Super-resolution land cover pattern prediction using a Hopfield neural network

Tatem, A.J., Lewis, H.G., Atkinson, P.M. and Nixon, M.S. (2002) Super-resolution land cover pattern prediction using a Hopfield neural network. Remote Sensing of Environment, 79, 1-14. (doi:10.1016/S0034-4257(01)00229-2).


Full text not available from this repository.


Landscape pattern represents a key variable in management and understanding of the environment, as well as driving many environmental
models. Remote sensing can be used to provide information on the spatial pattern of land cover features, but analysis and classification of
such imagery suffers from the problem of class mixing within pixels. Soft classification techniques can estimate the class composition of
image pixels. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field-ofview
(IFOV) represented by the pixel. Techniques to provide an improved spatial representation of land cover targets larger than the size of a
pixel have been developed. However, the mapping of subpixel scale land cover features has yet to be investigated. We recently described the
application of a Hopfield neural network technique to super-resolution mapping of land cover features larger than a pixel, using information
of pixel composition determined from soft classification, and now show how our approach can be extended in a new way to predict the
spatial pattern of subpixel scale features. The network converges to a minimum of an energy function defined as a goal and several
constraints. Prior information on the typical spatial arrangement of the particular land cover types is incorporated into the energy function as a
semivariance constraint. This produces a prediction of the spatial pattern of the land cover in question, at the subpixel scale. The technique is
applied to synthetic and simulated Landsat Thematic Mapper (TM) imagery, and compared to results of an existing super-resolution target
identification technique. Results show that the new approach represents a simple, robust, and efficient tool for super-resolution land cover
pattern prediction from remotely sensed imagery

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/S0034-4257(01)00229-2
ISSNs: 0034-4257 (print)
Related URLs:
Subjects: G Geography. Anthropology. Recreation > G Geography (General)
G Geography. Anthropology. Recreation > GE Environmental Sciences
G Geography. Anthropology. Recreation > GB Physical geography
Divisions : University Structure - Pre August 2011 > School of Geography > Remote Sensing and Spatial Analysis
ePrint ID: 54909
Accepted Date and Publication Date:
January 2002Published
20 November 2000Submitted
Date Deposited: 01 Aug 2008
Last Modified: 31 Mar 2016 12:34

Actions (login required)

View Item View Item