‘Publishing’ and the Cambridge Structural Database

IUCr Workshop, Osaka, Japan, 23 August 2008

Frank H. Allen

Cambridge Crystallographic Data Centre (CCDC)
12 Union Road, Cambridge CB2 1EZ, UK

allen@ccdc.cam.ac.uk
www.ccdc.cam.ac.uk
Crystal structures in the public domain
So what’s new?

- Original rationale behind scientific databases:
 “The growing abundance of primary scientific publications and the confusion with which it is set out acts as a brake, as an element of friction, to the progress of science”

 J.D. Bernal (Royal Society Report, London, 1948)

- Fundamental mission of crystallographic databases:
 To create comprehensive, value-added and fully validated databases of crystal structure data, with a single-site world repository for each structure type
Method of last resort → Method of choice

Crystal structure databases in 2008

<table>
<thead>
<tr>
<th>January 2008 data</th>
<th>Total</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYSTMET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Inorganics/Metals</td>
<td>119,600</td>
</tr>
<tr>
<td>ICSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Inorg./Metals</td>
<td>[>100,000]</td>
</tr>
<tr>
<td>CSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Organic/Metal-Org.</td>
<td>436,436</td>
</tr>
<tr>
<td>NDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Nucleic Acids</td>
<td>3,730</td>
</tr>
<tr>
<td>PDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Proteins</td>
<td>48,161</td>
</tr>
<tr>
<td>All Databases</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>607,927</td>
</tr>
</tbody>
</table>
Growth of the CSD since 1970

“All science is either physics or stamp collecting”
(Lord Rutherford)

Growth 1970 – 2000
453,765 structures on 1 July 2008

Projected Growth 2001-2010
>500,000 structures by end of 2009
CSD: Summary of data acquisition

- **1965 – ca. 1990** Numerical data encoded manually from hard copy journal publications
- **1980 – ca. 2000** Data encoded from journal ‘supplementary deposition documents’!
- **1994 onwards** Electronic data deposition via CIF
 Private Communications to CSD (now 5,603)
- **2000 onwards** Appearance of e-only journals
- **2000 onwards** Pre-publication deposition with CCDC for >100 key journals, CCDC archive of deposited CIFs with free access for bona fide researchers
- **In 2008** 1,254 literature sources cited in the CSD
 Top 10 journals yield 49% of structures
 Top 30 journals yield 75% of structures
 99% of data arrive electronically in CIF format
CSD: Vital issues for the future

Internal
- Improving the CCDC’s current systems
 - Extend interactions with journals and repositories
 - Improve software as N(struct) increases

External
- Data repositories and OD archives
 - Purpose, information content, organisation, oversight, intended user base, data quality, citation in papers?
- Massive reservoir of unpublished data
 - How to attract more structures into public domain?
- Funding data storage and preservation
 - Sustainability of repositories (and databases)?
Data repositories

- CCDC has always supported the creation of repositories to improve availability of novel structure data: we include data from these e-sources, properly attributed.

E-repositories cannot develop in vacuo:

- Who determines content, standards, protocols, formats, quality control (refereeing)?
- Do they extend databases by storing diffraction info.?
- What is relationship to conventional publications?
- Will repositories be updated (new data, references, etc)?
- Will the CCDC have to build up its own list of active repositories, mirroring our journals list? OR.
- Will there be an overarching ‘federation’ of repositories?
Global Open Data Archives

- Crystallography Open Database (http://cod.ibt.lt/)
 - Entirely self-deposition? Crystal structure results only?
- CrystalEye (http://wwmm.ch.cam.ac.uk/crystaleye/)
 - Aggregates data from journals, expects to aggregate from repositories and will also encourage self-deposition. Crystal structure results only?
- CCDC will pick up relevant novel structures from these sources, but issues noted for local repositories also apply, including oversight, organisation and funding.
- Interactions hampered by the nature of OD polemics!
- Note also:
 IUCr Crystallographic Archive (a current proposal)
An increasing percentage of novel structures are never published in Journals: about 75% are unpublished in many labs.

- As throughput increases, this situation can only worsen
- The log-jam has shifted inexorably to ‘placing the data into the public domain’, i.e. the ‘publication’ process
- The scientific community is losing valuable data resources

This is the major challenge facing databases and repositories: how to maximise the number of structures in the public domain
Crystal structures in the public domain

Brakes to the publication process

- Sheer pressure of time – process labour intensive
- ‘Ownership’ – chemist or crystallographer?
- Responsibility for publication – chemist or crystallographer?
- Structure is not as expected: loss of interest – who ‘owns’ the data then?
- Refereeing: chemistry is rejected and with it some good crystal structure(s) – what then?

Need for academic recognition or ‘kudos’, or enforced ‘publication’ by funding agencies!
Sustainability: Funding and ‘Business Models’

- Aggregating, validating, maintaining and deploying databases or repositories requires
 - Funding – management, scientific quality control, hardware etc.
 - Clear expectation of longevity

- Existing databases are funded by:
 - Subscriptions – academia, industry (CSD, ICSD, CRYSTMET)
 - Government agencies – no user charges (PDB, NDB)

- CCDC
 - 1965-1989: public funding, but encouraged to recover costs
 - 1989- : non-profit charitable trust, break-even budget
 - Now: International deployment (70 countries) – subscription, but charitable discounts (up to 100%) for developing countries
Sustainability: Funding and ‘Business Models’

- Repositories and OA/OD archives
 - Agency start-up and development funding
 - Long term: international funding, national funding, local funding?
- Issues
 - Government Agencies good at pump priming but not longevity (except the PDB)
 - Long term commitment? - reduces ongoing research resources?
 - Policies may vary dramatically from country to country
 - No clear universal message on establishment and funding of institutional archives
 - Viability: valuable only to specialist crystallographers? or to a broader spectrum of scientists (cf. existing databases)?
We must avoid:

A situation that gives rise to a paraphrase of Bernal:

“The growing abundance of data repositories and the confusion with which they are organised and managed acts as a brake, as an element of friction, to the progress of science”
Acknowledgements

CCDC Staff, May 2008