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ABSTRACT

This paper describes a technique for estimating vehicle journey times on non-signalised roads
using 250-ms digital loop-occupancy data produced by single inductive loop detectors. The
technique was assessed to see whether abnormal periods of traffic congestion (caused by
accidents and special events) could be identified using the journey time estimates produced
along a key urban corridor in the city of Southampton. The technique used a neural network
approach to provide historical journey time estimates every 30-seconds based on the average
loop-occupancy time per vehicle (ALOTPV) data collected from the detectors during the
previous 30-second period.

Results showed that using the output from 8 detectors over 1149m, journey time estimates
with a mean absolute percentage deviation from the mean measured speed (MAPD) of 15%
were returned. These were achieved using a neural network trained on 7 days of morning
peak period data.

The journey time estimates produced were presented to the control room operator in the form
of a moving graph, updating every 30-seconds. Results showed that the journey time
estimates identified 73% of the logged incidents on the test network during the analysis
period.



BACKGROUND

In recent years, there has been a growing awareness of the problems caused by congestion in
urban areas and the need to manage traffic more efficiently (/). Current speeds, link journey
times and the location and severity of incidents are considered to be essential parameters in
providing information to the driver (2,3,4), and as a basis for effective and efficient on-line
traffic management. At present, close circuit television (CCTV) is commonly regarded as the
primary medium for collecting reliable on-street information. CCTV however can only give
the operator a snap-shot of conditions at a specific location whereas estimates of journey time
for specific routes would provide a better overall picture of link performance.

Automatic registration plate recognition using CCTV has been successfully used to provide
estimates of journey time (5) where networks of cameras exist. A more cost effective option
would result if similar estimates could be derived from the existing inductive loops
controlling the city’s traffic signals.

The ability to estimate journey times accurately using loop detectors, depends on the
particular format and aggregation level of the digital data produced. Several techniques have
relied on the ability to obtain an accurate estimate of time-mean speed, either using direct
measurements from double loop speed detectors (6,7) or by the relationship between flow,
speed and occupancy (&) using single loops (9-13), before attempting to estimate journey
time.

There is often considerable unexplained day-to-day variability in recorded journey times
along the same stretch of road. The ability to train a neural network using examples of
various road conditions might produce a more accurate and versatile journey time estimation
tool compared to the more mechanistic time-mean speed approaches. Using flow and
occupancy data related to actual measured journey times, techniques involving neural
networks (/2) and fuzzy logic (/0) have been used to estimate journey times on signalised
links.

A technique enabling video footage to be collected in synchronisation with loop-occupancy
data (/4) has led to the development of detailed databases containing vehicle loop profiles
matched to measured journey times. This allows the performance of various journey time
estimation techniques to be assessed in detail. This paper describes the on-street performance
of a neural network based journey time estimator used to identify potential traffic incidents
on a non-signalised road in Southampton, given 250-ms inductive loop data for training.

OBJECTIVES

Using the ‘Average Loop-Occupancy Time per Vehicle’ (ALOTPV) parameter derived every
30-seconds from SCOOT-type Urban Traffic Control (UTC) detectors (15):

- Develop a neural network model to estimate 30-second post-event journey times along a
1149m non-signalised road in Southampton.

- Assess the accuracy of the journey time estimates produced compared to measured
journey times collected through registration plate recognition.

- Over a continuous monitoring period, determine how useful the technique was for
control room operators for identifying abnormal congestion and traffic incidents.



METHODOLOGY

The methodology for extracting the ALOTPV parameter from the detector data has been
described in detail (/6, /7). Single inductive loop detectors buried in the road surface produce
an analog signal which is turned into a digital signal (0/1) by a detector pad usually located in
the controller. A ‘1’ indicates the presence of metal over the loop. The vehicle-presence
status of a SCOOT-type detector is checked at 250-ms intervals. The presence of a vehicle is
indicated by a variable number of successive 1’s, each 1 representing 250-ms of occupancy
(16). The number of 1’s produced (N) for a single vehicle is given by Equation 1.

N=4% DL+ VL)/VS..ceeeeeeee e Equation (1)

Where:

N is the loop occupancy time of the vehicle (the number of digital 1’s produced, each
representing 250-ms of occupancy)

DL is the detector’s effective magnetic length (metres)

VL is the effective magnetic length of the vehicle (usually metallic chassis length) (metres)
VS is the vehicle speed (metres/second)

Previous research (/6) developed the parameter of ALOTPV to help describe traffic
conditions over a detector. The ALOTPV for a 30-second fixed-time interval is obtained by
taking the number of 250-ms occupancies and dividing by the number of vehicles. This was
engineered to return a figure of between 1 and 120, the former indicating free-flow
conditions, the latter stationary traffic. All ALOTPV data used to train the neural network
were collected through the ROMANSE traffic control centre in Southampton (/8).

TEST SITE

The neural network journey time estimators were trained for operation on the A33 Bassett
Avenue, Southbound inside lane (Figure 1). The A33 is a four lane un-segregated A-class
road with a speed limit of 64 km/hr and had been equipped with single inductive loop
detectors at approximately 100m intervals. The traffic using the road during the morning peak
period (07:30 — 09:15) consists of 96% car length vehicles (3m to 4.9m) and 4% long
vehicles (greater than 4.9m). Parking by the roadside is prohibited along the entire length of
the test site. Two CCTV cameras are installed at either end of the link to monitor traffic and
were used to confirm potential incidents detected by the neural networks.



Figure 1. A33 Bassett Avenue Southbound inside lane detectors
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DEVELOPMENT OF THE NEURAL NETWORKS

The neural networks described here were built using NeuralWare’s ‘Predict’ software (/9)
which sits within Microsoft Excel. Data are fed into the Predict model builder using Excel
spreadsheets. ‘Predict’ not only generates a neural network based on a set of data but
manipulates, transforms and selects the data before they are used. During the data analysis
phase, Predict takes each available data field (ALOTPV for each detector in this instance)
and determines the types of transformations which work best in combination for predicting
the desired output (in this case, journey time). Transformations used include identity
function, exponential function, square function, inverse function and hyperbolic tangent
function. Predict’s variable selection process then uses a genetic algorithm to identify subsets
of the selected transformations which provide the closest matches to the target output.

The neural networks created were designed using an adaptive gradient learning rule which is
a form of back propagation. Instead of using a fixed architecture for the design where the
number of hidden processing layers are fixed, Predict uses a constructive method called
‘cascade learning’ to determine the optimum number of hidden processing layers. This can
lead to different numbers of hidden layers being used between networks. Matching the
vehicle registration plates, extracted from video surveillance, gave the overall journey times
of the vehicles travelling down the test site. The basis for training was the ability to link the
30-second ALOTPV data to the average measured journey times of the vehicles in each 30-
second start interval (Table 1).

Due to the day-to-day journey time variability observed it was decided in the first instance to
give the networks a minimum of four days training data, testing on an unseen day.



Table 1. An example of the training data used as inputs to a neural network journey time
estimator. (For each 30-second interval the ALOTPV values are shown at each detector site
together with the average measured journey times of the vehicles in that period).

Detector 3214) Detector 3234C Measured
Start Interval ALOTPV ALOTPV Journey Time (secs)
08:10:00 2.3 38 220
08:10:30 2.4 2.9 218
08:11:00 2.4 3.0 235
08:11:30 2.6 2.7 240
08:12:00 2.3 42 232

In summary, the neural networks were trained by presenting them with a picture of the link
conditions at each detector every 30-seconds, married to the measured journey times of the
vehicles over the whole link who set off from the origin during that interval. During testing,
an estimate of link journey time based on the immediate conditions was made every 30-
seconds, post-event. The effects of slower vehicles exiting or entering the link would be
represented in the 30-second ALOTPV values of upstream detectors, if following vehicles
were also forced to slow as a direct result.

Four neural networks were designed using ALOTPV data from detectors N032141, N03214J,
NO03214H, N03214G, N03234A, N03234B, N03234C, N03234D, NO03234E in the inside
southbound lane of the A33 Bassett Avenue (Figure 1).

‘D2345’ trained on ALOTPYV data collected from the detectors in 1996 (22/10/96, 23/10/96,
24/10/96 and 25/10/96). The network had a 7-8-1 architecture (transformations from 7 of the
detectors were used as inputs, passing through 8 hidden layers to produce the journey time
output) and produced an internal correlation during training of 0.9669.

‘MixTR’ was a network trained on a mixture of ALOTPV data from 1996 and 2001
(22/10/96, 24/10/96, 26/02/01 and 27/02/01). This network had a 5-7-1 architecture and
produced an internal correlation during training of 0.9555.

‘TR001’ was a network trained solely on ALOTPV data from 26/02/01, 27/02/01 and
23/11/00. This network had a 6-2-1 architecture and produced an internal correlation during
training of 0.9495.

‘All Days’ was a network given ALOTPV data from all the available survey days for training
(22/10/96, 23/10/96, 24/10/96, 25/10/96, 26/02/01, 27/02/01 and 23/11/00). This network had
an 8-4-1 architecture and produced an internal correlation during training of 0.9605.

Using on-line ALOTPV data collected from the ROMANSE traffic control centre, a real-time
display showing 30-second updates of estimated journey times from the four neural networks
was developed. This took the form of a rolling graph displaying the current estimate of
journey time from the previous 30-second period and the previous 50-minutes worth of
estimates. This operator interface was tested with live data to see if the estimates could be
used for identifying abnormal periods of congestion between 07:00 and 19:00, Monday to
Sunday.



RESULTS

The neural network journey time estimators were tested in two ways two determine:

e The accuracy of the journey time estimates produced
e The systems ability to alert the traffic control room operator to abnormal traffic situations
on the A33 Bassett Avenue test section

The accuracy of the estimates were determined by giving the neural networks new unseen
data from five different days (07:30 to 09:10) when the measured journey times had been
derived using registration plate matching. The performance of each network was calculated
over the testing period in terms of its Mean Absolute Percentage Deviation from the Mean
Measured Journey Time (MAPD). Once the MAPD had been determined on each day, a
one-way analysis of variance test (ANOVA) was undertaken to see if there were any
significant differences in the MAPD values produced by the four neural networks. This
would help determine which set of training data produced results closest to reality.

The systems ability to identify abnormal traffic situations was tested using detector data
collected during eleven separate days when traffic accidents occurred on the test site between
October 2000 and November 2001. The performance of the neural networks was assessed
through the control room operator's ability to identify the increased journey time associated
with the start of ‘abnormal’ traffic conditions on the link.

ACCURACY OF THE JOURNEY TIME ESTIMATES

Table 2 shows the Mean Absolute Percentage Deviations from the Mean Measured Journey
Times for each of the four neural networks by test day.

Table 2. Mean Absolute Percentage Deviations from the Mean Measured Journey Times for
each of the four neural networks by test day.

Test Days ‘D2345° ‘MixTR’ ‘TRO01’ ‘All Days’
18/7/01 18.2 18.8 18.7 17.3
19/7/01 14.0 14.8 14.1 12.6
5/11/01 17.0 16.7 17.2 16.7
6/11/01 15.7 16.6 15.8 15.1
12/11/01 12.8 12.3 15.1 13.4
Mean 15.5 15.8 16.2 15.0

The results suggested that the neural network trained on all the available training data (‘All
Days’) provided estimates of journey time with the smallest mean absolute percentage
deviation from the mean measured journey times (15%).

Table 3 shows the mean difference (seconds) from the mean measured journey time for each
of the four neural networks by test day. The neural network trained on data from 1996 gave
the smallest mean differences from the mean measured journey times (an underestimate of
2.4 seconds on average). The results from one-way ANOVA tests showed that only on the
12/11/01 were there significant differences observed between the four neural networks in



Journey Time (secs)

terms of the mean difference from the mean measured journey times. The neural network
trained on mixed data from 1996, 2000 and 2001 produced significantly smaller deviations
from the mean measured journey times compared to the neural network trained solely on data
from 2000 and 2001 (F(3’ 648) = 347, p<005)

Table 3. The mean difference (seconds) from the mean measured journey time for each of the
four neural networks by test day. The results from one-way analysis of variance tests are

shown.

Day ‘D2345° ‘MixTR’> | ‘TR001’ ‘All Days’ F P 0.05)
18/7/01 7.0 9.3 12.3 2.4 1.36 0.25
19/7/01 -3.5 2.4 -3.6 -6.2 0.74 0.53
5/11/01 6.3 0.6 8.4 2.7 0.63 0.60
6/11/01 -24.6 -30.5 -13.9 -20.2 2.13 0.09
12/11/01 3.0 -1.0 13.4 7.9 3.47 0.01
Mean 24 4.8 33 2.7

The journey time estimates produced for the 18/7/01 are shown in Figure 2.

Figure 2: Journey time estimates made on the 18/7/01 along the 1149m of Bassett Avenue
inside lane Southbound.
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IDENTIFYING POSSIBLE TRAFFIC INCIDENTS

Between August 2000 and November 2001, 11 traffic incidents involving either vehicle-on-
vehicle impacts or individual breakdowns were recorded along the A33 test section by the
ROMANSE traffic control room operators. Results showed that the journey time estimates
produced identified 73% of the incidents on the network during the testing period. The
remaining 27% could not be identified because these incidents either occurred during off-
peak periods when no congestion was caused or during already congested peak periods. A
screen shot taken from the operator interface on the 27/6/01 when an accident occurred at
08:07 is shown in Figure 3.

Figure 3. Journey time estimates over the 1149m of the South bound inside lane of the A33
Bassett Avenue (27/6/01). The image is a screen-shot taken from a prototype journey time
estimation operator interface.
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Key to Figure 3:

X Axis = Time (30-second updates)

Y Axis = Journey Time (seconds)
‘TRO01’ neural network = Yellow line
‘MixTR’ neural network = Red line
‘All Days’ neural network = Blue line
‘D2345’ neural network = Green line

The incident was logged by the police at 08:08 and was reported cleared at 09:12. A one-way
ANOVA on the journey time estimates given by the four neural networks during this period
showed that there were significant differences in the estimates produced (F, 44y = 18.01,
p<0.001). The neural network trained on ALOTPV data from 2000 and 2001 (TRO01)
returned significantly greater estimates of journey time compared to ‘MixTR’ which was
given a combination of 1996 and 2001 data for training. This demonstrated the effects
different training data had on estimation performance. A separate one-way ANOV A showed
that there were significant differences in the mean measured journey times of vehicles



between the days used for training (F, s45) = 26.2, p<0.001). ALOTPV data for the 08:00 to
09:00 peak periods were compared for the days used to train MixTR and TROO1. The
influence of the increased congestion on 23/11/00 caused the significantly larger journey time
estimates by the TR001 neural network.

Despite the differences between the estimates produced, the initial effect of the incident was
picked up by all the journey time estimators, the mean journey time increasing by
approximately 135% between 08:04 and 08:10. This equated to a mean reduction in average
speed over the 1149m of 16 km/hr between 08:04 and 08:10.

Incidents which occurred during already congested periods were harder to identify. Unless a
total road closure was caused, the journey time estimates produced by normal queuing
vehicles would mask any influence a stationary vehicle might have by the side of the road.
Incidents occurring during off-peak periods which failed to cause queuing over upstream
detectors were also difficult to detect in the journey time estimates.

CONCLUSIONS

This paper has described a neural network based technique for estimating journey times on
non-signalised roads using the 250-ms digital output produced by single inductive UTC
detectors. The results showed that journey time estimates with a mean absolute percentage
deviation from the mean measured journey times of 15% could be obtained over a 1149m
stretch of carriageway during the morning peak period. The journey time estimates produced
by four neural networks training on different combinations of morning peak time ALOTPV
data showed that potential traffic incidents causing increases in congestion could be
accurately identified.

The four neural networks designed in this research are unique to the road on which they were
trained, containing the specific characteristics of the A33 Bassett Avenue (bus stops,
pedestrian crossings and key junctions). A separate issue not addressed here is how
conditions on a road change over time and how representative of ‘typical’ link conditions are
the data that have been collected for training? How often would new training data be required
to ‘update’ a network in order to keep pace with changing traffic conditions over time?
Collecting training data using registration plate surveys is an expensive process, and a key
issue is the minimum amount needed for the training process.

There is great potential for this type of detailed, immediate post-event journey time
information. If estimates of journey time on non-signalised links can be coupled with similar
estimates through signalised urban areas, complete routes could be monitored continuously.
This has benefits both in terms of more accurate network management, (signal control,
monitoring special events, incident detection) and in providing accurate driver information.

This work has emanated from the EU 5" Framework (Information Society Technologies
Programme) PRIME project, (Prediction of congestion and incidents in Real time, for
intelligent Incident Management and Emergency traffic management) (20).
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