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ABSTRACT 

This paper describes a technique for estimating vehicle journey times on non-signalised roads
using 250-ms digital loop-occupancy data produced by single inductive loop detectors. The 

technique was assessed to see whether abnormal periods of traffic congestion (caused by 

accidents and special events) could be identified using the journey time estimates produced 
along a key urban corridor in the city of Southampton. The technique used a neural network 

approach to provide historical journey time estimates every 30-seconds based on the average 

loop-occupancy time per vehicle (ALOTPV) data collected from the detectors during the 
previous 30-second period.  

Results showed that using the output from 8 detectors over 1149m, journey time estimates 
with a mean absolute percentage deviation from the mean measured speed (MAPD) of 15% 

were returned. These were achieved using a neural network trained on 7 days of morning 

peak period data. 

The journey time estimates produced were presented to the control room operator in the form 

of a moving graph, updating every 30-seconds. Results showed that the journey time 
estimates identified 73% of the logged incidents on the test network during the analysis 

period. 
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BACKGROUND 

In recent years, there has been a growing awareness of the problems caused by congestion in 

urban areas and the need to manage traffic more efficiently (1). Current speeds, link journey 
times and the location and severity of incidents are considered to be essential parameters in 

providing information to the driver (2,3,4), and as a basis for effective and efficient on-line 

traffic management. At present, close circuit television (CCTV) is commonly regarded as the 
primary medium for collecting reliable on-street information. CCTV however can only give 

the operator a snap-shot of conditions at a specific location whereas estimates of journey time 

for specific routes would provide a better overall picture of link performance. 

Automatic registration plate recognition using CCTV has been successfully used to provide 

estimates of journey time (5) where networks of cameras exist. A more cost effective option 
would result if similar estimates could be derived from the existing inductive loops 

controlling the city’s traffic signals. 

The ability to estimate journey times accurately using loop detectors, depends on the 

particular format and aggregation level of the digital data produced. Several techniques have 

relied on the ability to obtain an accurate estimate of time-mean speed, either using direct 
measurements from double loop speed detectors (6,7) or by the relationship between flow, 

speed and occupancy (8) using single loops (9-13), before attempting to estimate journey 

time. 

 There is often considerable unexplained day-to-day variability in recorded journey times 

along the same stretch of road. The ability to train a neural network using examples of 
various road conditions might produce a more accurate and versatile journey time estimation 

tool compared to the more mechanistic time-mean speed approaches. Using flow and 
occupancy data related to actual measured journey times, techniques involving neural 

networks (12) and fuzzy logic (10) have been used to estimate journey times on signalised 

links. 

A technique enabling video footage to be collected in synchronisation with loop-occupancy 

data (14) has led to the development of detailed databases containing vehicle loop profiles 
matched to measured journey times. This allows the performance of various journey time 

estimation techniques to be assessed in detail. This paper describes the on-street performance 

of a neural network based journey time estimator used to identify potential traffic incidents 
on a non-signalised road in Southampton, given 250-ms inductive loop data for training.  

OBJECTIVES 

Using the ‘Average Loop-Occupancy Time per Vehicle’ (ALOTPV) parameter derived every 

30-seconds from SCOOT-type Urban Traffic Control (UTC) detectors (15):

- Develop a neural network model to estimate 30-second post-event journey times along a 

1149m non-signalised road in Southampton. 
- Assess the accuracy of the journey time estimates produced compared to measured 

journey times collected through registration plate recognition. 

- Over a continuous monitoring period, determine how useful the technique was for 
control room operators for identifying abnormal congestion and traffic incidents. 
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METHODOLOGY 

The methodology for extracting the ALOTPV parameter from the detector data has been 
described in detail (16, 17). Single inductive loop detectors buried in the road surface produce 

an analog signal which is turned into a digital signal (0/1) by a detector pad usually located in 

the controller. A ‘1’ indicates the presence of metal over the loop. The vehicle-presence 
status of a SCOOT-type detector is checked at 250-ms intervals. The presence of a vehicle is 

indicated by a variable number of successive 1’s, each 1 representing 250-ms of occupancy 
(16). The number of 1’s produced (N) for a single vehicle is given by Equation 1. 

           N = 4 * (DL + VL)/VS...................................................Equation (1) 

Where: 

N is the loop occupancy time of the vehicle (the number of digital 1’s produced, each 
representing 250-ms of occupancy) 

DL is the detector’s effective magnetic length (metres) 

VL is the effective magnetic length of the vehicle (usually metallic chassis length) (metres) 
VS is the vehicle speed (metres/second) 

Previous research (16) developed the parameter of ALOTPV to help describe traffic 
conditions over a detector. The ALOTPV for a 30-second fixed-time interval is obtained by 

taking the number of 250-ms occupancies and dividing by the number of vehicles. This was 

engineered to return a figure of between 1 and 120, the former indicating free-flow 
conditions, the latter stationary traffic. All ALOTPV data used to train the neural network 

were collected through the ROMANSE traffic control centre in Southampton (18). 

TEST SITE

The neural network journey time estimators were trained for operation on the A33 Bassett 
Avenue, Southbound inside lane (Figure 1). The A33 is a four lane un-segregated A-class 

road with a speed limit of 64 km/hr and had been equipped with single inductive loop 

detectors at approximately 100m intervals. The traffic using the road during the morning peak 
period (07:30 – 09:15) consists of 96% car length vehicles (3m to 4.9m) and 4% long 

vehicles (greater than 4.9m). Parking by the roadside is prohibited along the entire length of 

the test site. Two CCTV cameras are installed at either end of the link to monitor traffic and 
were used to confirm potential incidents detected by the neural networks. 
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Figure 1. A33 Bassett Avenue Southbound inside lane detectors 

DEVELOPMENT OF THE NEURAL NETWORKS

The neural networks described here were built using NeuralWare’s ‘Predict’ software (19)

which sits within Microsoft Excel. Data are fed into the Predict model builder using Excel 

spreadsheets. ‘Predict’ not only generates a neural network based on a set of data but 
manipulates, transforms and selects the data before they are used.  During the data analysis 

phase, Predict takes each available data field (ALOTPV for each detector in this instance) 

and determines the types of transformations which work best in combination for predicting 
the desired output (in this case, journey time). Transformations used include identity 

function, exponential function, square function, inverse function and hyperbolic tangent 

function. Predict’s variable selection process then uses a genetic algorithm to identify subsets 
of the selected transformations which provide the closest matches to the target output. 

The neural networks created were designed using an adaptive gradient learning rule which is 
a form of back propagation. Instead of using a fixed architecture for the design where the 

number of hidden processing layers are fixed, Predict uses a constructive method called 

‘cascade learning’ to determine the optimum number of hidden processing layers. This can 
lead to different numbers of hidden layers being used between networks. Matching the 

vehicle registration plates, extracted from video surveillance, gave the overall journey times 

of the vehicles travelling down the test site. The basis for training was the ability to link the 
30-second ALOTPV data to the average measured journey times of the vehicles in each 30-

second start interval (Table 1).  

Due to the day-to-day journey time variability observed it was decided in the first instance to 

give the networks a minimum of four days training data, testing on an unseen day. 
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Table 1. An example of the training data used as inputs to a neural network journey time 

estimator. (For each 30-second interval the ALOTPV values are shown at each detector site 
together with the average measured journey times of the vehicles in that period). 

 Detector 3214J Detector 3234C 

Start Interval ALOTPV ALOTPV 

Measured 
Journey Time (secs) 

08:10:00 2.3 3.8 220 

08:10:30 2.4 2.9 218 

08:11:00 2.4 3.0 235 

08:11:30 2.6 2.7 240 

08:12:00 2.3 4.2 232 

In summary, the neural networks were trained by presenting them with a picture of the link 

conditions at each detector every 30-seconds, married to the measured journey times of the 
vehicles over the whole link who set off from the origin during that interval. During testing, 

an estimate of link journey time based on the immediate conditions was made every 30-

seconds, post-event. The effects of slower vehicles exiting or entering the link would be 
represented in the 30-second ALOTPV values of upstream detectors, if following vehicles 

were also forced to slow as a direct result. 

Four neural networks were designed using ALOTPV data from detectors N03214I, N03214J, 

N03214H, N03214G, N03234A, N03234B, N03234C, N03234D, N03234E in the inside 
southbound lane of the A33 Bassett Avenue (Figure 1). 

‘D2345’ trained on ALOTPV data collected from the detectors in 1996 (22/10/96, 23/10/96, 
24/10/96 and 25/10/96). The network had a 7-8-1 architecture (transformations from 7 of the 

detectors were used as inputs, passing through 8 hidden layers to produce the journey time 

output) and produced an internal correlation during training of 0.9669. 

‘MixTR’ was a network trained on a mixture of ALOTPV data from 1996 and 2001 

(22/10/96, 24/10/96, 26/02/01 and 27/02/01). This network had a 5-7-1 architecture and 
produced an internal correlation during training of 0.9555. 

‘TR001’ was a network trained solely on ALOTPV data from 26/02/01, 27/02/01 and 
23/11/00. This network had a 6-2-1 architecture and produced an internal correlation during 

training of 0.9495. 

‘All Days’ was a network given ALOTPV data from all the available survey days for training 

(22/10/96, 23/10/96, 24/10/96, 25/10/96, 26/02/01, 27/02/01 and 23/11/00). This network had 

an 8-4-1 architecture and produced an internal correlation during training of 0.9605. 

Using on-line ALOTPV data collected from the ROMANSE traffic control centre, a real-time 

display showing 30-second updates of estimated journey times from the four neural networks 
was developed. This took the form of a rolling graph displaying the current estimate of 

journey time from the previous 30-second period and the previous 50-minutes worth of 

estimates. This operator interface was tested with live data to see if the estimates could be 
used for identifying abnormal periods of congestion between 07:00 and 19:00, Monday to 

Sunday. 
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RESULTS 

The neural network journey time estimators were tested in two ways two determine: 

• The accuracy of the journey time estimates produced 

• The systems ability to alert the traffic control room operator to abnormal traffic situations 
on the A33 Bassett Avenue test section 

The accuracy of the estimates were determined by giving the neural networks new unseen 

data from five different days (07:30 to 09:10) when the measured journey times had been 

derived using registration plate matching. The performance of each network was calculated 
over the testing period in terms of its Mean Absolute Percentage Deviation from the Mean 

Measured Journey Time (MAPD).  Once the  MAPD had been determined on each day, a 

one-way analysis of variance test (ANOVA) was undertaken to see if there were any 
significant differences in the MAPD values produced by the four neural networks. This 

would help determine which set of training data produced results closest to reality. 

The systems ability to identify abnormal traffic situations was tested using detector data 

collected during eleven separate days when traffic accidents occurred on the test site between 

October 2000 and November 2001. The performance of the neural networks was assessed 
through the control room operator's ability to identify the increased journey time associated 

with the start of ‘abnormal’ traffic conditions on the link.  

ACCURACY OF THE JOURNEY TIME ESTIMATES

Table 2 shows the Mean Absolute Percentage Deviations from the Mean Measured Journey 
Times for each of the four neural networks by test day. 

Table 2. Mean Absolute Percentage Deviations from the Mean Measured Journey Times for 

each of the four neural networks by test day.

Test Days ‘D2345’ ‘MixTR’ ‘TR001’ ‘All Days’

18/7/01 18.2 18.8 18.7 17.3 

19/7/01 14.0 14.8 14.1 12.6 

5/11/01 17.0 16.7 17.2 16.7 

6/11/01 15.7 16.6 15.8 15.1 

12/11/01 12.8 12.3 15.1 13.4 

Mean 15.5 15.8 16.2 15.0 

The results suggested that the neural network trained on all the available training data (‘All 

Days’) provided estimates of journey time with the smallest mean absolute percentage 
deviation from the mean measured journey times (15%). 

Table 3 shows the mean difference (seconds) from the mean measured journey time for each 
of the four neural networks by test day. The neural network trained on data from 1996 gave 

the smallest mean differences from the mean measured journey times (an underestimate of 

2.4 seconds on average). The results from one-way ANOVA tests showed that only on the 
12/11/01 were there significant differences observed between the four neural networks in 
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terms of the mean difference from the mean measured journey times. The neural network 

trained on mixed data from 1996, 2000 and 2001 produced significantly smaller deviations 
from the mean measured journey times compared to the neural network trained solely on data 

from 2000 and 2001 (F(3, 648) = 3.47, p<0.05) 

Table 3. The mean difference (seconds) from the mean measured journey time for each of the 

four neural networks by test day. The results from one-way analysis of variance tests are 

shown. 

Day ‘D2345’ ‘MixTR’ ‘TR001’ ‘All Days’ F P(0.05) 

18/7/01 7.0 9.3 12.3 2.4 1.36 0.25 

19/7/01 -3.5 -2.4 -3.6 -6.2 0.74 0.53 

5/11/01 6.3 0.6 8.4 2.7 0.63 0.60 

6/11/01 -24.6 -30.5 -13.9 -20.2 2.13 0.09 

12/11/01 3.0 -1.0 13.4 7.9 3.47 0.01 

Mean -2.4 -4.8 3.3 -2.7 

The journey time estimates produced for the 18/7/01 are shown in Figure 2. 

Figure 2: Journey time estimates made on the 18/7/01 along the 1149m of Bassett Avenue 

inside lane Southbound. 
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IDENTIFYING POSSIBLE TRAFFIC INCIDENTS

Between August 2000 and November 2001, 11 traffic incidents involving either vehicle-on-

vehicle impacts or individual breakdowns were recorded along the A33 test section by the 

ROMANSE traffic control room operators. Results showed that the journey time estimates 
produced identified 73% of the incidents on the network during the testing period. The 

remaining 27% could not be identified because these incidents either occurred during off-

peak periods when no congestion was caused or during already congested peak periods. A 
screen shot taken from the operator interface on the 27/6/01 when an accident occurred at 

08:07 is shown in Figure 3. 

Figure 3. Journey time estimates over the 1149m of the South bound inside lane of the A33 

Bassett Avenue (27/6/01). The image is a screen-shot taken from a prototype journey time 

estimation operator interface. 

Key to Figure 3: 
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between the days used for training (F(4, 548) = 26.2, p<0.001). ALOTPV data for the 08:00 to 

09:00 peak periods were compared for the days used to train MixTR and TR001. The 
influence of the increased congestion on 23/11/00 caused the significantly larger journey time 

estimates by the TR001 neural network.  

Despite the differences between the estimates produced, the initial effect of the incident was 

picked up by all the journey time estimators, the mean journey time increasing by 

approximately 135% between 08:04 and 08:10. This equated to a mean reduction in average 
speed over the 1149m of 16 km/hr between 08:04 and 08:10.  

Incidents which occurred during already congested periods were harder to identify. Unless a 
total road closure was caused, the journey time estimates produced by normal queuing 

vehicles would mask any influence a stationary vehicle might have by the side of the road. 

Incidents occurring during off-peak periods which failed to cause queuing over upstream 
detectors were also difficult to detect in the journey time estimates. 

CONCLUSIONS 

This paper has described a neural network based technique for estimating journey times on 
non-signalised roads using the 250-ms digital output produced by single inductive UTC 

detectors. The results showed that journey time estimates with a mean absolute percentage 

deviation from the mean measured journey times of 15% could be obtained over a 1149m 
stretch of carriageway during the morning peak period. The journey time estimates produced 

by four neural networks training on different combinations of morning peak time ALOTPV 

data showed that potential traffic incidents causing increases in congestion could be 
accurately identified. 

The four neural networks designed in this research are unique to the road on which they were 

trained, containing the specific characteristics of the A33 Bassett Avenue (bus stops, 

pedestrian crossings and key junctions). A separate issue not addressed here is how 
conditions on a road change over time and how representative of ‘typical’ link conditions are 

the data that have been collected for training? How often would new training data be required 

to ‘update’ a network in order to keep pace with changing traffic conditions over time? 
Collecting training data using registration plate surveys is an expensive process, and a key 

issue is the minimum amount needed for the training process. 

There is great potential for this type of detailed, immediate post-event journey time 

information. If estimates of journey time on non-signalised links can be coupled with similar 

estimates through signalised urban areas, complete routes could be monitored continuously. 
This has benefits both in terms of more accurate network management, (signal control, 

monitoring special events, incident detection) and in providing accurate driver information.  

This work has emanated from the EU 5
th
 Framework (Information Society Technologies 

Programme) PRIME project,  (Prediction of congestion and incidents in Real time, for 

intelligent Incident Management and Emergency traffic management) (20). 
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