The University of Southampton
University of Southampton Institutional Repository

The effect of boundary proximity upon the wake structure of horizontal axis marine current turbines

The effect of boundary proximity upon the wake structure of horizontal axis marine current turbines
The effect of boundary proximity upon the wake structure of horizontal axis marine current turbines
An experimental and theoretical investigation of the flow field around small-scale mesh disk rotor simulators is presented. The downstream wake flow field of the rotor simulators has been observed and measured in the 21m tilting flume at the Chilworth hydraulics laboratory, University of Southampton. The focus of this work is the proximity of flow boundaries (seabed and surface) to the rotor disks and the constrained nature of the flow. A three-dimensional Eddy-viscosity numerical model based on an established wind turbine wake model has been modified to account for the change in fluid and the presence of a bounding free surface. This work has shown that previous axi-symmetric modelling approaches may not hold for marine current energy technology and a novel approach is required for simulation of the downstream flow field. Such modelling solutions are discussed and resultant simulation results are given.
This work has been conducted as part of a BERR-funded project to develop a numerical modelling tool which can predict the flow onto a marine current turbine within an array. The work presented in this paper feeds into this project and will eventually assist the layout design of arrays which are optimally spaced and arranged to achieve the maximum possible energy yield at a given tidal energy site.
Myers, L.E.
b0462700-3740-4f03-a336-dc5dd1969228
Bahaj, A.S.
a64074cc-2b6e-43df-adac-a8437e7f1b37
Myers, L.E.
b0462700-3740-4f03-a336-dc5dd1969228
Bahaj, A.S.
a64074cc-2b6e-43df-adac-a8437e7f1b37

Myers, L.E. and Bahaj, A.S. (2008) The effect of boundary proximity upon the wake structure of horizontal axis marine current turbines. 27th International Conference on Offshore Mechanics and Arctic Engineering, , Estoril, Portugal. 15 - 20 Jun 2008.

Record type: Conference or Workshop Item (Paper)

Abstract

An experimental and theoretical investigation of the flow field around small-scale mesh disk rotor simulators is presented. The downstream wake flow field of the rotor simulators has been observed and measured in the 21m tilting flume at the Chilworth hydraulics laboratory, University of Southampton. The focus of this work is the proximity of flow boundaries (seabed and surface) to the rotor disks and the constrained nature of the flow. A three-dimensional Eddy-viscosity numerical model based on an established wind turbine wake model has been modified to account for the change in fluid and the presence of a bounding free surface. This work has shown that previous axi-symmetric modelling approaches may not hold for marine current energy technology and a novel approach is required for simulation of the downstream flow field. Such modelling solutions are discussed and resultant simulation results are given.
This work has been conducted as part of a BERR-funded project to develop a numerical modelling tool which can predict the flow onto a marine current turbine within an array. The work presented in this paper feeds into this project and will eventually assist the layout design of arrays which are optimally spaced and arranged to achieve the maximum possible energy yield at a given tidal energy site.

This record has no associated files available for download.

More information

Published date: 2008
Venue - Dates: 27th International Conference on Offshore Mechanics and Arctic Engineering, , Estoril, Portugal, 2008-06-15 - 2008-06-20

Identifiers

Local EPrints ID: 52810
URI: http://eprints.soton.ac.uk/id/eprint/52810
PURE UUID: bd731eb9-ab1f-42e4-9193-cd8488ea9b23
ORCID for L.E. Myers: ORCID iD orcid.org/0000-0002-4724-899X
ORCID for A.S. Bahaj: ORCID iD orcid.org/0000-0002-0043-6045

Catalogue record

Date deposited: 26 Aug 2008
Last modified: 23 Jul 2022 01:49

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×