Time-varying filter modelling and time-frequency characterisation of non-stationary sound fields due to a moving source


Lee, Jong-Sik (1989) Time-varying filter modelling and time-frequency characterisation of non-stationary sound fields due to a moving source. University of Southampton, Institute of Sound and Vibration Research, Doctoral Thesis , 206pp.

Download

[img] PDF
Restricted to System admin

Download (7Mb)

Description/Abstract

This thesis deals with the problems of modelling, interpretation and estimation of `non-stationary' processes with particular reference to acoustic problems. A common assumption in the modelling and analysis of a random process is that the process is `stationary'. Such an assumption may be a satisfactory approximation in many instances, but there are situations in which the processes are obviously non-stationary. In particular many physical non-stationary processes exhibit a `frequency-modulated' structure. An important example of such processes is the sound perceived by an observer due to a moving source emitting a random signal. In the thesis two methods are studied for the characterisation of such non-stationary processes; i) `time-frequency' spectral characterisation and ii) time-varying filter modelling. Two major candidates for `time-frequency' (time-varying) spectral characterisation of non-stationary processes are the Wigner-Ville spectrum and Priestley's evolutionary spectrum. Properties, prediction and estimation of the two time-frequency spectra and the relation between them are discussed. The time-frequency spectra of the sound field due to a moving source are predicted and these spectra are used as the basis for estimation of the acoustic directionality pattern of the source. As to the time-varying filter modelling of such non-stationary processes, a technique called the `covariance-equivalent' method is discussed. The covariance-equivalent technique is used to model the sound field due to a moving source emitting a random signal in single-path/single-sensor cases. The covariance-equivalent method, which has only been applicable to single-component processes, is extended to include the sound field in multi-path/multi-sensor cases by using the concept of the complex envelope (complex process). Finally estimation problems of practical importance, including that of (i) the source acoustic directionality pattern and (ii) time-varying delay estimation problems, are formulated and solved in terms of the covariance-equivalent models, and simulation studies are also performed. The simulation results justify that the covariance-equivalent method is an effective characterisation of such non-stationary processes.

Item Type: Thesis (Doctoral)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: University Structure - Pre August 2011 > Institute of Sound and Vibration Research
ePrint ID: 52248
Date :
Date Event
April 1989Made publicly available
Date Deposited: 26 Aug 2008
Last Modified: 27 Mar 2014 18:35
URI: http://eprints.soton.ac.uk/id/eprint/52248

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics