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ABSTRACT   
 
A non-linear pendulum model is developed to represent the motion of a 
sloshing fluid in real time. The forces imposed by the sloshing fluid are 
identified using multiphase RANS CFD simulations and subsequently 
included in the pendulum sloshing model.  The pendulum sloshing 
model was used to simulate sloshing induced by linear and angular 
motions at and near resonance.  Good agreement between the CFD data 
and the pendulum sloshing model was observed.  A blind simulation 
with multiple surge excitation components is carried out and the 
pendulum sloshing model agrees with the RANS CFD result.  
Typically, the computational time of the pendulum is approximately 
1/700th of real time. 
 
KEY WORDS:  Sloshing; multiphase; CFD; Simplified sloshing 
models; nonlinear pendulum 
 
INTRODUCTION 
 
Sloshing occurs when a tank is partially filled with a fluid and 
subjected to an external excitation force (Olsen, 1976).  Ships with 
large ballast tanks and liquid bulk cargo carriers, such as very large 
crude carriers (VLCCs), are at risk of exposure to sloshing loads during 
their operational life (Rizzuto and Tedeschi, 1997).  The inclusion of 
structural members within the tanks dampens the sloshing liquid 
sufficiently in all but the most severe cases. However, this approach is 
not used for Liquefied Natural Gas (LNG) carriers and the accurate 
calculation of the sloshing loads is an essential element of the LNG 
tank design process (Bass et al., 1980; Knaggs, 2006).  Recent 
increases in vessel size have renewed interest in methodologies for the 
simulation of the sloshing loads experienced by the containment system 
(Han et al., 2005; Card and Lee, 2005). 
 
While the sloshing response depends on the amplitude and frequency of 
the excitation force, history effects can be of significance as well. 
Waterhouse (1994) observed the hard and soft spring-type behavior of a 
sloshing flow. The offset of the response peak from the resonant 
excitation was found to depend on the tank filling level. 
 
The work of Abramson (1966) summarizes the methods available in 

modern sloshing analysis, and Ibrahim (2005) gives an up-to-date 
survey of analytical and computational sloshing modeling techniques.  
A more general modeling technique is the solution of the Navier-Stokes 
equations using Computational Fluid Dynamics (CFD). Some recent 
examples of CFD sloshing simulation include Hadzic et al. (2002), 
Aliabadi et al. (2003), Standing et al. (2003) and El Moctar (2006). 
 
Sloshing flows are treated as a transient problem in CFD. While the 
number of sloshing oscillations can vary, a large number of time steps, 
usually O(102) to O(103) per oscillation are required.  Design 
optimization or the use of a numerical wave tank to gather statistical 
sloshing pressure data (Graczyk et al., 2006) require long simulation 
times or multiple runs.  
 
The associated computational requirements make the use of a three 
dimensional CFD model impractical for such studies. There is still a 
requirement for the development of simplified mathematical sloshing 
models. These models operate in faster than real time (fast time) and 
can be used to provide sufficiently long time series for statistical 
analysis. Faltinsen et al. (2000, 2001, 2002) use a potential flow model 
and develop a multimodal system to describe sloshing in a rectangular 
container.  Reported computational times for two dimensional sloshing 
are less than 1% of real time (Faltinsen et al., 2000). 
 
Phenomenological modeling is another approach for the development 
of a simplified sloshing model. Rather than solving a detailed 
mathematical description of the flow, the forces acting on the system 
are approximated and included in a mathematical model. Schlee et al. 
(2005) proposed a MATLAB-based model to determine the 
characteristics of a pendulum sloshing model based on experimental 
data. 
 
The approach adopted in this study is to analyze the detailed fluid 
loading occurring during sloshing based on a validated CFD sloshing 
model.  This allows the construction of mathematical models for the 
individual force components and other associated terms.  These are 
then incorporated in a pendulum sloshing model.  This model is tested 
using regular linear excitations at and near resonance.  Angular motions 
are then investigated.  Finally, the blind simulation of sloshing with 
multiple simultaneous excitations presents a test of realistic motions. 
 



 

SLOSHING PROBLEM 
 
Membrane tanks are considered to be at greater risk from sloshing 
damage than spherical tanks.  Although a tank will experience motions 
in all six degrees of freedom, the most severe are roll, pitch, sway and 
surge (Lloyds Register, 2005). The initial CFD analysis is normally 
undertaken by considering two dimensional sloshing motions of the 
longitudinal and transverse cross sections of the tank (Lloyds Register, 
2005).  In this study only the longitudinal (rectangular) cross section is 
considered.  
 
Tank Geometry 
 
The longitudinal cross-section of a membrane tank is shown in Fig. 1.  
The dimensions of the tank are scaled to coincide with the experiment 
by Hinatsu (2001). A 60% filling level is used in the simulation. The 
resonant frequencies of a rectangular tank are calculated using potential 
flow (Abramson, 1966) 
 

( )khgkm tanh2 =ω , (1) 

where g  is gravity, h  the filling depth and, for a two dimensional 
tank 
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where a  is the length of the tank and ∞= ,...,3,2,1m .  Usually, the first 

( )1=m  resonant frequency is the most crucial. Both linear and angular 
excitations are investigated. 
 

Fig. 1: Longitudinal tank cross section. All dimensions in m 
 
NUMERICAL MODEL 
 
Governing Equations 
 
Multiphase CFD is established as a suitable methodology for the study 
of sloshing flows.  An inhomogeneous multiphase model, which 
includes separate transport equations for mass, momentum and energy 
for every fluid provides a more faithful representation of the dynamic 
interaction between the fluids (Ishii and Hibiki, 2006). A full set of 
conservation equations is solved for each phase: 
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and the stress tensor ijτ  is written as 
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where ib  is external body force (e.g. gravity), Γ  mass transfer, µ  

dynamic viscosity, ΓM momentum transfer due to mass transfer,  
rM forces on the interface caused by the presence of the other phase,  

ρ  density, p pressure, r volume fraction, iu  and ix  the Cartesian 

velocity and co-ordinate tensors.  The mass and momentum transfer 
terms link the phase velocity fields.  In the present problem there is no 

interphase mass transfer and the only remaining term is rM .  This is 
computed using the relative velocity between the liquid and gas phases. 
 
In the more widely used homogeneous multiphase model, this term is 
assumed to be large and hence there is no relative velocity between the 
phases (Brennen, 2005). Consequently, only one set of momentum 
conservation equations has to be solved.  This reduces computational 
effort by typically 60% (Godderidge et al., 2007b). However, 
Godderidge et al. (2007b) found that when simulating a nonlinear 
sloshing flow using CFD, the more complex inhomogeneous 
multiphase model should be used. 
 
Discretization 
 
The governing equations are discretized using a finite volume method. 
Zwart (2004) describes the discretization procedure, gives the 
governing equations in their discretized form and describes the solution 
strategy.  The advection scheme is based on the scheme by Barth and 
Jesperson (1989) and the free surface is compressed by introducing an 
anti-diffusive flux in cells near the fluid interface (Zwart, 2004; 
ANSYS, 2007).   
 
The numerical investigations were carried out using the commercial 
CFD code CFX-11.01. The grid used for the longitudinal cross-section 
(rectangular tank) is shown in Fig. 2. A total of 8,745 elements (8,109 
hexahedral and 636 wedge) are used and the refined region at the top 
corners contains 5,266 hexahedral elements. The advantage of the 
hybrid grid used in this study is that only the regions of interest were 
refined while maintaining a hexahedral-dominant grid. This resulted in 

a more efficient use of computational resources.  Table 1 summarizes 

                                                           
1
 The simulations were run on a 64 bit, 2.2 GHz processor with 2 GB of RAM at the 

University of Southampton Iridis 2 computational facility  

 
Fig. 2: Computational grid used for the rectangular cross-section 



 

the computational parameters used. The selection is based on the 
sensitivity studies by Godderidge et al. (2006, 2007b). 
 

 
The high resolution scheme for spatial discretization varies between a 
first and second order upwind scheme depending on the gradient 
(ANSYS, 2007).  It was found to be the most stable scheme.  The 
sloshing motion of the container was applied using a body force 
approach. This approach adds additional time-dependent terms in the 
external body force vector ib  for linear motions.  When the tank is 

subjected to rotational motions, additional forces are introduced. These 
are accounted for with the introduction of corresponding terms in the 
conservation of momentum Equation (4) (ANSYS, 2007). 
 
RAPID SLOSHING MODEL 
 
Pendulum Equation 
 
Sloshing is the motion of a fluid 
due to excitations imparted 
through the motion of its 
container. The behavior of the 
fluid can be represented using 
equations of motion (e.g. 
Equations 3 and 4).  A popular 
phenomenological approximation 
is the pendulum model. Fig. 3 
shows the forces acting on a 
linearly damped pendulum with an 
excitation body force ( )tA . The 
resulting equation describing the 
pendulum motion is determined 
using Newton’s second law 
 

( ) ( ) ( )θθθβθ cos
1

sin tA
ll

g +−−= &&& , (6) 

where ( ) ( )tAtA ωsin=  is the excitation with frequency ω , β  a 

damping coefficient, g  gravity, l  and m  pendulum length and mass 

respectively, θ  angular displacement and ω  excitation frequency. Time 
derivatives are indicated by superscript dots. 
 
Although the pendulum model has been used previously to simulate 
sloshing (Aliabadi et al, 2003), the significance of individual terms 

warrants closer scrutiny. The first term θβ &−  is the damping force acting 

on the pendulum. The gravity term ( )θsin
l

g−  is a restoring force, 

countering the lateral pendulum body force.  
 
Fluid Motion in a Sloshing Tank 
 
As a pendulum models the sloshing fluid as a single moving mass, the 
behavior of fluid integral quantities needs to be considered. The path of 
the fluid centre of gravity for different excitation periods, given relative 
to the first natural period 1T  with a horizontal excitation amplitude of 

L0125.0  calculated using the CFD model outlined previously, are 
compared in Fig. 4.  For the range of frequencies shown, the centre of 
gravity appears to follow the same path.  

 

 
Similar observations can be made in Fig. 5 for angular excitations. The 
centre of gravity follows the same path observed in Fig. 4 for two and 
five degree excitation amplitudes. The near-resonance flow with 
excitation amplitude of five degrees includes fluid fragmentation and 
overturning.  This results in greater scatter of the fluid centre of gravity 
displacement. 

Table 1: CFD model description and parameters 
Parameter Setting 
Water Incompressible fluid 
Air Ideal gas 
Sloshing motion Body force, rotating frame of 

reference 
Turbulence model Standard k-ε with scalable wall 

function 
Spatial discretization Gradient-dependent first or 

second order 
Temporal discretization Second order backward Euler 
Timestep control Root-mean-square (RMS) 

Courant number=0.1 
Convergence control RMS residual < 10-5 

 
Fig. 3: Damped forced 
pendulum 

 
Fig. 4: Displacement of the fluid centre of gravity caused by linear 
horizontal tank excitation 

 
Fig. 5: Displacement of the fluid centre of gravity caused by angular 
tank excitation 



 

 
Sloshing Tank Forces 
 
Viscous Forces at the Wall.  The formation of boundary layers at the 
tank walls affects the sloshing motion. Its impact is generally 
considered small (Bass, 1980) and viscous effects are frequently 
neglected. However, the inclusion of viscosity is observed to influence 
the long-term behavior of sloshing simulations (Cariou and Casella, 
1999). 

 
The laminar viscous boundary layer formed over an oscillating plate 
and the flow over an accelerating plate are two solutions that have a 
degree of applicability to the to the wall boundary layer observed 
during sloshing.  They can be used to model the effect of viscous 
dissipation in a sloshing model.  The laminar viscous flow over an 
oscillating plate, which has been compared to a sloshing boundary layer 
(Godderidge et al, 2007a), can be written as 
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where ν is the kinematic viscosity, 0U  plate velocity, Tπω 2=  

frequency and z depth. The viscous shear stress at the wall is given as 
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Replacing u  with Equation (7) gives 
 

( )











−= ttUwall ωω

ν
ωµτ cossin

2

2

1
0 . (9) 

 
The wall shear force is linearly proportional to velocity, which is 
analogous to the damping force in Equation (6). However, the wall 
shear stress also depends on the square root of the frequency of 
excitation. 
 
The velocity profile of an accelerating plate is a better approximation of 
the boundary layer formed during sloshing (Godderidge et al, 2007a). 
The first approximation is developed by Schlichting (1960) as 
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profile again leads to a linear relation between shear stress and fluid 
velocity.  However, the second approximation of the two-dimensional 
case (Schlichting, 1960) includes non-linear fluid velocity terms.  A 
linear relation between fluid velocity and viscous dissipation, appears 
sufficient, but the inclusion of higher order damping may be necessary 
in a more detailed model. 
 
Viscous Dissipation.  The effects of fluid viscosity are not confined to 
the boundary layer region. Dissipation occurs in the body of the fluid 
and, if it is contaminated with another fluid (e.g. oil on water), at the 
free surface.  However, Keulegan (1958) observes that the viscous 
dissipation in the fluid is negligible compared the boundary layer. 
 
The velocity dependence of the viscous forces on the wall can therefore 
be used to determine a suitable damping model.  Keulegan (1958) 
develops a linear damping model for viscous dissipation of a standing 
wave in a rectangular tank, which is synonymous with sloshing at 
higher filling levels (Lloyds Register, 2005). The viscous dissipation in 
the linear model depends on the square root of the excitation frequency 
and kinematic viscosity.  For a two dimensional tank, the linear 
damping model from Keulegan (1958) gives the damping coefficient 
β  as 0.0036_s-1 at resonance, compared to 0.0050_s-1 measured from the 
logarithmic decrement of a sloshing simulation. 
 
Violent sloshing flows can experience fluid impact opposing the flow 
velocity.  A third order damping model is chosen to account for fluid 
impacts and the corresponding damping coefficient is computed as 

14.03 =β .  It was obtained by computing the decay during one impact 

and reproducing it using an appropriate damping function. 
 
Pressure Imbalance Force. As the fluid moves from its equilibrium 
position in its container, a horizontal pressure gradient develops. This 
pressure gradient opposes the motion of the fluid and acts as a restoring 
function. Fig. 7 shows the longitudinal pressure gradient observed in 
the CFD computations for linear excitations with displacement 
amplitude of L0125.0  and angular excitations at two and five degrees 
amplitude. The angles are measured from the centre of the tank. 
Although there is some spread at the maximum angle, the gradient at 
small angles is similar for the flows shown. 
 

 

 
Fig. 6: Forces acting on the fluid due to sloshing 

 
Fig. 7: Horizontal pressure gradient observed during linear and 
angular sloshing 



 

Similarly, the pendulum is subjected to a force opposing its 
disturbance.  In a nonlinear pendulum, this function is ( )θsinmg .  The 
pressure gradient in Fig. 7 can be related to a restoring force by 

x

pm
F eff

∂
∂=

ρ
, (11) 

 
where effm  is the effective sloshing mass which is taken as fluidm7.0  

(Abramson, 1966). Thus, the conventional pendulum force can be 
replaced by a function describing the pressure gradient-induced 
restoring force.   
 

 
Fig. 8: Restoring function computed from pressure gradients 

 
The restoring force is shown in Fig. 8. The angle is computed by 
moving the reference point from the tank centre to one pendulum 
length above the fluid centre of gravity. The observed restoring forces 
are obtained by fitting a third-order polynomial to the results from Eqn 
(11) using the data in Fig. 7.  Both ( )αθsin  and ( )αθtan  are included 
as displacement functions. The tangent function is more representative 
of the sloshing flow without impact.  Although the sine is better suited 
for large fluid displacements, both functions use 0225.1=α . 
 
Rotational Motion. Rotational excitations are modeled using a rotating 
frame of reference.  The gravity vector moves according to the 
prescribed angular displacement ( )tC ωθ sin= , where C is the 
displacement amplitude.  However, the use of a moving frame of 
reference gives rise to additional forces: a Coriolis force, 
 

rotCO umF
r

r
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where rotu  is the velocity in the rotating frame and  a centrifugal force, 
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However, this does not consider the angular accelerations.  The Euler 
force  
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takes the unsteadiness of the angular motion into account (Batchelor, 
1967).  When the angular displacement amplitude is small, the Euler 
force is dominant.  In the current investigations, the angular 
displacement amplitude will not exceed five degrees and the Coriolis 

and centrifugal forces can be neglected. 
 
The rotational forces depend on the spatial distribution of the sloshing 
liquid.  Therefore an acceleration corresponding to each force is 
required for the pendulum sloshing model.  In the CFD simulation the 
Euler force is 
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for i control volumes.  Using a similar approach to the pressure 
gradient, the corresponding Euler acceleration is 
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The same approach can be taken if the Coriolis and centrifugal forces 
need to be included as well. 
 
Pendulum Sloshing Model. Using the results obtained in this section, 
the pendulum equation (6), the governing equation can be re-written as  
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for linear excitations and  
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This model is now compared to the RANS CFD model. The pendulum 
length l is calculated so that the resonant frequency of the undamped 
pendulum, given as 

l

g
n =ω , (19) 

coincides with the first resonant sloshing frequency. 
 
TWO DIMENSIONAL SLOSHING 
 
Linear Excitation 
 
The initial test of the pendulum sloshing model is sloshing induced by 
horizontal tank motions at resonance, shown in Fig. 9 and greater than 
resonance, shown in Fig 10. The resonant sloshing includes fluid 
impacts at the top wall.  The fluid momentum obtained from the RANS 
CFD model is compared to the pendulum sloshing model (Eqn.17) and 
the basic pendulum Equation (6). 
 
The modified pendulum gives a good match to the magnitude of fluid 
momentum of the resonant sloshing flow in Fig. 9. However, the 
pendulum sloshing model starts to lead the sloshing flow. This may be 
attributable to fluid impacts at the top wall, which are observed 
throughout the CFD simulation. The second case with an excitation 
greater than resonance is well predicted by the pendulum sloshing 
model.  The predicted momentum history remains in phase with the 
CFD data and the peaks, which vary throughout the simulation, are 
estimated with good accuracy. 
 
However, the basic pendulum underestimates the fluid momentum at 
resonance and it fails to match the non-periodic fluid momentum history 
for the sloshing flow shown in Fig. 10. Neither the frequency of the 
signal nor the magnitudes of the peaks are estimated correctly. 
 



 

 

 
Fig. 9: Fluid momentum history for sloshing induced by horizontal tank motions at resonance (1.00T1) 

 

 
Fig: 10: Fluid momentum history for sloshing induced by horizontal tank motions at 1.25T1  

 
Angular Motions 
 
Sloshing induced by angular tank motions constitutes the second test of 
the pendulum sloshing model.  Fig. 11 shows the fluid momentum 
history of a flow excited by an angular excitation with a two degree 
amplitude and 1.09T1.  The pendulum sloshing model described by 
Equation (18) predicts the momentum history well, with both plots 
remaining in phase.  
 
There are some noticeable differences at the first oscillation and the 
trough at oscillation 10. The significance of the Euler force is illustrated 
in Fig. 11, where the absence of the Euler force results in an unrealistic 
momentum history. The influences of the Coriolis and centrifugal 
forces were nearly two orders of magnitude less than the Euler force 
and, when included, they have been found to be insignificant. 
 
A more violent flow with tank ceiling impacts is depicted in Fig 12.  

There is reasonable agreement between the pendulum sloshing model 
and the CFD model once the flow progresses past the initial transient 
phase. However, the first four peaks are not modeled with sufficient 
accuracy. This may be attributable to the absence of a separate model 
for fluid impacts, which are a key feature of this flow field. 
 
Combined Linear Motions 
 
The final case is a blind simulation of surge-induced sloshing with 
multiple excitations.  The coefficients determined previously are used in 
the pendulum sloshing model for linear excitations given by Eqn (17). 
The excitation consists of four horizontal excitation components of the 
form  
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where 81 =A , 42 =A , 23 =A , 14 =A , 11 =B , 05.12 =B , 5.13 =B , 



 

and 34 =B . 

 
Fig. 13 compares the fluid momentum history to the CFD result. There 
is generally good agreement and both histories remain in phase.  The 
momentum in the initial transient period of about 10 s is 
underestimated by the pendulum sloshing model. However, after the 
initial transient, the pendulum sloshing model and the multiphase CFD 
result are in good agreement, with the differences less than 5%. 
 
The spectrum of the momentum histories in Fig. 14 shows that the peak 
at 1.00T1 is predicted well with the pendulum sloshing model. 
Similarly, the peak at 1.05T1 is predicted reasonably well. The third 
excitation period at 1.50T1 is overestimated somewhat and the final 
component at 3.00T1 is not recognized in either the pendulum sloshing 
model or the CFD simulation.  There is a high-frequency spike in the 
CFD data that is not reproduced by the pendulum sloshing model, 
however, its energy content is negligible. 

 
 
 

 
 

Fig. 14: Power spectrum of momentum history 

 
Fig 11: Angular tank motions of 2 deg at 1.09T1 
 

Fig 12: Angular tank motions of 5 deg at 1.04T1 

Fig. 13: Fluid momentum history for sloshing excited by multiple horizontal tank motions 



 

CONCLUSIONS 
 
RANS CFD can provide accurate sloshing pressure data but the 
associated time penalties are often prohibitive.  Therefore, a simplified 
sloshing model, based on a pendulum equation, has been developed. It 
has been found that the physics governing a sloshing flow need to be 
modeled correctly to provide realistic results.  The influence of 
damping was found to be small for sloshing with no fluid impact.  The 
restoring force proved to be influential, especially when the flow 
history is not periodic. 
 
When simulating a sloshing flow with multiple excitations, the 
pendulum sloshing model was able to reproduce the unique flow 
history as well as the power spectrum obtained from CFD.  Fluid 
impacts on walls have been found to influence the restoring function 
and damping. The development of a model incorporating fluid impacts 
appears to be necessary for a more accurate representation of violent 
sloshing.   
 
Initial tests of the pendulum sloshing model are promising and a blind 
simulation of sloshing with tank ceiling impacts was in good agreement 
with the CFD data.  Further investigations of more complicated 
combinations of linear and angular excitations and variations in tank 
shape and filling level are currently being conducted.  Finally, a 
realistic six-degree-of-freedom sloshing tank with pump tower will be 
analyzed with the pendulum sloshing model. 
 
The principal strengths of this sloshing model are its simplicity, 
flexibility and speed. One hour simulation (approximately 2,400 
oscillations) can be computed on a desktop PC in approximately five 
seconds of real time.  Objects such as pump towers can be incorporated 
by assessing their influence on the damping and restoring force 
functions. This permits the rapid evaluation of the sloshing 
characteristics of a tank in a seaway taking history effects into account 
as well as the real time assessment of sloshing severity in LNG cargo 
tanks. 
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