Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR

Williamson, P.T.F., Meier, B.H. and Watts, A. (2004) Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR. European Biophysics Journal, 33, (3), 247-254. (doi:10.1007/s00249-003-0380-1).


Full text not available from this repository.


Over the last seven years, solid-state NMR has been widely employed to study structural and functional aspects of the nicotinic acetylcholine receptor. These studies have provided detailed structural information relating to both the ligand binding site and the transmembrane domain of the receptor. Studies of the ligand binding domain have elucidated the nature and the orientation of the pharmacophores responsible for the binding of the agonist acetylcholine within the agonist binding site. Analyses of small transmembrane fragments derived from the nicotinic acetylcholine receptor have also revealed the secondary structure and the orientation of these transmembrane domains. These experiments have expanded our understanding of the channel's structural properties and are providing an insight into how they might be modulated by the surrounding lipid environment. In this article we review the advances in solid-state NMR applied to the nicotinic acetylcholine receptor and compare the results with recent electron diffraction and X-ray crystallographic studies.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1007/s00249-003-0380-1
ISSNs: 0175-7571 (print)
Related URLs:
Keywords: integral membrane proteins, magic angle sample spinning, nicotinic acetylcholine receptor, oriented samples, solid-state NMR
Subjects: Q Science > QH Natural history > QH301 Biology
Q Science > QC Physics
Divisions : University Structure - Pre August 2011 > School of Biological Sciences
ePrint ID: 56523
Accepted Date and Publication Date:
1 May 2004Published
Date Deposited: 08 Aug 2008
Last Modified: 31 Mar 2016 12:37

Actions (login required)

View Item View Item