Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling


Ujwal, M.L., McCormac, A.C., Goulding, A., Kumar, A.M., Soll, D. and Terry, M.J. (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Molecular Biology, 50, (1), 83-91. (doi:10.1023/A:1016081114758).

Download

Full text not available from this repository.

Original Publication URL: http://dx.doi.org/10.1023/A:1016081114758

Description/Abstract

The synthesis of 5-aminolevulinic acid (ALA) is a key regulatory step for the production of hemes and chlorophyll via the tetrapyrrole synthesis pathway. The first enzyme committed to ALA synthesis is glutamyl-tRNA reductase encoded in Arabidopsis by a small family of nuclear-encoded HEMA genes. To better understand the regulation of the tetrapyrrole synthesis pathway we have made a detailed study of HEMA2 expression with transgenic Arabidopsis thaliana L. Col. plants carrying chimeric HEMA2 promoter:gusA fusion constructs. Our results show that the HEMA2 promoter directs expression predominantly to roots and flowers, but that HEMA2 is also expressed at low levels in photosynthetic tissues. Deletion analysis of the HEMA2 promoter indicates that a ca. 850 bp fragment immediately upstream of the HEMA2 coding region is sufficient to drive regulated gusA expression. In contrast to HEMA1, HEMA2 is not up-regulated by red, far-red, blue, UV or white light. In addition, elimination of a promotive plastid signal by Norflurazon-induced photobleaching of plastids had no effect on HEMA2 expression while being required for normal white-light induction of HEMA1. HEMA2 expression in the cotyledons is inhibited by the presence of sucrose or glucose, but not fructose, and this response is light-independent. HEMA1 expression in cotyledons is also inhibited by sugars, but in a strictly light-dependent manner. The roles of HEMA1 and HEMA2 in meeting cellular tetrapyrrole requirements are discussed.

Item Type: Article
ISSNs: 0167-4412 (print)
Related URLs:
Keywords: chlorophyll, chloroplast development, gene expression, heme, phytochrome, tetrapyrrole synthesis
Subjects: Q Science > Q Science (General)
R Medicine > R Medicine (General)
Divisions: University Structure - Pre August 2011 > School of Biological Sciences
ePrint ID: 56256
Date Deposited: 08 Aug 2008
Last Modified: 27 Mar 2014 18:38
URI: http://eprints.soton.ac.uk/id/eprint/56256

Actions (login required)

View Item View Item