The University of Southampton
University of Southampton Institutional Repository

Protein-membrane interaction and ligand transfer to membranes from intestinal fatty acid binding proteins (FABPs) employing natural ligands

Protein-membrane interaction and ligand transfer to membranes from intestinal fatty acid binding proteins (FABPs) employing natural ligands
Protein-membrane interaction and ligand transfer to membranes from intestinal fatty acid binding proteins (FABPs) employing natural ligands
Liver and Intestinal fatty acid binding proteins (FABPs) are small cytosolic proteins presumably involved in the uptake and targeting of fatty acids (FA) to intracellular organelles and metabolic pathways. All further sites of metabolism of long chain FA involve membrane proteins. The objective of this work was to analyze FABP-membrane interaction and FA transfer from FABPs to artificial membranes, in order to better understand the specific physiological roles of I- and LFABP in the enterocyte. We employed two different methodologies: photocrosslinking studies and fluorescence-based FA transfer analysis employing natural ligands. The results of the photocrosslinking studies indicate that apo-IFABP interacts with membranes to a greater extent than holo-IFABP, while the opposite is observed for LFABP, probably indicating that IFABP could be delivering FA to membranes, whereas LFABP may be interacting to remove FA from membranes. Additionally, the interaction of IFABP is greatly increases with negatively charged vesicles, but is not affected by the charge in the vesicles for LFABP. To deepen our understanding of the LFABP FA targeting role, we have employed a tryptophan containing mutant at position 28 (L28W), whose fluorescence is enhanced upon FA binding. This gives us the chance to study both the ligand–protein interaction and protein-to-membrane ligand transfer using various physiological ligands instead of the analogues we have been employing previously. So far, our results of the binding properties of the L28W mutant with oleic acid, under physiological ionic strength, are consistent with a 2 site cooperative mechanism. We have also analyzed the transfer of oleic acid from L28W to phosphatidylcholine vesicles which showed that L28W will let us perform kinetic studies of FA transfer from protein to membranes under conditions which are closer to the physiological, and hence further our knowledge of the specific function/s of LFABP.
0009-3084
S50-S50
Geronimo, Eduardo
98bf49b4-31a1-4b93-94a5-a3bb49806efb
Falomir-Lockhart, Lisandro.J.
5510f892-aae1-43be-9c64-6fa52bb9f0c4
Guerbi, María Ximena
f6bd97ed-d51c-465f-9a41-037f052f4759
Wilton, David.C.
4b995f66-ad6c-4d96-9179-c64f3b54466a
Corsico, Betina
25e47a9d-b01d-40b0-a71e-f95521e17533
Geronimo, Eduardo
98bf49b4-31a1-4b93-94a5-a3bb49806efb
Falomir-Lockhart, Lisandro.J.
5510f892-aae1-43be-9c64-6fa52bb9f0c4
Guerbi, María Ximena
f6bd97ed-d51c-465f-9a41-037f052f4759
Wilton, David.C.
4b995f66-ad6c-4d96-9179-c64f3b54466a
Corsico, Betina
25e47a9d-b01d-40b0-a71e-f95521e17533

Geronimo, Eduardo, Falomir-Lockhart, Lisandro.J., Guerbi, María Ximena, Wilton, David.C. and Corsico, Betina (2007) Protein-membrane interaction and ligand transfer to membranes from intestinal fatty acid binding proteins (FABPs) employing natural ligands. Chemistry and Physics of Lipids, 149 (1), S50-S50. (doi:10.1016/j.chemphyslip.2007.06.112).

Record type: Article

Abstract

Liver and Intestinal fatty acid binding proteins (FABPs) are small cytosolic proteins presumably involved in the uptake and targeting of fatty acids (FA) to intracellular organelles and metabolic pathways. All further sites of metabolism of long chain FA involve membrane proteins. The objective of this work was to analyze FABP-membrane interaction and FA transfer from FABPs to artificial membranes, in order to better understand the specific physiological roles of I- and LFABP in the enterocyte. We employed two different methodologies: photocrosslinking studies and fluorescence-based FA transfer analysis employing natural ligands. The results of the photocrosslinking studies indicate that apo-IFABP interacts with membranes to a greater extent than holo-IFABP, while the opposite is observed for LFABP, probably indicating that IFABP could be delivering FA to membranes, whereas LFABP may be interacting to remove FA from membranes. Additionally, the interaction of IFABP is greatly increases with negatively charged vesicles, but is not affected by the charge in the vesicles for LFABP. To deepen our understanding of the LFABP FA targeting role, we have employed a tryptophan containing mutant at position 28 (L28W), whose fluorescence is enhanced upon FA binding. This gives us the chance to study both the ligand–protein interaction and protein-to-membrane ligand transfer using various physiological ligands instead of the analogues we have been employing previously. So far, our results of the binding properties of the L28W mutant with oleic acid, under physiological ionic strength, are consistent with a 2 site cooperative mechanism. We have also analyzed the transfer of oleic acid from L28W to phosphatidylcholine vesicles which showed that L28W will let us perform kinetic studies of FA transfer from protein to membranes under conditions which are closer to the physiological, and hence further our knowledge of the specific function/s of LFABP.

This record has no associated files available for download.

More information

Published date: September 2007

Identifiers

Local EPrints ID: 56699
URI: http://eprints.soton.ac.uk/id/eprint/56699
ISSN: 0009-3084
PURE UUID: ae19d20c-6d28-432b-a8e1-43e6a06063da

Catalogue record

Date deposited: 08 Aug 2008
Last modified: 15 Mar 2024 11:03

Export record

Altmetrics

Contributors

Author: Eduardo Geronimo
Author: Lisandro.J. Falomir-Lockhart
Author: María Ximena Guerbi
Author: David.C. Wilton
Author: Betina Corsico

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×