Arrhythmia in isolated prenatal hearts after ablation of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca2+ channels


Lu, Z.J., Pereverzev, A., Liu, H.L., Weiergraber, M., Henry, M., Krieger, A., Smyth, N., Hescheler, J. and Schneider, T. (2004) Arrhythmia in isolated prenatal hearts after ablation of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca2+ channels. Cellular Physiology and Biochemistry, 14, (1-2), 11-22. (doi:10.1159/000076922).

Download

Full text not available from this repository.

Original Publication URL: http://dx.doi.org/10.1159/000076922

Description/Abstract

A voltage-gated calcium channel containing Cav2.3e (1Ee) as the ion conducting pore has recently been detected in rat heart. Functional evidence for this Ca2+ channel to be involved in the regulation of heart beating, besides L- and T-type channels, was derived from murine embryos where the gene for Cav1.2 had been ablated. The remaining ''L-type like“ current component was not related to recombinant splice variants of Cav1.3 containing channels. As recombinant Cav2.3 channels from rat were reported to be weakly dihydropyridine sensitive, the spontaneous activity of the prenatal hearts from Cav2.3(-|-) mice was compared to that of Cav2.3(+|+) control animals to investigate if Cav2.3 could represent such a L-type like Ca2+ channel. The spontaneous activity of murine embryonic hearts was recorded by using a multielectrode array. Between day 9.5 p.c. to 12.5 p.c., the beating frequency of isolated embryonic hearts from Cav2.3-deficient mice did not differ significantly from control mice but the coefficient of variation within individual episodes was more than four-fold increased in Cav2.3-deficient mice indicating arrhythmia. In isolated hearts from wild type mice, arrhythmia was induced by superfusion with a solution containing 200 nM SNX-482, a blocker of some R-type voltage gated Ca2+ channels, suggesting that R-type channels containing the splice variant Cav2.3e as ion conducting pore stabilize a more regular heart beat in prenatal mice.

Item Type: Article
ISSNs: 1015-8987 (print)
Related URLs:
Subjects: Q Science > QD Chemistry
Q Science > QH Natural history > QH301 Biology
Divisions: University Structure - Pre August 2011 > School of Biological Sciences
ePrint ID: 56411
Date Deposited: 08 Aug 2008
Last Modified: 27 Mar 2014 18:39
URI: http://eprints.soton.ac.uk/id/eprint/56411

Actions (login required)

View Item View Item