The rapid activation of protein synthesis by growth hormone requires signaling through mTOR


Hayashi, A.A. and Proud, C.G. (2007) The rapid activation of protein synthesis by growth hormone requires signaling through mTOR. American Journal of Physiology Endocrinology and Metabolism, 292, (6), E1647-E1655. (doi:10.1152/ajpendo.00674.2006).

Download

Full text not available from this repository.

Description/Abstract

An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.

Item Type: Article
ISSNs: 0193-1849 (print)
Related URLs:
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: University Structure - Pre August 2011 > School of Biological Sciences
ePrint ID: 56042
Date Deposited: 07 Aug 2008
Last Modified: 27 Mar 2014 18:38
URI: http://eprints.soton.ac.uk/id/eprint/56042

Actions (login required)

View Item View Item