The University of Southampton
University of Southampton Institutional Repository

Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL

Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL
Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL
Trp fluorescence spectroscopy is a powerful tool to study the structures of membrane proteins and their interactions with the surrounding lipid bilayer. Many membrane proteins contain more than one Trp residue, making analysis of the fluorescence data more complex. The mechanosensitive channels MscL's of Mycobacterium tuberculosis (TbMscL) and Escherichia coli (EcMscL) contain no Trp residues. We have therefore introduced single Trp residues into the transmembrane regions of TbMscL and EcMscL to give the Trp-containing mutants F80W-TbMscL and F93W-EcMscL, respectively, which we show are highly suitable for measurements of lipid binding constants. In vivo cell viability assays in E. coli show that introduction of the Trp residues does not block function of the channels. The Trp-containing mutants have been reconstituted into lipid bilayers by mixing in cholate followed by dilution to re-form membranes. Cross-linking experiments suggest that the proteins retain their pentameric structures in phosphatidylcholines with chain lengths between C14 and C24, phosphatidylserines, and phosphatidic acid. Quenching of Trp fluorescence by brominated phospholipids suggests that the Trp residue in F80W-TbMscL is more exposed to the lipid bilayer than the Trp residue in F93W-EcMscL. Binding constants for phosphatidylcholines change with changing fatty acyl chain length, the strongest interaction for both TbMscL and EcMscL being observed with a chain of length C16, corresponding to a bilayer of hydrophobic thickness ca. 24 Å, compared to a hydrophobic thickness for TbMscL of about 26 Å estimated from the crystal structure. Lipid binding constants change by only a factor of 1.5 in the chain length range from C12 to C24, much less than expected from theories of hydrophobic mismatch in which the protein is treated as a rigid body. It is concluded that MscL distorts to match changes in bilayer thickness. The binding constants for dioleoylphosphatidylethanolamine for both TbMscL and EcMscL relative to those for dioleoylphosphatidylcholine are close to 1. Quenching experiments suggest a single class of binding sites for phosphatidylserine, phosphatidylglycerol, and cardiolipin on TbMscL; binding constants are greater than those for phosphatidylcholine and decrease with increasing ionic strength, suggesting that charge interactions are important in binding these anionic phospholipids. Quenching experiments suggest two classes of lipid binding sites on TbMscL for phosphatidic acid, binding of phosphatidic acid being much less dependent on ionic strength than binding of phosphatidylserine.
0006-2960
14306-14317
Powl, Andrew M.
79b77ec3-767b-42ad-991c-d843e29af8e3
East, J. Malcolm
9fe7f794-1d89-4935-9a99-b831d786056e
Lee, Anthony G.
0891914c-e0e2-4ee1-b43e-1b70eb072d8e
Powl, Andrew M.
79b77ec3-767b-42ad-991c-d843e29af8e3
East, J. Malcolm
9fe7f794-1d89-4935-9a99-b831d786056e
Lee, Anthony G.
0891914c-e0e2-4ee1-b43e-1b70eb072d8e

Powl, Andrew M., East, J. Malcolm and Lee, Anthony G. (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry, 42 (48), 14306-14317. (doi:10.1021/bi034995k).

Record type: Article

Abstract

Trp fluorescence spectroscopy is a powerful tool to study the structures of membrane proteins and their interactions with the surrounding lipid bilayer. Many membrane proteins contain more than one Trp residue, making analysis of the fluorescence data more complex. The mechanosensitive channels MscL's of Mycobacterium tuberculosis (TbMscL) and Escherichia coli (EcMscL) contain no Trp residues. We have therefore introduced single Trp residues into the transmembrane regions of TbMscL and EcMscL to give the Trp-containing mutants F80W-TbMscL and F93W-EcMscL, respectively, which we show are highly suitable for measurements of lipid binding constants. In vivo cell viability assays in E. coli show that introduction of the Trp residues does not block function of the channels. The Trp-containing mutants have been reconstituted into lipid bilayers by mixing in cholate followed by dilution to re-form membranes. Cross-linking experiments suggest that the proteins retain their pentameric structures in phosphatidylcholines with chain lengths between C14 and C24, phosphatidylserines, and phosphatidic acid. Quenching of Trp fluorescence by brominated phospholipids suggests that the Trp residue in F80W-TbMscL is more exposed to the lipid bilayer than the Trp residue in F93W-EcMscL. Binding constants for phosphatidylcholines change with changing fatty acyl chain length, the strongest interaction for both TbMscL and EcMscL being observed with a chain of length C16, corresponding to a bilayer of hydrophobic thickness ca. 24 Å, compared to a hydrophobic thickness for TbMscL of about 26 Å estimated from the crystal structure. Lipid binding constants change by only a factor of 1.5 in the chain length range from C12 to C24, much less than expected from theories of hydrophobic mismatch in which the protein is treated as a rigid body. It is concluded that MscL distorts to match changes in bilayer thickness. The binding constants for dioleoylphosphatidylethanolamine for both TbMscL and EcMscL relative to those for dioleoylphosphatidylcholine are close to 1. Quenching experiments suggest a single class of binding sites for phosphatidylserine, phosphatidylglycerol, and cardiolipin on TbMscL; binding constants are greater than those for phosphatidylcholine and decrease with increasing ionic strength, suggesting that charge interactions are important in binding these anionic phospholipids. Quenching experiments suggest two classes of lipid binding sites on TbMscL for phosphatidic acid, binding of phosphatidic acid being much less dependent on ionic strength than binding of phosphatidylserine.

This record has no associated files available for download.

More information

Submitted date: 11 June 2003
Published date: 9 December 2003

Identifiers

Local EPrints ID: 56667
URI: http://eprints.soton.ac.uk/id/eprint/56667
ISSN: 0006-2960
PURE UUID: b9619637-2c4f-4d66-b4b1-996a127364ab

Catalogue record

Date deposited: 07 Aug 2008
Last modified: 15 Mar 2024 11:03

Export record

Altmetrics

Contributors

Author: Andrew M. Powl
Author: J. Malcolm East
Author: Anthony G. Lee

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×