The regional variation of aboveground live biomass in old-growth Amazonian forests


Malhi, Y., Wood, D., Baker, T.R., Wright, J.A., Phillips, O.L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Monteagudo, A., Neill, D.A., Nunez Vargas, P., Pitman, C.A., Quesada, C.A., Salomao, R., Silva, J.N.M. and Lezama, A.T. (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12, (7), 1107-1138. (doi:10.1111/j.1365-2486.2006.01120.x).

Download

Full text not available from this repository.

Description/Abstract

The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old-growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow-growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350 Mg dry weight ha−1) and declining to 200-250 Mg dry weight ha−1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106 km2 in 2000) to be 93±23 Pg C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified

Item Type: Article
ISSNs: 1354-1013 (print)
Related URLs:
Keywords: Amazonia, biomass, carbon, soil fertility, tropical forests, wood density
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
G Geography. Anthropology. Recreation > GB Physical geography
Divisions: University Structure - Pre August 2011 > School of Geography > Remote Sensing and Spatial Analysis
ePrint ID: 55577
Date Deposited: 01 Aug 2008
Last Modified: 27 Mar 2014 18:38
Contact Email Address: J.A.Wright@soton.ac.uk
URI: http://eprints.soton.ac.uk/id/eprint/55577

Actions (login required)

View Item View Item