ w
olw
al = o
/ N 5 o » -
M > N ot e
« o o
_ [e] R
S— E o
5 <9
Use subroutine INTGRL £ s
for azimuthal integrations - z
o W
~ i
(o] -
ft o
a 5
Calculate SP__ - W
mB
o
=
Y
Calculate SPL (dB) rms
(;rLast Case ? ]
V Yes No
© END

FIG. 19. Flow Diagram for Program D.
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LINE ATLAS FUNTRAN 11/06/70 VERSJION 7
HUNBER . SOURCE HOUTINE LISTING 10.53,02 COUNTERS: 10
LABEL FIELD
by DIMENGTION TIlLE(lZ):ANDEGUZU;ANRA!)UZ;),UCLOD(!?),CLDD(!?:')’D).
1 SLOD($2,5: ),RLONC12,721),FOLOU(721 )4 PHASEC( 742}, FUNCRES?21),
2 FUNCT%(721),88¢12)

¢ REAL MaCH
KY INTEGER G,eBN,HARM
4 RAD=1,./57.2957795
> 112 READ 2,TITLE
[ € FORMAT(1246)
’ PRINT 2,71TLE
8 REAN 3 . HEND,NCH,RBMP], RADIUS CHORDIBETA
9 S FORMAT(312,4FR.2)
1 PRINT &,hCu, B, CPSsRADINS,CHORD,UETA
11 4 FORMAT(21H: MG OF CHUBD STATIONS,F7.0,4X,6HBLADES,F7.0,4X,
1 9KKOTAR CPS.E15.6,//6HRADIUS, 1D .0, 4X,5HCHORN, E15.6,4X, 4HBETA,
2 E1>.6)
12 REAL} S, NHAK,NFP,DE) TA
13 9 FORMAT(212,Fb.2)
14 NP=36n. /DELYA®L.00
12 NTsHPey
10 ANDEG(1) 35
17 ANRAU(1) =y
18 B0 6 132,NP
19 AMDEG( 1) 2aANDEG(] -4 3 +nELTA
2 AMRAD(T)=AVDEGCT) eRAD
21 6 CONFINNE
22 READ 18, (CHENN),NNel,NCH)
2s 16 FORMAT(I2F6.2)
29 00 2. g=1,MCh
2> 13 REAV 7.0CL0D(JY,(CLONC,L) \Lu2s3UIo(SLODCI L) ,Lul,30)
25 7 FORMAT(FB,2/,(5°FB.2y)
[ CALLULATION CF EQUIVALENT RECTANWULAR LOADINU AT EVERY SOURCEPOINT
27 DO 12 r1=1,nP
2o DO 71 =i, mCh
29 RLOUCy, 1) 2BCLODCY)
© 3 N0 /2 «=ri, 30
31 G=K
3¢ RLODC S, 1) eRLODC), 1) +nLODtJI,KINCOSF (GEANRAD(] )
1 +SLODCJoKIOSTHP(GRANQAD(T))
33 71 CONtINyF
34 FOLUU() =0
3> N0 S L, NUH
36 53 EOLOD(TII=ENLUGE] el ((RLODILL=1s1)+RLUDCLL,E))®
1 (CHl ) d=CHlL~1)))/ (2, eCNORD?Y)
3/ 12 CONTINGF
343 HACHS ((CPSeRADINS)/222,1)
3v PRINT +2,MACKH
4: 13 FORMAT(221 EFFECTIVE MACH NMUMBER,E15.6)
41 BETAZRETARFAL
s BEGIN 2AUNP LOOP On fIELD POINTS
42 DO Y99 Ilz1,!tFP
43 READ 14,R, THEYA,SIGMA
4e 19 FORMAT(ZFy2.4)
4> PRIMT 15,R, THETA,S]GMA
40 1> FORMAT(12H FIELD POINT,10X,8HIISTANCE,E15.0,5X, THAZINUTH,E15,6,
15X, YHELEVATION,F15.4,/729%,AHNARMONIC, LUK, 14HSOUND PRESSURE,
2 11X,11ASpL (DB)RNS)
47 THETA=THETA®HAD
40 SIGMALGIGMAPKAD
47 N0 Y99 Mz=g,NhAR _
5u 70 2. wKzg,NT
S1 HARM=p
52 FHASt(KK);NAPM’RQNQ(MACHCCDSF(SIUHA)'CGSF(ANNAD(KK’)-ANRAD(KK))
53 FUNCRE(KK)2ECLOD (KK ) aCARF(PHASE (KK ) I (COSFISIGMAYsSIMF{BETA)e
1 SINF(aHURAD(MKI-THETA) «COSF(RETAI®S[NF(GFGMAD)
S5e FUNUln(KK)nEuLon(KK).g]uT(pNAS:(KK))'(CDSF(SlQHA)OS!NP(BETA)-
1 S[NF(AHRAB(FK’-TNFTA)oCOSF(BETA)'S!NF(SlGHA’)
55 2% CONTInuE
50 FUNCRECNPYsFUNCRF (1)
57 FUNUIMENP ) 2FLNELi(y)
50 CALL 1VTGRL (AP, ANRAD,FUNGRE, SPRED
S5y CALL TLTGRL (1.ps ANRAD,FUNG TN, §P1N)
C SPet{CPSeRADIUSHRAN) /(51R.49R) ) @S INF L{{HARMSHBNSCHORD )/
1 (1Y.26RADIUS)IeGARTF (QPRESSZ*SH[MO®2)
61 SPL=127.640° D%/, 434%ma) OGH (AGSF ISP
6 PRINT a4 4M,SP,SPt
LE 40 FORMAT(25%,12,5%,262n.8)
6 99V CONTinNIE
6> IF (NEVD) 9999,0999,4911
80 ¥89Y G0 TQ =x(v
6/ END _
LInE ATLAS  PURTRAN 11736776 . VERSION 7
NUMASR SOUPCE RUUTINE LISTING 10.53,09 COUNTERR 463

LABEL FIELD

4 SUBROYTINE INTRRL (A, P ARFA)

2 LidEnSiON 40721 ,7(701)

3 AREAZq

< 00 Ln HMg2,t ~

3 AREAZADEAG(Z(HM - 1o ZtMH) IO LALAM) mALHN-1Y) /2
L4 10 CONYINUE -

’ R+=Tusn

L] EHY

FIG.20. COMPUTER PROGRAM D.
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APPENDIX VII : CALCULATION OF TIME

AVERAGES FOR CIRCULAR MOTION

In the case of a moving point source, the relation between the

observation time t and the corresponding emission time [t] is given by

t = [t+c—R-] . (1)
o

For uniform rotation in a circle, 8 = Qt, R = r - a cos® siny in the far

equation (5.1) as

field (see Fig. 5.5). Therefore equation (1) can be written as a relation

between 06(t) and 6([t]) = [6] :

-0

Denoting l:d by ¢ and differentiating the above equation gives
dé = (1 + asin¢) d¢ . (3)

This result allows an average over t (or 6 ) to be evaluated as an

average over ¢ .
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APPENDIX VIII : CORRELATION - SPECTRAL DENSITY TRANSFORMATION

(a) The cross-spectral density ny(v) is defined as the Fourier transform

of the cross-correlation function ny(o) s

ny(v) = % i ny(o) e V0 4 . (1)

- OO

Differentiating with respect to v the appropriate number of times gives

i G;y(v) == j:c ny(o) e V0 4q s } (2)

- o () = i J: GZny(c) e Vg6, @

- i G;;(v) = % J: 03 ny(o) eI 4o s - (&)

and Gi;(v) =1 Jm o* R, (o) eIV 4. (5)

- 00

(b) Spectral_densities like G%%(v) can be expressed in terms of GT(v)
as follows:

The Fourier transform pair of a function T is defined as

T(v) = 5= J T(e) e MV de (6)

- OO

-

T(t) = J %(v) VE ayT . (7)

- OO

Differentiating (7) with respect to t,
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. bl A
T(t) = J iv T(v) eivt dv

and so

iv ,'\I‘(\)) =

A o .
By definition T (v) —21—“ J T(t) eVt 4e

- 00

and therefore, from (9) and (10),

” A
T(v) = iv T(v) .
Further differentiation of (8) similarly gives

'.} A '
T(v) = - v2 T(Vv) .

‘ n 2
Now G,},'l,‘(\)) = lim ZH{T*(V) - T(\))} s

t
t o o]
o g

(8)

(9)

(10)

(11)

(12)

(13.)

where * signifies complex conjugate, and using (11), (12) this becomes

= 1.3
GTT(v) = iv GT(\)) .
.Similarly, it can be shown that

GT,i,(v) = iv GT(\)) R
Cia(v) =V G (v)

GT:I:(\)) = - vZGT(v) 5

and Gﬁ' (v) = -_'—\)4 GT(\)) .

(14)

(15)
(16)
(17)

(18)
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APPENDIX IX : PURE ROTATION EFFECT ON FORCE RADIATION SPECTRUM (M~> O)

Since M = 0, the periodic functions £, g, h given by equation (5.21)

become
f=1, g = sin [6] , and h = cos [9] (1
and the resulting correlations are obtained as

Re(1) =1, R(D) =0, R(® =%cos o[q, -

-
— — = _ L .
ng(’t) = 0, th(T) 0, Rgh('l.’) s sin £ T_[ .

Also, since M = 0 , & becomes zero and [T]== T . The general equation

(5.22) then gives, on time~averaging,
(47e,r)? R (1) = Ry(%) + § cosl® Ry(T) + @ sindt Ryy(T)
+ % o2 cosfit RY(T) . (3)

Clearly, rotation has no effect on thrust radiation,as would be expected,
and from here on we put Rk(T) = 0 to investigate the effect of rotation on

the drag radiation spectrum. Noting that

RY;_,(T) = R;{(T)

(4)
and R%(T) = - R%(T) ,
the radiation spectrum can be obtained from (3) as
(4mc r)2 G (w) = 1 ) ein - % cosfit RU(T) + € sinflt RL(T)
o] P T 2 B Y o Y
R® -
2 .
+% 9 cos9T R(1) } dr . (5)

This integrates by parts and the resulting far field pressure spectrum,
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noting Y =D sin ¢y , is

(4reyr)® T (w) = % o { 6o + @) + Gpla - D} sindy . (6)

If (a) @ >~ 0, or (b) the drag spectrum GD(w) is linear in ® , then
(6) shows that
2

(4ncor)2 Ep(w) =% u GD(w) sinzw . D)
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APPENDIX X : RADIATION SPECTRUM FROM BROADBAND FORCES

IN UNIFORM STRAIGHT-LINE MOTION

The far field spectral densities of the sound power output from single
frequency (v) transverse and longitudinal forces convected uniformly in a
straight line at Mach number M are given by Morse and Ingard [6 s P 734]

as

| 22
@ s  {ensewsa} o
T 327 ¢ M~ w
[o N o]
and
2.2
-V f
G = G- D @

D 161p ¢ 3 M w
)

respectively. For continuous source spectra, the above results become

" V6 (v)
dw 1 T s w w
Ly = J - (M-1) =+ 1p SMHL) = - 18 4V (3)
dr  g6mp ¢ 3 M3 w 1 v } { v }
O 0 [o]
and
| o g (V)
aw 1 D w 2
) = J (= - 1)~ 4dv . (4)
4y 8“D°c03 wo

Now a uniformly convected force of frequency V radiates at acoustic

frequencies in the range

(5)

and so the radiation at frequency @ is the total contribution from forces

-

in the frequency range
w(l - M) s v € w(l+M . (6)

Thus equations (3) and (4), for GT(\D , GD('W Vv , become
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w(1M)
12mp ¢ 2
o0 dd _ 3_ M1y & 42 8
ZG ) dw T 4M3w v2 v
W Sple w(1-M)
and
3 w(1+M)
127P ¢
- ,dW
52 (G == ? (Z-25+Dw
WG, (w) D 2Mw
D w(l-M)

upon integration, these give

3 .
121Tpoco dw _ 3 L 1M
o (@) T3z G) - M
w GT(w) T M
and

3
12t ¢ aw, _ 3 [ M@¥%) 14
P2 S N LS v G
w GD(w) D M (1-M7)

l.} dv

3

(7)

(8)

(9)

(10)
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APPENDIX XI : RADIATION SPECTRUM FROM BROADBAND SOURCES IN UNIFORM

STRAIGHT-LINE MOTION

The far field spectral density of the sound power output from a single
frequency (V) monopole, convected uniformly in a straight line at Méch number
M, is given by Morse and Ingard [6 , p.732] as

2

dw _ Qo

w

For a continuous source spectrum, this becomes

1

aw _ ”
dw ~ Bmp_c_ J Gtv) 3 @v - )
- o

Xle

\

Now a uniformly convected monopole of frequency v radiates at

acoustic frequencies in the range

V
w (3)

and so the radiation at frequency w is the total contribution from sources
" in the frequency range

w(l -M)sv<w(l+M . (4)

Thus equation (2), for GQ(v) a:v_z , becomes

m_1+M)
ffggfg_ QE =L ;L d (5)
026 (uy @@ 20 2 Vo
Q w(l-M)
Upon integration, this gives
4ﬂpoco . 1
" = 2 . (6)

dow .T 2
8GQ(w) 1-M
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APPENDIX XII : CORRELATION FUNCTIONS

The cross-correlation function is defined as

R = <«x(t) y(t + ©)> . | 1
xy(T) x(t) y( ) ()
Upon differentiation with respect to T , this gives
R;y(r) = <x(t) y'(t + 1)> s (2)
which can be written as
R' T = < t"'T 't> L) 3
Xy( ) x( > y'(t) (3)

Differentiating (2) and (3) again gives
R;y(r) = <X(‘t) y"(t + T) > = <= x'(t -T ) y'(t:)> . (4)

From (4), putting T = 0, we obtain

Rﬁy(o) = R%§(O) . (5)




